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Abstract: 1 

Introduction: Hypermobility Spectrum Disorders (HSD) are conditions associated with chronic joint pain and laxity. 2 

HSD’s diagnostic approach is highly subjective, its validity is not well studied, and it does not consider many of the 3 

most commonly affected joints. Strain elastography (SEL) reflects musculoskeletal elasticity with sonographic 4 

images. The study explored the impact of HSD on musculoskeletal elasticity using SEL. 5 

Method: A cross-sectional design compared 21 participants with HSD against 22 controls. SEL was used to assess 6 

the elasticity of the deltoid, biceps brachii, brachioradialis, rectus femoris, and gastrocnemius muscles, and the patellar 7 

and Achilles tendon. SEL images were analysed using Strain Index, Strain Ratio, and colour pixels. 8 

Results: Mean Strain Index (standard deviation) was significantly reduced in the HSD group compared to the control 9 

group in the brachioradialis muscle; 0.43 (0.10) vs. 0.59 (0.24), patellar; 0.30 (0.10) vs. 0.44 (0.11), and Achilles 10 

tendons; 0.24 (0.06) vs. 0.49 (0.13). Brachioradialis muscle and patellar tendon’s Strain Ratios were significantly 11 

lower in the HSD group compared to the control group; 6.02 (2.11) vs. 8.68 (2.67) and 5.18 (1.67) and 7.62 (1.88), 12 

respectively. The percentages (%) of red colour (soft tissues) in the SEL images were significantly increased in the 13 

HSD group compared to the control group in the biceps brachii muscle; 34.72 (7.82) vs. 26.69 (3.89), and Achilles 14 

tendon; 18.14 (13.21) vs. 5.59 (8.23) (p ≤ 0.01). 15 

Conclusion: The elasticity of the musculoskeletal system seems to be lower in people with HSD. SEL could be a 16 

supplementary tool for diagnosing and monitoring HSD. 17 

Key words:  18 

Hypermobility Spectrum Disorders, strain elastography, muscle, tendon, Joint Hypermobility Syndrome, diagnosis.  19 
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Introduction: 1 

‘Hypermobility Spectrum Disorders’ (HSD) refers to the conditions observed with chronic synovial joint 2 

pain and hypermobility resulting from the connective tissues deficiency [1-2]. The term HSD was introduced in 2017 3 

to highlight the wide heterogeneities within joint hypermobility-related conditions, and to replace the terms ‘Joint 4 

Hypermobility Syndrome’ (JHS) and ‘Ehlers-Danlos Syndrome Hypermobility Type’ (EDS-HT) [2]. JHS and EDS-5 

HT greatly overlap as they are heritable connective tissue disorders associated with symptomatic multiple joint 6 

hypermobility in the absence of systemic inflammation [1-3]. EDS-HT additionally involves skin hyperextensibility 7 

and smoothness, velvety skin, and recurrent joint dislocations [1-3]. HSD diagnosis is likely to capture the majority 8 

of patients previously diagnosed as JHS/EDS-HT, although a discrete group of patients with more severe symptoms 9 

may meet the diagnostic criteria of ‘hypermobile EDS’ (hEDS) [3]. The present research is specific to HSD.  10 

Based on meta-analysis exploring joint hypermobility-related disorders, Scheper et al. (p.12) stated: 11 

“Clinicians should be aware that within these disorders, a large variability in phenotype exist” [4]. HSD considered 12 

the wide variability of joint hypermobility-related conditions, therefore it involves four phenotypes: ‘Localized HSD’: 13 

hypermobility in one or more joints but less than five joints; ‘Peripheral HSD’: hypermobility in hands and feet; and 14 

‘Generalized HSD’: hypermobility in five or more than five joints [2]. Joint hypermobility reduces with age, therefore 15 

the ‘Historical HSD’ phenotype was introduced [2, 5].  16 

The term HSD has been newly introduced; therefore, there is a lack of research using the new criteria. 17 

However, HSD captures the previously used terms of JHS and EDS-HT. JHS had a prevalence figure of 30% of 18 

patients attending a musculoskeletal triage clinic in London [6]. JHS etiology was related to abnormalities in the genes 19 

encoding collagen, hormonal imbalance, or environmental factors [1, 7-8]. The symptomatic manifestation of JHS 20 

varied from mild to disabling, including chronic joint pain and hypermobility, muscle weakness, proprioception 21 

impairment, recurrent injuries and dislocation, fibromyalgia, and osteoarthritis [1, 9]. JHS could be associated with 22 

cardiovascular deterioration, gastrointestinal disturbances, and psychological health decline [10]. The prevalence and 23 

disabling impact of HSD provide a remarkable rationale for optimizing strategies for its identification and diagnosis.   24 

Despite the importance of the new diagnostic approaches for HSD, they are likely to encounter various 25 

limitations. Like the Brighton criteria (previously used for JHS), the HSD criteria are based on subjective questionings 26 

and clinical examinations (such as the Beighton score of joint mobility) [1, 11]. Therefore, the criteria are highly 27 

dependent on the examiner’s skill and experience, and patient memory. Recent meta-analysis and a systematic review 28 

concluded that the diagnostic criteria are inadequate, where their validity has not been well studied [4, 12]. The current 29 

diagnostic approaches do not assess many of the most commonly affected joints in JHS such as the shoulder; 85.2% 30 

prevalence, neck; 59.3% prevalence, pelvis and hip; 66.7% prevalence, and ankle and foot; 77.8% prevalence [13]. 31 

Using the current diagnostic approach, it is easy to reach the diagnostic cut-off point of 4/9 purely with fingers and 32 

thumb hypermobility [14]. Therefore, there is a need to identify new diagnostic approaches for people with HSD. 33 

Diagnostic imaging advances could help people with HSD. Strain elastography (SEL) is an ultrasound-based 34 

system designed to examine the elasticity of human structures by providing colour-coded images [15]. Administering 35 
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SEL for examining HSD may be valuable, as musculoskeletal structures could show significant laxity. The mutation 1 

identified in the genes encoding collagen in hypermobility-related disorders could reduce the mechanical rigidity of 2 

the connective tissues in the musculoskeletal system, and this laxity may be identified using SEL. Other factors could 3 

lead to significant softening of the HSD musculoskeletal system, including muscular weakness, reduced muscle-4 

tendon stiffness, the pain-muscular inhibition cycle, and reduced activity [1, 16-17]. Various studies have identified 5 

the impact of hypermobility-related disorders on tissue stiffness including skin extensibility, impaired Achilles tendon 6 

stiffness, and muscle activation and force production [16, 18-19]. Other studies found no impact of hypermobility-7 

related disorders on skin extensibility, patellar tendon active stiffness and hamstring muscle energy absorption [20-8 

22]. The insignificant differences could be related to type II error due to the studies’ small sample sizes, which ranged 9 

from eight-nine participants per group [20, 22]. People with HSD could lose the feature of joint hypermobility due to 10 

the condition pathological course or aging factors, which would make the diagnosis and condition monitoring more 11 

difficult. SEL could aid in providing real-time images for the elasticity degree without relying on joint hypermobility 12 

feature. Identifying significant elasticity with SEL in certain muscle groups might be important for the classification 13 

of HSD patients. 14 

Two studies have examined the musculoskeletal elasticity in people with hypermobility-related disorders 15 

using SEL. The Achilles tendon was explored in a 10 years old boy [23]. SEL images were analysed qualitatively 16 

showing an increase in the green and red areas, which suggested an increase in the Achilles tendon laxity [23]. SEL 17 

feasibility were studied in ten participants with JHS against ten controls [17]. Alsiri (2017) found no significant 18 

differences between the two groups in gastrocnemius medius elasticity, which could be a type II error due to the small 19 

sample size [17]. The current study introduces a novel exploration that aims to identify the impact of HSD on 20 

musculoskeletal elasticity with SEL using a larger sample size and further anatomical sites. The study clinical 21 

importance could be enhanced by exploring the relationship of musculoskeletal elasticity with joint pain. Joint pain is 22 

a dominant feature and complaint, and an essential diagnostic element for HSD [1-2]. Muscles and tendons are vital 23 

components in the joint stabilization system. Reduced stiffness might create deficiency in joint support which could 24 

lead to microtrauma and instability, ultimately leading to joint pain [24-25]. It is hypothesized that joint pain would 25 

be higher with softer musculoskeletal structures. The study objective was to examine the impact of HSD on the 26 

elasticity of the musculoskeletal system. 27 

 28 

Materials and Methods: 29 

 Participants: 30 

A cross-sectional research design compared musculoskeletal elasticity of a HSD group against a control 31 

group. Kuwait Ministry of Health Ethical Committee approved the study (571/2017). Patients were recruited from an 32 

orthopedic hospital using convenience sampling [26]. Four physiotherapists assessed their patients against the HSD 33 

classification, including the Beighton score. HSD subdivisions are Localized, Peripheral, Generalized and Historical 34 

HSD [2]. The Beighton score is used to assess joint hypermobility including the fifth metacarpophalangeal joint 35 
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dorsiflexion; > 900, thump opposition; if reached the forearm volar aspect, elbow hyperextension; > 100, and knee 1 

hyperextension; > 100, and spinal hypermobility [27]. A Beighton score of ≥ 5/9 was used to distinguish Generalised 2 

HSD from other HSD categories [2-3]. 3 

Patients were identified from physiotherapy department referrals. All patients referred to the four 4 

physiotherapists were screened against the HSD subcategories [2]. The chief researcher (NA) screened all patients 5 

who attended for the outpatient orthopedic clinic. Recruitment packs were provided for identified patients. Patients 6 

who were willing to participate contacted the chief researcher. The chief investigator had more than four years’ 7 

experience in diagnosing JHS and was trained in HSD classification. Training in the HSD classification was provided 8 

to the four physiotherapists. Participants in the control group were recruited from among the staff at the Ministry of 9 

Health and their relatives through advertising emails and posters. A matching-pairs design was used to ensure 10 

homogeneity between the two groups in terms of gender and age. The examination lasted from June-December 2017 11 

in the Radiology department. Informed consent was obtained from participants.  12 

Women and men aged ≥ 18 years were included in the control and HSD group. Healthy adults were excluded 13 

from the control group if they had ≥ 4/9 in the Beighton score with chronic multiple joint pain or met the criteria for 14 

any of the HSD subcategories. The exclusion criteria for the two groups were upper/lower limbs’ injuries during the 15 

last three months; upper/lower limbs’ fractures or surgery in the last year; pregnancy; one year postpartum due to 16 

ligament laxity; other connective tissues disorders including Ehlers-Danlos Syndrome; and other conditions which 17 

might compromise muscular strength. Participants were included in the HSD group if they met the criteria for HSD 18 

[2]. Chronic multiple joint pain for longer than three months was the primary symptomatic manifestation for the HSD 19 

group, and was self-reported by patients [6, 12]. The secondary symptomatic manifestations were recurrent injuries 20 

and dislocations. 21 

Instrumentation: 22 

Compression SEL (Voluson E8; GE Healthcare Technologies, Milwaukee, WI, USA) was used to examine 23 

musculoskeletal structures elasticity. SEL is a clinically applicable ultrasound-based system, which measures tissues 24 

perpendicular deformation in response to mild strain induced using the examination probe [15, 28]. SEL converts the 25 

compression into strain coloured-images, where each colour refers to a certain elasticity degree. SEL follows the 26 

mechanical law of hard tissues deforming less and soft tissues deforming more when subjected to the same force [15, 27 

28-29].  28 

SEL reliability has been demonstrated for examining the biceps brachii muscle, plantar fascia, and the 29 

Achilles tendon [29-31]. An intra-rater reliability study was conducted for the twenty-two participants from the control 30 

group in this study, by repeating the examination twice in the same day with one-hour interval. The study showed 31 

moderate to excellent intra-rater reliability, with ICCs (type 3,1) ranging from 0.734 (95% Confidence Interval 0.279-32 

0.903) to 0.950 (0.848-0.983), for examining the deltoid, biceps brachii, brachioradialis, rectus femoris, gastrocnemius 33 

medius muscles, and Achilles tendon. The same operator (NA), conducted the examination. NA has a doctorate in 34 

musculoskeletal physiotherapy, has received postgraduate training in musculoskeletal ultrasound and has four years’ 35 
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experience in performing elastography and musculoskeletal ultrasound. The piloting stage was supervised by an 1 

associate professor in radiological sciences (A.A) who has 20 years’ experience in ultrasonography. It was not 2 

practical to blind the operator as she needed to confirm the eligibility criteria using the HSD classification. Images 3 

were saved using the participants’ ID, and the analysis was performed blind to health status being entered to the 4 

relevant participant file. SEG’s visual quality indicator was used to standardise the applied compression magnitude 5 

[28].  6 

Joint pain intensity was measured using Visual Analogue Scales (VAS). The VAS is a pain assessment tool, 7 

which is highly valid, reliable, and sensitive [32]. It is a 10-cm length line with two descriptors at the two anchors: no 8 

pain, and worst possible pain. Twelve VASs were used to assess the shoulder, elbow, wrist, hip, knee, and ankle joints, 9 

bilaterally. Pain assessment was limited to a one-week period to reduce recall error by asking: ‘please rate the average 10 

pain over the past week in each of the following joints’ 11 

Sample size determination: 12 

Sample size calculation was based on Lee et al.’s study who used SEL with Strain Ratio to examine rotator 13 

cuff tendinopathy [33]. The means (standard deviation) for grade 0; 2.92 (2.13), and grade 3; 12.3 (0.00), tendinosis 14 

were used to calculate the effect size of 0.95. An appropriate sample size was estimated to be 20 at () 0.05, and a 15 

power (1- ß) of 80% [34]. 16 

Data collection procedures: 17 

After completing the demographic sheet and VASs, the dominant upper and lower limbs were examined. The 18 

dominant side was self-declared by the participant by reporting the hand used for writing and the leg used for kicking 19 

a ball [35-36]. SEL images were recorded by applying perpendicular force to the target area using the SEL transducer 20 

through simultaneous compressions and decompressions (Figure 1). Five muscles were examined: deltoid, biceps 21 

brachii, brachioradialis, rectus femoris and gastrocnemius medius. Additionally, the patellar and Achilles tendons 22 

were tested. The Upper and Lower Boundary of the Strain Index were measured with the SEL (Figure 1). The Higher 23 

Boundary of Strain Index refers to the elasticity of the target area, and the Lower Boundary of Strain Index refers to 24 

subcutaneous fat elasticity. The lower the Strain Index, the softer the examined structure is, and vice versa. 25 

   26 

 27 

 28 

 29 

 30 

 31 

 32 
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 1 

Fig 1 Transverse strain elastography images for the Achilles tendon for a healthy participant (Healthy), and for a 2 
participant with Hypermobility Spectrum Disorder (HSD). Red refers to soft tissues, green refers to intermittent 3 
elasticity, and blue refers to hard tissues. The size of the image box was manually adjusted to include the area of 4 
interest with adjacent subcutaneous fat as a reference. Images from (a) to (g) are for one participant with 5 
Hypermobility Spectrum Disorder, where the red colour mostly dominated SEG images. The images from (a) to (g) 6 
show the tracing approach used to attain the Higher and Lower Boundary of Strain Index following the manufacturer 7 
guidelines. (a) deltoid muscle, (b) biceps brachii muscle, (c) brachioradialis muscle, (d) rectus femoris muscle, (e) 8 
patellar tendon, (f) gastrocnemius medius muscle, and (g) Achilles tendon. Following standardized procedure, the 9 
reference area selected was always superior to the area of interest but not directly above it, following the assumption 10 
proposed by the European Federation of Societies for Ultrasound in Medicine and Biology that the stress is uniformly 11 
distributed in SEL. Initially an area encoding red pixels within the area of interest was selected to represent the Higher 12 
Boundary of Strain Index (highlighted with yellow traces). The relatively most soft area was selected in cases where 13 
red pixels were not displayed, as in image (g). Then an area encoding blue pixels was selected from the subcutaneous 14 
fat layer above the area of interest to represent the Lower Boundary of Strain Index (highlighted with blue traces) 15 
[37]. The two areas were selected to be as adjacent as possible to each other to ensure that the two areas were 16 
subjected to similar compression magnitude. Muscles and tendons are distinct structures and lack fat tissues that 17 
could serve as a reference. Using subcutaneous fat as a reference is the most applicable setup for musculoskeletal 18 
SEL, with comparable reliability to using alternative reference areas at other depth levels [37]. Representative 19 
reference tissue may be limited and sometimes difficult to obtain with comparable size and position to the area of 20 
interest, however, the size of the reference area has no significant influence on Strain Ratio [37]. The size of the two 21 
traced areas in the present investigation ranged from 0.60 – 1.00 cm2 and were set to be as superficial as possible 22 
[37]. 23 

 24 

The upper limb structures were examined then the lower limb structures. As the examined structures were 25 

superficial a linear-array high frequency transducer was used (6-15 MHz) as it penetrated 4-5 cm beneath the skin. 26 

The examinations were conducted by the operator in a sitting position, and the probe was maintained at a perpendicular 27 



8 
 

angle to the skin. The middle fibers of deltoid muscle were examined longitudinally in sitting, with a neutral shoulder 1 

position and supinated forearm [38]. The biceps brachii common muscle belly (5 cm above the elbow line), and 2 

brachioradialis muscles (5 cm below the elbow line laterally) were scanned longitudinally in supine, with a neutral 3 

shoulder position and elbow extension and supination [39].  4 

In supine, with knee extension, the rectus femoris muscle was examined longitudinally (10 cm above the 5 

knee line), and the patellar tendon was examined transversely (midpoint between the inferior pole of the patella and 6 

the tibial tubercle). In prone, with knee extension and the feet in a relaxed position over the plinth edge, the 7 

gastrocnemius medius muscle was examined longitudinally (at 30% of its proximal length from the popliteal fossa 8 

midpoint to midpoint between the ankle malleoli). In the same position, the Achilles tendon was examined in a 9 

transverse plane (mid-position between the two malleoli) [40]. Each structure was examined 2-3 times, then one image 10 

was saved for analysis according to the compression magnitude sufficiency examined with SEL visual quality 11 

indicator. By tracing the target area and subcutaneous fat, the SEL calculates the Higher and Lower Boundary of Strain 12 

Index in real-time. The Strain Ratio was obtained from the ratio of the strain of the target area (numerator) and 13 

subcutaneous fat (denominator) [41]. 14 

Statistical analysis: 15 

Statistical Package for Social Sciences (SPSS 23, IBM Corp., Armonk, NY, USA) was used. SEL images 16 

were analyzed semi-quantitatively through the Strain Index, Strain Ratio and colour pixel analysis with ImageJ; a 17 

Java-based image processor (U. S. National Institute of Health, Bethesda, Maryland, USA). ImageJ counts the pixels 18 

of the red, green, and blue colour with a downloaded plugin in ImageJ, then the percentages of each colour was 19 

determined to compensate for differences in cross-sectional area between participants [17]. Data normal distribution 20 

was checked with histograms then objectively confirmed with Shapiro-Wilk tests, therefore Independent sample t-21 

tests were used. The level of p value for statistical significance was set as ≤ 0.01. The intensity of joint pain was 22 

measured and correlated with elasticity using Pearson Product Correlation Coefficient. Only pain in joints adjacent to 23 

each anatomical structure were included in this analysis. 24 

 25 

Results:  26 

 Twenty-one participants in the HSD group were compared against 22 participants in the control group. The 27 

demographic characteristics are summarised in Table 1, indicating homogeneous groups in term of age, sex, height, 28 

weight, and body mass index. Regarding ethnicity, the HSD group included three Asian men, one Indian man, 16 29 

Asian women, and one white British woman. The control group included four Asian men, 15 Asian women, and three 30 

Indian women. The HSD group included 14 participants with Generalized HSD, six participants with Localized HSD, 31 

and one participant with Historical HSD [3]. Three participants in the HSD group and one participant in the control 32 

group were left side dominant. Images with artefact and tracing error were excluded; one image for the rectus femoris 33 

muscle from the HSD group, and two images for the deltoid, and two images for the biceps brachii muscles from the 34 

control group. All the results present mean values.  35 



9 
 

The Higher Boundary of the Strain Index for the HSD group point toward reductions in all the examined 1 

structures except for the biceps brachii muscle (Table 2). Three of the observations were statistically significant 2 

including the brachioradialis muscle, patellar tendon, and Achilles tendon (p ≤ 0.01) (Table 2). There were no 3 

significant differences between the two groups in the Lower Boundary of the Strain Index (Table 2). The Strain Ratios 4 

reveal statistically significant reduction in the elasticity of the brachioradialis muscle, and the Achilles tendon in the 5 

HSD group (p ≤ 0.01) (Table 2).  6 

 Colour pixel analysis shows a higher percentage of red colour in all the examined musculoskeletal structures 7 

in the HSD group, yet two of the observations were statistically significant including the biceps brachii, and Achilles 8 

tendon (p ≤ 0.01) (Table 3). The results of the HSD group demonstrate a reduction in the percentage of blue colour in 9 

all the examined structures, however, three of the seven observations were statistically significant including the biceps 10 

brachii, brachioradialis and the Achilles tendon (p ≤ 0.01) (Table 3).  No significant differences were noticed between 11 

the two groups in the percentages of green colour (intermittent elasticity) (p ≥ 0.01) (Table 3). 12 

 Significant differences were found between the two groups in joint pain intensity; p ≤ 0.01 (Table 4). In the 13 

HSD group, the greatest pain was reported in the knee joint bilaterally, followed by dominant hip joint, then the 14 

shoulder joint bilaterally (Table 4). Moderate correlations were identified between the elasticity of the biceps brachii 15 

muscle and pain intensity at the shoulder, and elbow joints, and between knee joint pain and the elasticity of the 16 

patellar, and Achilles tendon; r ≥ 0.4 (Table 5). 17 
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Table 1: Demographic characteristics: mean (standard deviation) of the HSD and control group.  

 HSD group 

n = 21 

Control group 

n = 22 

P value 

Age (years) 35.57 (14.89) 34.72 (7.00) 0.81 

Sex 17 women, 4 men 18 women, 4 men 0.94 

Height  161.11 (7.23) 162.63 (7.80) 0.51 

Weight 72.66 (17.91) 74.72 (15.41) 0.68 

Body Mass Index 27.99 (6.90) 28.06 (4.42) 0.96 

Beighton Score 4.71 (1.82) 0.90 (1.01) ≤0.001* 

*Indicates a statistically significant difference at p ≤ 0.01 with independent sample t-test. 

 1 

Table 2: Comparison of the elasticity of the musculoskeletal structures of the Hypermobility Spectrum Disorders group against a control group analysed with Strain Index and Strain Ratio: mean (standard deviation). 

Examined area Lower Boundary of Strain Index Higher Boundary of Strain Index Strain Ratio 

HSD group Control 

group 

P 

value 

Mean 

difference 

95% CI HSD 

group 

Control 

group 

P value Mean 

difference 

95% CI HSD group Control 

group 

P value Mean 

difference 

95% CI 

Deltoid muscle 0.05 (0.03) 0.05 (0.01) 0.72 -0.002 -0.01, 0.01 0.44 (0.07) 0.48 (0.09) 0.24 0.03 -0.02, 0.08 11.03 (8.95) 9.48 (2.54) 0.45 1.55 -5.75, 2.65 

Biceps brachii 

muscle 

0.06 (0.02) 0.08 (0.02) 0.05 0.01 -0.00, 0.03 0.49 (0.09) 0.45 (0.07) 0.18 -0.03 -0.09, 0.01 10.45 (10.71) 5.79 (1.19) 0.06 4.65 -9.55, 0.24 

Brachioradialis 

muscle 

0.07 (0.02) 0.07 (0.02) 0.47 -0.006 -0.02, 0.01 0.43 (0.10) 0.59 (0.24) 0.01* 0.15 0.03, 0.27 6.02 (2.11) 8.68 (2.67) ≤0.001* 2.65 1.17, 4.14 

Rectus femoris 

muscle 

0.09 (0.03) 0.08 (0.02) 0.33 -0.009 -0.02, 0.00 0.42 (0.09) 0.45 (0.09) 0.38 0.02 -0.03, 0.08 5.10 (1.68) 6.00 (1.94) 0.11 0.89 -0.23, 2.03 

Patellar tendon 0.06 (0.02) 0.05 (0.01) 0.72 -0.001 -0.01, 0.00 0.30 (0.10) 0.44 (0.11) ≤0.001* 0.13 0.07, 0.20 5.18 (1.67) 7.62 (1.88) ≤0.001* 2.44 1.34, 3.53 

Gastrocnemius 

medius muscle 

0.06 (0.03) 0.06 (0.03) 0.60 0.005 -0.01, 0.02 0.48 (0.14) 0.57 (0.19) 0.11 0.08 -0.02, 0.18 10.17 (7.64) 9.70 (4.70) 0.81 0.47 -4.43, 3.48 

Achilles tendon 0.05 (0.03) 0.07 (0.02) 0.18 0.01 0.00, 0.02 0.24 (0.06) 0.49 (0.13) ≤0.001* 0.25 0.19, 0.31 6.24 (5.90) 7.56 (2.33) 0.34 1.32 -1.52, 4.16 

Keys: The Higher Boundary of Strain Index refers to the elasticity of the area of interest, and the Lower Boundary of Strain Index refers to the elasticity of the subcutaneous fat tissues. The lower the Strain Index, the softer the 

examined structure because the Strain Ratio has been calculated from the ratio of the area of interest; numerator, and adjacent subcutaneous fat; denominator. *Indicates a statistically significant difference at p ≤ 0.01 with independent 

sample t-test. CI refers to confidence interval. 

 2 

 3 

 4 

 5 

 6 
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Table 3: Comparison of the elasticity of the musculoskeletal structures of the Hypermobility Spectrum Disorders (HSD) group against a control group analysed with 

ImageJ by measuring the percentages of the colour pixels: mean (standard deviation).     
Examined area Percentage of red colour pixel Percentage of green colour pixel Percentage of blue colour pixel 

HSD 

group 

Control 

group 

P value Mean 

difference 

95% 

CI 

HSD 

group 

Control 

group 

P value Mean 

difference 

95% 

CI 

HSD 

group 

Control 

group 

P value Mean 

difference 

95% 

CI 

Deltoid muscle 34.04 

(6.70) 

28.62 

(7.86) 

0.02 -5.42 -10.08,  

-0.75 

41.80 

(8.06) 

40.28 

(3.88) 

0.46 -1.52 -5.64, 

2.60 

24.13 

(11.18) 

31.07 

(8.44) 

0.03 6.93 0.54, 

13.33 

Biceps brachii 

muscle 

34.72 

(7.82) 

26.69 

(3.89) 

≤0.001* -8.02 -11.96, 

 -4.08 

44.05 

(3.56) 

43.78 

(3.50) 

0.80 -0.27 -2.50, 

1.96 

21.20 

(5.99) 

29.39 

(4.77) 

≤0.001* 8.19 4.75, 

11.62 

Brachioradialis 

muscle 

34.54 

(10.20) 

28.22 

(9.88) 

0.04 -6.31 -12.50, 

 – 0.12 

44.69 

(4.20) 

42.46 

(6.08) 

0.17 -2.23 -5.46, 

1.00 

20.75 

(7.43) 

29.29 

(11.62) 

≤0.001* 8.54 2.50, 

14.58 

Rectus femoris 

muscle 

37.73 

(11.41) 

29.58 

(10.38) 

0.02 -8.14 -15.03,  

-1.25 

41.95 

(6.09) 

43.73 

(5.69) 

0.33 1.78 -1.94, 

5.50 

20.29 

(7.39) 

26.66 

(10.80) 

0.03 6.36 0.48, 

12.24 

Patellar tendon 27.69 

(16.97) 

20.31 

(13.05) 

0.11 -7.38 -16.68, 

1.91 

42.94 

(11.31) 

43.41 

(8.12) 

0.87 0.47 -5.56, 

6.52 

29.34 

(18.29) 

36.25 

(16.63) 

0.20 6.90 -3.85, 

17.66 

Gastrocnemius 

medius muscle 

34.28 

(9.17) 

30.38 

(8.60) 

0.15 -3.89 -9.37, 

1.57 

45.87 

(4.48) 

46.50 

(3.81) 

0.62 0.62 -1.93, 

3.18 

19.82 

(7.88) 

23.10 

(7.54) 

0.17 3.27 -1.47, 

8.02 

Achilles tendon 18.14 

(13.21) 

5.59 

(8.23) 

≤0.001* -12.54 -19.29,  

-5.79 

43.60 

(12.29) 

37.56 

(19.54) 

0.23 -6.04 -16.15, 

4.06 

38.23 

(17.35) 

56.82 

(22.81) 

≤0.001* 18.58 6.06, 

31.11 

Keys: The red colour refers to soft structures, the green colour refers to structures with intermittent elasticity and the blue colour refers to hard structures. *Indicates a 

statistically significant difference at p ≤ 0.01 with an independent sample t-test. CI refers to confidence interval. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 



12 
 

Table 4: The intensity of joint pain measured using Visual Analogue Scales for the upper and lower limb 

joints for the Hypermobility Spectrum disorder group and the control group; mean (standard deviation) 

 HSD group 

(n = 21) 

Control group 

(n = 22) 

P value Mean 

 difference 

95% CI 

Dominant shoulder pain 3.25 (3.56) 0.25 (0.81) ≤0.001* -2.99 -4.57, -1.42 

Non-dominant shoulder pain 3.02 (3.16) 0.05 (0.27) ≤0.001* -2.91 -4.25, -1.58 

Dominant elbow pain 2.97 (3.08) 0.13 (0.63) ≤0.001* -2.06 -3.44, -0.67 

Non-dominant elbow pain 1.56 (3.06) 0.00 (0.00) ≤0.001* -1.56 -2.88, -0.24 

Dominant wrist pain 2.59 (3.02) 0.00 (0.00) ≤0.001* -2.59 -3.89, -1.29 

Non-dominant wrist pain 2.09 (2.67) 0.00 (0.00) ≤0.001* -2.09 -3.24, -0.93 

Dominant hip pain 3.95 (4.13) 0.27 (1.04) ≤0.001* -3.67 -5.51, -1.84 

Non-dominant hip pain 2.58 (3.30) 0.00 (0.00) ≤0.001* -2.58 -4.00, -1.15 

Dominant knee pain 4.08 (3.70) 0.15 (0.56) ≤0.001* -3.92 -5.53, -2.31 

Non-dominant knee pain 4.25 (3.57) 0.41 (1.33) ≤0.001* -3.83 -5.48, -2.19 

Dominant ankle pain 2.80 (3.45) 0.00 (0.00 ≤0.001* -2.80 -4.28, -1.31 

Non-dominant ankle pain 2.37 (3.52) 0.00 (0.00) ≤0.001* -2.37 -3.88, -0.85 

*Indicates a statistically significant difference at p ≤ 0.01 with an independent sample t-test.  

CI refers to confidence interval. 
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Table 5: Correlation between the intensity of joint pain at the dominant side and the 

elasticity of the musculoskeletal system measured using the Higher Boundary of the Strain 

Index (HSI), percentage of red and blue colour pixels. 

Examined structure Related joint 

Deltoid muscle Shoulder pain 

HIS -0.278 

Red pixels  0.223 

Blue pixels -0.221 

Biceps brachii muscle Shoulder pain Elbow pain 

HIS -0.009 0.138 

Red pixels 0.459* 0.507* 

Blue pixels -0.537* -0.499* 

Brachioradialis muscle Elbow pain Wrist pain 

HIS -0.105 -0.249 

Red pixels 0.075 0.086 

Blue pixels -0.207 -0.212 

Rectus femoris muscle Hip pain Knee pain 

HIS -0.211 -0.202 

Red pixels 0.320 0.335 

Blue pixels -0.316 -0.325 

Patellar tendon Knee pain 

HIS -0.478* 

Red Pixels 0.128 

Blue Pixels -0.008 

Gastrocnemius medius muscle Knee pain Ankle pain 

HIS -0.206 -0.228 

Red pixels 0.352 0.320 

Blue pixels -0.322 -0.259 

Achilles tendon Knee pain Ankle pain 

HIS -0.420* -0.345 

Red pixels  0.451* 0.356 

Blue pixels -0.440* -0.293 

Keys: r = 0.00-0.19 indicates very weak correlation, r = 0.2-0.39 indicates weak correlation, r = 

0.40-0.59 indicates moderate correlation, r = 0.6-0.79 indicates strong correlation, and r = 0.8-

1.0 indicates very strong correlation. * refers to statistically significant correlation. 
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Discussion: 1 

 The impact of HSD on the elasticity of the musculoskeletal system was identified. SEL images were analysed 2 

semi-quantitatively using the Strain Index, Strain Ratio, and colour pixel analysis. All analysis methods led to similar 3 

results of increased musculoskeletal elasticity in the HSD group. The results of the Higher Boundary of Strain Index 4 

point toward increased softening of the examined structures. Three of the observations were statistically significant, 5 

including the brachioradialis muscle, patellar and Achilles tendon. The deltoid, rectus femoris and gastrocnemius 6 

medius muscles showed increased elasticity in the HSD group, but the changes have not reached statistical 7 

significance. In contrast, the Higher Boundary of Strain Index for the biceps brachii muscle was higher in the HSD 8 

group, indicating a stiffer biceps brachii muscle when compared to the control group, yet this observation has not 9 

reached statistical significance. Alternatively, the biceps brachii muscle could be stiffer in people with HSD as a 10 

compensatory mechanism adopted to control elbow hypermobility. The biceps brachii muscle is essential for daily 11 

activities, which could increase the muscular tone. The Strain Ratio also demonstrated statistically significant 12 

reductions in the elasticity of the brachioradialis muscle and patellar tendon in the HSD group. Similarly, colour pixel 13 

analysis showed greater elasticity and lesser stiffness in the musculoskeletal structures of the HSD group. Three 14 

observations were statistically significant including the biceps brachii and brachioradialis muscles, and the Achilles 15 

tendon. The deltoid, rectus femoris, gastrocnemius medius muscles and the patellar tendon also showed increased 16 

elasticity and reduced stiffness in the HSD group. Colour pixel analysis for the biceps brachii, which showed increased 17 

elasticity, contradicting the Strain Index and Strain Ratio. However, the sample size was based on large effect size of 18 

0.95, which might indicate that the observed differences need to be confirmed with larger sample size study. 19 

Two studies explored musculoskeletal elasticity in hypermobility-related disorders using SEL [17, 23]. 20 

Kocyigit et al. (2015) examined a boy with generalised joint laxity and qualitatively analysed the SEL image of the 21 

Achilles tendon [23]. An increase in the red (soft tissues), and green (intermittent elasticity) colours were reported 22 

[23], supporting the current study, where the SEL images of the HSD group showed a statistically significant increase 23 

in the red colour and reduction in the blue colour (hard tissues) [23]. The green colour was also increased in the HSD 24 

group, but this observation was not statistically significant. A comparison with Kocyigit et al.’s (2015) study might 25 

not be appropriate as it is a case report of one boy, whereas the current study focused on adults. A feasibility study 26 

also aimed to explore the gastrocnemius medius muscle elasticity in ten adults with JHS compared to ten controls, and 27 

colour pixels were used for analysis [17]. Alsiri (2017) and the current study found no significant differences between 28 

the two groups in gastrocnemius medius elasticity [17]. This could be related to type II error, as the descriptive 29 

statistics of the current study showed 4% higher gastrocnemius muscle elasticity and 4% lower gastrocnemius medius 30 

muscle hardness in the HSD group relative to the control group. The descriptive statistics of the smaller sample size 31 

of 10 participants per group [17] identified 1.51% higher gastrocnemius muscle elasticity, and no difference in muscle 32 

hardness in the JHS group. A larger sample size study could confirm the observed differences. 33 

Previous studies on non-hypermobility related conditions have found changes in the elasticity of certain 34 

musculoskeletal structures with SEL. 57% softening was identified in symptomatic Achilles tendinopathy [42]. 35 

Another study found hardening in the symptomatic Achilles tendon [43]. However, with inflammatory myositis, 36 
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reduced elasticity was found in most of the cases in the thigh, leg, and arm muscles [44]. Future studies should compare 1 

HSD against other musculoskeletal system pathologies to examine the ability of the SEL to distinguish HSD.   2 

 Various reasons could explain the significant increase in musculoskeletal structures’ elasticity in people with 3 

HSD. Collagen is a dominant constituent of the musculotendinous tissues, enhancing its support system and 4 

mechanical rigidity. Previous studies on hypermobility-related disorders identified mutation in the genes encoding 5 

collagen, and deficiency in the collagen modification enzymes [7]. Collagen deficiency could explain the significant 6 

reduction in musculoskeletal structures’ elasticity. Hypermobility-related disorders are significantly associated with 7 

muscle weakness [17], and weak muscles might reduce the resting muscular elasticity. The current study found a 8 

moderate correlation between joint pain and musculoskeletal elasticity, indicating that joint pain is associated with 9 

softer structures. The significant increase in musculoskeletal elasticity in people with HSD indicates a degree of failure 10 

in their joint dynamic support system, leading to instability, microtrauma and pain. Alternatively, pain could lead to 11 

muscle weakness and motor inhibition [45], which could cause the significant reduction in musculoskeletal elasticity. 12 

The cause-effect relationship between pain and musculoskeletal elasticity needs to be explored in future studies. 13 

The examiner was not blinded to the groups, yet expectation bias was partially controlled by conducting 14 

ImageJ analysis after acquiring the images. The sample size might not be sufficient for all the variables. Specially that 15 

the effect sizes observed were smaller than the effect size used for sample size calculation of 0.95. The observed effect 16 

sizes in the current study ranged from 0.16 – 0.77, for the rectus femoris muscle and Achilles tendon, respectively, as 17 

indicated with the Higher Boundary of Strain Index. The effect sizes ranged from 0.21 – 0.54 for the gastrocnemius 18 

medius, and biceps brachii muscles, respectively, for the red colour pixels. The Strain Ratio was obtained from the 19 

ratio of the target area and subcutaneous fat. However, the Strain Index of the subcutaneous fat varies between 20 

participants, so it might not serve as an ideal reference. Therefore, a range has also been presented in the current study; 21 

Lower and Higher Boundary of Strain Index. Some studies have used an external gel pad as a reference, which could 22 

be used for future studies. Heterogeneity in the reference area elasticity might explain the large variability noticed in 23 

some structures. Spinal hypermobility is one of the major features of HSD, however, the current study did not explore 24 

the spinal musculoskeletal structures, and this area could be explored in future research.  25 

Future research should consider inclusion of further variables to allow more advanced statistical analysis to 26 

account for potential covariates and build meaningful regression models to explore the relationships between elasticity 27 

and pain. The findings clinical relevance need to be further explored. For example, determining the magnitude of the 28 

observe differences relative to data variability; diagnostic validity; sensitivity and specificity, and the relationships 29 

with functional outcomes are all areas for exploration. There are various strengths in the study, including establishing 30 

intra-rater reliability in a smaller study. A sample size calculation was used, and the methodological procedures were 31 

carefully standardized. The findings’ clinical importance was increased by correlating the findings with joint pain. 32 

Increased musculoskeletal system elasticity in people with HSD is evident with SEL. Using three SEL image 33 

analysis approaches, people with HSD showed significant reductions in the elasticity of muscular and tendinous 34 

structures including the biceps brachii and brachioradialis muscles, and patellar and Achilles tendons. People with 35 

HSD significantly complain of multiple joint pain which demonstrated a moderate correlation with musculoskeletal 36 
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elasticity. SEL could be a supplementary tool for diagnosing, monitoring and assessing the effectiveness of 1 

physiotherapy, strengthening programs and other management regimes provided for people with HSD.   2 
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