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Abstract 

The forecasting of large ramps in wind power output known as ramp events is 
crucial for the incorporation of large volumes of wind energy into national 
electricity grids. Large variations in wind power supply must be compensated by 
ancillary energy sources which can include the use of fossil fuels. Improved 
prediction of wind power will help to reduce dependency on supplemental 
energy sources along with their associated costs and emissions. In this paper, we 
discuss limitations of current predictive practices and explore the use of 
Machine Learning methods to enhance wind ramp event classification and 
prediction. We additionally outline a design for a novel approach to wind ramp 
prediction, in which high-resolution wind fields are incorporated to the 
modelling of wind power.     

Keywords: Wind ramp prediction. Time Series Analysis. Deep Learning. 
Recurrent Neural Networks. Green energy. Autoregressive Moving Average.  

1. Introduction 
In recent decades, renewable energy sources have received significant attention due to global 
concerns over climate change and carbon emissions. As part of their commitments to the 2016 UN 
Paris Agreement, industrialised countries of the EU have committed to supplying certain 
proportions of their energy demand using renewable sources by the year 2030. The focus of this 
project is on wind energy data from two specific members of the EU: France and Spain. In order 
to meet its climate change objectives, the French government has pledged to increase its installed 
wind energy capacity from 16 GW in 2021 to a minimum of 38.4 GW in 2028 (Abassi et al., 
2016). Meanwhile, the Spanish government has submitted plans to increase its capacity from 28 
GW in 2020 to 50.3 GW in 2030 (European Commission, 2019). The dataset from La Haute Borne 
wind farm, north-eastern France, will be reported for initial analysis.  

Despite the benefits of wind power, its potential as an energy source is hindered by its inherent 
intermittency, owing to its direct correlation to the natural variability of the wind. Generation is 
further beset by sudden large ramps in wind power output known as ramp events. Generally 
speaking, ramp events represent large and fast variations in power output from a wind farm or 
portfolio of wind farms. They are driven by naturally occurring, sudden large increases (positive 
ramp) or decreases (negative ramp) in wind strength referred to as wind ramps. Ramp events are 
manifest as local events in a wind power time series, generally over a short period of up to a few 
hours (Cutler et al., 2007; Gallego-Castillo et al., 2015) (Fig. 1). 
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Figure 1. Example of two ramp events experienced on 13 January 2013 at the La Haute Borne wind farm, 
north-eastern France. Hour is plotted along the x-axis. Parameters employed to characterise ramps are  = 
Rated Power and  = time period over which the ramp takes place. Ramp direction is given by colour: red = 
ramp-up (positive), yellow = ramp-down (negative). The ramp-up event is driven by increasing wind speed 
(1). The ramp-down event in this instance is triggered as the farm’s rated power is exceeded (2) and the 
turbines are shut-in to prevent damage. A detailed description of the dataset is presented in section 3.1. 

The variability of wind power is a prominent obstacle for electricity Transmission System 
Operators (TSOs) towards incorporating commercial volumes into national power grids. TSOs 
must continually manage their power networks so that supply meets demand (Cutler et al., 2007). 
This is commonly done through the scheduling of ancillary reserves which consist of 
supplementary power sources that are flexible enough to adapt to variations in load and supply. 
This, however, carries additional costs and emissions. Most electricity markets operate around a 
set of short-term procedures known as Day-Ahead (DA) operations that enable them to prepare for 
Real-Time (RT) energy dispatch operations. Part of the DA operations is the allocation of ancillary 
reserves: by a given deadline, market participants submit bids of the volumes of reserves that they 
can provide for the following day to the TSO. As RT operations approach, the TSO will perform a 
re-commitment procedure to account for any forced outages and the forecasted load on the grid 
(Monteiro et al., 2009; Martínez-Arellano, 2015).  

Wind power forecasts then, are essential for the incorporation of wind energy into power networks 
over the DA timeframe. This is especially true during ramp events. From a TSO point of view, a 
large negative ramp in wind power could require a fast response from ancillary sources to 
maintain the supply-demand balance, whilst a large positive ramp might require that power flow 
be kept below planned maxima in constrained parts of the network (Cutler et al., 2007). As the 
amount of wind energy in a country’s energy mix increases, so too does the importance of accurate 
wind power predictions. These forecasts are mainly characterised by time horizon, that is, the 
future time period spanned by the prediction. Time horizons are generally separated into three 
categories, depending on the market (Table 1).  
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Table 1. Categories of wind power forecast time horizon (after Martinez-Arellano, 2015). 

Due to the increasing volume of wind power that is set to be incorporated into electricity markets 
by TSOs, and due to the DA operational timescales outlined above, short-term forecasts of wind 
power are currently an active area of research and form the horizon of interest in this research. 

The aim of this study is to investigate potential ways to improve the characterisation and 
prediction of ramp events using Machine Learning methods. In order to achieve this, three main 
objectives are identified here and outlined further in the following sections: 1) Investigate wavelet 
signal transformation for the ramp event characterisation. It is anticipated that by using the WT, a 
ramp function is obtained which provides a continuous index related to ramp intensity at each time 
step of a given wind power time series. This in turn will enable the identification of ramp events 
often not captured by current binary ramp detection tools; 2) Study the feasibility of using 
Machine Learning models to learn the dynamics of the ramp function from wind power time-
series; 3) Explore the use of prevailing wind direction to better account for misplacement errors in 
Numerical Weather Prediction (NWP) model outputs. Increasing the relative importance of 
upwind windspeed predictions is expected to reduce misplacement errors. 

2. Related work 

Machine Learning and time series forecasting techniques have been applied to the problem of 
wind power ramp event forecasting with some promising results (Ahmadi and Khashei, 2021; 
Gallego-Castillo et al., 2015; Sim and Yung, 2020; Wang et al., 2019; Yang et al., 2021 and 
references therein) but the field of study is still in its infancy.  

There are two types of method for wind power forecasting: those based on time series analysis 
alone, and those based on a combination of time series analysis and Numerical Weather Prediction 
(NWP) model outputs. NWP models resolve a set of physical equations in order to estimate the 
dynamics of the atmosphere and output forecasted values of target variables to a 3D grid, but they 
do so at significant computational cost. A high-resolution NWP run of 0.5 km for example may 
take 48 hours to complete with limited resources, effectively rendering it useless for DA 
operations. Whilst TS+NWP prediction models typically out-perform TS approaches after a 3 to 6-
hour time horizon (Giebel et al., 2011; Martinez-Arellano, 2015) the computational demands of 
NWPs exert challenging constraints on their deployment in any domain-specific application. 
Downscaling is a procedure that reduces computational cost by transforming NWP outputs from 
the low-resolution grids of NWP models to higher resolutions at specific physical locations of 
interest. It is commonly performed by statistical analysis of historic data to establish systematic 
relationships between NWP forecasts and measured observations (Cutler et al., 2007). 
Downscaling though, still depends on the interrogation and use of NWP datasets and carries with 
it associated computational and user expertise demands. 

Most utilities require a short-term forecast of wind power, but one that is generated at relatively 
low computational cost and with relatively low user expertise requirements. Motivated by this, this 
study explores the possibility of a simplified wind power forecasting process based on Machine 
Learning methodologies.  

Category Horizon

Very short-term 2 – 4/9 hours

Short-term 4/9 – 48/72 hours

Medium-term 72 hours - 7 days
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2.1. Ramp event definition 
Broadly, a ramp event is a large and rapid variation in wind power output (Cutler et al., 2007; 
Gallego-Castillo et al., 2015). However, the relative interpretation of ‘large’ and ‘rapid’ will differ 
according to the following factors: 

• The end use of any ramp forecasting model. For example, a wind farm operator interested in 
projected market penalties will be interested in different time scales as compared to an energy 
trader interested in instantaneous market demand and spot prices (Cutler et al., 2007; 
Martínez-Arellano, 2015).  

• The size of the wind farm/ portfolio. As an example, when defining ramps using an absolute 
power amplitude threshold value, a higher frequency of ramp events is likely to be observed 
as the installed capacity increases (Gallego-Castillo et al., 2015).  

• The cost function considered. For instance, costs of ancillary reserves and electricity market 
penalties (Gallego et al., 2013).  

Ramp events can generally be identified and characterised considering the following features: 

Table 2. Ramp characterisation parameters used in the literature (after Gallego-Castillo et al., 2015). 

Extracting ramp events from wind power time series, the parameters of table 2 can easily be 
analysed (e.g., Fig. 1). However, ramp forecasting usually entails the reverse; given certain 
characteristics or criteria, a forecaster must identify ramp events in order to determine underlying 
causes and create accurate predictive models. This establishes the need to set such criteria, or in 
other words: a ramp definition. Ramp event forecasting is a relatively immature research field. In 
the absence of a standard formal ramp event definition, the literature reports different 
characterisations depending on wind farm size and quantity (if aggregated), or the characteristics 
of the hosting power grid (Gallego-Castillo et al., 2015; Martínez-Arellano, 2015; Yang et al., 
2021).  

Most previous work has classified ramp events using a binary definition (Table 3). Binary 
definitions determine whether a ramp exists or not based on defined threshold values of magnitude 
and duration (  and  respectively, Fig. 1). This approach, however, has two major 
disadvantages. The first is that classification can become highly sensitive to the (often arbitrary) 
threshold values used. For instance, with  set to 50%, an impactful change in power output of 
49% may not be detected. The second is that a binary approach characterises all ramps as similar 
to one another, despite the fact that ramps with different characteristics are often observed. 
Ultimately, a binary definition restricts the forecaster from exploiting potential relationships 
between different ramp levels and continuous explanatory variables such as NWP outputs, 
SCADA data or meteorological tower measurements (Gallego et al., 2013). Table 4 summarises 
some previously used binary ramp event definitions and their limitations.  

Term Parameter Descrip9on

Magnitude Varia9on in power observed.

Dura9on Time period over which a varia9on takes place.

Ramp rate Varia9on divided by dura9on. Indica9ve of ramp intensity.

Timing Time instance of ramp event. Can be start or central 9me.

Direc9on +/-
Increase/ ramp-up (+) or decrease/ ramp-down (-) in power 
output.

t0

ΔP/Δt 

ΔP 

Δt 

∆ Pr ∆ tr

∆ Pr

4



   

It is worth noting that, despite the clear drawbacks of binary ramp event definitions, many recent 
works continue to use and refer to them (Table 3). 

In order to overcome the drawbacks of the binary definition approach, Gallego et al. (2013) 
introduced the idea of using wavelet transform (WT) to characterise ramp events. The method 
requires the manual manipulation of only one input parameter (related to maximum ramp 
duration) which leaves model tuning in the hands of the end user. Using the WT methodology, a 
ramp function is obtained which provides a continuous index related to ramp intensity at each time 
step of a given wind power time series. Wavelet transform is adopted in this study (reported later 
in Section 3.2) to identify ramp events, thus adding the desired outcomes or ‘labels’ to the dataset 
that is introduced to the ML algorithms. 

A comprehensive review of wind power ramp forecasting was undertaken by Gallego-Castillo et 
al. in 2015. This section provides a summary of the relevant work in the field that has been carried 
out since its publication (Table 3).  

Recent statistical analyses of ramp events include Aguilar (2019), Dalton et al. (2019, 2021), 
DeMarco and Basu (2018), Kelly et al. (2021), Pereyra-Castro et al. (2019), Pereyra-Castro et al. 
(2020), Pichault et al. (2021). Literature reviews of wind forecasting include Ahmadi and Khashei 
(2021), Sim and Yung (2020), Wang et al. (2019) and Yang et al. (2021). 

Table 3. Main ramp forecasting literature reviewed .  1

 

 Model abbrevia9ons: Time series, TS; Numerical Weather Predic9on Model, NWP; Gene9c 1

Programming, GP; K-Nearest Neighbour, K-NN; Wavelet Transform, WT; Principal Component 
Analysis, PCA; Support Vector Machines, SVM; Auto-Regressive, AR; Ar9ficial/Convolu9onal/
Recurrent Neural Network, A/C/RNN; Kernel Density Es9ma9on, KDE; Random Forest, RF; Long 
Short-Term Memory, LSTM.  
Evalua9on Metric abbrevia9ons: Confusion Matrices, CM; Fuzzy Inference Score, FIS; Mean 
Absolute (Percentage) Error, MA(P)E; Root Mean Squared Error, RMSE; Ramp Capture, RC; 
Probability Density Func9on, PDF; Receiver Opera9ng Characteris9c; Forecast Accuracy, FA.
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Table 4. Binary ramp definitions used in the literature.  
* Ramp-up is signified by , ramp-down by . 
** Wind power can exhibit high variability over timescales shorter than typical ramp lengths. Therefore, 
ramp characterisation may become sensitive to noise. To overcome this issue, Bossavy et al. (2010) 
introduced the idea of a filtered signal.  

Pt < (P t + ∆ t ) Pt > (P t + ∆ t )

Reference Defini9on Descrip9on Limita9ons

Kamath 
(2010)*

A ramp event occurs if the 
magnitude of the change in the 
power signal between two 9me 
series observa9ons exceeds a 
pre-set threshold. 

Kamath 
(2010)

Does not 
characterise rate 
of change (ramp 
rate).

Zheng and 
Kusiak 
(2009)*

Sensi9ve to 
threshold value.

Bossavy 
et al. 
(2010)**

Sensi9ve to 
threshold value.

Pt +  Δt − Pt > Pval

m a x([Pt, t + Δt]) −  min([Pt,  Pt + Δt]) > Pval

A ramp event occurs if the 
difference between the 
maximum and minimum power 
output measured during  
exceeds a pre-set threshold. 

Δt

A ramp event occurs if absolute 
difference between start and end 
values of  and the size of  
itself are greater than pre-set 
power ramp rate value, 

Δt Δt

Prr

And: 

P f
t   > Pval

P f
t = mean(Pt+h − Pt+h−n; h = 1,…,  nnam)

Where: = filtered version of 

power signal (transformed using 
k-order differences in power 
amplitude) and = number 
of average power measures to 
consider (replaces ). Ramp 
events are iden9fied using the 
filtered version of the power 
signal obtained according to the 
equa9ons. The  parameter 
allows model sensi9vity to be 
tuned to a characteris9c ramp 
event 9me length that is 
considered of interest. 

P f
t

nnam

Δt

nnam

Based on start 
and end values 
of  so doesn’t 
account for 
ramps that may 
occur during the 
interval.

Δt

Pt +  Δt − Pt

Δt
> Prr
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3. Proposed methods  
There are three main steps for short-term wind power prediction using NWP models: 1) 
downscaling, 2) conversion to power and 3) upscaling. Several downscaling approaches have been 
explored in published literature with varying degrees of success (Cutler et al, 2009; Gallegos-
Castillo 2015; Martínez-Arellano, 2015). This study explores a novel downscaling approach to 
meteorological fields, and Machine Learning methods to provide feasible and comparably accurate 
wind ramp event prediction. The technical design for this proposal is shown in figure 2, and 
discussed throughout the remainder of this section. 

The learning methods on wind power time-series, as a univariate system, will include  the 
Autoregressive Moving Average (ARMA) and its integrated and seasonal variants (ARIMA and 
SARIMA) to solve for seasonality and non-stationarity of the system. This is besides Recurrent 
Neural Networks, namely the LSTMs as well as Prophet time-series model of Facebook. The 
performance of the above models will be examined with respect to the accuracy of their ramp 
event identification and prediction. Additionally, a multivariate analysis of the system will include 
NWP high-resolution outputs so that wind power system can be analysed and subsequently 
predicted through wind field observations/assimilated values or predictions,  instead of wind 
power historic data. 

3.1. Dataset 
The dataset used in this project is a Supervisory Control and Data Acquisition (SCADA) dataset 
collected from the La Haute Borne wind farm between December 2012 and January 2018. La 
Haute Borne is an 8,200-kW capacity onshore wind farm located in north-eastern France, centred 
at 48.45°N, 5.59°W. The farm is owned by the French energy and utilities company, Engie, and 
comprises four Senvion MM82 wind turbines. SCADA data generated from an array of sensors 
within each turbine is recorded in two large csv files (1.105 GB in total). The files contain 
readings of each turbine’s components such as rotor speed and gearbox bearing temperatures, grid 
information such as frequency and voltage, and, of most relevance to this study, physical 
information including wind speed, wind direction and active power. Table 5 provides a description 
of the variables used in this study.   

Table 5. LHB dataset feature descrip9on.

 

The data are recorded at ten-minute intervals between 7 January 2013 (00:20) and 14 December 
2017 (04:50). The dataset therefore equates to 1,057,968 observations over a four-year period. 
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Figure 2. Flow chart of the methodology employed in this research. Ramps are identified (‘labelled’) in the 
raw data using wavelet transform. The family of ML algorithms is trained on the raw data, then used to 
forecast power output and associated ramp events. Using this methodology, NWP outputs may be used as an 
alternative data source (see text for explanation). Ramp function plot from Hannesdóttir and Kelly (2019a). 
NWP output from Xunta de Galicia (2021). 

3.2. Ramp characterisation  

The ramp characterisation method used in this paper focusses on the DA TSO end-use case 
introduced in Section 1. During a ramp-down event a TSO must compensate for the loss of 
generation through the scheduling of ancillary reserves. During a ramp-up event the TSO may 
need to limit excessive wind power input to ensure grid safety (Martínez-Arellano, 2015).  

The strategies of the TSO will also depend on how far in advance the ramp is forecast and the 
availability and the response times of ancillary energy sources. Current network flows and energy 
demand are also factors that must be considered (Cutler et al., 2007; Martínez-Arellano, 2015) 
however, these are beyond the scope of this paper. For recent studies modelling the power grid 
impacts of ramp events, the reader is directed to Veron et al. (2018) and Wang et al. (2016). 
Using the WT methodology, a ramp function is obtained which provides a non-binary/ continuous 
index related to ramp intensity at each time step of a given wind power time series (Figure 3). 

The wavelets are shifted and dilated versions of a so-called mother wavelet,  and are derived 
as: 

     (1) 

where: 
 relates to the shift (expressed on a continuous scale between min and max) 
 relates to the dilation 

ψτ,

ψτ, λ(t) =  
1

λ
ψ ( t − τ

λ ) 

τ
λ
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Figure 3. Ramp function plot against wind power. The continuous/ non-binary ramp function is plotted in 
orange. For comparison, the subplot displays a binary ramp function (red = positive ramp, blue = negative 
ramp, empty space = non-ramp). The difference in granularity between the two ramp definition approaches 
can be readily observed. For example, depending on the threshold values set, the increase in power output at 
approx. 17:00 is not captured using a binary ramp definition. 

The WT of a time series,  consists of a set of coefficients obtained: 

     (2) 

where: 
  

  
and  relates to the wavelet function employed . 2

Several wavelets exists and the choice of wavelet depends on purpose of the study. Gallego et al. 
chose the Haar wavelet in order to obtain information about the gradient experienced at different 
timescales, , since the Haar wavelet reveals local events where a large gradient is observed within 
a range of time scales. More recently, in a study aiming to characterise extreme wind speed ramps, 
Hannesdóttir and Kelly (2019) selected the first derivative of a Gaussian wavelet (DOG1) as their 
choice of analysing wavelet. Unfortunately, however, the authors do not discuss the reasons 
behind this choice. 

The fundamental concept of a ramp event is that a certain large gradient is maintained during 
consecutive time steps of the time series. Therefore, a ramp can be said to show self-similarity. 
This means that the whole ramp event is similar to a smaller part of it, or in other words, the shape 
of the event is preserved at different scales. During the period of the ramp event, the wavelet 
transform, , provides increasing coefficients for a broad range of times scales, , since each 

 is related to the gradient at time , evaluated in a time scale . The increase of 

 with respect to  occurs because the scale is contributed as  in (1). Hence the gradient is 
high for both short and long-time scales, where ‘long’ means close to the length of the overall 
event. If a period is considered where  exhibits many high-frequency fluctuations, similar 
coefficients are observed for short scales but not for long scales, in other words, the gradient is no 

{yt},

W τ,λ =  
∞

∑
−∞

ψτ,λ
t ⋅ yt 

τ ∈ Z
λ ∈ Z+

ψτ,λ
t

λ

W τ,λ λ
W τ,λ t = τ ∆ t = λ
W τ,λ λ λ− 1

2

{yt}

 The wavelets are defined such that the sign of the coefficient obtained is opposite to that of the ramp 2

event gradient. 
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longer self-similar at longer time scales. Finally, if a period is considered where  does not 
exhibit high gradients, the coefficients  would be close to zero for every scale, , considered. 
This is utilised in the ramp characterisation process by defining the ramp function, , as the 
sum of the wavelet coefficients  at time  for the interval of scales, , given by : 

      (3) 

In this way,  becomes related to the sharpness of the ramp event because it gathers at each 
time step the contribution of the gradient evaluated under different timescales. Time scale  is the 
smallest that can be considered, and the minimum possible value is  because at least two 
values are required to define a gradient. The maximum time window (in terms of time steps) to be 
evaluated, , requires end-user input. According to Gallego et al. (2013), appropriate values of  
for hourly wind power time series data are between 5 and 10. Irrespective of this however, the 
ramp function is not expected to be highly sensitive to small changes in , primarily because the 
addition of the wavelet transform coefficients across the range of scales from  to  (2) reduces 
the impact of any additional scale . 

The range spanned by  depends on the range spanned by the original wind power time series, 
which is related to the size of the wind farm. Therefore, it is necessary to re-scale the ramp 
function between -1 and 1 by defining the relative ramp function, , as: 

      (4) 

To isolate ramp performance during ramp up, , ramp down, , and non-ramp, , events, the 
ramp function can be decomposed into three time series as follows: 

  

  

                (5) 

Finally, the ramp frequency, , of a time series is the percentage of times in which a ramp is 
observed, and can be derived (Gallego et al., 2013): 

                         (6) 

where: 
 = rela9ve ramp func9on 

 = 9me 
 = number of samples 

Gallego et al. showed that the use of a continuous index-based ramp definition led to more reliable 
ramp characterisations than the four binary ramp classifications of Cutler (2007), Potter (2009), 
Greaves (2009) and Bradford (2010) because it is less sensitive to input parameters. It is noted 
however that these works were based on different datasets. Comparative relative ramps 
frequencies observed using the same dataset were as follows: 

{yt}
W τ,λ λ

{Rt}
W τ,λ t = τ λ [λ1, λN]

Rt(λ1, λN) =  
λN

∑
λ= λ1

W τ,λ

{Rt}
λ1

λ1 = 2

λN λ

λ
λ1 λN

λN+1

Rt

rt

rt =  
Rt

m a x{ Rt }
 

ru
t rd

t r0
t

ru
t = { rt,   i f   rt  ≥ 0 0,  i f   rt  < 0 

rd
t = { −rt,   i f   rt  ≤ 0 0,  i f   rt  > 0 

r0
t = 1 −  ru

t − rd
t

fr

fr(%) =  100.
∑N

t=1 rt

N
 

rt
t
N
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Table 6. Relative frequency of ramp events (%) observed by different ramp definitions using the same 
dataset. It should be noted that the models were not designed using the same datasets/ site locations. * = 
Binary, ** = Non-binary. *** = range given by varying  from 5 to 8 (see text for details). 

Though it is not strictly possible to compare models like for like, the differences between the 
range of values given by the various binary definitions and the range given by varying the non-
binary definition give some indication of the relative model ‘stabilities’ of the binary versus the 
non-binary approaches.  

4. Perspective and pathway to climate impact  
Wind power is a clean, cheap and abundant source of energy with an unquestionable ability to 
reduce dependence on fossil fuels. Even among the currently available renewable energy sources, 
it is believed to be the least harmful to the environment (Abassi et al., 2016). Furthermore, 
increased levels of wind penetration (the amount of wind power in a market’s energy mix) have 
been shown to reduce overall energy costs. However, it has also been shown that the variability of 
wind power and associated errors of forecasting its output can cause short term price rises and 
price volatilities (Ortega-Vazquez and Kirschen, 2010). Wind farm costs arising from imbalances 
between contracted and produced energy are directly proportional to forecast errors (Girard et al, 
2013). This relationship was quantified in the case of a Dutch wind farm where improved 
forecasting was shown to reduce annual (regulatory) costs by 39% (Pinson et al., 2007). Currently, 
state-of-the-art wind power forecasting systems can achieve a RMSE of 10-15% of total installed 
capacity over a 36-hour horizon (Giebel et al., 2011; Martínez-Arellano, 2015), thus representing a 
target for continued development. Any improvements, however, must be made with parsimony, 
computational demands and user expertise requirements in mind.  

It is evident then, that improvements in capacity factors such as those outlined in this work have 
and will continue to drive down the costs of wind power. To further illustrate the importance of 
this, the European Commission estimates that investments equating to installed capacity of 
between 240 and 450 GW of offshore wind power will be needed by 2050 to keep global 
temperature rises below 1.5°C (European Commission, 2021). Since investment is favoured by 
low costs and high revenues, cost-effective predictive modelling of wind power output could play 
an important role in combatting climate change. 
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λN

Reference/ methodology Rela9ve ramp frequency (%)

Cutler (2007)* 1.4

Poier (2009)* 27.9

Greaves (2009)* 13.5

Bradford (2010)* 8.8

Gallego et al. (2013)** 10-11.4%***
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