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• First real world evaluation of a novel
dual wavelength excitation multiple
fluorescence band bioaerosol sensor

• High variability in nature and magni-
tude of emissions at contrasting sites

• Highly resolved emission intensitymea-
surements provide additional spectral
information in comparison to existing
devices.

• Differences in emission spectra fromdif-
ferent sites at smaller and lager wave-
lengths than maxima
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A novel dual excitation wavelength based bioaerosol sensor with multiple fluorescence bands called Spectral In-
tensity Bioaerosol Sensor (SIBS) has been assessed across five contrasting outdoor environments. Themean con-
centrations of total and fluorescent particles across the sites were highly variable being the highest at the
agricultural farm (2.6 cm−3 and 0.48 cm−3, respectively) and the composting site (2.32 cm−3 and 0.46 cm−3, re-
spectively) and the lowest at the dairy farm (1.03 cm−3 and 0.24 cm−3, respectively) and the sewage treatment
works (1.03 cm−3 and 0.25 cm−3, respectively). In contrast, the number-weighted fluorescent fraction was low-
est at the agricultural site (0.18) in comparison to the other sites indicating high variability in nature andmagni-
tude of emissions from environmental sources. The fluorescence emissions data demonstrated that the spectra at
different sites were multimodal with intensity differences largely at wavelengths located in secondary emission
peaks for λex 280 and λex 370. This finding suggests differences in the molecular composition of emissions at
these sites which can help to identify distinct fluorescence signature of different environmental sources. Overall
this study demonstrated that SIBS provides additional spectral information compared to existing instruments
and capability to resolve spectrally integrated signals from relevant biological fluorophores could improve selec-
tivity and thus enhance discrimination and classification strategies for real-time characterisation of bioaerosols
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from environmental sources. However, detailed lab-basedmeasurements in conjunctionwith real-world studies
and improved numerical methods are required to optimise and validate these highly resolved spectral signatures
with respect to the diverse atmospherically relevant biological fluorophores.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Bioaerosols, airborne particles of biological origin, come from both
natural and anthropogenic sources and have potential impacts on global
(climatic processes), regional (ambient microbiome) and local (public
health) scales. Along with investigations on their climate interaction
and long-distance transport, the public health impact of bioaerosols
has received significant attention due to a growth in existing and
emerging sources of bioaerosols such as waste management operations
and intensive agriculture facilities, aswell as the resultant human risk of
exposure in occupational settings and the wider community (Douglas
et al., 2016; Jahne et al., 2016; Madsen et al., 2016; Borlée et al., 2015;
Pearson et al., 2015; Walser et al., 2015; Pankhurst et al., 2012; van
der Hoek et al., 2012; O'Connor et al., 2010; Bünger et al., 2007; Sykes
et al., 2007; Taha et al., 2007, 2006, 2005). Hence there has been increas-
ing interest in detection and characterisation of bioaerosols emissions
from various environmental sources. Over the last decade there have
been growing efforts to advance methods for detecting the abundance,
distribution, diversity and properties of bioaerosols, as well as their en-
vironmental impact across different temporal and spatial scales
(Anderson et al., 2016; Jahne et al., 2016; Mazar et al., 2016; Pearce
et al., 2016; Sialve et al., 2015; O'Connor et al., 2015; Morris et al.,
2014; Pankhurst et al., 2012; Vestlund et al., 2014; Sun and Ariya,
2006; Taha et al., 2005).

At present, there are diverse samplingmethodswith a range of post-
collection analyses (culture and non-culture based) for identification
and quantification of bioaerosols or their derivatives. However, these
are labour intensive and offer snapshot data with low temporal resolu-
tion. The capability to quantify themagnitude and spatiotemporal char-
acterisation of bioaerosols emissions from different environmental
sources is critical to gauge temporal emission factors and their determi-
nants, developing emission inventories or exposure estimates, advanc-
ing forecast modelling and proposing evidence-based management
strategies. Recent technological developments have led to the applica-
tion of a variety of techniques in detection and characterisation of atmo-
spheric bioaerosols from various sources including; electronmicroscopy
epifluorescence microscopy, elastic scattering, laser-breakdown (LIBs),
X-ray fluorescence spectroscopy, infrared (IR) absorption, Raman spec-
troscopy, laser/light-induced fluorescence (LIF), biochemical analysis
(e.g., sequencing of DNA or RNA), chromatography, mass spectrometry
and nuclear magnetic resonance (NMR) (Pan, 2015; Pöhlker et al.,
2012). Among these techniques, fluorescence spectroscopy has shown
promising potential for detecting and broadly classifying bioaerosols in
real time (Pan, 2015). Instruments based on LIF and/or elastic scattering
have recently become commercially available and have shown their ca-
pability to detect bioaerosols in real-time over a range of ambient envi-
ronments and sources: urban/suburban/background (Wei et al., 2016;
Yu et al., 2016; Saari et al., 2015; O'Connor et al., 2014; Toprak and
Schnaiter, 2013; Gabey et al., 2011; Huffman et al., 2010), dust storms
(Hallar et al., 2011), tropical rainforests (Huffman et al., 2012; Gabey
et al., 2011; Gabey et al., 2010), high-altitudes (Crawford et al., 2016;
Ziemba et al., 2016; Gabey et al., 2013), boreal forest environments
(Schumacher et al., 2013; Huffman et al., 2013), industrial processes
(O'Connor et al., 2015; Li et al., 2016) and in the atmospheric boundary
layer (Perring et al., 2015).

A fairly large body of research is available on lab-based excitation
emission characteristics for a range of biologically relevant fluorophores
(Hernandez et al., 2016; Pöhlker et al., 2012; Pan et al., 2010; Hill et al.,
2009). However, in the natural environment, bioaerosols are part of a
complex mixture differing significantly from lab-based studies. The di-
versity of biological and non-biological interfering compounds signifi-
cantly hampers the selectivity of LIF based bioaerosol detectors. The
most advanced approach is the use of elastic scattering and dual wave-
length excitation of single particles and measurement of spectrally re-
solved fluorescence along with size and shape in real time. One
limitation of existing commercially available LIF based detectors is
their broad emission detection bands that make it difficult to classify
or discriminate between different types of bioaerosols (Pöhlker et al.,
2012). Recently a novel LIF based sensor with highly resolved fluores-
cence intensity measurements (Spectral Intensity Bioaerosol Sensor
(SIBS) has been developed by Droplet Measurement Technologies Inc.
(Longmont, USA). The SIBS is an expansion of theWideband Integrated
Bioaerosol Sensor (WIBS) which was developed by the University of
Hertfordshire (Kaye et al., 2005). The WIBS uses two excitation wave-
lengths (λex = 280 nm and 370 nm) and measures fluorescence in
three emissions (λem) bands as follows: FL1: λex = 280 nm, λem
∼ 310–400 nm, FL2: λex = 280 nm, λem ∼ 420–650 nm, and FL3:
λex = 370 nm, λem ∼ 420–650 nm. In contrast, fluorescence emis-
sion is measured by the SIBS across 16 wavelength bands from
λem = 288–735 nm for two excitation wavelengths (λex =
280 nm and 370 nm) providing greater spectral resolution in the
emission signal from a bioaerosol. In this paper the capability and
utility of SIBS was evaluated at contrasting land uses to demonstrate
the novel capability of the SIBS to record highly resolved emission
spectra. To the best of the authors' knowledge, this is the first
study of this kind where SIBS has been employed and tested in a
range of real-world emission scenarios.

2. Materials and methods

2.1. Sampling sites and design

Five contrasting outdoor environments were selected for this study
including an agricultural farm, a dairy farm, an urban background site,
a sewage treatment works and green waste composting facility
(Table 1). All the sites are in the United Kingdom and have been
anonymised except for the urban background (Cranfield University).
Three measurements were made during daytime at a height of 1 m
and site activity logs were kept during each sampling period. Table 1
provides a general description of the sites and sampling strategy.

2.2. Instrumentation

Continuous real-time measurements were made with a SIBS com-
prising of a central optical chamber, a continuous-wave 785 nm diode
laser through which particles pass and scatter light, a quadrant
photomultiplier tube (PMT) placed to measure the forward scattered
light fromwhich the particle shape is derived, an avalanche photodiode
(APD) for particle detection and sizing, two pulsed xenon UV sources
emitting sequentially at two different wavebands (280 and 370 nm),
and a 16 channel photomultiplier spectrometer. A dichroic mirror di-
rects the scattered light to the APD, and the fluorescence emission,
288–720 nm is collected by the two chamber mirrors and delivered
through the mirror aperture onto a dichroic beam-splitter that passes
the 288–720 nm emissions directly to the spectrometer where it is re-
solved into 16 channels (Table 2).

http://creativecommons.org/licenses/by/4.0/
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Table 1
Summary details of sampling sites.

Site Description Sampling strategy

Agricultural
farm

• A large area with arable land
mainly cultivated with wheat
and rape

• distant from main roads and
wood land

• Sampling was conducted at
the edge of the agriculture
field.

• 3 repeated measurements
of 2 h duration each.

• Sampling in April and May
2016

Dairy farm • A small 45 acre farm with 22
cows and followers, free range
pigs and hens.

• Surrounded by arable fields and
a small horse riding stable

• Sampling was conducted
adjacent to a cowshed.

• 3 repeated measurements
of ~ 4 h each

• Sampling in May 2016
Urban
background

• A grassed area with mature
trees nearby

• Surrounded by university cam-
pus buildings.

• Sampling was conducted at
grass plot at the Cranfield
University.

• 3 repeated measurements
for 3–3.5 h each

• Sampling in February–
March 2016

Sewage
treatment
works

• A trickling filter based sewage
treatment plant which treats
wastewater and storm drains
with a daily capacity of 450 m3.

• Surrounded by agricultural
fields and wood land

• Sampling between the pri-
mary trickling filter beds
and the settling tank.

• 3 repeated measurements
of 3–3.5 h duration.

• Sampling in February and
April 2016

Green waste
composting

• Approximately 15,000 t per
year of organic waste products
such as green garden waste
(trees, grass clippings, hedge
trimmings etc.), fruit & vegeta-
ble waste, straw, stable waste
paper and card are processed.

• Operational area is approxi-
mately 6 ha which sits within a
farm of about 22 ha.

• Surrounded by arable fields,
crops between seedlings and
flowering stage

• Downwind sampling at 90
and 136 m (depending on
wind direction)

• 3 repeated measurements
of ~4 h each

• Sampling in March, May
and October 2016
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Thus, for each fluorescing particle, a 2 × 16 excitation-emission
matrix is recorded along with an estimate of particle size and shape
(asphericity). The SIBS used in this study has sample flow rate of
0.3 l/min and derives the equivalent optical diameter (EOD) and
asphericity, in the size range from 0.4–7 μm, along with the
excitation-emission matrix of single particles. Particle size calibration
was carried out by Droplet Measurement Technologies, USA, prior to
the sampling campaign using standard monodisperse polystyrene
latex microspheres with a refractive index of 1.58. Prior to the field de-
ployment, the performance tests on sizing and spectral response were
Table 2
Fluorescence measurement channels (Ch) and wavelength ranges (nm).

Channel Lower wavelength Upper wavelength

1 298.2 316.4
2 316.4 344.8
3 344.9 362.5
4 377.5 401.5
5 401.5 429.7
6 430.2 457.5
7 456.7 485.6
8 486.0 514.0
9 514.1 542.0
10 542.0 569.8
11 569.9 597.6
12 597.6 625.2
13 625.3 652.8
14 652.8 680.2
15 680.3 707.5
16 707.5 734.7
also conducted in-house by using 2 μmnon-fluorescent polymermicro-
spheres and green fluorescent polymer microspheres (Figs. 1, 2 and 3
supplementary data).

2.3. Data analysis

The SIBS stores single particle data and these were imported into a
data analysis toolkit for offline data processing. The single particle data
files were analysed by choosing an averaging interval of 60 s from
0.5–0.7 μm. During operation, the SIBS always records a background
fluorescence signal due to some flash lamp light reaching the mono-
chromator and photomultiplier assembly (bleed-through). To quantify
the level of this signal the SIBS is routinely run in a “Forced Trigger”
mode such that the sample pump is turned off and the Xenon lamps
are set to fire at 150 ms intervals. A minimum of 5 m forced trigger
data was collected prior to the start of each measurement at a site.
Thiswas used to define a lower fluorescence threshold in order to calcu-
late number concentration of fluorescent particles such that particles
that fluoresce with lower intensity, and might be non-bioaerosols, are
removed from the analysis.We used a single lower fluorescence thresh-
old value (20) calculated from mean forced trigger values of all the
channels + 3 × mean SD values of all the channels. The data on forced
triggermeasurements are presented in Fig. 4 (Supplementary data). Ad-
ditionally, during the recharge of flash lamps, there will be no fluores-
cent measurements and some particles may not be flashed. This leads
to three categories of particles: total particles, excited particles and fluo-
rescent particles. Hence, the concentration of fluorescent particles was
calculated using Eq. (1) to correct for particles missed by the flashlamp.

Fluorescent concentration cm−3� � ¼ F=Eð Þ� T ð1Þ

where T=Total particles (cm−3), E=Excited particles (cm−3) and F=
Fluorescent particles (cm−3) (based on the fluorescence threshold cal-
culated from forced trigger data.

For the analysis of fluorescence spectra at different sites, a mid-
sampling point single particle data file during each repeated measure-
ment at each site was selected except green waste composting where
a data file during turning was selected. All the unexcited particles
were excluded from the selected data files to carry out emission inten-
sity analysis. The sample size for analysis of fluorescence spectra at dif-
ferent sites is shown in Table 3.

For each particle sample data file from a site, mean forced trigger
emission intensities valueswere subtracted from the particle by particle
emission intensity values in corresponding channels followed by the
calculation of mean fluorescence intensity across the emission wave-
length bands of the SIBS for two excitation wavelengths. Thus, three
fluorescence spectra were obtained for each site. Finally, from these
three individual emission spectra for a site, a mean fluorescence spec-
trum along with standard deviation value in each channel was com-
puted for all the sites.

3. Results and discussion

3.1. Number concentrations

The number concentrations of the total and fluorescing particles
(calculated using Eq. (1)), along with the number ratios of fluorescent
to total concentrations are listed in Table 4. The highest number concen-
trations for total (NT = 2.6 cm−3) and fluorescent particles (NF =
0.48 cm−3) were recorded at the agricultural farm and green waste
composting (NT = 2.32 cm−3, NF = 0.46 cm−3). In contrast, mean
number fluorescent fraction was lowest at the agricultural site (0.18)
than other sites and less variable.

The coefficient of variation (the ratio of the standard deviation to the
mean) revealed large variability in number concentration of both the
total and fluorescent particles over the three measurements periods at



Table 3
Sample size of particles for the analysis of fluorescence intensity across different wavelength bands at each site.

Sites Sampling 1
Number of particles

Sampling 2
Number of particles

Sampling 3
Number of particles

Total
Number of particles

Agricultural farm 16,329 12,611 20,213 49,153
Dairy farm 26,699 12,883 18,928 58,510
Urban background 25,830 19,744 28,035 73,609
Sewage treatment works 14,949 24,479 24,839 64,267
Green waste composting 24,412 15,046 4045 43,503
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the different sites, in particular at green waste composting and sewage
treatment works (Table 3). This reflects significant impact of time-
dependent site-specific factors on emissions, especially for industrial
sources, and highlights the shortcomings of snapshot infrequent sam-
pling to quantify magnitude and nature of bioaerosols emissions from
environmental sources. Studies using theWIBS in different ambient en-
vironments have reported similar variability in number concentrations
of biological particles related to location and season. Gabey et al.
(2010, 2011 and 2013) conducted studies in urban (winter), tropical
and high altitude environments and observed bioaerosol number
concentrations of 0.1 cm−3, 0.2–1.5 cm−3 and 0.1 cm−3, respectively.
Similarly, number concentrations of fluorescent aerosol particles in an
urban area reported by Toprak and Schnaiter (2013) were variable
across the seasons, being highest (0.046 cm−3) in summer and lowest
in winter (0.019 cm−3). In the context of number concentrations of
biological particles from industrial emissions, a recent study conducted
using the WIBS at a green composting site showed a range of
0.10–0.30 cm−3 during light and heavy workloads (O'Connor et al.,
2015). By comparison, in our study, the average number concentration
of fluorescent particles at composting sites was 0.46 cm−3.

In terms of number weighted fluorescent fraction, the mean at
different sites ranged from 0.18 (agricultural) to 0.25 (Urban
background)with the highest variability across differentmeasurements
at the composting site (CV= 21%) again highlighting the impact of var-
ious spatio-temporal factors on bioaerosol emissions. Atmospheric
bioaerosols concentrations have been reported to be highly variable
and can be affected by biological activity and meteorological factors
(Toprak and Schnaiter, 2013; Bauer et al., 2008). Toprak and Schnaiter
(2013) recently reported that number concentration fractions of fluo-
rescent biological aerosol particles at an urban site during winter were
from 0.0043–0.18. A similar study by O'Connor et al. (2015) at a
composting site, with measurements using the WIBS, found that more
than half of the total particles were fluorescent during heavy site activ-
ity. In the present study, fluorescent particles represented up to 0.44 of
total particles at ~ 100 m downwind of activity at the composting site.
The observed differences are likely due to variability in microclimate,
sampling characteristics and different size ranges (0.8–16 μm for
Toprak and Schnaiter (2013) and 0.69 - ∼ 13 μm for O'Connor et al.
(2015)). No direct comparison can be made between the present
Table 4
Summary of particles concentrations at each site (number of measurement n = 3).

Number concentration Ratio

NT(cm−3) NF(cm−3) NF/NT

Agricultural farm Average 2.6 0.48 0.18
CV (%) 16 24 7

Dairy farm Average 1.03 0.24 0.24
CV (%) 26 25 5

Urban background Average 1.17 0.29 0.25
CV (%) 17 11 6

Sewage treatment works Average 1.03 0.25 0.24
CV (%) 43 40 3

Green waste composting Average 2.32 0.46 0.21
CV (%) 75 56 21

NT=Number of total Particles, NF=Number of fluorescent particles, CV= Coefficient of
variation.
investigation and these studies due to differences in the detectable
range of particle size and specific environmental/sampling characteris-
tics. Nonetheless, these findings show the impact of various sources/ac-
tivities on temporal bioaerosols emissions loadings and the capability of
real-timemonitoring to identify sources and elucidate their level of con-
tribution to atmospheric bioaerosols.

3.2. Fluorescence spectra from different environmental sources

Fluorescence intensity across emissionwavelength bands of the SIBS
for the two excitation wavelengths (280 nm and 370 nm) for all the
sites is illustrated in Figs. 1 and 2.

As a first approach for qualitative description, emission spectra at
each site are explained in terms of emission zones as a function of
wavelength. The 280 nm excitation fluorescence spectra of the agri-
cultural site shows peak fluorescence emission in 456.7–485.6 nm
(Ch 7) and 569.9–597.6 nm (Ch 11) along with secondary peaks at
316.4–362.5 nm (Ch 2–3) and 625.3–652.8 nm (Ch 13) and
680–707 nm (Ch15). In contrast, the 370 nm excitation fluorescence
spectrum had a sharp peak at 514–542 nm (Ch 9) with secondary
peaks at 569.9–652.8 nm (Ch 11–13) and 680–734.7 nm (Ch
15–16). At the dairy farm for both 280 nm and 370 nm excitation,
the emission spectra were comparable to the agricultural site with
slight differences at 569.9–652.8 nm (Ch 11–13) in secondary emis-
sion modes.

The peak emission zone for 280 nm excitation, at urban background
site, was centred at 456.7–485.6 nm (Ch 7) with secondary peaks at
316.4–344.8 nm (Ch 2), 542–569.85 (Ch 10), 597.6–625.2 nm (Ch 12)
and 680.3–707.5 nm (Ch 15). Similarly, at 370 nm excitation, emission
spectrum was multimodal with peaks at 514–542 nm (Ch 9),
597.6–625.2 nm (Ch 12) and 680.3–707.5 nm (Ch 15), respectively.
The samples from sewage treatment works had a broad emission peak
at 430.2–514 nm (Ch 6–8) followed by a secondary peak at
597.6–625.2 nm (Ch 12) and 680.3–707.5 nm (Ch 15), for 280 nm exci-
tation. The emission spectrum for 370 nm excitation had peaks at
514–542 nm (Ch 9), 597.6–652.8 nm (Ch 12–13) and 680.3–707.5 nm
(Ch 15).

For the greenwaste composting, the spectrum for 280 nmexcitation
was multimodal and characterised by a fluorescence maximum at
430.2–485.6 nm (Ch 6–7) with secondary peaks at 316.4–344.8 nm
(Ch 2), 486–542 nm (Ch 8–9) and 597.6–625.2 nm (Ch 12). In contrast,
for the 370 nm excitation, the spectrum peaked at 514.1–542 (Ch
9) with shoulder peaks at 430.2–457.5 nm (Ch 6), 597.6–625.2 nm
(Ch 12) and 680.3–734.7 nm (Ch 15–16).

In broader terms differenceswere found in the general shapes of the
emissions spectra at different sites, in particular, the magnitude and
wavelength of the secondary peaks at smaller and larger wavelengths
than the maxima. Nevertheless, the assignment of fluorescence to spe-
cific biological fluorophoreswithin atmospheric particles is challenging.
Currently, a tangible explanation of themolecular origin of fluorescence
in different channels from particle population at these sites is unavail-
able but based on existingfindings on LIF spectra of atmospherically rel-
evant biological fluorophores assignments can be deduced. This can
help to understand the underlying determinants of these differences
and thus identifyingdistinctfluorescence signature of different environ-
mental sources. The available literature on excitation and emission
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Dairy Farm_λex 280 nm Dairy Farm_λex 370 nm 

Fig. 1.Mean fluorescence spectra for two excitation wavelengths at the agricultural and dairy farm. Bars = standard deviation.
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matrix spectra of a variety of biologicalfluorophores can help to offer in-
sights about the composition of particles (Hernandez et al., 2016;
Pöhlker et al., 2012; Pan et al., 2010; Hill et al., 2009). According to the
available data with respect to atmospherically relevant biological
fluorophores, the emission wavelength from 400 to 500 nm is crowded
by a number of biological fluorophores and emissions in this zone could
originate from a mixed signal from a variety of compounds. In contrast,
the emission zone from 500 to 700 is relatively clearer with compounds
exhibiting largerΔλ stokes (such as riboflavin, chlorophyll b). Whereas,
emissions at 300–350 nm are characteristics of amino acids (Phenylala-
nine, Tyrosine and Tryptophan).

Among the five studied sites different emission zones atλex 280 nm
could be assigned to amino acids (e.g. Tyrosine, tryptophan and phenyl-
alanine in Ch 1–3), several coenzymes/cofactors and structural biopoly-
mers (e.g. pyridoxine, cellulose, neopterin, chitin, phenylocoumarin in
Ch 4–8), and flavins in Ch 9–10. The potential source of emission in Ch
4–10 (377.5–569.8 nm) for λex 370 could be from diverse coen-
zymes/cofactors (NADPH, flavins, neopterin, lumazine) and a range of
structural biopolymer or their constituents (cellulose, chitin, ferulic
acids, phenylocoumarin). The emission in Ch 11–16 (569.9–734.7 nm)
could be from secondary metabolites (e.g. Alkaloids, terpenoids) and
pigments (e.g. Chlorophyll). However, secondary metabolites and age-
related pigments have been reported to have broad emission bands
and could contribute in Ch 5–Ch 16 for both λex 280 and λex 370. For
example, for λex 250–395 nm, terpenoids from plants and fungi have
reported λem in the range of 400–725 nm and lipofuscin has λem in
the range of 430–670 nm for λex 260–280 nm and 340–490 nm
(Pöhlker et al., 2012).

The primary peaks, for both 280 nmand 370 nmexcitation, at differ-
ent sites was at 430–514 nm (Ch 6–8) and 514.1–542 (Ch 9), respec-
tively. The predominant emission in Ch 6–8 (430–514 nm) is possibly
from structural compounds (cellulose (dry), chitin (Dry), lignin
(phenylcoumarin), and coenzyme (e.g. Neopterin). While the emission
at 514.1–542 (Ch 9) for 370 nm excitation can be assigned to flavins.
The secondary peaks for both the excitation wavelengths are centred
in Ch 11 (596.9–597.6 nm), Ch 12 (597.6–625.2 nm), Ch 13
(625.3–652.8 nm), and Ch 15–16 (680.3–734.7 nm) of the spectra and
relevant biological fluorophore in this region are likely to be from sec-
ondary metabolites (e.g. alkaloids, terpenoids) pigments (e.g. chloro-
phyll, flavonoids, lipofuscin). Lipofuscins are age-related pigments
reported to be formed due to oxidative stress and has a wide emission
range from blue to red (Roshchina, 2012), whereas emissions in Ch
1–3 (298 – 362 nm) are reported to be from amino acids. The differ-
ences in secondary emission peaks at different sites suggest that
compounds with weak fluorescence could play a role in selectivity. Al-
though the emission wavelengths with the highest intensity constitute
the dominant mode of the spectra the contribution from low emission
intensity at a specific wavelength is of value to disentangle the mixed
fluorescence singles from a source. This assessment could inform the
development of hypotheses on how and why molecular composition
varies between particle populations at different sites which can be
tested in further experimentations and analysis.

The secondary emission peaks for both λex 280 and λex 370 were
variable across sites and centered at lower and larger wavelength than
maxima. The observed shift in emission modes at smaller and larger
wavelengths than the peaks at different sites could be due to the under-
lying differences in chemical composition of emissions at these sites.
However, in the natural environment, bioaerosols are part of a complex
mixture differing significantly from lab-based studies. This diversity of
biological and non-biological interfering compounds significantly
hampers the selectivity of LIF based bioaerosol detectors. Therefore,
assigning a spectral response to the classification of bioaerosols is the big-
gest challenge due to wide emission bands and overlapping fluorescence
signatures. The SIBS tackles this challenge with an improved spectral res-
olution to elucidate spectrally integrated signals by measuring fluores-
cence emission spectra in 16 wavelength bands. In the case of the WIBS
the three emission bands FL1 (λex = 280 nm, λem ∼ 310–400 nm), FL2
(λex = 280 nm, λem ∼ 420–650 nm) and FL3 (λex = 370 nm, λem
∼ 420–650 nm)will give an integrated signals for a range of fluorophores.
Proteins and coenzymes are likely to dominate the emission signal in FL1



Urban Background_λex 280 nm Urban Background_λex 370 nm 

Sewage Treatment Works_λex 280 nm Sewage Treatment Works_λex 370 nm 
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Fig. 2. Mean fluorescence spectra for two excitation wavelengths at the urban background, sewage treatment works and green waste composting. Bars = standard deviation. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Particle size (μm) of sample data for fluorescence spectra analysis at different sites
(n = number of particles).

Site Mean Minimum Maximum Standard
deviation

Agricultural farm (n = 49,153) 0.65 0.4 6.77 ±0.52
Dairy farm (n = 58,510) 0.61 0.4 6.80 ±0.48
Urban background (n = 73,609) 0.67 0.4 6.81 ±0.56
Sewage treatment works (n=64,267) 0.59 0.4 6.81 ±0.44
Green waste composting (n= 43,503) 0.87 0.4 6.82 ±1.01
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and structural compounds along with certain coenzymes are likely to be
detected in FL2. Similarly, the emission spectral region for FL3 can only
detect an integrated fluorescence for a range of coenzymes, structural
compounds and secondarymetabolites. Therefore, offering poor selectiv-
ity for a specific biological fluorophore and hence limiting the suitability
of these emission bands to discriminate bioaerosols. For instance, the as-
sumption about FL3 emissions as an indicator of metabolic state may not
hold true due to the diversity of biological fluorophore emitting in this
range. Furthermore, WIBS is unlikely to detect compounds with
larger Δλ stokes (chlorophyll or secondary metabolites). In contrast,
it can be seen that highly resolved fluorescence intensity measure-
ments by the SIBS provides more detailed spectral information as
compared to broad emission bands in the WIBS and that the addi-
tional channels in the SIBS are revealing information that is lost in
the WIBS (Figs. 1 and 2). However extensive laboratory studies are
yet to be performed to offer meaningful interpretations of this addi-
tional spectral information in the context of complex ambient aero-
sol samples. Hence, the above description is an overview of the
capability of improved spectral resolution to elucidate spectrally in-
tegrated signals from contrasting environmental sources based on
lab-based measurements on excitation and emission matrix spectra
of the most relevant biological fluorophores.
In terms of particle size of the sample data for fluorescence spectra
analysis in Figs. 1 and 2, most of the particles measured at these sites
were predominantly of fine size fraction. The mean particle size ranged
from 0.59 μm (Sewage treatment works) to 0.87 μm (Green waste
composting) with considerable variation at each site (Table 5).

The fluorescence in these size fractions (below 1 μm) could orig-
inate from the contribution from cellular fragments or molecular de-
composition products of biological material as well as non-biological
materials. Further studies are required to address the molecular ori-
gin of fluorescence in fine and ultrafine particles in the air and to es-
tablish their relevance and implications to characterise bioaerosols
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emissions. Fluorescence properties of a fluorophore are highly de-
pendent on the molecular environment and this in biological cells
or their fragments could be much more dynamic and complex lead-
ing to differences in intensity and emission modes in atmospheric
bioaerosols in comparison to lab-based studies of pure biological
fluorophores (Pan, 2015). Furthermore, atmospheric aerosols from
both anthropogenic and natural sources have a range of biological and
non-biological fluorescent constituents and therefore emission spectra
are characterised by mixed signals from different fluorophores. Non-
biological compounds such as secondary organic aerosols, mineral
dust and polycyclic aromatic hydrocarbons can cause positive fluores-
cence measurement artefacts. Consequently, a selective assignment of
the molecular origin of fluorescence is not straightforward. Thus differ-
ences in emission intensity should be viewed as semi-quantitative and
analysed adjunct to overall spectra.

4. Conclusions and future directions

The capability and utility of a novel LIF sensor based on dual-
wavelength excitationwith highly resolved fluorescence intensitymea-
surements (Spectral Intensity Bioaerosol Sensor (SIBS)) to characterise
bioaerosols emissions in real time was evaluated. The number concen-
tration of total and fluorescent particles was highly variable across the
sites. Emission spectra from different sites weremultimodalwith inten-
sity differences at some channels for both excitationwavelengths. It has
been demonstrated that highly resolved emission intensity measure-
ments by the SIBS provides additional spectral information in compari-
son to the WIBS. This demonstrates that SIBS can contribute to
overcoming the selectivity challenges to discriminate and classify
bioaerosols emissions. However, improved numerical methods and
tools are needed to utilise this detailed information to develop discrim-
ination algorithms. Different post detection methods (e.g. principal
component analysis, Hierarchical agglomerative cluster analysis, Linear
discriminant analysis) have been proposed and used to discriminate bi-
ological classes and other interferants (Crawford et al., 2015; Pan, 2015;
Robinson et al., 2013; Pan et al., 2010) with data from existing LIF based
instruments. These approaches and methodologies are evolving and
deemed suitable for SIBS data but are yet to be tested to develop an
optimised classification method. However, there is pressing need to
conduct lab-based studies with atmospherically relevant biological
fluorophores/aerosols in order to build comprehensive SIBS fluores-
cence spectra library. Such library will greatly contribute to the elucida-
tion of spectrally integrated signals and thus improving measurement
selectivity for bioaerosols emissions. At the same time, comparative
measurements of SIBSwith other biochemical detectionmethods focus-
ing on various constituents (endotoxin, peptidoglycans, β1–3 glucan,
DNA) or metabolites (mVOC) (qPCR, LAL, GC–MS, flow cytometry)
and development of improved analysismethods to analyse the complex
set of data generated by the SIBS will advance the use of single particle
LIF based technique as a powerful analytical tool to characterise
bioaerosols emissions from environmental sources.

5. Limitations of the study

The SIBS is a beta version device and the measurements reported in
this paperwere one of the earliest versions of the SIBSwith limited data
analysis capability. One of the limitations of this study, for example, is
that we used a single fluorescence threshold value to calculate number
concentration of fluorescent particles. Ideally, individual lower fluores-
cence threshold limits for all the channels should be set to derive wave-
length based fluorescent particle time series data (channel by channel).
The fluorescence spectra analysis, however, is carried out by subtracting
mean forced trigger emission intensity values from the particle by par-
ticle emission intensity values in corresponding channels. Nonetheless,
the results should be interpreted with caution.
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