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Abstract— In this paper, the use of a monitoring companion
is proposed to more efficiently collect the process information
during the tuning of industrial systems, and therefore to assist
the system integrator in the optimization process for complex
robotic installations. The monitoring companion consists of
an industrial manipulator (monitoring robot) and a Unity-
ROS framework for controlling it. We discuss in this paper
the features that allow the solution to be re-used in different
industrial application thanks to its compatibility with ROS.
In particular, we present the approach based on admittance
virtual fixtures and how we use such abstraction to track a
moving target (it could be the end-effector of another robot
for example). Moreover, the concept of varying compliance is
introduced as a way to influence the motion of the monitoring
robot on the virtual fixtures in the presence of obstacles. The
experiments have been conducted in simulation as well as on
real hardware to test the accuracy of the system at respecting
the virtual fixtures with both a static and a moving monitoring
target, although in the current implementation the varying
compliance was not included in the experiments.

I. INTRODUCTION
For system integrators, optimizing complex industrial

robotic applications (e.g. robotised welding) is a difficult and
time-consuming task. This is usually due to discrepancies
between the models and the actual behaviour of complex
systems, and the system integrator needs to fine tune the final
installation by trial and error to obtain the desired quality.
This procedure is even more tedious when the operator
cannot access the robotic system once in operation and
must rely on additional sensors to acquire the necessary
process information. However, it is often difficult to find
a permanent placement for the sensors to be able to fully
monitor the process at any given time during the trials, and
this would also be a very expensive and potentially unreliable
approach, if applied to all of the robot installations. While it
is hard to completely remove this trial and error fashion, it is
possible to provide a way to gather process information more
effectively that can be used in several robotic installations.
It is then proposed to provide the system integrator with a
monitoring robot in addition to the robot(s) belonging to the
industrial process that needs to be optimized (also referred
to as task robot(s)). The monitoring robot can be equipped
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with several different sensors and can be moved into close
proximity of any installed robot so that it can be used to
collect information from that process during and/or after
the operation without interfering. The system operator can
control the monitoring robot to change its viewpoint and
acquire information from various positions (e.g. inspect a
workpiece from different angles). With a more effective way
of gathering process data, the system integrator can perform
his/her primary task (optimizing the industrial process) more
efficiently. Since controlling the monitoring robot is not a
primary task, the challenge is to make such interaction as
flawless as possible not to overload the operator. The operator
will control the monitoring robot with a camera view from
its endeffector and via a joystick or similar interface.

The concept and the framework to control the monitoring
robot and synchronize it with the task robot has been
previously discussed in [1]. This paper instead, focuses on
the control strategy to navigate the monitoring robot inside
the workspace, which is based on abstract surfaces, called
virtual fixtures [2], [3] (Conceptual representation in Figure
1).

Fig. 1. Conceptual representation of a virtual fixture. The virtual fixture
should prevent the robot’s end-effector from entering a certain forbidden
region.

II. RELATED WORK

Other researchers have worked on the use of a robot to
monitor another industrial process, as it provides flexibility
in the choice of viewpoint angle in the workspace as well
as allowing any inspection to be performed remotely (so
improving EHS conditions when the industrial process is
carried on in a harsh environment).

Carvalho et al. in [4] discuss virtual reality approaches to
be able to inspect an Oil offshore platform, so as to improve
understanding during simulation before moving to the real
industrial site. Both advanced control techniques and virtual



reality representations can improve the situation awareness of
the remote site and facilitate the remote control of industrial
manipulators that have to act in such remote environment.

In particular, in [5] the authors have proposed an in-
spection robot to monitor offshore operations on oil and
gas platforms. In their paper, Bjerkeng et al. presented a
flexible camera view based on the weighted pseudoinverse
redundancy resolution method. They could autonomously
monitor the operation of a second industrial robot while
a user could adjust the zoom according to his/her needs.
By appropriately dividing the solution space in task space
and null space, the monitoring robot could perform its main
objective while handling singularities during its motion.

It is worth noticing that an area of improvement could be
in extending the adjustment that the user is allowed to make
also to the viewing angle (compared to only relative distance
adjustments). However, providing more possibilities to adjust
the monitoring viewpoint comes with a cost of increasing the
difficulty of the overall monitoring robot control. Therefore,
this paper illustrates such an approach that allows for more
flexibility in the viewpoint control during operation.

III. VIRTUAL FIXTURES

Virtual fixtures (also called active constraints) are a con-
cept introduced by Rosenberg [2] as a way to anisotropically
influence robot movements. Active constraints are a very
important concept for many telesurgery applications, and
have been thoroughly surveyed in this light by Bowyer et al.
in [6]. For conciseness, the term virtual fixtures will be used
instead of active constraints from now on. This work adopts
the geometric approach discussed by Marayong et al. in [7].
More specifically, the virtual fixtures are represented by a set
of preferred and non-preferred directions of motion which
can be designed to be an abstract surface that the robot’s
end-effector cannot penetrate. The fact that some directions
are identified as non-preferred means that the end-effector
motion will be less compliant along such directions, as if
the end-effector were experiencing some resistance.

It is important to notice that the use of virtual fixtures
is independent of the type of control scheme used on
the robot, which could be either admittance or impedance
control. With a very brief description, we could say that
impedance control imposes a force on the robot (spring-
mass-damper behaviour), while admittance control imposes
a position. With impedance control, forces can be applied to
the robot in response to its interaction with the environment.
In admittance control, the robot motion is purely decided by
the control software and the robot tends to be stiffer when it
gets in contact with external objects. In particular contexts,
admittance control can be seen as a ”safer” approach com-
pared to impedance control due the absence of motion if the
user input drops to zero. However, admittance and impedance
control could be interchanged in many applications. This
paper focuses solely on admittance control, meaning that
the control software will filter the user input and apply the
filtered motion to the master reference (which in this case is
a 3D model of the monitoring robot).

The way to achieve this behaviour in admittance control,
is to filter the user input commands along the directions
described by the virtual fixture.

More particularly, let us assume then to have a 6 ×
n matrix D = D(t), 1 < n < 6 containing the preferred
directions of motion. The dimension of the D matrix is
determined by the type of constraint imposed on the end
effector. For example, if n is 1, the preferred motion is along
a curve in SE(3), or along a surface if n is 2 and so on. As
described by Marayong et al. in [7] and by Hager in [8] the
input vector can then be decomposed along preferred and
non-preferred directions with the Kernel and Span operators:

vD ≡ [D]fin and vvvτ ≡ 〈D〉fin (1)

where fin is the vector containing the user input motion.
Due to the properties of the Kernel and Span operator (for

more details see Hager in [8]), and since it is possible to write
vD+vτ = vvv, it is possible to write the following relationship:

vvv = c([D]+ cτ〈D〉)fin (2)

where cτ ∈ [0,1] is the compliance factor for the non-
preferred directions. The smaller the value of cτ , the smaller
the compliance along the non-preferred directions of motion.
If cτ is chosen to be equal to zero, the virtual constraint is
a hard virtual fixture, as opposed to any other value which
instead would still permit motion along the non preferred
directions.

It is worth observing that, with such definition, the moni-
toring robot’s end-effector can move on a path that is parallel
to the preferred directions of motion specified in D at every
given time, and this is typically the case if, at every instant,
the robot moves along the tangent plane (or line) of the
abstract surface. In fact, the linearisation error accumulates
over time and that results in the end-effector moving onto a
parallel path. Instead of modifying the D matrix by including
an ”attraction” term, the linearisation error is automatically
corrected after every user input command, in order to elim-
inate the drifting component that tends to move the end-
effector away from the virtual fixture. If this correction
is performed at every iteration, provided that the user is
controlling the robot, the ”active” movement that is imposed
on the robot at each iteration is small enough not to be a
concern in terms of safety.

IV. LOCAL VIRTUAL FIXTURES AND
AUTONOMOUS TRACKING

An additional observation is that such virtual fixtures are
not static in the 3D environment where we control the
monitoring robot. Instead, the virtual fixtures can move,
typically together with the end-effector of the task robot.
In the literature they are called dynamic virtual fixtures or
dynamic active constraints [6].

However, we believe the use of this term might be in-
appropriate and misleading here because in this paper we
have designed a virtual fixture that in certain situations



can be manipulated by the user to influence the navigation
capabilities of the monitoring robot.

This section describes the use of a non-compliant virtual
fixture that can be manipulated by certain user commands.
This virtual fixture can be used together with autonomous
tracking motions also when a user performs manual adjust-
ments. Figure 2 shows the conceptual representation of the
local virtual fixture (LVF) with the shape of a sphere. The
end effector of the monitoring robot is constrained on the
sphere’s surface and the whole fixture can move in space
according to the motion of the task robot’s end-effector.

The virtual fixture is initialized with respect to a point or
object in the 3D environment, such as the task robot tool tip
or for example the workpiece. If the point to which the local
virtual fixture is anchored moves inside the workspace, then
the whole fixture moves along as well. As a consequence of
this motion, the monitoring robot is also moving in order to
remain on the virtual sphere’s surface. This behaviour is the
motion that is generated by the autonomous tracking part.
The monitoring robot motion which is instead generated by
user input is only affecting the position of the monitoring
robot’s end-effector relatively to the virtual fixture.

Figure 3 shows schematically how the monitoring robot’s
reference is influenced by both user motion and autonomous
tracking motion. The monitoring robot can be controlled by
any combination of these two sources.

Another property of the local virtual fixture is that in
certain scenarios the user can manually modify the anchor’s
position in the workspace. This scenario is contemplated
because the user should be able to change the ”focus point”
during the operation, meaning that the monitoring robot can
be set to inspect different areas of the workspace while being
constrained to the surface of the local virtual fixture.

vvv = vvvu + vvva and vvvu = c([D]+ cτ〈D〉)vvvin (3)

where vvva is the velocity vector of the autonomous navigation
part. In (3) vvvu is the user velocity vector that in (2) was
simply called vvv.

V. VARYING COMPLIANCE

Depending on the application scenario, a noncompliant
virtual fixture can bring advantages as well as disadvantages.
In this particular case, the zero compliance property of the

Fig. 2. A local virtual fixture (spherical surface) to monitor an external
process.

local virtual fixture conveniently allows to fulfil the task
implicit objectives. These objectives are the orientation of the
monitoring robot end-effector (i.e. the camera view) towards
the anchor point (the object that is being inspected) and
a minimum distance from the workpiece or task robot for
example.

However, the local virtual fixture does not give any con-
straint about how the motion should be influenced when ap-
proaching other obstacles. Currently obstacles (or forbidden
region that can be regarded as obstacles) are expressed in the
3D environment as virtual fixtures so to prevent their contact
with the monitoring robot. In the current implementation,
however, it possible that the local virtual fixture partially
intersects one or more obstacles’ forbidden regions if the
user decides to change the inspection target by moving the
local virtual fixture inside the workspace.

Whenever this happens, it is possible to provide more
than just haptic feedback when the monitoring robot comes
in contact with the obstacles virtual fixtures (as it moves
along the LVF surface). The compliance of the system can
be modified to simulate an increase in friction as the robot
approaches an obstacle, even though the robot still only
moves along the preferred directions of motion.

It is important to notice that in the case of a partly
compliant VF, a similar result could be achieved by gradually
changing D = D(t) to exclude the direction of motion that
would move the robot toward the obstacle.

Let us assume to have a spherical LVF, that intersects a
certain obstacle represented by its own VF, Sobst ∈ SE(3).
Let us continue by assuming that the set of point of the
intersection is known, and that for any position of the end ef-
fector xxxtcp it is possible to determine the point PPP∈ Sobst , and
belonging to the intersection, that is closest to the monitoring
robot’s end effector. Let us introduce the varying compliance
c = c(xxxtcp(t)), function of the end-effector position xxx(t) :

c(xxx(t))=


1 dist(xxxtcp,PPP)> h, 0 < h≤ RLV F

wsdist(xxxtcp,PPP) dist(xxxtcp,PPP)≤ h, 0 < ws ≤ 1
0 dist(xxxtcp,PPP) = 0

(4)
where h is a threshold that determines at what distance

the system starts having less compliance on the preferred
directions, while the term ws is a scaling factor that can be
conveniently chosen as ws =

1
h so that c(xxx(t)) ∈ [0,1]. If the

LVF is spherical, dist(xxxtcp,PPP) corresponds to the spherical
distance. If the LVF is not of canonical shape (e.g. is a sensor
generated 3D surface) the distance between two points is
computed as the distance between two nodes on a graph,
where the graph is obtained by sub-sampling the 3D surface.

VI. SPHERICAL VIRTUAL FIXTURE
IMPLEMENTATION

A local virtual fixture with spherical shape has been
implemented (see figure 2), to test the behaviour of the
monitoring robot during motion.



Fig. 3. The simplified control diagram of the monitoring software. Autonomous navigation (or motion) input are in parallel with the user manual navigation.
The user can manually adjust the viewpoint of the monitoring robot during the operation, and the changes issued are added to the autonomous tracking
motion.

The form of the D matrix then has to describe the preferred
motions as the sphere tangent plane that passes through the
monitoring robot’s end-effector. During the initialization, the
control software makes sure that the monitoring robot’s end
effector is touching the virtual fixture surface, by changing
it’s radius if necessary. The D = D(t) matrix takes the form:

D =

[
tx1 ty1 tz1 1 0 1
tx2 ty2 tz2 1 0 1

]T
(5)

where (tx1 , ty1 , tz1) and (tx2 , ty2 , tz2) are the vectors that identify
the tangent plane to the sphere’s surface at any given time.
The tangent vectors will change as the end-effector moves
along the sphere’s surface, making the D matrix time depen-
dent as expected. The elements of D equal to one indicate
the freedom to rotate along the Z and X axis in order to
maintain the focus toward the centre of the virtual fixture.

The framework to control the monitoring robot is based
on Unity3D [9], where a 3D replica of the monitoring robot
serves as the reference for the real hardware (the real robot
is shown in figure 4). The pose of both the 3D reference
and the real robot were recorded to test the performance of
the control software during certain test trajectories. In partic-
ular, the monitoring robot motion has been observed when
performing ideal manual movements, when autonomously
tracking a moving point, and in a combination of the two
motions.

Manual movements are ideal because they are actually
simulated via software for reproducibility purposes. The
input commands are simulated as coming from the same
interface that would be used by the human operator (a
Joystick) but without noise in the resultant motion.

A. Manual Motion

The trajectory used for the manual motion is composed of
four simple steps:

1. Move ”left” with respect to the monitoring tool frame
(or camera view) while zooming out

2. Move ”right” with respect to the monitoring tool frame
(or camera view) while zooming in

3. Move ”right” with respect to the monitoring tool frame
(or camera view) while zooming out

4. Move ”left” with respect to the monitoring tool frame
(or camera view) while zooming in

The robot starting position, the zooming speed and move-
ment speed are reported in table I.

The resultant path has been performed ten times, shifting
the monitoring robot’s end-effector ”downward” (w.r.t. the
monitoring tool frame) of 0.5 millimetres between each

Fig. 4. The industrial setup where a monitoring robot (on the right) can
inspect a workpiece. The way-points shown in the picture are selected via
user adjustments as the process is being carried out. Note that the relative
positioning between the monitoring robot and the task robot changes from
one point to the other.



Starting Position
(J1,J2...J6)

(0.002, 89.998, -0.004, 0.005, -89.997, -2.324)
[deg.]

Starting Position
(x,y,z)

(0.280, 0.553, 0)
[m]

Zooming
Speed 1.0 [cm/s]

Movement Speed 1.0 [cm/s]

Initial LVF Radius 10 [cm]

Maximum LVF radius 15 [cm]

TABLE I
PARAMETERS FOR THE MANUAL MOTION TEST.

iteration, as can be noticed by the drift along the X-axis
in figure 5.

Moreover, in this test the user input not only modifies
the position of the monitoring robot on the LVF, but also
directly modifies the radius of the virtual sphere (the zooming
motion). Although changing the radius of the LVF might
seem to contradict the original purpose of a virtual fixture,
such degree of freedom is normally not enabled and can only
be used by a human operator. Finally, the spherical virtual
fixture radius has a minimum value of operation that not even
the user in manual motion can override. This radius limit
prevents the robot from getting too close to the monitoring
target. The tracking error between the 3D model and the real
robot while performing the manual motion test is shown in
figure 6.

B. Manual & Autonomous Motion

The other round of tests consists into combining motion
commands from the joystick interface with the autonomous
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Fig. 5. Trajectory for the test with manual motion. The robot moves along
the surface of the local virtual fixture, which has a fixed position.
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Fig. 6. The histogram of the tracking error during the manual motion test.
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Fig. 7. Trajectory used for the manual & autonomous test. In this picture
only the manual motion is displayed.

tracking motion. More specifically, in the Unity environment
the local virtual fixture is initialized anchored to a point in
space (referred to as ”tracked point” in table II) that will
start moving back and forth along a line parallel to the Z-
axis, defined by two predefined positions (see table II).

The trajectory generated by manual input instead consists
into a downward movement (vertical axis) followed by a
repetitive left/right movement along the X axis of the end-
effector frame, always constrained to be on the virtual
sphere’s surface. The trajectory followed by the robot if there
was no input coming from the autonomous tracking software
(vvva = 0) is shown in figure 7.

The path that results from the combination of the two
motion commands is instead shown in figure 8, and the
parameters for the manual and autonomous motion test are
reported in table II.



Robot Starting Position
(J1,J2...J6)

(0.002, 89.998, -0.004, 0.005, 0.002, -0.004)
[deg.]

Robot Starting Position
(x,y,z)

(0.352, 0.625, 0)
[m]

Tracked Point:
Initial Position

(3.023, -0.375, 0.15)
[m]

Tracked Point:
Final Position

(3.023, -0.375, -0.15)
[m]

Robot Zooming Speed 1.0 [cm/s]

Robot Movement Speed 1.0 [cm/s]

LVF Radius (constant) 10 [cm]

Tracked Point Speed 2 [cm/s]

TABLE II
PARAMETERS FOR THE MANUAL AND AUTONOMOUS MOTION TEST. THE

LVF RADIUS REMAINS CONSTANT DURING THE TEST. THE TRACKED

POINT MOVES LINEARLY BETWEEN THE INITIAL AND THE FINAL

POSITION.
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Fig. 8. Path generated by the combination of autonomous tracking
movement and manual input commands.

However, it is important to observe that the autonomous
tracking motion can generate complications during operation
if the monitoring task is not designed appropriately. The
monitoring robot can track an abstract point that is only
moving in the 3D representation of the scene (as in the
current experiment) or, alternatively, it can track the task
robot’s end-effector. In any case, the autonomous component
of the motion can set the monitoring robot after unreachable
poses (typically because task robot and monitoring robot
have different sizes). Currently, the autonomous tracking is
disabled whenever this problem arises, and the LVF anchored
to the last reachable position, in order to give priority to the
local virtual fixture constraints that still have to be fulfilled
by the robot. This possibility is a known problem that will
be kept under observation also in future experiments.

VII. CONCLUSIONS & FUTURE WORK

This paper discussed how our monitoring robot is capable
of moving inside the workspace respecting the constraints

imposed by the local virtual fixture. It is then possible
to inspect a certain workpiece from different angles while
respecting constraints like ”look at” orientation and min-
imum distance from the objective. With this abstraction,
the monitoring robot can still perform the inspection on a
moving target as shown in the experiments, and manual user
adjustments are still permitted during the operation.

Moreover, the concept of varying compliance has been
introduced as an approach to regulate the monitoring robot
motion on the virtual fixture in the presence of obstacles or
other critical forbidden regions.

However additional complications can occur as the mon-
itoring robot moves in the workspace. It might happen that
the monitoring robot cannot reach a certain viewpoint and
remains stuck due to reachability limitations. Moreover, it is
important to evaluate how the use of local virtual fixtures
and varying compliance are perceived by the user.

Usability is a very important factor, since the user should
be able to operate the monitoring robot for workspace
inspection without a sensible increase in workload.
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