
Model Checking Ontology-Driven Reasoning Agents
using Strategy and Abstraction

Abdur Rakib1 and Rokan Uddin Faruqui2,3

1 Department of Computer Science and Creative Technologies
The University of the West of England, Bristol, UK

Rakib.Abdur@uwe.ac.uk
2 Department of Computing and Software

McMaster University, Canada
3 Department of Computer Science and Engineering, University of Chittagong, Bangladesh.

rufaruqui@cu.ac.bd

Abstract. We present a framework for the modelling, specification and verifica-
tion of ontology-driven multi-agent rule-based systems (MASs). We assume that
each agent executes in a separate process and that they communicate via message
passing. The proposed approach makes use of abstract specifications to model
the behaviour of some of the agents in the system, and exploits information about
the reasoning strategy adopted by the agents. Abstract specifications are given
as Linear Temporal Logic (LTL) formulas which describe the external behaviour
of the agents, allowing their temporal behaviour to be compactly modelled. Both
abstraction and strategy have been combined in an automated model checking en-
coding tool TOVRBA for rule-based multi-agent systems which allows the system
designer to specify information about agents’ interaction, behaviour, and execu-
tion strategy at different levels of abstraction. The TOVRBA tool generates an
encoding of the system for the Maude LTL model checker, allowing properties of
the system to be verified.

Keywords: Semantic Web, Ontology, Rule-based reasoning, Multi-agent Systems, Maude,
Rewriting logic, Model Checking

1 Introduction

Rule-based systems have been studied for decades and traditionally rules have been
used in theoretical computer science, databases, logic programming, and in particular,
in artificial intelligence (AI), to describe expert systems, robot behavior, and behaviour
of business. They have found significant application in practice and there has been a
move of rule-based systems into intelligent agents and vice versa. Specifically, there
has recently been considerable interest in Semantic Web and rule-based approaches to
various aspects of agent technology. The integration of the Semantic Web and intelli-
gent agents research has been realized [35], and intelligent agents are considered as a
promising approach towards realizing the Semantic Web vision [21]. The concept of
agents, in the setting of this paper is used to refer to autonomous reasoning agents,
where agents are capable of reasoning about their behaviour (using a knowledge base

2 A. Rakib and R.U. Faruqui

and inference rules) and interactions (capable of communicating with each other). An
intelligent agent is called rule-based if its behaviour and/or its knowledge is represented
using rules.

The main emphasis of the existing research on Semantic Web rule-based systems
is how can ontologies be utilised for modelling and enhancing level of interoperability
and usability of applications. However, that is not sufficient to make Semantic Web
rule-based systems a key feature technology that has been moving into safety-critical
domains including healthcare [9, 26], where the lives of patients may be at stake, and
where technology is increasingly being used to help ensure compliance with clinical
guidelines. For example, in a non-time critical environment, where small delays due to
response time are not an issue, a rule-based system may respond to queries without any
concern or consideration of the time needed for reasoning. However, there are many
cases where the time taken to do the reasoning is of critical importance. As an example,
in a multi-agent rule-based system, an agent may be able to produce reasonably correct
information (e.g., a health planner agent can infer a patient’s current status based on the
information it has received from other heart rate and/or blood pressure measurement
agents) and send the information to another agent (e.g., patient’s GP) to reach its goal,
but if the overall reasoning and interaction take too long the result may be irrelevant,
e.g., patient might already be in a very dangerous condition or even die before any
action can be taken.

Therefore, while rule-based systems are rapidly becoming an important component
of Semantic Web application, the resulting system behaviour and the resources required
to realize them, namely, how to ensure the correctness of rule-based designs (will a
rule-based system produce the correct output for all legal inputs), termination (will a
rule-based system produce an output at all) and response time (how much computation
will a rule-based system have to do before it generates an output) can be difficult to
predict. These problems become even more challenging for distributed rule-based sys-
tems, where the system being designed or analysed consists of several communicating
rule-based programs which exchange information via messages. A communicated fact
may be added asynchronously to the state of a rule-based system while the system is
running, potentially triggering a new strand of computation which executes in parallel
with current processing. In order to provide response time guarantees for such systems,
we must know how much time a rule-based system needs to perform the required rea-
soning. Furthermore, for a rule-based system running on resource-bounded devices e.g.,
PDAs, smartphones or other mobile devices, the number of messages exchanged may
also be a critical factor.

This paper extends our previous work [32] and the main contributions of this pa-
per are: first, to present an approach for the specification and verification of an on-
tology driven system that supports automated verification of time and communication
requirements in distributed Semantic Web rule-based agents. We consider distributed
problem-solving in systems of communicating rule-based agents, and ask how much
time (measured as the number of rule firings) and how many message exchanges it
takes the system to find a solution. We use standard model checking techniques to
verify interesting properties of such systems, and show how the Maude LTL model
checker [15] can be used to verify properties including response-time guarantees of the

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 3

form: if the system receives a query, then a response will be produced within n time
steps. Second, to allow larger systems to be verified, the proposed approach makes use
of abstract specifications to model the behaviour of some of the agents in the system,
and exploits information about the reasoning strategy adopted by the agents. Abstract
specifications are given as Linear Temporal Logic (LTL) formulas which describe the
external behaviour of the agents (the response time behaviour of the agent), allowing
their temporal behaviour to be compactly modelled. We explain how our abstraction
approach gives both correct and complete results. Third, to illustrate the scalability of
our approach we reimplemented an example scenario introduced in [2] and provide a
more detailed complementary analysis of previously presented results [4], and present-
ing results for a more complex multi-agent home health care monitoring alarm system
adapted from [30].

The remainder of the paper is structured as follows. In Section 2 we provide an
overview of ontology and how agents are modelled using ontology-driven rules, fol-
lowed by basics of model checking technique and the Maude LTL model checker. In
Section 3 we present a scalable compositional modelling and verification framework of
distributed agents. In Section 4 we briefly describe a prototyping tool TOVRBA for trans-
lating ontology based specification of the agents into Maude. In Section 5 we present
Maude encoding. In Section 6 we model a home health care monitoring system and
present some experimental results using TOVRBA, the scalability of the new approach
is also illustrated using a distributed reasoning problem which can be easily parame-
terised to increase or decrease the problem size. We discuss related work in Section 8
and conclude in Section 9.

2 Preliminaries

2.1 Ontology-driven Horn clause rules

Ontologies and rules play a central role in the design and development of Semantic
Web applications. An ontology is an explicit formal specification of a conceptualiza-
tion which defines certain terms of a domain and the relationships among them [20].
The Web ontology language OWL is a semantic markup language for ontologies that
provides a formal syntax and semantics for them. The W3C declared two different stan-
dardizations for OWL: OWL 1 and OWL 2 [28]. Both the description logic based OWL
1 and OWL 2 are decidable fragments of First Order Logic (FOL); however, the expres-
sive power of OWL 1 is strictly limited to certain tree structure-like axioms [19]. For in-
stance, a simple rule: livesIn(?x, ?y), locatedIn(?y,?z) → hasCoun-
try(?x,?z) can not be modeled using OWL 1 axioms. Although OWL 2 can express
this country rule indirectly, many rules are still not possible to model using OWL 2 ax-
ioms. Function-free Horn clause rules can remove such restrictions while being decid-
able but they are restricted to universal quantification and no negation. A combination
of OWL 2 with rules offers a more expressive formalism for building Semantic Web
applications. Several proposals have been made to combine rules with ontologies. We
use one of them, the SWRL that extends OWL DL by adding new axioms, namely Horn
clause rules. Although SWRL was a proposed extension for OWL 1, it can be used as a
rule extension for OWL 2 [18]. We combine a set of SWRL rules with the set of OWL 2

4 A. Rakib and R.U. Faruqui

RL axioms and facts to build our ontology. Since OWL 2 RL is based on DLP, the set of
axioms and facts of an OWL 2 RL ontology can be translated to Horn clause rules [19].
Translations of some of the OWL 2 RL axioms and facts into rules are given in Table 1.
In the second column, complete DL statements are given which are constructed by the
corresponding OWL 2 RL axioms and facts to illustrate the translation. The transla-
tion of SWRL rules is straightforward because they are already in the Horn clause rule
format.

OWL 2 Axioms and Facts DL Syntax Horn clause rule
ClassAssertions a:C C(a)
PropertyAssertion 〈a, b〉 : P P (a, b)
SubClassOf C v D C(x)→ D(x)
EquivalentClasses C ≡ D C(x)→ D(x)

D(x)→ C(x)
EquivalentProperties P ≡ Q Q(x, y)→ P (x, y)

P (x, y)→ Q(x, y)
ObjectInverseOf P ≡ Q− P (x, y)→ Q(y, x)

Q(y, x)→ P (x, y)
TransitiveObjectProperty P+ v P P (x, y), P (y, z)→ P (x, z)
SymmetricObjectProperty P ≡ P− P (x, y)→ P (y, x)
Object/DataUnionOf C1 t C2 v D C1(x)→ D(x)

C2(x)→ D(x)
Object/DataIntersectionOf C v D1 uD2 C(x)→ D1(x)

C(x)→ D2(x)
Object/DataSomeValuesFrom ∃P.C v D P (x, y), C(y)→ D(x)
Object/DataAllValuesFrom C v ∀P.D C(x), P (x, y)→ D(y)
Object/DataPropertyDomain > v ∀P−.C P (y, x)→ C(y)
Object/DataPropertyRange > v ∀P.C P (x, y)→ C(y)

Table 1: Translation of OWL 2 RL axioms and facts into Horn clause rules

2.2 Model checking using Maude

The model based verification approach uses model checking techniques, which are
based on the semantics of the specification language. Applying model checking to a de-
sign comprises three components. First, a detailed descriptionM (model) of the system
has to be given using the description language of the model checker. Second, a property
ϕ of the system has to be given by means of some property specification language, e.g.,
linear time logic (LTL) or computation tree logic (CTL). The expressive power of LTL
and CTL is not comparable. While there are properties that can be expressed both in
LTL and CTL, there are also properties exist that can be expressed in LTL but cannot
be expressed in CTL and vice-versa [11, pp. 30–31]. Third, once the model M and the
system property ϕ are given, a model checker will check whether or not M |= ϕ. The

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 5

third phase is completely automatic. Thus the model checking problem can be stated
simply as given a formula ϕ of some logical language and a model M , to determine
whether or not ϕ is valid in the modelM . In Maude [15], a rewriting theoryR = (Σ, E,
R), consists of a signature Σ, a set E of equations, and a set R of rules. The static part
of a system is specified in an equational sub-logic of rewriting logic (membership equa-
tional logic) by means of equations E. The system dynamics (concurrent transitions or
inferences) is specified by means of rules R that rewrite terms, representing parts of the
system, into other terms. The rules in R are applied modulo the equations in E. Maude
computes normal form of a term by applying equations from left to right iteratively,
then an applicable rewrite rule is arbitrarily chosen and applied from left to right. Thus,
data types are defined algebraically by equations and the dynamic behaviour of a sys-
tem is defined by rewrite rules which describe how a part of the state can change in
one step. A rewrite theory is often non-deterministic and could exhibit many different
behaviours. In Maude, a term is either a constant, a variable, or the application of an
operator to a list of argument terms. A ground term is a term containing no variables,
but only constants and operators. Like any other model checking tool, verification in
Maude requires a system specification and a property specification. The system speci-
fication is provided by a rewrite theory, whereas the property specification is given by
LTL formulas.

3 A modelling and verification framework of distributed agents

We adapt the model of distributed agents presented in [2]. A distributed reasoning sys-
tem consists of nAg (≥ 1) individual reasoners or agents. Each agent is identified by
a value in {1, 2, . . . , nAg} and we use variables i and j over {1, 2, . . . , nAg} to refer
to agents. An agent in the system is either concrete or abstract. Each concrete agent
has a program, consisting of Horn clause rules, and a working memory, which con-
tains facts (ground atomic formulas) representing the initial state of the system. The
logical model presented in [2] is based on propositional language, however the restric-
tion to propositional rules is not a very drastic assumption: if the rules do not contain
functional symbols and we can assume a fixed finite set of constant symbols, then any
set of first-order Horn clauses and facts can be encoded as propositional formulas. In
this framework, concrete agents in a system also use different conflict resolution strate-
gies. The behaviour of each abstract agent is represented in terms of a set of temporal
epistemic formulas. That is, abstract specifications are given as LTL formulas which
describe the external behaviour or the response time behaviour of some of the agents
in the system. The overall rationale for choosing this abstract agent notion is discussed
below in Section 3.1. The agents (concrete and abstract) execute synchronously. We
assume that each agent executes in a separate process and that agents communicate via
message passing. We further assume that each agent can communicate with multiple
agents in the system at the same time. In the following sections, we describe in more
detail how we model the concrete and abstract agents.

6 A. Rakib and R.U. Faruqui

3.1 Managing complexity through strategy and abstraction

We would like to be able to verify properties of systems consisting of arbitrary numbers
of complex communicating reasoners. However, our experience in [2, 3] has indicated
that verifying such large, complex reasoning systems is infeasible with current model
checking techniques. The most straightforward approach to defining the global state of
a multi-agent system is as a (parallel) composition of the local states of the agents. At
each step in the evolution of the system, each agent chooses from a set of possible ac-
tions. The actions selected by the agents are then performed in parallel and the system
advances to the next state. In a multi-agent system composed of n (≥ 1) agents, if each
agent i can choose between performing at most m (≥ 1) actions, then the system as
a whole can move in mn different ways from a given state at a given point in time.
Along with the state space size, model checking performance is heavily dependent on
the branching factor of states in the reachable state space as well as on the solution
depth of a given problem. In general, the model checking algorithm for reachability
analysis performs a breadth-first exploration of the state transition graph. When check-
ing invariant (safety) properties, the model-checker will either determine that no states
violate the invariant by exploring the entire state space, or will find a state violating the
invariant and produce a counter-example.4 However, even with state-of-the-art BDD-
based model-checkers, memory exhaustion can occur when computing the reachable
state space due to the large size of the intermediate BDDs (because of the high branch-
ing factor). The model checking performance based on depth-first search can also vary
dramatically from good to worst. In both the cases, verification of true formulas take
longer than verification of false formulas since a model checker will find a counterex-
ample faster than it takes to explore the whole model.

To overcome this problem, our modelling approach abstracts from some aspects
of system behaviour to obtain a system model that is tractable for a standard model-
checker. Abstract specifications are given as Linear Temporal Logic (LTL) formulas
which describe the external behaviour of some of the agents, allowing their temporal
behaviour to be compactly modelled. Conversely, reasoning strategies allow the detailed
specification of the ordering of steps in the agent’s reasoning process. The decision
regarding which agents to abstract and how their external behaviour should be speci-
fied rests with the modeller/system designer. Specifications of the external (observable)
behaviour of abstract agents may be derived from, e.g., assumed characteristics of as-
yet-unimplemented parts of the system, assumptions regarding the behaviour of parts
of the overall system the designer does not control (e.g., quality of service guarantees
offered by an existing web service) or from the prior verification of the behaviour of
other (concrete) agents in the system.

3.2 Ontology-driven rules

The use of first-order rules increases the expressiveness of the framework in [2], and
makes it easier to model complex real world scenarios. To formally represent a domain

4 Even with on-the-fly model-checking [22], the model checker has to explore the state space at
least until the solution depth.

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 7

model we use OWL 2 RL ontology augmented with SWRL rules, which is ultimately
translated into a set of Horn-clause rules to design the desired multi-agent system fol-
lowing the concept presented in Section 2.1. Section 4 provides more detailed discus-
sion of the translation process. However, the verification framework is standalone, and
it is not necessary that rules will only be derived from ontologies, a system designer
can model and write a set of rules to construct the systems using any other approaches.
The use of ontology-driven rules simply provides a more natural way to think about
and model real world rules and exploit this benefit. In addition, existing tools, including
Protégé [1], support the design of OWL 2 RL and SWRL based ontologies, making it
easier to model rule-based agents using semantic rules.

3.3 Description of concrete agents

The two main components of rule-based agents are the knowledge base (KB) which
contains a set of first-order Horn-clause rules and the working memory (WM) which
contains a set of facts that constitute the current (local) state of the system. The state
of an agent also contains a communication counter, which is discussed below. Another
component of a rule-based system is the inference engine which reasons over rules
when the application is executed.

Rule::=’<’ Priority ’:’Atoms ’→’ Atom’>’
Atoms::=Atom {, Atom}∗
Atom::=standardAtom | commmunicationAtom
standardAtom::=Predicate(Term)

| Predicate(Term, Term)
communicationAtom::=

’Ask(’ i ’,’ j ’,’ standardAtom ’)’
| ’Tell(’ i ’,’ j ’,’ standardAtom ’)’

Priority::=N≥0
N≥0 ::= 0|1|2|...
i::=1|2|...|nAg
j::=1|2|...|nAg
Predicate::= Person|hasCarer|Raining|...
Term::=Constant|Variable
Constant::=’Ann|’Bob|’30|’P001|...
Variable::=?x|?temp|?name|...

Listing 1.1: Abstract syntax for concrete agent’s rules

The inference engine may have some reasoning strategies to handle cases when
multiple rule instances are eligible to fire. The agents use the refractory rule firing tech-
nique, i.e., each rule instance is fired only once. In Listing 1.1, we specify the abstract
syntax for concrete agents’ rules using a BNF. In this notation, the terminals are quoted,
the non-terminals are not quoted, alternatives are separated by vertical bars, and com-
ponents that can occur zero or more times are enclosed braces followed by a superscript
asterisk symbol ({. . .}∗). In other words, the rules of a concrete agent have the plain
text format: < n : P1, P2, . . . , Pn → P >, where n is a constant that represents the

8 A. Rakib and R.U. Faruqui

annotated priority of the rule and the Pi’s and P are first-order atoms. If an agent i has
this rule, the antecedents P1, P2, . . . , Pn match with the facts in the agent’s working
memory and the consequent P is not in the agent’s working memory in a given state
s, then the agent can fire the matching rule instance which adds the consequent to the
agent’s working memory in the successor state s′.

Model of communication We assume a simple query-response scheme based on asyn-
chronous message passing for agent communication. Each agent’s rules may contain
two distinguished communication atoms: Ask(i, j, P), and Tell(i, j, P), where i and j
are agents and P is an atomic formula not containing an Ask or a Tell . Ask(i, j, P)
means ‘i asks j whether P is the case’ and Tell(i, j, P) means ‘i tells j that P ’ (i 6= j).
The positions in which the Ask and Tell primitives may appear in a rule depends on
which agent’s program the rule belongs to. Agent i may have an Ask or a Tell with
arguments (i, j, P) in the consequent of a rule; for example,

< n : P1, P2, . . . , Pn → Ask(i, j, P) >,
whereas agent j may have an Ask or a Tell with arguments (i, j, P) in the an-

tecedent of the rule; for example, < n : Tell(i, j, P) → P > is a well-formed rule
(we call it trust rule) for agent j that causes it to believe i when i informs it that P is the
case. No other occurrences of Ask or Tell are allowed. When a rule has either an Ask
or a Tell as its consequent, we call it a communication rule. All other rules are known
as deduction rules. These include rules with Asks and Tells in the antecedent as well
as rules containing neither an Ask nor a Tell .

We assume that the state, for each agent i, contains a communication counter, which
starts with value 0 and incremented by 1 each time while interacting (sending/receiv-
ing a message) with other agents. After the counter reaches its limit, say nC(i), agent
i cannot perform any more communication actions. The exchange of information be-
tween agents work like this: if an Ask(i, j, P) (or a Tell(i, j, P)) is in agent i’s working
memory in a given state, Ask(i, j, P) (or Tell(i, j, P)) is not in the working memory
of agent j, and agent j has not exceeded its communication bound then in the successor
state, Ask(i, j, P) (or Tell(i, j, P)) can be added to agent j’s working memory, and its
communication counter incremented.

Possible actions of an agent The semantics of the agents’ language is based on tran-
sition systems and follow the approach of [2]. We view the process of producing new
facts from existing facts as a sequence of states of an agent, starting from an initial state,
and producing the next state by one of the following actions:

- Rule: firing a matching rule instance in the current sate;
- Comm: if agent i has an Ask(i, j, P) (or a Tell(i, j, P)) in its current state, then

agent j can copy it to its next state provided j’s communication counter has not
exceeded nC(j) value;

- Idle: which leaves its configuration unchanged.

That is, each transition (result of an action) corresponds to a single execution step
and takes an agent from one state to another. States consist of the rules, facts, and com-
munication counter of the agent. A step of the whole system is composed of the actions

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 9

of each agent, in parallel. We measure time requirements for a problem as the number
of such system steps. The key idea underlying the logical approach presented in [2]
of rule-based systems is to define a formal logic that axiomatizes the set of transition
systems, and it is then used to state various properties of the systems.

Reasoning strategies We assume that each concrete agent has a reasoning strategy (or
conflict resolution strategy) which determines the order in which rules are applied when
more than one rule matches the contents of the agent’s working memory. The frame-
work (and the TOVRBA tool presented in Section 4) supports a set of standard conflict
resolution strategies often used in rule-based systems including, Rule ordering, Depth,
Breadth, Simplicity, and Complexity [13, 16, 36]. Different agents in the system may
use different types of reasoning strategies. To allow the implementation of reasoning
strategies, each atom of a rule is associated with a time stamp which records the cycle
at which the atom was added to the working memory. In order to achieve this, the in-
ternal configurations of the rules in the Maude specification (cf. Section 5) follow the
syntax given below:

< n : [t1 : P1], [t2 : P2], . . . , [tn : Pn]→ [t : P] >

where the ti’s and t represent time stamps of atoms. When a rule instance of the
above rule is fired, its consequent atom (ground instance of P) will be added to the
working memory with time stamp t = t′ + 1, i.e., t will be replaced by t′ + 1, where t′

is the current cycle time of the system.

3.4 Abstract agents

An abstract agent consists of a working memory and a behavioural specification. The
behaviour of abstract agents is specified using a subset of LTL formulas extended with
belief operators. The general form of the formulas used to represent the external be-
haviour of an abstract agent i is given in Listing 1.2.

ρ ::= X≤nϕ1 | G(ϕ2 → X≤n ϕ3)
ϕ1 ::= Bi Ask(i , j ,P) | Bi Tell(i , j ,P)

| Bi Ask(j , i ,P) | Bi Tell(j , i ,P)
| Bi P

ϕ2 ::= Bi Ask(j , i ,P) | Bi Tell(j , i ,P)
ϕ3 ::= Bi Tell(i , j ,P) | Bi Tell(i , k ,P)

| Bi Ask(i , j ,P) | Bi Ask(i , k ,P)
n ::= N≥1
N≥1 ::= 1 | 2 | 3 . . .

Listing 1.2: Temporal epistemic formulas for abstract agents

In the formulas X is the ‘next step’ temporal operator, X≤n is a sequence of n (or
less)X operators,G is the temporal ‘in all future states’ operator, andBi for each agent
i is a syntactic epistemic operator used to specify agent i’s ‘beliefs’, i.e., the contents
of its working memory. Formulas of the form X≤nϕ1 describe agents which produce a

10 A. Rakib and R.U. Faruqui

certain message or input to the system within n time steps. These formulas (partly) de-
scribe proactive behaviour of an agent. For example, the formula X≤nBi Tell(i, j, P),
which describes abstract behaviour of agent i produces a Tell(i, j, P) within n time
steps. That is i tells about P to j proactively by generating a Tell(i, j, P) message in
the interval [1, n] thinking that it might be useful for j. In other words, i tells j about
P without being asked. A formula ϕ1 of the form Bi Ask(i, j, P) or Bi Tell(i, j, P)
results in communication with the other agent as follows: when the beliefs appear (as an
Ask or a Tell) in the abstract agent i’s working memory, they are also copied to agent
j’s working memory at the next step. A formula ϕ1 of the form Bi P representing a
belief involving an atom P (other than Ask and Tell), which may also appear in the
abstract agent i’s working memory within n time steps. This is not critical to how ab-
stract agents interact with communication; however it describes abstract agent i’s own
behaviour.

The G(ϕ2 → X≤n ϕ3) formulas describe agents which are always guaranteed
to reply to a request for information within n time steps. We interpret the formula
G(Bi Ask(j, i, P) → X≤n Bi Tell(i, j, P)) as follows: if t is the time stamp when
abstract agent i came to believe Ask(j, i, P) (i.e., Ask(j, i, P) appears in the agent i’s
working memory), then the atom Tell(i, j, P) must appear in the working memory of
agent i within t + n steps. The atom Tell(i, j, P) is then copied to agent j’s working
memory at the next step. The other possible combinations of Ask and Tell in places
of ϕ2 and ϕ3 in the G(ϕ2 → X≤n ϕ3) formulas can be interpreted in a similar way.

The language described above for the abstract agents is independent of the language
of the concrete agents. Note, however, that we do not need the full language of LTL (for
example, the Future (F) or Until (U) operator) in order to specify these abstract agents.
This is because, a formula such as, e.g., F Bi Ask(j, i, P) which states that the atom
Ask(j, i, P) must be appeared in the agent i’s working memory at some time in the
future, represents a form of temporal indeterminacy, which is not very helpful in our
context.

3.5 Specifying systems at different levels of abstraction

In our framework, we assume that an agent in the system is either completely con-
crete or completely abstract. The representation of agents in the system are divided into
two classes based on their behavioural specification. The system designer may have
complete control over the internal behaviour of some agents in the system. The con-
crete agents class contains those agents. The remaining agents belong to the abstract
agents class. In this step the designer identifies which agents he needs to design for
what classes. The designer also determines the number of agents he needs to place
in each class and their possible interactions. An agent can interact with one or more
agents in the system, but not necessarily every agent interacts with every other agent in
the system. The designer can consider the following different possible levels of system
information in order to design and verify system properties.

1. The system designer may have detailed design information about the internal be-
haviour of some agents in the system including the initial facts in their working
memories, their rules and the reasoning strategy. The remaining agents in the sys-
tem are modelled using temporal epistemic formulas.

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 11

2. The system designer may have information of all the agents in the system including
the initial facts in their working memories, their rules but no information at all about
their reasoning strategy. This design gives the worst case model.

3. The system designer may have detailed information of all the agents in the system
including the initial facts in their working memories, their rules and the reasoning
strategy.

Both approaches (strategy and abstraction) have been combined in a prototyping
tool TOVRBA for rule-based multi-agent systems which allows the designer to specify
information about agents’ interaction, behaviour, and execution strategy at different
levels of abstraction. The TOVRBA tool generates an encoding of the system for the
Maude LTL model checker, allowing properties of the system to be verified.

Modeling problems using

Ontology plus Rules

(OWL 2 RL + SWRL)

Read/Write/Edit

OWL 2 RL + SWRL

Develop Ontologies

Pellet ontology reasoner

plugged in

Ontology plus Rules in

OWL/XML syntax

Translator

Plain text syntax rules which

are used in system design

Encoding generator

Generating Maude encoding

and

allowing property specification

to be verified

The Maude

LTL model checker

Verified design

Plus User annotation

Fig. 1: The TOVRBA tool architecture

3.6 Discussion of the abstraction approach

Our modelling approach presented above abstracts from some aspects of system be-
haviour to obtain a system model that is tractable for a standard model-checker. Our
use of abstraction is however different from classic approaches in model-checking, such
as [10, 12], which use a mapping between an abstract transition system and a concrete
program. Depending on this mapping, verification results may be correct but not com-
plete. By correct or conservative abstraction usually mean that if a formula is true in
the abstract system, then it is true in the concrete system (but if a formula is false in
the abstract system, it may not be false in the concrete system). In contrast, our ap-
proach uses a very specific kind of abstraction, which replaces a concrete agent with an

12 A. Rakib and R.U. Faruqui

abstract one that implements guarantees of its response time behaviour. If those guar-
antees are correct, then our approach gives both correct and complete results. Complete
or exact abstraction means that a formula is true in the abstract system if and only if
it is true in the concrete system. Agents can be modelled as abstract if their response
time guarantees have already been verified or the system designer is prepared to assume
them.

Agent Configuration Module

Functional Module

Agent 1

System Module

(Multi-agent System)

Agent 1|| Agent 2 || . . . ||Agent n

Functional Module

Agent 2

Functional Module

Agent n. . .

Fig. 2: MAS implementation structure in Maude

4 A prototyping tool TOVRBA

We use the Protégé [1] ontology editor and knowledge-base framework to build the
ontologies augmented with SWRL rules while modelling a domain. The SWRL editor
is integrated with Protégé and permits the interactive editing of SWRL rules. In order
to encode an ontology-driven rule-based system using a Maude [15] specification and
formally verify its interesting properties using LTL model checking, we first need to
translate the ontology in the OWL/XML format to a set of simple plain text Horn clause
rules. We developed a translator that takes as input an OWL 2 RL ontology in the
OWL/XML format (an output file of the Protégé editor) and translates it to a set of
plain text Horn clause rules. First, we take an OWL 2 RL ontology as an input and
then invoke a DL reasoner to compute a complete class hierarchy. Then, we parse the
inferred ontology that generates a set of OWL 2 RL axioms and facts. We use the OWL
API [23] to parse the ontology and extract the set of axioms and facts. The design of
the OWL API is directly based on the OWL 2 Structural Specifications and it treats an
ontology as a set of axioms and facts which are read using the visitor design pattern. The
DLP-based translation rules (cf. Section 2.1) are then recursively applied to generate

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 13

equivalent plain text Horn clause rules for each axiom and fact. We also extract the set
of SWRL rules using the OWL API which are already in the Horn clause rule format.
First, atoms with corresponding arguments associated with the head and the body of a
rule are identified and we then generate a plain text Horn clause rule for each SWRL
rule using these atoms. The translated Horn clause rules of an ontology are then used
to create agents of a multi-agent rule-based system using the Maude specifications. We
then automatically verify interesting properties of the system using the Maude LTL
model checker. The high-level architecture of the TOVRBA tool is shown in Figure 1.

5 Maude encoding

We chose Maude [15] rewriting system and its LTL model checker because it can model
check systems whose states involve arbitrary algebraic data types. The only assumption
is that the set of states reachable from a given initial state is finite. This simplifies mod-
elling of the agents’ (first-order) rules and reasoning strategies. For example, the vari-
ables that appear in a rule can be represented directly in the Maude encoding, without
having to generate all ground instances resulting from possible variable substitutions.

fmod ACM is
protecting NAT .
protecting BOOL .
protecting QID .
sorts Constant Atom sAtom cAtom Term Rule Agenda WM .
sorts TimeA TimeWM RepT RepTime Config .
subsort Atom < WM .
subsorts aAtom cAtom < Atom .
subsort Rule < Agenda .
subsort Qid < Constant .
subsort TimeA < TimeWM .
subsorts Constant < Term .
subsort RepT < RepTime .
ops com exec : -> Phase [ctor] .
op [_ : _] : Nat Atom -> TimeA .
op _ _ : WM WM -> WM [comm assoc] .
op _ _ : TimeWM TimeWM -> TimeWM[comm assoc] .
op _ _ : Agenda Agenda -> Agenda[comm assoc] .
op Ask : Nat Nat sAtom -> cAtom .
op Tell : Nat Nat sAtom -> cAtom .

.

.

.
endfm

Listing 1.3: Sorts declaration and their relationships

We take advantage of Maude’s modular structuring mechanisms to implement our
systems design. We use a generic functional module and a set of functional and system

14 A. Rakib and R.U. Faruqui

modules to represent the system. The overall picture of our implementation is shown
in Figure 2. Throughout this entire paper we will use verbatim texts to represent spec-
ification of the agents into Maude. Therefore, an agent i corresponds to i in Maude
specification. Similarly, Ask(i,j,P) will have the same meaning as Ask(i, j, P) and
so on.

5.1 Agent configuration module

Each agent in a MAS has a configuration (local state) and the composition of all these
configurations (local states) make the configuration (global state) of the MAS. The types
necessary to implement the local state of an agent (working memory, program, reason-
ing strategy, message counters, time step etc.) are declared in a generic agent configu-
ration functional module called ACM. The structure of the ACM is given in Listing 1.3.
A number of Maude library modules such as NAT, BOOL, and QID have been imported
into the ACM functional module. The modules NAT and BOOL are used to define natural
and Boolean values, respectively, whereas the module QID is used to define the set of
constant symbols (constant terms of the rule-based system). The set of variable sym-
bols (variable terms of the rule-based system) are simply Maude variables of sort QID.
Both variables and constants are subsorts of sort Term. Similarly, an atom is declared
as an operator whose arguments are of sort Term, and returns an element of sort Atom.
The sort Atom is declared as a subsort of the sort WM (working memory) etc. The data
types presented in Listing 1.3 are manipulated using a set of equations. The equations
are used for various purposes: for example, to check, whether or not a given atom (used
to represent fact/predicate) is already in the agent’s working memory, whether or not a
rule instance is already in the agenda etc.

5.2 Implementation of agent modules

We model each concrete(and abstract) agent using a functional module Concrete
Agent-i (and AbstractAgen t-i), which imports the ACMmodule defined above.
The local configuration of an agent i is represented as a tuple:

Si[A|RL|TM|M|RT|RT’|t|msg|syn]iS
where Si and iS indicate start and end of a state of agent i. The variables A and

RL are of sort Agenda, TM is of sort TimeWM, M is of sort WM, RT and RT’ are of
sort RepTime. Moreover, t, msg, and syn are of sort Nat. The variables t, msg, and
syn have been used to represent respectively the time step, message counter, and a flag
for synchronisation. Note that the structure of local configurations for both concrete
and abstract agents are the same. This is just to maintain consistency of the shape of
each agent’s configuration. However, for example, the sort RepTime is of no use for
concrete agents and its value is always empty for them.

5.3 Implementation of the MAS module

Computation steps of multi-agent systems are represented by transitions, which take
systems from one configuration to subsequent ones. Each agent in the system has its

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 15

own local state and the composition of all these local states comprises the configuration
(global state) of the multi-agent system. In every configuration (global state), all agents
proceed simultaneously. Each agent changes its next local configuration, possibly de-
pending on the current local configurations of the other agents in the system. However,
there can be an alternative interleaved execution model, where at most one agent is
allowed to act at any one time. It depends on the modelled system which execution
model (interleaved or synchronous) is more realistic. If we count time steps required
by a system of agents to derive something, interleaved model gives rather pessimistic
results because only one agent can ‘think’ at any single step and the rest are waiting.
This makes sense if the agents run on the same processor. However if, as in most of
our examples, agents are running on different processors and can ‘think’ in parallel, a
synchronous model is more realistic.

mod MAS is
protecting ConcreteAgent-i .
protecting AbstractAgent-j .
.
.
.

sort masConfig .
sort Phase .
ops com exec : -> Phase .
var phase : Phase .
op _||_ : Config Config->Config[comm assoc] .
op<_,_>: Config Phase->masConfig [ctor] .
op comm : masConfig -> masConfig [ctor] .
.
.
.

endm

Listing 1.4: Structure of MAS module

The MAS module imports all the agent modules and contains both functions and
rewrite rules which are used to implement the dynamic behaviour of the system. The
structure of the MAS module is given in Listing 1.4. The parallel composition of agent
configurations in the system is achieved using the _||_ operator. In the MAS module
we declare a sort masConfig to represent the global configuration of the system.
We then define an operator <_,_> whose first argument is the composition of all the
local configurations of the system and the second argument is a phase, and it returns
an element of sort masConfig. The masConfig moves through communication and
execution phases. The communication phase simply says that if there is something to
be communicated then do it, and then return to the execution phase.

The inference engine of concrete agents and the partial behaviour of abstract agents
are implemented using a set of rules: Generate, Choice, Apply, Idle, and Communi
cation. The Generate rule causes each agent to generate its conflict set. The Choice
rule causes each agent to apply its reasoning strategy, the Apply rule causes each agent
to execute the rule instances selected for execution, the Idle rule executes only when
there are no rule instances to be executed (the application of the Idle rule advances
the cycle time of the agent i, leaving everything else unchanged), and communication
among agents is achieved using the Communication rule. When agents communicate

16 A. Rakib and R.U. Faruqui

with each other, one agent copies the communicated fact from another agent’s working
memory. Copying is only allowed if the fact to be copied is not already in the work-
ing memory of the agent intending to copy and it has not exceeded it’s communication
counter limit. For the sake of brevity, we do not describe the encoding in any further
details here, we refer the interested reader to [31].

5.4 Verifying system properties

Model checking in Maude involves a Maude specification of a system together with a
property of interest. A property is a LTL formula interpreted as a property of computa-
tions of the system (linear sequences of states generated by application of rewrite rules).
A simple path from a given initial state s, to a state satisfying a property ϕ is a list of
rules together with a state s′ satisfying ϕ such that applying the rules starting with s
leads to s′. One way to find a simple path is to model check the assertion that from
s no state can be reached satisfying ϕ: modelCheck(s, ∼ F ϕ). If there is a reachable
state satisfying ϕ, a counterexample will be returned. The counterexample contains the
list of rules applied. Given a system module, say MAS, and an initial state, say s of sort
masConfig, we can model check different LTL properties beginning at this initial
state by doing the following:

– defining a new module, ModelCheck-MAS, that includes the module MAS and
Maude’s built-in module MODEL-CHECKER module as sub modules;

– giving a subsort declaration, masConfig < State, where State is a sort in
the module MODEL-CHECKER;

– defining the syntax of the (target) state predicates we wish to use by means of
constants and operators of sort Prop, a subsort of the sort Formula (i.e., LTL
formulas) in the module MODEL-CHECKER;

– defining the semantics of the state predicates by means of equations.

The following ModelCheck-MAS system module defined in Listing 1.5 shows
how we can define state predicates whose semantics are defined by appropriate equa-
tions.

mod ModelCheck-MAS is
including MAS .
including MODEL-CHECKER .
subsort masConfig < State .
op success : -> Prop .
var C : Config .
var phase : Phase .
eq < Si[Ai:Agenda|RLi:Agenda|TMi:TimeWM|P Mi:WM|RTi:Rep
TWM|RTi’:RepTWM|t:Nat|msgi:Nat|syni:Nat]iS || C:Config,
phase:Phase > |= success = true .
eq C |= success = false [owise] .
op init : -> masConfig .
eq init = < S1[_|_|_|_|_|_|0|0|1]1S ||...||

Si[_|_|_|_|_|_|0|0|1]iS ||...||
Sn[_|_|_|_|_|_|0|0|1]nS,com > .

endm

Listing 1.5: Structure of ModelCheck-MAS module

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 17

In the state predicate semantics defined in Listing 1.5, the masConfig says that
agent i’s working memory contains a ground atom P. The remaining information of
the configuration is specified using Maude’s on-the-fly variable declaration. Note how-
ever that, the initial state must contain information using ground terms only. In the
ModelCheck-MAS module the initial system state is represented using init, where
all the ’_’ placeholders used in the configuration represent ground terms. Once the se-
mantics of each of the state predicates has been defined, given an initial state init, we
can model check any LTL formula, say ϕ, involving such predicates. We do so by exe-
cuting in Maude, the command reduce modelCheck(init, ϕ), where ϕ could
be, for example, [] success,<> success, <> ∼success etc.([] stands for
the global LTL operator G and <> stands for the future LTL operator F). Two things
can then happen: if the property holds, then we get the result true; if it does not, we get
a counterexample.

5.5 Analysis of the Maude implementation

When implementing reasoning strategies which involve time stamps of atoms, it is con-
venient to be able to associate a time stamp to each pattern. To achieve this, we have
declared the sort TimeWM in the above encoding. However, in the encoding we main-
tained both the sorts TimeWM and WM simultaneously. In this section, we explain why.
Let us suppose that each agent uses TimeWM as its only working memory. When agents
generate their conflict sets, they check whether consequents of rule instances are already
present in their working memory. If so, then these rule instances will not be added to
their agendas. Similarly, when agent fires a rule instance or receives a message from
another agent, it will make sure these atoms are not present in its working memory.
For example, suppose an atom P with time stamp t1 is already added to the working
memory of an agent i. That is [t1 : P] is already present in TimeWM. Sometimes
later, say at time t2 (> t1), agent i needs to check whether [t2 : P] is al-
ready present in its working memory. It is apparent that the elements [t1 : P]
and [t2 : P] of TimeWM are distinct because t1 6= t2. However, the atom P
is common to both of them. Therefore, to ensure that working memory does not con-
tain duplicate atom it is necessary to ensure that the second part P of [t2 : P]
is not already present in the working memory. This can be accomplished in one of two
ways. One way is to compare the second part of [t2 : P]with the second part of
each element [tk : P] of TimeWM. In order to implement this approach, some
Maude conditional equations are required. However, the execution of additional condi-
tional equations slows down the computation. Another way is to maintain a duplicate
working memory WM which contains all the atoms of the form P. Whenever an element
[t : P] is added to TimeWM, the corresponding atom P will be added to WM.
In other words TimeWM and WM is updated simultaneously. Thus it is only necessary
to check whether the second part P of [t2 : P] is already present in WM or not.
Therefore, although maintaining only one working memory is enough, we use duplicate
working memory for efficiency purposes.

18 A. Rakib and R.U. Faruqui

6 Case study 1: Home health care monitoring alarm system

In this section, to illustrate the application of the framework we consider the following
scenario of a home health care monitoring alarm system adapted from [30]. We built
a home health care ontology using OWL 2 RL and SWRL from the scenario using
Protégé [1]. A fragment of the ontology is depicted in Fig 3.

Thing

Person Place Alarm

Relative SocialWorkerHealthOperator

hasRelative

isInChargeOf

Doctor Nurse HealthStatus

hasHealthStatus

HeartRate

Home

isLocatedIn

EnvironmentalStatus

Temperature RelativeHumidity

hasEnvironmentalStatus AlarmLevel

AlarmCode

Patient

BloodPressure

SySBloodPressure

hasBloodPressure

hasHeartRateFreq

DiasBloodPressure

Fig. 3: Home health monitoring ontology

The dotted lines represent object/data properties between classes and solid lines
represent “subclass” relations. A snapshot of an individual of the class “Patient” is given
in Fig 5 (b) which clearly shows associated object and data properties with “Tracy”.
Static behaviour of the system is captured using OWL 2 RL and dynamic behaviour of
the system is captured using SWRL rules. Some SWRL rules are given in Fig 5 (a).
The prototyping tool TOVRBA translates the ontology into a set of Horn clause rules. The
translated Horn clause rules of the ontology are then used to create agents of a multi-
agent rule-based system using the Maude specification. The system consists of several
concrete and abstract agents. The concrete agents in the system include a number of
home healthPCs, pcis, and a central Health Planner, p. Each pci agent in the system is
connected with two body sensor agents such as a Blood pressure monitoring agent, bi,
and a Heart rate monitoring agent, hi. The agents bis and his are modelled as abstract
agents. All the home healthPC agents pcis can communicate with the agent p, which
is located at the health centre. The agent p can also communicate with various other
agents in the system including doctors, nurses, relatives of patients, and an emergency
operator. The over-all picture of the system is depicted in Figure 4.

The abstract agents bi and hi measure the Blood pressure and Heart rate information
of a patient and inform to the corresponding home healthPC, pci, as messages of the
form:

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 19

Blood pressure

monitoring sensor 1

Heart rate

monitoring sensor 1

Blood pressure

monitoring sensor 2

Heart rate

monitoring sensor 2

Blood pressure

monitoring sensor n

Heart rate

monitoring sensor n

Home PC1

Home PC2

Home PCn

The central health

DoctorX

NurseX

RelativeX

DoctorY

NurseY

Emergency operator

...
...

...

planner

Fig. 4: Home health-care monitoring system

Tell(bi , pci , hasSysBloodPressure(?p, ?v2))
Tell(bi , pci , hasDiasBloodPressure(?p, ?v1))
Tell(hk , pci , hasHeartRateFreq(?p, ?v))

Upon receiving the Blood pressure and Heart rate information from the body sen-
sor agents, the agent pci derives an alarm level by firing a sequence of rules from its
knowledge base, including the rules shown in Fig 5.

Fig. 5: Example SWRL Rules and an individual of the patient

The level of alarms could be Low , VeryLow , Medium and High depending on
the blood-pressure and heart-rate measurement values. The agent pci then sends the
alarm level information to the agent p for the patient’s health planning. In this system,
the agents doctors, dis, nurses, nis, relatives of patients, ris, and an emergency oper-
ator, e are modelled as abstract agents. These abstract agents can notify to the agent
p about their availability status by sending messages which could be, e.g., Available ,

20 A. Rakib and R.U. Faruqui

NotAvailable , and Busy . The messages generated by these abstract agents are of the
form:

Tell(di , p, hasCareStatus(?c, ?status))
Tell(ni , p, hasCareStatus(?c, ?status))
Tell(ri , p, hasCareStatus(?c, ?status))

The agent p models alarm notification policies specifying whom should be alerted,
how and when the notification is to be sent and if any acknowledgement is required.
Alarm notification policy examples are given below:

Alarm Level Notification Policies
VeryLow message to relative, no ack
Low message to doctor, no ack and message to relative, no ack
Medium message to doctor or nurse, ack and message to relative, no ack
High message to emergency operator, ack and message to relative, ack

The agent p alerts a contact person (doctor, nurse, or relative of a patient) based on
their availability status and for certain cases the agent p may require an acknowledge-
ment. The availability status of a doctor, nurse, or relative of a patient may change from
Available to Busy or NotAvailable when they are contacted by the agent p. In this
case, the agent p waits for a fixed time interval and then based on the acknowledge-
ment received it might contact other agents for a service. For instance, when a Medium
level alarm occurs, the agent p first alerts a doctor, di. If the received acknowledgement
from the agent di within a fixed time interval is Busy or NotAvailable , then the agent
p alerts a nurse, ni, if she also sends an Busy or NotAvailable message within a fixed
time interval, then the agent p alerts an emergency operator. At the same time, the agent
p alerts the relative of the patient, but an acknowledgement is not required.

The Blood pressure and Heart rate sensor agents in the system generate information
about the measurement values at different times in the interval [1, 5]. For example, the
agent bi generates blood pressure information for a patient with patient’s name Tracy
and systolic blood pressure 130mmHg using the following formula:

X≤5 Bbi Tell(bi , pci , hasSysBloodPressure(′Tracy ,′ 130))

In this experiment, the priorities (from higher to the lower) among rules of the cen-
tral Health Planner are assigned corresponding to the alarm levels High , Medium , Low ,
and VeryLow , respectively. The experimental results reported in Table 2, for the 1 pa-
tient scenario, the system generates Medium alarms, for the 2 patients scenario, the sys-
tem generates Medium alarms for one patient and High alarm for the other patient, and
for the 3 patients scenario, the system generates Medium alarms for two patients and
High alarm for the other patient. For ease of illustration, we modelled one doctor, one
nurse, and one relative corresponding to each patient in the system. In the one patient
scenario, two concrete agents are modelled using 16 and 36 rules respectively, three ab-
stract agents are modelled using one LTL formula each, and other two abstract agents
are modelled using two LTL formulas each. In the two patients scenario, three concrete
agents are modelled using 16, 16, and 72 rules respectively, four abstract agents are
modelled using one LTL formula each, and other seven abstract agents are modelled
using two LTL formulas each. And in the three patients scenario, four concrete agents

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 21

are modelled using 16, 16, 16, and 108 rules respectively, four abstract agents are mod-
elled using one LTL formula each, nine abstract agents are modelled using two LTL
formulas each, and one abstract agent is modelled using three LTL formulas. Maude
encoding can be found online5. We verify the following properties of the system:

Prop1 . G(Bpci Tell(hi , pci , hasHeartRateFreq(′Tracy ,′ 30))
∧ Bpci Tell(bi , pci , hasSysBloodPressure(′Tracy ,′ 130))
∧ Bpci Tell(bi , pci , hasDiasBloodPressure(′Tracy ,′ 85))
→ X n Bpci hasAlarmLevel(′Tracy ,′MEDIUM) ∧msg=m

pci)

the above property specifying the fact that healthPC classifies the alarm level as
′MEDIUM in n time steps while message counter value of the healthPC is m, when
the values of blood pressure and heart rate are 130mmHg, 85mmHg and 30bps, respec-
tively.

Prop2 . G(Bpci hasAlarmLevel(′Tracy ,′MEDIUM)
→ Xn Bp hasAlarmLevel(′Tracy,′MEDIUM))

the above property says that whenever patient’s alarm level is classified (e.g., in this
case it is Medium) the patient’s home healthPC will interact and informs this to the
planner p and the planner receives classified message in n time steps.

Prop3 . G(Bp hasAlarmLevel(′Tracy ,′MEDIUM)
∧ Bp Tell(di , p, hasCareStatus(′John,′ Busy))
∧ Bp Tell(ni , p, hasCareStatus(′Fiona,′ Busy))
→ X n Be hasAlarmLevel(′Tracy ,′MEDIUM))

the above property says that whenever patient’s alarm level is Medium and the agent
p has received acknowledgements from the doctor and nurse as busy, then the agent p
communicates with the emergency operator and the emergency operator e receives the
message in n time steps.

The above properties are verified as true when the value of n and m are 7 and 3 in
Prop1 . The value of n is 2 in Prop2 , and 3 in Prop3 . The model checker spends 72
seconds for the 1 patient scenario, 165 seconds for the 2 patient scenario, and 842 sec-
onds for the 3 patient scenario. However when we assign a value to n which is less than
7 in Prop1 , less than 2 in Prop2 , and less than 3 in Prop3 the properties are verified as
false and the model checker returns counterexamples. Similarly, when we assign a value
to m which is less than 3, Prop1 is verified as false. This also ensures the correctness
of the encoding in that model checker does not return true for arbitrary values of n and
m. Note that verification of true formulas take longer than verification of false formu-
las since a model checker will find a counterexample faster than it takes to explore the
whole model. For example, when the model checker returns counterexamples it spends
0.04 seconds for the 1 patient scenario, 0.04 seconds for the 2 patient scenario, and 0.2
seconds for the 3 patient scenario. It should also be noted that the value of n depends
on the experimental setup. For example, the value of n is 3 when verifying Prop3 for
the 3 patient scenario and the planner has to contact emergency operator for one patient
with Medium alarm (because it has received acknowledgements from the doctor and

5 https://www.dropbox.com/s/qjzv3ro9jqra4bs/MAS-MaudeEncoding.zip?dl=0

22 A. Rakib and R.U. Faruqui

nurse as busy) and for another patient with Medium alarm it receives positive acknowl-
edgement from the doctor. However, the value of n is 4 when verifying Prop3 for the 3
patient scenario and the planner has to contact emergency operator for both the patients
with Medium alarm (because it has received acknowledgements from the doctor and
nurse as busy for both the patients). The results are summarised in Table 2.

#Patients #Concrete # Abstract n&m CPU Time
agents agents (Sec.)

7&3 (Prop 1 .)
1 2 6 2 (Prop 2 .) 72

3 (Prop 3 .)
7&3 (Prop 1 .)

2 3 11 2 (Prop 2 .) 165
3 (Prop 3 .)
7&3 (Prop 1 .)

3 4 16 2 (Prop 2 .) 842
3 (Prop 3 .)
7&3 (Prop 1 .)

3 4 16 2 (Prop 2 .) 846
4 (Prop 3 .)

Table 2: Timing results for the health planner example

7 Case study 2: A synthetic distributed reasoning problem

To illustrate the scalability of our approach we reimplemented an example scenario
introduced in [2] and preliminary results were reported in [4]. In this scenario, a system
of communicating reasoners attempt to solve a distributed reasoning problem where the
set of rules and facts that describes the agents’ knowledge base are constructed from
a complete binary tree. For example, a complete binary tree with 8 leaf facts has the
following set of rules:

RuleB1 A1(x), A2(x)→ B1(x) RuleB2 A3(x), A4(x)→ B2(x)
RuleB3 A5(x), A6(x)→ B3(x) RuleB4 A7(x), A8(x)→ B4(x)
RuleC1 B1(x), B2(x)→ C1(x) RuleC2 B3(x), B4(x)→ C2(x)
RuleD1 C1(x), C2(x)→ D1(x)
In [2], variations on this synthetic ‘binary tree’ problem have been used, with Ais

being the leaves and the goal formula being the root of the tree, as examples (see Fig-
ure 6). As we have already mentioned that the use of ontology-driven rules is to exploit
an ontology and the SWRL rules to design a rule-based multi-agent system, which facil-
itates to capture and design critical elements of a real-world application. This synthetic
distributed reasoning problem, which is not based on ontologies, is considered here be-
cause it can be easily parametrised by the number of leaf facts to increase or decrease
the problem size.

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 23

Ta
bl

e
3:

St
at

e
sp

ac
e

an
d

C
PU

tim
e

pr
od

uc
ed

by
M

oc
ha

w
ith

ou
tu

si
ng

st
ra

te
gy

ab
st

ra
ct

io
n

#
A

ge
nt

s
#

L
ea

ve
s

D
is

tr
ib

ut
io

n
#

R
ea

ch
.s

ta
te

s
#

R
ea

ch
.s

ta
te

s
#

M
ax

.M
D

D
s

#
M

ax
.M

D
D

s
C

PU
tim

e
C

PU
tim

e
(s

ym
se

ar
ch

)
(s

ym
se

ar
ch

)
(s

ym
se

ar
ch

)
1

8
-

26
-

22
-

0.
4

-
2

8
(4

,4
)

41
94

3
33

61
56

31
08

38
74

4
5

2
8

(o
dd

,e
ve

n)
55

27
8

14
55

11
34

47
46

36
7

8
1

16
-

78
4

-
17

3
-

1
-

2
16

(8
,8

)
8.

66
67

e+
08

2.
34

70
5e

+1
0

13
11

79
32

14
23

46
9

34
29

2
16

(o
dd

,e
ve

n)
7.

52
99

4e
+0

8
3.

64
24

4e
+0

9
18

94
19

28
61

96
61

3
22

67
1

32
-

45
83

30
-

11
41

-
3

-
1

64
-

2.
10

06
6e

+1
1

-
46

55
-

25
1

-
1

12
8

-
4.

41
27

9e
+2

2
-

38
89

7
-

64
72

-

Ta
bl

e
4:

St
at

e
sp

ac
e

an
d

C
PU

tim
e

pr
od

uc
ed

by
M

au
de

us
in

g
st

ra
te

gy
ab

st
ra

ct
io

n

#
A

ge
nt

s
#

L
ea

ve
s

#
St

ep
s

#S
ta

te
s

#M
sg

s
C

PU
Ti

m
e

(i
n

se
co

nd
s)

1
8

7
24

-
0.

1
1

16
15

48
-

0.
2

1
32

31
96

-
0.

5
1

64
63

19
2

-
0.

7
1

12
8

12
7

38
4

-
1

1
51

2
51

1
15

36
-

97
1

10
24

10
23

30
72

-
90

3
1

20
48

20
47

61
44

-
13

25
2

2
12

8
11

5
79

0
2

7
3

12
8

10
3

15
60

4
18

24 A. Rakib and R.U. Faruqui

Fig. 6: Binary tree example

7.1 Analysis of experimental results

In [2], the results of various experiments of the binary tree problems using the Mocha
model-checker [6] are reported. In the simplest case of a single agent, the largest prob-
lem that could be verified using Mocha had 128 leaf facts, as shown in Table 3. How-
ever, using our TOVRBA tool we are able to verify a system with 2048 leaf facts. This was
modelled as a single concrete agent, with varying numbers of facts and rules. The ex-
perimental results are summarised in Table 4 (#Agents = 1). In the case of multi-agent
systems, the exchange of information between agents was modelled using Comm op-
eration, which requires special communication rules. In [2], using Mocha we were able
to verify a multi-agent system consisting of two agents with 16 leaf facts. An invariant
property of the form AG¬(B1 ϕ ∨ B2 ϕ) (where ϕ represents the the root node) was
verified when the odd position node facts were assigned to one agent and the even posi-
tion node facts were assigned to the other agent in the system. In our re-implementation,
communication between agents is achieved using Ask and Tell actions. The results pre-
sented in [2] and those for our TOVRBA tool are therefore not directly comparable in the
multi-agent case. Nevertheless, we can show that much larger multi-agent systems can
be modelled using our new approach. Maude encoding can be found online6.

7.2 Discussion

The choice between symbolic and explicit-state model checking may depend on the sys-
tem being verified. It has been argued that symbolic model checking performs better for
synchronous systems, whereas explicit-state model checking is better for asynchronous
systems [24][27, pp. 13]. However, Eisner and Peled [14] have reported that symbolic

6 https://www.dropbox.com/s/qjzv3ro9jqra4bs/MAS-MaudeEncoding.zip?dl=0

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 25

model checking performs better even for asynchronous systems. In the experiments re-
ported in this paper, we have used both symbolic and explicit-state model checking
approaches. The results presented above using symbolic model checker Mocha, studied
the worst case model indicated in Section 3.5. We have also experienced that Maude
does not perform better than Mocha when we consider this worst case model. We could
have encoded strategy based approach using Mocha to compare if it performs signifi-
cantly better, however, the encoding of the system in the Mocha specification language
had to be handcrafted, rules had to be propositionalised using all possible substitutions
for variables. Figure 7 depicts experimental performance comparison using strategy and
non-strategy based encodings, which indicates that much larger systems can be verified
using our new approach.

Fig. 7: Experimental performance comparison using strategy and non-strategy based
encodings

26 A. Rakib and R.U. Faruqui

8 Related work

The idea of integrating ontologies and multi-agent systems has been realized in numer-
ous research [25, 21]. Gateau [17] proposed a smart IoT middleware for comport man-
agement integrating ontologies and multi agent systems using JaCaMo [8] for Multi-
Agent Programming. Ontology played a vital role to select a best action in multi-agent
system whenever an event occurs. There has also been considerable work on rule-
based agents and model checking multi-agent systems. In [35], Subercaze and Maret
present a semantic agent model that allows SWRL programming of agents. A Java
interpreter has been developed that communicates with the Knowledge-Base using the
Protégé-OWL API. The prototype tool takes advantages of the Java-based domain mod-
eling tool JADE that allows agent registration, service discovery and messages passing.
The framework supports FIPA-ACL for agent communication. In [29], Mousavi et al.
present an ontology-driven reasoning system based on BDI agent model [34]. In con-
trast to Jadex (that utilizes an XML format to represent agents’ plans, beliefs and goals),
in their framework, an ontology (in an OWL format) has been used to represent agents’
believes, plans and events. The Java-based tool JADE was used to implement the agents,
and the Protégé OWL was used to create the ontology. To illustrate the use of the frame-
work, a simple Mobile Workforce Brokering Systems (a multi-agent system that auto-
mates the process of allocating tasks to Mobile Workforces) was modelled for simula-
tion. In [5] the Datalaude system is presented, which essentially implements a Datalog
interpreter in Maude. However the encoding of rules and rule execution strategy is very
different from that proposed in this paper, in using functional modules and implement-
ing a backward chaining rule execution strategy. The aim of the Datalaude project is
not to analyse Datalog programs as such, but to provide a fast and ‘declarative’ (in the
sense of functional programming) specification of memory management in Java pro-
grams. The example application in [5] uses Datalog facts represent information about
references, and some simple rules ensure transitivity of the reference relation. While in
the above a number of ontology-driven modeling and reasoning approaches [29], [35]
have been developed for multi-agent systems, to our knowledge tools for automated
formal verification for such systems are lacking. In [33], we have used the technique
presented in this paper to model and verify resource-bounded context-aware systems,
however, all the agents used in the case study were modelled as concrete agents. In the
literature, there have been many other approaches to alleviate the state space explosion
problem, including verification approaches based on compositional reasoning [7]. In
compositional reasoning, a property ϕ to be verified is decomposed into sub-properties
that describe the behaviour of small components of the system. The sub-properties are
verified for the corresponding components. Then the system satisfies ϕ if all the sub-
properties are satisfied locally and their conjunction implies ϕ. In contrast, our approach
to verification using abstraction does not decomposeϕ into sub-properties. The property
ϕ is verified in the whole system. However, we construct the system using a hierarchi-
cal composition in which the LTL properties can be previously verified properties of
non-abstract versions of an abstract agent or set of abstract agents.

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 27

9 Conclusions and future work

In this paper, we proposed an approach to modelling, specifying and verifying response
time guarantees of ontology-driven multi-agent rule-based systems. To design ontol-
ogy, we use OWL 2 RL language because it is more expressive than the RDFS and it
is suitable for the design and development of rule-based systems. An OWL 2 RL ontol-
ogy can be translated into a set of Horn clause rules based on DLP [19]. Furthermore,
we express more complex rule-based concepts using SWRL which allows us to write
rules using OWL concepts. We show how the Maude LTL model checker can be used
to verify desired system properties including response-time guarantees of the form: if
the system receives a query, then a response will be produced within n time steps. We
described results of experiments on a simple healthcare monitoring system, we also pre-
sented strategy-based efficient encoding of the rule-based multi-agent systems for LTL
compared to our previously presented encoding for CTL. In future work, we plan to
evaluate our approach on more real-life examples of Semantic Web and rule-based sys-
tems, and enhance our framework for designing and verifying situation-aware ambient
intelligence systems.
ORCID Abdur Rakib https://orcid.org/0000-0001-5430-450X

https://orcid.org/0000-0001-5430-450X

Bibliography

[1] The Protégé ontology editor and knowledge-base framework (Version 4.1).
http://protege.stanford.edu/ (July 2011)

[2] Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time and communication
costs of rule-based reasoners. In: Peled, D., Wooldridge, M. (eds.) Model Check-
ing and Artificial Intelligence, 5th International Workshop MoChArt 2008, Patras
Greece, July 21, 2008. Revised Selected and Invited Papers. LNCS, vol. 5348, pp.
1–14. Springer, Berlin/Heidelberg (2009)

[3] Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying time, memory and com-
munication bounds in systems of reasoning agents. Synthese 169(2), 385–403
(April 2009)

[4] Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: Automated verification of re-
source requirements in multi-agent systems using abstraction. In: van der Meyden,
R., Smaus, J.G. (eds.) 6th International Workshop, MoChArt 2010, Atlanta, GA,
USA, July 11, 2010, Revised Selected and Invited Papers. LNAI, vol. 6572, pp.
69–84. Springer (2010)

[5] Alpuente, M., Feliú, M.A., Joubert, C., Villanueva, A.: Defining datalog in rewrit-
ing logic. In: Logic-Based Program Synthesis and Transformation, 19th Interna-
tional Symposium, LOPSTR 2009, Coimbra, Portugal, September 2009, Revised
Selected Papers. LNCS, vol. 6037, pp. 188–204. Springer (2010)

[6] Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.:
Mocha: Modularity in model checking. In: Proceedings of the 10th International
Conference on Computer Aided Verification. pp. 521–525. CAV ’98 (1998)

[7] Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional reasoning in model
checking. In: Compositionality: The Significant Difference, International Sym-
posium, COMPOS’97, Bad Malente, Germany, September 8-12, 1997. Revised
Lectures. LNCS, vol. 1536, pp. 81–102. Springer (1998)

[8] Boissier, O., Bordini, R.H., Hbner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Science of Computer Programming 78(6), 747 – 761
(2013), http://www.sciencedirect.com/science/article/pii/
S016764231100181X

[9] Cao, F., Archer, N., Poehlman, S.: An agent-based knowledge management frame-
work for electronic health record interoperability. Journal of Emerging Technolo-
gies in Web Intelligence 1(2), 119–128 (2009)

[10] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (Sep 1994)

[11] Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking (1999)
[12] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. pp. 238–252. POPL ’77 (1977)

[13] Culbert, C.: CLIPS reference manual. NASA (2007)

http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://www.sciencedirect.com/science/article/pii/S016764231100181X

Model Checking Ontology-Driven Reasoning Agents using Strategy and Abstraction 29

[14] Eisner, C., Peled, D.: Comparing symbolic and explicit model checking of a soft-
ware system. In: Proceedings of the 9th International SPIN Workshop on Model
Checking of Software. pp. 230–239. Springer-Verlag, Berlin, Heidelberg (2002),
http://dl.acm.org/citation.cfm?id=645881.672229

[15] Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
Proceedings of the 4th International Workshop on Rewriting Logic and its Appli-
cations(WRLA’02). Electronic Notes in Theoretical Computer Science, vol. 71,
pp. 162–187. Elsevier (2004)

[16] Friedman-Hill, E.J.: Jess, the rule engine for the java platform. Sandia national
laboratories (2008)

[17] Gâteau, B.: A smart iot middleware for comfort management based on multi-
agent-system. In: Proceedings of the 8th International Conference on Web Intelli-
gence, Mining and Semantics. pp. 43:1–43:10. WIMS ’18, ACM, New York, NY,
USA (2018), http://doi.acm.org/10.1145/3227609.3227683

[18] Glimm, B., Horridge, M., Parsia, B., Patel-Schneider, P.F.: A syntax for rules in
OWL 2. In: Proceedings of the 6th International Workshop on OWL: Experiences
and Directions (OWLED 2009). vol. 529. CEUR (2009)

[19] Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proceedings of the 12th interna-
tional conference on World Wide Web. pp. 48–57. ACM Press (2003)

[20] Gruber, T.: A translation approach to protable ontology specifications. Knowledge
Acquisition 5, 199–220 (1993)

[21] Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 16, 30–37
(2001)

[22] Holzmann, G.: On-the-fly model checking. ACM Comput. Surv. 28(4) (Dec 1996)
[23] Horridge, M., Bechhofer, S.: The OWL API: A java API for working with OWL 2

Ontologies. In: 6th OWL Experienced and Directions Workshop (OWLED) (Oc-
tober 2009)

[24] Hu, A.J., York, G., Dill, D.L.: New techniques for efficient verification with im-
plicitly conjoined bdds. In: Proceedings of the 31st Annual Design Automation
Conference. pp. 276–282. DAC ’94 (1994)

[25] Kravari, K., Kontopoulos, E., Bassiliades, N.: Emerald: A multi-agent system for
knowledge-based reasoning interoperability in the semantic web. In: Konstan-
topoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.)
Artificial Intelligence: Theories, Models and Applications. pp. 173–182. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

[26] Lezcano, L., Sicilia, M., Rodrı́guez-Solano, C.: Integrating reasoning and clini-
cal archetypes using OWL ontologies and SWRL rules. Journal of Biomedical
Informatics 44, 343–353 (2011)

[27] Magazzeni, D.: Explicit Model Checking Techniques Applied to Control and Plan-
ning Problems. Ph.D. thesis, Dipartimento di Informatica, Università di L’Aquila,
Università di L’Aquila (2009)

[28] Motik, B., Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web On-
tology Language: Profiles, W3C Recommendation. http://www.w3.org/TR/owl2-
profiles/ (October 2009)

http://dl.acm.org/citation.cfm?id=645881.672229
http://doi.acm.org/10.1145/3227609.3227683

30 A. Rakib and R.U. Faruqui

[29] Mousavi, A., Nordin, M.J., Othman, Z.A.: An ontology driven, procedural reason-
ing system-like agent model,for multi-agent based mobile workforce brokering
systems. Journal of Computer Science. 6, 557–565 (2010)

[30] Paganelli, F., Giuli, D.: An ontology-based context model for home health mon-
itoring and alerting in chronic patient care networks. In: Proceedings of the 21st
International Conference on Advanced Information Networking and Applications
Workshops - Volume 02. pp. 838–845. AINAW ’07 (2007)

[31] Rakib, A.: Verifying requirements for resource-bounded agents. Ph.D. thesis, The
University of Nottingham. (2011)

[32] Rakib, A., Faruqui, R.U., MacCaull, W.: Verifying resource requirements for
ontology-driven rule-based agents. In: Proceedings of the 7th International Con-
ference on Foundations of Information and Knowledge Systems. FoIKS’12 (2012)

[33] Rakib, A., Ul Haque, H.M.: Modeling and verifying context-aware non-monotonic
reasoning agents. In: Proceedings of the 2015 ACM/IEEE International Confer-
ence on Formal Methods and Models for Codesign. pp. 61–69. MEMOCODE ’15
(2015)

[34] Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proceedings
of the First International Conference on Multi-agent Systems. pp. 312–319. The
MIT Press (1995)

[35] Subercaze, J., Maret, P.: SAM - Semantic agent model for swrl rule-based agents.
In: Proceedings of the International Conference on Agents and Artificial Intelli-
gence. pp. 245–248. INSTICC Press (2010)

[36] Tzafestas, S.G.: Knowledge-Based System Diagnosis, Supervision, and Control.
Plenum Publishing Co. (1988)

	Lecture Notes in Computer Science

