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Abstract 

This thesis presents the evaluation of the novel electrochemical sensor and biosensor 

technology developed for the direct analysis of the boar taint compounds, androstenone 

and skatole, in adipose tissue (European Patent 2966441). Gas chromatographic methods 

and extraction procedures were employed to evaluate the novel sensor technology. The 

methodologies for the non-destructive sensor technology were evaluated by analysing 

stored porcine adipose tissue, the samples were subsequently analysed by the destructive 

gas-chromatographic methodologies for comparison. The results from the two analytical 

methods exhibited a positive correlation for both compounds of interest in a laboratory 

environment. Consequently, the sensor and biosensor were integrated into a dual system 

and evaluated in the laboratory. The dual electrochemical system was optimised for the 

simultaneous measurement of skatole and androstenone. The prototype device was 

evaluated in the field; this involved the analysis of carcass subcutaneous adipose tissue at 

the abattoir processing line, afterwards a sample was taken back to the laboratory for gas-

chromatographic analysis. The resulting quantitative data demonstrated a positive 

correlation of the two analytical methods indicating that this technology is viable for its 

proposed industrial application. 

Other endogenous compounds in boar tissue were also identified prior to sample analysis 

during a literature review. The reported electrochemical behaviour and concentration 

ranges of these compounds were used to identify compounds which could result in the 

novel technology displaying false positive or false negative responses. During this 

preliminary investigation the identified compounds did not respond at the 

electrochemical sensor in a similar manner to the analytes of interest under physiological 

conditions. However, under alkaline conditions an anodic response for thiamine, 

riboflavin and pyridoxine was observed. As a secondary study to the boar taint analysis a 

simple voltammetric assay was developed to exploit this behaviour, this was successfully 

applied to the analysis of a food product and pharmaceutical supplement.   
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Chapter Summary 

Chapter one introduces the issues surrounding boar taint and the compounds responsible 

for this unpleasant flavour and aroma sometimes experienced with pork meat. The two 

principle techniques used for the measurement of boar taint in this thesis, namely 

electrochemistry and gas chromatography, will be discussed. Details of the fundamental 

principles that govern these techniques will be described. Finally, the research aims and 

objectives are addressed. 
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Chapter One 

1.1 The demand for a boar taint detection system 

Boar taint is the term given to the unfavourable flavour and aroma sometimes 

experienced with meat and meat products derived from Sus scrofa domesticus, commonly 

termed the domestic pig. Decades of research indicates that boar taint is due to the 

excessive accumulation of several naturally occurring compounds in porcine adipose 

tissue. The endogenous concentration of these compounds has been linked to slaughter 

weight, level of sexual maturity, and gender (Nicolau-Solano et al. 2007). Additional 

factors such as diet and breed have also been shown to play a role in their relative 

abundance. Currently there are no EU approved rapid instrumental methods to test for 

boar taint compounds on the abattoir line (Haugen et al. 2012). Boar taint can be 

prevented by castration but because of animal welfare issues, an increasing number of 

countries are moving towards an entire male pig production system. The EU legislation on 

the voluntary ban of pig castration will take effect in 2018, which means that the number 

of tainted pig carcasses will significantly increase. If not detected, the tainted carcasses 

can enter the food chain and result in the rejection of pork by consumers, a decrease in 

repeated purchasing of pork and as the result, economic losses for the pig industry 

internationally. Therefore, new technology is required which can rapidly detect taint 

compounds on-line with high specificity and sensitivity without any sample preparation. 

1.1.1 Biochemistry of boar taint compounds 

The two compounds primarily responsible for boar taint are 3-methylindole (skatole) and 

5α-androst-16-en-3-one (androstenone). Both are soluble in fat (Lundström et al. 1988) 

resulting in a greater accumulation in adipose tissue compared to muscle tissue. Skatole 

is produced in the gut as a breakdown product of the amino acid tryptophan (Vold 1970), 
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(Walstra and Maarse 1970); the levels of this compound can be reduced with dietary 

manipulation (Jensen, Cox, and Jensen, 1995). Androstenone is a pheromone produced 

by the Leydig cells in the testes by entire male pigs in parallel with the biosynthesis of 

testosterone (Patterson 1968); therefore castration can be used as a preventative 

measure. Both skatole and androstenone can be transported in the blood stream to the 

liver where they are metabolised via two separate mechanisms. The metabolites are 

excreted within the faeces and the remaining skatole and androstenone, which have not 

been metabolised, are transported to the adipose tissue where they are deposited. 

Therefore, the concentration of skatole and androstenone in pig adipose tissue depends 

on two processes: the rate of their bio-synthesis and the rate of their hepatic metabolism. 

The third compound associated with boar taint is indole, but its input is viewed as minor 

and therefore indole will not be a focus of this study. 

1.1.2 Legislation and current practice 

European legislation (EU Regulation 854/2004)  states that carcases with a pronounced 

sexual odour are unfit for human consumption, therefore the precise measurement of 

boar taint is of great importance to the pig industry. In the 1980’s surgical castration was 

phased out in the UK, resulting in the slaughter of pigs at lower live weights to reduce the 

risk of boar taint. The issue with this approach is twofold. Firstly, it does not completely 

prevent the development of boar taint as different breeds and different animals within a 

breed might reach sexual maturity at different weights. Secondly, slaughtering at the 

lower live weight results in loss of revenue for the farmers. The above issues could be 

prevented if boar taint could be measured on the slaughter line.  

In contrast to the UK, the surgical castration of piglets is still performed in a number of 

other countries, there are a number of reasons for this.  It is known that meat quality 

characteristics differ between castrated and entire males, with entire males exhibiting 

less fat deposition and a different fatty acid composition profile (Pauly et al. 2012). The 
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amount and type of fat is very important for the curing process; therefore countries 

specialising in the production of high quality cured hams, such as Parma ham, are 

reluctant to change their traditional routine for fear of reduced product quality (Bonneau 

et al. 2017).  

Surgical castration, of course, has ethical implications which have recently been raised by 

the European Union resulting in the implementation of a voluntary ban on the surgical 

castration of piglets by 2018 for EU countries (European Declaration on the Alternatives 

to Surgical Castration of Pigs, SANCO, 2011). This will result in a greater demand for a 

robust analytical system to determine if a carcass is tainted with levels above the 

acceptable threshold for the country where the product will be sold. 

1.1.3 Strategies for the reduction of boar taint compounds in pork 

As previously discussed, the most common strategy for reducing boar taint at the present 

time is surgical castration. A number of alternative approaches have been considered or 

developed including slaughtering pigs at lower live weight before they reach sexual 

maturity, dietary manipulation, and sperm sorting. Other potential strategies include 

immuno-castration (Fàbrega et al. 2010) and genetic selection (Grindflek et al. 2010). All 

the above approaches have limitations. Thus, dietary manipulation can reduce boar taint, 

which is caused by high skatole but not the level of androstenone. Sperm sorting to breed 

female pigs is at early stages of development, is time consuming and expensive. 

Identification of genetic markers for boar taint has been rapidly progressing, but has 

proved to be a complex process because of breed-specific mechanisms of boar taint. 

Immuno-castration has received increasing attention but faces concerns regarding 

consumer acceptance in some countries, including the UK. Therefore, there is no 

immediate solution to boar taint or an effective alternative to surgical castration. 
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Furthermore, all the avenues described require a rapid and robust method for evaluating 

their effectiveness in reducing boar taint. Some of these processes, alongside reducing 

boar taint, may have side effects (e.g. genetic selection) which could lead to an alteration 

in the chemical composition of the meat, which in turn could have an impact on flavour 

and texture. Therefore, taste panels will always have their place alongside instrumental 

analyses to monitor eating quality.   

1.1.4 Available boar taint detection and measurement methods 

The most common method for the determination of boar taint compounds uses an 

organoleptic judge to assess the volatile profile of heated adipose tissue samples. 

Although this is the most popular quality control practice in industry it is fraught with 

scientific discrepancies and its reliability is poorly documented (Trautmann et al. 2014). 

Human olfactory perception of skatole and androstenone varies between individuals 

(Griffiths and Patterson 1970)(Beets and Theimer 1970), this has been linked to the 

genetic variation of human odour receptors (Lunde et al. 2012). Studies into the threshold 

levels at which people perceive boar taint have shown disparity, this is likely to arise from 

human olfactory genetic variation and differences in meat processing and pig breed (Font-

i-Furnols 2012). A review by Walstra and co-workers (1999) identified several published 

studies reporting the concentrations of androstenone and skatole that were deemed to 

be associated with an unpleasant aroma or taste from pork. These studies were used to 

provide general threshold levels for boar taint compounds at which consumers would 

negatively react to meat from entire male pigs. The thresholds were 0.5 and 1.0 ppm for 

androstenone (Desmoulin et al. 1982)(Mortensen et al. 1986) and 0.2 and 0.25 ppm for 

skatole (Armstrong 1993)(Mortensen et al. 1986). 

 A number of analytical methodologies have been developed for measuring boar taint 

compounds; however none of these are suitable for rapid online measurement of both 

androstenone and skatole. An early publication by Andresen (1975) reported the 



Chapter One 

10 

development of a radioimmunoassay for androstenone determination. Although this 

method reported good precision with fortified adipose tissue only a single sample could 

be quantified, additionally a response time of around 30 hours was reported making it 

unsuitable for rapid online testing. Mortensen and Sørensen (1984) and Squires (1990) 

both developed colorimetric assays for skatole and androstenone respectively, however 

issues with specificity and the need for laborious sample preparation have been reported. 

A later publication by Sørensen et al. 2015 reported a surface-enhanced Raman 

spectroscopy method which can measure both skatole and androstenone however a 

sample preparation and extraction procedure is still required.  

A device utilising conducting polymer technology in a sensor array called the e-NOSE 

(electronic Neotronics Olfactory Sensing Equipment) was optimised and applied to the 

monitoring of boar taint (Annor-Frempong et al. 1998). This array of twelve conducting 

polymer sensors used a pattern response to determine the sample components in 

comparison to a reference pattern obtained with a taint free sample of adipose tissue. 

Although results were promising, when compared to a taste panel and a GC-MS method, 

the stability of the conducting polymers was not satisfactory, and the equipment was 

expensive; making the e-NOSE unsuitable for use on the abattoir processing line. 

Many publications for boar taint measurement have featured chromatographic 

separation techniques. Most laboratories tend to perform the extraction of androstenone 

and skatole separately, along with their analysis procedures (Haugen et al. 2012). de 

Brabander and Verbeke (1986) successfully developed a high-resolution gas-

chromatographic method utilising an electron capture detector to determine 

androstenone. Whereas, Porter and co-workers (1989) developed a HRGC method with a 

flame ionisation detector for the measurement of skatole. A high performance liquid 

chromatography (HPLC) method has however been developed for the simultaneous 

analysis of both androstenone and skatole (Dehnhard et al. 1993). However, all of these 
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methods are limited to the laboratory, as they lack portability and require laborious 

sample preparation procedures. 

In summary, none of the above mentioned analytical approaches are suitable for on-line 

measurement in an abattoir.  

1.1.5 Advantages of the novel electrochemical sensor and biosensor 

The novel electrochemical sensor and biosensor along with the corresponding 

voltammetric and amperometric methodologies were developed for the detection of boar 

taint compounds (Hart, Doran, Crew and McGuire, 2017). The data presented in the 

patent demonstrates the ability of the sensor and the biosensor to quantify skatole and 

androstenone respectively at the relevant levels required for boar taint identification. The 

prototype device will simultaneously measure androstenone and skatole using 

electrochemical techniques. The device can be inserted into adipose-tissue post mortem 

and achieve responses in under a minute; this could allow for the appropriate sorting of 

carcasses before they reach the end of the abattoir line. None of the methods described 

in section 1.1.4 can achieve this goal. The following sections will discuss the principle 

techniques employed in the dual instrument (voltammetric sensor and amperometric 

biosensor) and the corresponding reference method (gas chromatography with ionisation 

detection). 
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1.2 Electroanalytical chemistry 

When electrochemistry is applied in analytical science, it is known as electroanalysis. One 

of the electrochemical techniques of interest in this thesis utilises current as a function of 

voltage (voltammetry) whereby reduction-oxidation processes can be studied. The other 

technique employed is known as chronoamperometry (current vs. time); which is usually 

more suitable for use with enzyme based biosensors. The practical experimental 

considerations are introduced and the fundamental principles that govern 

electroanalytical chemistry are discussed in the following sections. 

1.2.1 Practical considerations 

1.2.1.1 Electrolyte 

To control and measure the electrode potential in an electrochemical cell the electrolyte 

medium must contain dissolved ions to support current flow (Zoski 2007). Solvent- 

combinations, for example water and alcohol, are used to aid reactant solubility and ionic 

species are added to reduce solution resistance (Bard and Faulkner 2001). Buffer and salt 

solutions are popular electrolytes; phosphate buffers are critical to pH maintenance 

whereas inorganic salts can provide a more stable charge transfer system. The 

experimental application often dictates the volume of supporting electrolyte employed. 

Where larger volumes are available, an electrochemical cell can be used which often holds 

between 10-50 ml (Sprules et al. 1995). However, when sample volume is limited and 

analyte concentration is low, dilution may not be feasible. Working electrode 

modifications can be employed to limit the volume of the bulk solution (Pemberton et al. 

2005) or a microlitre volume coverage can be employed where the electrode has a planar 

geometry (Nicholas et al. 2018).  
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1.2.1.2 Electrode configuration 

 

A three-electrode system comprises of a working electrode, an auxiliary electrode, and a 

reference electrode (Figure 1.1A). A two-electrode system relies on the auxiliary electrode 

to serve the function of both itself and the reference electrode (Figure 1.1B & 1.1C). The 

electrochemical behaviour of interest is known to occur at the interface between the 

working electrode and electrolyte solution. During an electrochemical process, this 

interface is polarised and this polarisation can be monitored by an additional electrode. 

This reference electrode, ideally has a large surface area and half-cell reactions that are 

reversible and rapid (Skoog et al. 2007). The circuit is completed by the auxiliary electrode, 

which allows current to flow from the signal source through the electrolyte to the working 

electrode. The reference electrode has a reproducible and stable potential for comparison 

against the working electrode (Wang 2006). If the reference and auxiliary functions are 

combined in a single electrode (Figure 1.1B & 1.1C) the surface has to be large enough to 

prevent changes in potential during the experiment (Skoog et al. 2007). In this 

configuration the potential of the combined electrode is assumed to be the set potential 

applied therefore the output current response should be proportional to the analyte 

concentration. 

Figure 1.1. Electrode and electrolyte configurations commonly used for electroanalysis. Diagram 
showing a (A) three electrode cell with millilitre electrolyte volumes; (B) screen printed two 
electrode cell with millilitre electrolyte volumes; (C) screen printed two electrode strip with a 
planar microlitre volume electrolyte coverage. 

A B C 
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1.2.1.3 Potentiostatic control 

The ‘electrolytic cell’ is the term used to describe a current induced in an electrical circuit, 

which subsequently results in reactions occurring at the electrodes (Brett and Brett 1998). 

The device capable of delivering this external energy is called the potentiostat. With 

advancements in power storage and wireless interfacing, modern potentiostats are well 

suited to field-testing. Modern potentiostat devices can be interfaced to either a desktop, 

laptop or tablet, which controls the device via a software package (eg. Nova or PSTrace). 

These packages provide methods with editable input parameters and integration 

functionalities for a wide range of electroanalysis techniques. 

In a three electrode set-up the programmable input waveform is applied through the 

auxiliary electrode to the working electrode, the reference electrode is positioned as 

closely to the working electrode as possible to be able to monitor the applied potential 

‘felt’ by the working electrode, shown in Figure 1.2. The operational amplifier allows for 

any compensation in current loss between the input potential and working electrode. 

Several phenomena can affect the measured cell potential such as the ohmic drop and 

polarisation effects (Skoog et al. 2007). In an electrolytic cell the potential required to 

drive the ionic current in solution is called the ohmic potential or iR drop (Bard and 

Faulkner 2001). 

Figure 1.2. Schematic diagram showing potentiostatic control of both a two and three-electrode 
system: (w) working electrode; (a) auxiliary electrode; (r) reference electrode. Three-electrode 
operation represented with a feedback loop to the operational amplifier. (A) represents the 
operational amplifier and (i) represents the current-voltage converter. Reproduced with 
modification from Hart 1990. 
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Where a two-electrode system is utilised the auxiliary electrode carries the current to 

complete the circuit and also acts as a reference electrode, therefore the usual feedback 

system from the operational amplifier is not available (shown in Figure 1.2). In an 

electrolytic cell where the electrolyte solution has a high conductivity the iR drop can be 

negligible (Bard and Faulkner 2001), therefore potential feedback and the third electrode 

can be omitted. It should be mentioned that the schematic in Figure 1.2 illustrates both a 

two and three-electrode cell under potentiostatic control. 

1.2.2 Fundamental principles 

1.2.2.1 Nernst equation 

Where current is studied as a function of applied potential the electron transfer relates 

to a redox process. The Nernst equation, Equation 1, describes the relationship between 

analyte concentration and the electrode potential (𝐸𝐸). The reduced form of the analyte 

will be present at higher concentrations when the standard potential for the redox 

reaction (𝐸𝐸𝑜𝑜) is more positive than the electrode potential. Conversely, when the 

standard potential for the redox reaction is more negative than the electrode potential 

the oxidised form will be present at higher concentrations. A faradaic response occurs 

when the oxidation state of the electroactive species changes. This response, or faradaic 

current, obeys Faraday’s Law and follows the Nernst equation. Faraday’s constant states 

one mole of electrons has a charge of 96,487 C (F). The universal gas constant (R) is equal 

to 8.314 J K-1 mol-1 where temperature is measured in Kelvin (T). The number of electrons 

transferred (n) is related to the concentration of the oxidised electroactive species (CO) 

with respect to the concentration of the reduced electroactive species (CR).  
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𝐸𝐸 = 𝐸𝐸𝑜𝑜 +
2.3𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛

log �
𝐶𝐶𝑂𝑂
𝐶𝐶𝑅𝑅
� 

Electrode potential (E); Standard reduction potential (Eo); Universal gas constant (R); Temperature in Kelvin 

(T); Number of electrons transferred (n); Concentration of the oxidised species (CO); Concentration of the 

reduced species (CR). 

The Nernst equation can be re-written using the constants and room temperature, taken 

as 298 K for T (Skoog et al. 2007). The resulting simplification displayed in Equation 2 has 

important applications when determining the redox properties of an analyte with 

voltammetric techniques where the applied potential is ramped linearly with time; 

this will be expanded upon in section 1.2.3.1.  

𝐸𝐸 = 𝐸𝐸𝑜𝑜 +
0.0592
𝑛𝑛

log �
𝐶𝐶𝑂𝑂
𝐶𝐶𝑅𝑅
� 

Electrode potential (E); Standard reduction potential (Eo); Number of electrons transferred (n); 

Concentration of the oxidised species (CO); Concentration of the reduced species (CR). 

1.2.2.2 Faradaic and charging currents 

A faradaic current results at the working electrode when the potential reaches a value 

where a reduction-oxidation process occurs; however, there is also another current 

arising as a result of the electrolyte. Non-faradaic current is referred to as charging 

current, which is also known as capacitance current because it arises from the charging or 

Equation 1 

Equation 2 
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discharging of the electrochemical double layer when a potential is applied. This is a result 

of the so-called double layer arising at the working electrode-solution interface, this is 

discussed in more detail in the next section. 

1.2.2.3 The electrical double layer 

A simple schematic of the electrical double layer has been shown in Figure 1.3, the 

electrode is negatively charged with positively charged ions lining the electrode surface 

in the solution phase. Since the conception of the Helmholtz double layer there have been 

many additional contributions to the theory underpinning the arrangement of ions and 

molecules at the interfacial region between an electrode and the electrolyte solution. 

Stojek (2010) has coherently summarised these models and their contributions to our 

current understanding, with more recent models depicting adsorbed water molecules 

arranged in layers on an electrode surface. When the electrode has a net negative charge 

Figure 1.3. Schematic diagram of the electrical double layer theorised to be present 
at the electrode-electrolyte interface. IHP: inner Helmholtz plane, OHP: outer 
Helmholtz plane. 
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the hydrogen atoms of the water molecules are angled towards the electrode. Conversely, 

when the electrode is positively charged waters hydrogen atoms are orientated away 

from the electrode surface. These dipole interactions were a much later addition to our 

theoretical understanding of the double layer, and are relevant to many practices in 

experimental electroanalysis today. The electrochemical double layer plays a critical role 

in electroanalysis. The Helmholtz theory simply suggests that electrolyte ions of charge 

opposing the electrode line the surface resulting in a neutral interface, which behaves as 

a capacitor. The initial Helmholtz model describes two distinct layers at this interfacial 

region; the inner most layer or IHP (inner Helmholtz plane) is formed of specifically 

adsorbed ions and solvent molecules and the outer layer or OHP (outer Helmholtz plane) 

is said to pass through the solvated ions that are non-specifically adsorbed. These layers 

together can be termed the compact layer as they are strongly bound to the surface, the 

neighbouring layer termed the outer diffuse layer stretches from the OHP to the bulk 

solution and consists of scattered ions (Wang 2006). The charge at the electrochemical 

double layer results in the capacitance current described previously, this is distinctly 

different from the faradaic current as it does not result from redox electron transfer 

processes at the interfacial region. 

1.2.2.4 Mass transport 

During an electrochemical reaction, the analyte has to move within the electrolyte 

solution to interact with the working electrode interface. This analyte transport, known 

as mass transport, can be described by the following three motions: (a) convection; 

resulting from an applied movement of either shaking, stirring or heating, (b) diffusion; 

occurs without the aid of shaking, stirring or heating and is the result of a concentration 

gradient, and (c) migration; is due to the occurrence of electrostatic forces upon ions. The 

Nernst-Planck equation, Equation 3, indicates that the flux of a species (j) is proportional 

to the three slopes representing hydrodynamic velocity, concentration, or electrostatic 
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potential, all with respect to the distance from the surface of the electrode (Bard and 

Faulkner 2001). Simple experimental practices can be employed to limit the effects of one 

or two of these terms, which reduces the complexity of the data interpretation. 

𝐽𝐽𝑗𝑗(𝑥𝑥) = −𝐷𝐷𝑗𝑗
𝜕𝜕𝐶𝐶𝑗𝑗 (𝑥𝑥)
𝜕𝜕𝜕𝜕

−
𝑧𝑧𝑗𝑗𝐹𝐹
𝑅𝑅𝑅𝑅

𝐷𝐷𝑗𝑗𝐶𝐶𝑗𝑗
𝜕𝜕∅(𝑥𝑥)
𝜕𝜕𝜕𝜕

+ 𝐶𝐶𝑗𝑗𝑣𝑣(𝑥𝑥)

Flux (J) [mol cm-2 sec-1]; Species (j); Distance (x); Diffusion coefficient (D) [cm2 sec-1]; 

 Concentration (C) [mol cm-3]; Charge (z); Electrostatic potential (∅); Velocity (v) [cm sec-1]. 

1.2.2.5 Fick’s law 

The first term in the Nernst-Planck equation relates diffusion to flux and is simply Fick’s 

first law, which is shown in Equation 4. This equation describes the diffusion of a species 

under the influence of a concentration gradient, taking into account the distance from the 

electrode in relation to time.  

𝐽𝐽 (𝑥𝑥, 𝑡𝑡) =  −𝐷𝐷 
𝜕𝜕𝐶𝐶(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

Flux (J) [mol cm-2 sec-1]; Distance from the electrode (x) [cm]; Time (t) [s]; 

Diffusion coefficient (D) [cm2 sec-1]; Concentration (C) [mol cm-3]. 

Simplifying the mass transport of an electrochemical experiment can be practically 

achieved by eliminating forced convection, and preventing migration with the addition of 

excess salt. An excess of ionic species increases the solution conductivity, which in turn 

reduces the electric field thereby preventing ion migration (Zoski 2007). 

In voltammetric terms it is important to relate Fick’s law to the measured current 

response (i). Equation 5 equates the flux (J) of an electroactive species to current over the 

Equation 4 

Equation 3 
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number of electrons (n) per molecule involved in the electrochemical process with respect 

to Faraday’s constant (F) and the electrode area [A]. 

𝐽𝐽 =
𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛

Flux (J) [mol cm-2 sec-1]; Current (i) [A]; Faradays constant (F) [96,485 C mol-1]; 

 Number of electrons (n); Electrode area (A) [m2]. 

Under steady state condition the current is independent of time (i.e. under stirred 

conditions) therefore rearranging Equation 5, and taking into account Equation 4, leads 

to Equation 6. Under these conditions the current is directly proportional to the bulk 

concentration when using a constant stirring rate of the analyte solution (Hart, 1990).  

𝑖𝑖𝐿𝐿 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝛿𝛿

Limiting current (iL) [A]; Faradays constant (F) [96,485 C mol-1]; Number of electrons (n); Electrode area (A) 

[m2]; Diffusion coefficient (D); Concentration (C); Nernst diffusion layer thickness (δ). 

As described above the diffusional flux is time-dependant, this relationship is described 

by Fick’s second law which is written for a linear diffusion profile in Equation 7. Further 

mathematical treatment of this law results in the Cottrell equation; Equation 8 (Greef et 

al. 1990). The Cottrell equation is applied in chronoamperometry (section 1.2.3.3) as it 

relates the current decay over time to the change in the concentration gradient in the 

vicinity of the electrode surface (Wang 2006). 

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝜕𝜕2𝐶𝐶(𝑥𝑥, 𝑡𝑡)
𝜕𝜕 𝑥𝑥2

Diffusion coefficient (D); Concentration (C); Distance (x); Time (t). 

Equation 5 

Equation 6 

Equation 7 
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Figure 1.4. Diagrams showing a (A) linear sweep input waveform and a (B) linear sweep output 
voltammogram. 

𝑖𝑖𝑡𝑡 = �𝑛𝑛𝑛𝑛𝑛𝑛𝐷𝐷1 2⁄ 𝑐𝑐�/ 𝜋𝜋𝑡𝑡1/2 

Current at a specified time (it) [A]; Number of electrons (n); Faradays constant (F) [96,485 C mol-1]; 

Electrode area (A) [m2]; Diffusion coefficient (D); Concentration (C); Time (t). 

1.2.3 Electroanalytical techniques 

1.2.3.1 Potential sweep voltammetry 

Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) are potential sweep 

techniques performed under quiescent conditions. They can be used quantitatively since 

there is a linear relationship between current and concentration. In addition, they are 

valuable tools for examining the mechanisms of electrochemical reactions. The important 

parameters obtained from a voltammogram are the peak potential (Ep) and peak current 

(ip); the peak potential value is taken from the potential axis, measured in volts, where 

the maximum current is observed and this peak current is measured in amperes. 

Equation 8 
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Figure 1.5. Diagrams showing the (A) triangular applied potential waveform used in 
cyclic voltammetry and (B) the resulting output of current vs. applied potential. 

The input waveform for linear sweep voltammetry shown in Figure 1.4A is an applied 

potential ramp. The corresponding output profile shown in Figure 1.4B displays an 

increase in current when the electrode potential is great enough to induce electron 

transfer, then the current continues to rise until it peaks at a maximum current, after this 

the current begins to decay as the analyte at the interface is depleted (Fisher 1998). The 

Ep in a reversible system is independent of sweep rate; the half-wave peak potential 

(𝐸𝐸𝑝𝑝/2) does not change when the scan rate is altered, making the change in half-wave 

peak potential (∆𝐸𝐸𝑝𝑝/2) a useful and simple diagnostic for reversibility (Bard et al. 2012). 

Cyclic voltammetry involves a triangular potential waveform, which can be cycled multiple 

times in a single run as shown in Figure 1.5A. The resulting response for a reversible 

reaction is shown in Figure 1.5B. The cathodic and anodic peak potential mid-point can be 

calculated with Equation 9; the resulting value is called the formal reduction potential, E°, 

for a reversible couple. The difference between the two peak potentials of a redox couple 

has relevance to the simplified Nernst equation (Equation 2), which can indicate the 

numbers of electrons transferred in the electrode reaction; Equation 10. 
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𝐸𝐸° =  
𝐸𝐸𝑝𝑝𝑝𝑝  +  𝐸𝐸𝑝𝑝𝑝𝑝

2

Formal reduction potential (E°); Anodic peak potential (Epa); Cathodic peak potential (Epc). 

∆𝐸𝐸𝑝𝑝 =  𝐸𝐸𝑝𝑝𝑝𝑝 − 𝐸𝐸𝑝𝑝𝑝𝑝  ≈  
0.059
𝑛𝑛

Change in peak potential (ΔEp); Anodic peak potential (Epa); Cathodic peak potential (Epc). 

The anodic and cathodic peak potentials should be close for a reversible redox couple; 

Equation 11 (Kissinger and Heineman 1983). Reversible reactions in cyclic voltammetry 

are characteristic of electrode kinetics that are fast relative to scan rate (Brett and Brett, 

1998). 

𝑖𝑖𝑝𝑝𝑝𝑝
𝑖𝑖𝑝𝑝𝑝𝑝

 ≈ 1 

Anodic peak current (ipa); Cathodic peak current (ipc). 

The peak current (ip) of the first forward sweep in both CV and LSV for a reversible couple 

are described by the Randles-Sevcik equation (Kissinger and Heineman 1983); Equation 

12. A scan rate study, measuring peak current at a range of scan rates, can be particularly

insightful for the determination of  the mode of mass transport when plotted as a function 

of current (Westmacott et al. 2018). As previously mentioned, peak potentials in a 

reversible system are independent of scan rate whereas in a quasi-reversible system they 

will shift with scan rate. Where a reaction is completely irreversible no corresponding 

peak will be visible on the reverse sweep for cyclic voltammetry. However, most redox 

Equation 9 

E quation 10 

 Equation 11 
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couples exhibit electrode kinetics that are limited therefore they are slower relative to 

scan rate; the peak current for a quasi-reversible couple is defined by Equation 13; both 

equations are useful for determining the number of electrons in the rate determining 

step.  

𝑖𝑖𝑝𝑝 = (2.69 × 105) 𝑛𝑛3/2𝐴𝐴𝐴𝐴𝐷𝐷1/2𝑣𝑣1/2 

𝑖𝑖𝑝𝑝 = (2.99 × 105) 𝑛𝑛 (∝ 𝑛𝑛𝑎𝑎)1/2𝐴𝐴𝐴𝐴𝐷𝐷1/2𝑣𝑣1/2 

Peak current (ip); Number of electrons (n); Electrode area (A) [cm3]; Transfer coefficient (∝); Concentration 

(C) [mol cm3]; Diffusion coefficient (D) [cm2 sec-1]; Scan rate (v) [V/s].

1.2.3.2 Pulsed potential voltammetry 

Pulsed waveforms are well suited to quantification as the current sampling regime allows 

for better discrimination of the desired faradaic current from the unwanted charging 

Figure 1.6. Diagrams showing the (A) applied potential waveform used in differential pulse 
voltammetry and (B) the resulting output of current vs. applied potential. Modifiable input 
parameters: pulse amplitude (∆Ep), pulse width (tp), step height (∆Es). Reproduced with 
modification from Hart (1990). 

 Equation 12 

E quation 13 
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current. The input waveform for differential pulse voltammetry (DPV) sees potential 

applied in pulses of a set magnitude on a linearly increasing ramp, the current is measured 

prior to the pulse (a) and again just before the end of the pulse (b) (Figure 1.6A). The 

current differences of these measurement values are plotted against the applied potential 

to give the differential pulse voltammogram (Figure 1.6B). 

Figure 1.7. Diagrams showing the (A) applied potential waveform used in square wave 
voltammetry and (B) the resulting output of current vs. applied potential. Modifiable input 
parameters: pulse amplitude (∆Ep), pulse width (tp), step height (∆Es). Reproduced with 
modification from Hart (1990). 

The input waveform for square wave voltammetry (SWV) is applied with a forward and 

reverse pulse procedure, which linearly increases in a staircase form (Figure 1.7A). Current 

is measured at the end of both the forward (a) and the reverse pulse (b). The current 

differences of these measurements are plotted against the increasing potential resulting 

in a square wave voltammogram (Figure 1.7B). 

The dual-current-sampling procedure in both pulsed techniques reduces the charging 

current, which results in improved detection limits when compared to that of linear sweep 

voltammetry. In summary, the two pulsed potential techniques (SWV and DPV) have 

different current sampling procedures but provide similar responses, as demonstrated by 

their output responses.  
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Figure 1.8. Diagram showing the (A) chronoamperometric input waveform and (B) the resulting 
chronoamperometric output of current vs. time. 

1.2.3.3 Chronoamperometry 

The chronoamperometric method steps an applied potential from an initial value to a final 

value, which is held for a specified duration in which the current response is recorded with 

passing time. The initial potential step goes from a value where no faradaic response 

occurs to a value where the electroactive species is depleted, the current response at a 

specific time point following the final potential change therefore correlates to the initial 

concentration of electroactive species present. This technique specifically uses a 

quiescent solution unlike that of hydrodynamic amperometry therefore the only mass 

transport mechanism is diffusion. The input waveform and output waveform are 

illustrated in Figure 1.8, the sharp increase in current response followed by a curved 

steady decay over time can be explained by the Cottrell equation (Equation 8). 
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1.2.4 Sensors and biosensors for electroanalysis 

1.2.4.1 Overview of biosensing 

Thévenot and co-workers (2001) have defined a biosensor in the following way, “An 

electrochemical biosensor is a self-contained integrated device, which is capable of 

providing specific quantitative or semi-quantitative analytical information using a 

biological recognition element (biochemical receptor) which is retained in direct spatial 

contact with an electrochemical transduction element”. The successful commercialisation 

of any novel sensor technology requires substantial monetary investment and in addition 

to this the final device must be inexpensive to fabricate in a competitive market (Luong et 

al. 2008). Screen-printing has come into its own in this field as it is capable of producing 

sensors in large batches, in a wide range of geometries, at a relatively low cost. These 

sensors have the capacity for simple but effective modifications which result in enhanced 

specificity and sensitivity. The advantages of electroanalysis described in the previous 

section coupled with the advantages of modern sensor fabrication techniques are the 

reason that this has become such a lucrative market. Sensors, and more specifically 

biosensors, are utilised in the defence, clinical, environmental and agri-food sectors and 

in 2013 the market had an estimated worth of 9.2 billion pounds sterling (Turner 2013). 

The biosensor which dominates the potentiostatic device market monitors glucose 

concentrations in blood, and with the prevalence of diabetes rising globally the demand 

for these diagnostic tools continues to grow (Global report on diabetes 2016). Similarly, 

potentiostat devices have been successfully developed for the measurement of other 

compounds of clinical importance such as lactate, ethanol, sucrose, uric acid and 

cholesterol (Dzyadevych et al. 2008). 

The biomaterials constituting the biological recognition element can be an enzyme, 

antibody, antigen, DNA or bacteria; when this phase interacts with the analyte an 

electroactive species is produced which can be monitored directly or indirectly by the 
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transducer (Skoog et al. 2007). Biomaterials operate under the conditions found where 

they naturally function, once outside of this environment their stability may be 

compromised (Arnold and Rechnitz 1989). To overcome this possible complication, 

stabilisers are often employed to improve operational stability and prolong the shelf-life 

of the active component; which is particularly useful for the commercialisation of 

disposable biosensors (Gibson 1999). In addition to instability, biological recognition 

elements can be relatively expensive (Skoog et al. 2007) however the advantages such as: 

specificity, sensitivity, rapid response times, simplicity of operation, and inexpensive 

instrumentation far outweigh these potential drawbacks (Bahadir and Sezgintürk 2015). 

 

Electrochemical biosensors may be classified by the route of signal transfer between the 

biological recognition element and the transducer material constituting the working 

electrode; first generation (Figure 1.9A) denotes the measurement of secondary 

substrates (S2) and products (P) of catalysed reactions; second generation (Figure 1.9B) 

biosensors utilise a mediator to facilitate electron transfer between the biological 

recognition element and transducer; whereas the third generation (Figure 1.9C) model 

refers to the direct electron transfer between these two main components (substrate, S, 

and product, P) (Wollenberger 2005).  

Figure 1.9. Schematic diagram illustrating a (A) first, (B) second, and (C) third generation biosensor. 

A B C 
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1.2.4.2 Equipment and procedures involved in the fabrication of screen printed 

sensors and biosensors 

The screen printing of inexpensive materials, such as carbon or silver/silver chloride, onto 

thin polymer substrates is a very simple method of transducer fabrication and sometimes 

the whole biosensor (Crouch et al. 2005). The two-dimensional designs for screen-printed 

electrodes (SPEs) are initially plotted in a drafting software; this is then translated to a 

synthetic mesh screen of a fixed thread diameter and spacing. The ink, or paste, is first 

deposited into the screen stencil, in the shape of the electrode, using a flood blade; the 

second step involves the use of a squeegee to force the ink onto the plastic substrate 

below. This simple fabrication technique lends itself well to prototyping, as a variety of 

SPE geometries can be fabricated using a single screen. Once the optimal SPE 

configuration is identified, a screen with repeats of this pattern can be made and mass 

production can begin. A useful website which explains the process of screen-printing can 

be found on the Gwent Electronic Materials (1997) website; it should be mentioned that 

this company supplied the screen-printed sensors used in the current project. Other 

electrode fabrication techniques such as inkjet printing, photolithography, and 

polymerisation (Zhang et al. 2000) are available, however they are not as well suited to 

mass production as screen-printing. It is common for a combination of these to be utilised 

for sensor production allowing for the deposition of different chemical and biological 

components. When immobilising a biological component onto the electrode surface, drop 

coating using a micropipette to dispense microlitre volumes is a popular deposition 

technique, this approach is simple and inexpensive with minimal wastage of any 

expensive biological components. 

1.2.4.3 Electrode modifications 

Modifications are employed to improve sensitivity, specificity, operational stability and/or 

shelf-life of the device. By-products, or unwanted electroactive species, are often 
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generated at a polarised electrode. These species can interfere with the desired reaction 

process. This interference can be overcome with a membrane modification which 

prevents the unwanted species reaching the electrode surface (Karube 1989). Another 

modification which can prevent a response from unwanted species is the inclusion of a 

redox mediator which lowers the operating potential of sensor or biosensor, this will be 

explained in more detail in the following section (1.2.4.4). 

1.2.4.4 Overpotentials and mediators 

The activation overpotential describes the activation energy required to drive a charge 

transfer reaction (Bard et al. 2012). A successful mediator, also known as an 

electrocatalyst, should substantially reduce overpotential; an applied potential below 

+0.2 V would be preferential to prevent responses from species which would otherwise

oxidise (Gorton and Domínguez 2002). Mediated electron transfer with a Meldola’s Blue 

(7-dimethylamino-1,2-benzophenoxazine) modified graphite electrode was first reported 

by Gorton and co-workers in 1984. These preliminary studies indicated that this 

fabrication route held promise for lowering the electrocatalytic oxidation voltage of the 

coenzyme nicotinamide adenine dinucleotide (NAD) however its stability was not 

satisfactory (Gorton et al. 1984). This redox couple (NADH/NAD+) plays an important role 

as a substrate or cofactor in many enzymatic reactions of analytical interest (Wilson 1989). 

Several studies have suggested that a stepwise ECE mechanism occurs when nicotinamide 

coenzymes are electrochemically oxidised (Moiroux and Elving 1980)(Jaegfeldt 1980). This 

mechanism (Equation 14) proposes an initial irreversible heterogeneous electron transfer 

resulting in the cation radical NAD ∙ H+ the second step is a deprotonation resulting in the 

formation of a neutral radical 𝑁𝑁𝑁𝑁𝑁𝑁 ∙, the final heterogeneous electron transfer is 

reversible and results in the formation of NAD+ (Lobo et al. 1997). A decade after Gorton’s 

initial study another research group incorporated the electrocatalyst Meldola’s Blue into 

a carbon electrode, this was achieved during the screen-printing process and the end 
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product was a disposable MBSPCE (Meldola’s Blue screen-printed electrode) (Sprules et 

al. 1994); Figure 1.10 displays a schematic diagram of the electron transfer mechanism 

for a NADH-MB-SPCE. Hydrodynamic voltammetry of the modified vs. unmodified SPCE in 

the presence of NADH showed that oxidation only occurred in the presence of the 

mediator at low applied potentials (-0.4 to +0.3). Importantly, standard addition studies 

were performed using amperometry, which showed a stable response indicating that 

Meldola’s Blue is stable when present in the screen-printed ink matrix. The application of 

this mediated electrode to the analysis of lactate was demonstrated in a subsequent study 

which incorporated a dehydrogenase enzyme, this will be explained in more depth in the 

following section (Sprules et al. 1995).   

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
−𝑒𝑒−
�⎯� 𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝐻𝐻+ −𝐻𝐻+

�⎯� 𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 
−𝑒𝑒−
�� 𝑁𝑁𝑁𝑁𝐷𝐷+ 

For the present research project screen-printed carbon electrodes were modified with 

the electrocatalyst Meldola’s Blue, as this has proved very successful in a wide range of 

biosensors for a variety of target analytes (Sprules et al. 1995, 1996). These devices are 

used in conjunction with different dehydrogenase enzymes, that convert the cofactor 

NAD+ to NADH, and it is the oxidation of the latter that forms the basis of the analytical 

response for the biosensors used in this thesis. In the context of this thesis the enzyme 

3α-hydroxysteroid dehydrogenase (3αHSD) has been incorporated with a Meldola’s Blue 

Figure 1.10. Schematic diagram illustrating the electron transfer mechanism of a NADH-MB-SPCE. 

 

Equation 14 
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modified screen-printed carbon electrode (MB-SPCE) to produce a biosensor for 

androstenone measurement. This device was employed for boar taint studies in this 

project, which will be described in detail in later chapters (see chapters two to four).  

1.2.4.5 Enzymes for biosensors 

Many different enzymes have been identified in nature, each catalysing specific 

biochemical processes. These macromolecular biological components can be isolated 

from natural sources or artificially synthesised, these enzymes can be immobilised on the 

surface of an electrode to form a biosensor. Their purity, specificity and stability are all 

important qualities in biosensor fabrication (Warner 1989). The enzyme aliquot should be 

free from contaminating compounds that could possibly lead to an interfering signal. 

Many compounds in nature share similar structures, termed derivatives. For this reason 

the enzyme utilised in the biosensor must exhibit high specificity for the analyte of 

interest. Enzymes are complex proteins which are sensitive to their surrounding 

environment; they are susceptible to thermal inactivation as well as changes in pH, 

especially where ionizing groups control enzyme function (Cass and Kenny 1989). For 

these reasons, it is important to source a high quality enzyme and optimise the 

operational parameters during biosensor development studies. 

Electroanalysis with an enzyme-catalysed reaction involves either monitoring the enzyme 

product or the substrate consumed (Karube 1989). The electroanalysis technique suitable 

for these measurements is chronoamperometry, which has been previously described in 

section 1.2.3.3. Dehydrogenase enzymes exhibit specificity for a particular substrate 

therefore a wide range of biosensors can be fabricated with a specific analyte in mind 

(Wilson 1989). Dehydrogenase enzymes, however, require a cofactor, which is normally 

nicotinamide adenine dinucleotide which exists in the oxidised form, as NAD+ and the 

reduced form as NADH.  As previously explained, this redox-couple plays a critical role in 

many enzyme-catalysed reactions in nature, and mediator-modified electrodes can be 
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Equation 15 

Equation 16 

Equation 17 

Equation 18 

used to improve the redox efficiency of the cofactor leading to a low operation potential 

(Elving et al. 1976). In the current project, the dehydrogenase enzyme utilised was 3αHSD 

which catalyses the conversion of the boar taint compound androstenone to androstenol 

in the presence of reduced NAD. This enzyme has been reported for its relevance in 

clinical sensing for the measurement of androsterone (3α-Hydroxy-5α-androstan-17-one) 

in human bile and serum (Mundaca et al. 2012)(Teodorczyk and Purdyt 1990). This 

compound is a derivative of our analyte of interest, and is commonly used as an internal 

standard in the chromatographic analysis of the boar taint compound androstenone 

(Brennan et al. 1986). Androsterone has not been reported to occur naturally in porcine 

adipose tissue, consequently it is not regarded as a potential interfering compound for 

the biosensor used in this thesis. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
3𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
�⎯⎯⎯�  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁𝑁𝑁𝑁𝑁+ 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑀𝑀𝑀𝑀+
          
�⎯� 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑀𝑀𝑀𝑀+ 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑀𝑀𝑀𝑀+ → 𝑁𝑁𝑁𝑁𝑁𝑁+ + 𝑀𝑀𝑀𝑀𝑀𝑀 

𝑀𝑀𝑀𝑀𝑀𝑀 → 𝑀𝑀𝑀𝑀+ + 2𝑒𝑒− + 𝐻𝐻+ 

When androstenone is introduced to the biosensor (3αHSD-NADH-MB-SPCE) an 

enzymatic reaction (Equation 15) occurs to convert NADH on the electrode surface to 

Figure 1.11. Schematic diagram illustrating the electron transfer mechanism of the 
biosensor (reproduced with modification from European Patent 2966441). 
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NAD+, this results in the decrease in the current obtained as a result of Equation 16-

Equation 18. The measured current response at a specific time is subtracted from a 

control value obtained with a buffered solution, in the absence of androstenone, for that 

batch of biosensors. The current difference is directly proportional to the concentration 

of androstenone. The boar taint studies involving this biosensor, schematic displayed in 

Figure 1.11, will be discussed in chapter’s two to four. 

1.3 High resolution gas chromatography 

Gas chromatography is a popular analytical tool used for both qualitative and quantitative 

purposes. It is a separation technique that, as the name suggests, uses a specific gas 

(mobile phase) to transport chemical species through a column of a specific polymeric 

material (stationary phase). The mechanism of compound separation is complex, 

involving molecular interactions and thermodynamics. However, for the purpose of a brief 

introduction to the technique the explanation of separation will be simplified.  

The sample is volatilised at the inlet of the column and the analytes are distributed in the 

mobile phase; this portion is called the eluent. The molecules of each compound in the 

sample are then distributed between the two phases (gas and mobile). The sample 

compounds interact with the stationary phase and only move through the column when 

they are in the mobile phase. The compound molecules that have the least interaction 

with the stationary phase reach the end of the column first, this is known as eluting from 

the column, thus entering the detector. If the detector responds to this type of compound 

an electrical signal will be generated. The size of the response is proportional to the 

amount of the compound. This signal will be visualised as a peak in the chromatogram 

output (Figure 1.12). If two compound molecules interact with the stationary phase to a 

similar degree their response will be visualised as a single peak or overlapping peaks. 

Therefore, it is important that all of the instrument variables such as stationary phase, 



Chapter One 

35 

oven temperature, mobile phase and flow rate are suitable for the complete separation 

of the sample components.  

As previously discussed for biosensors, specificity of the analytical method for a target 

analyte is the ideal scenario; however, few methods can achieve this outcome. The reason 

being that most biological samples contain a complex mixture of compounds, sometimes 

these compounds are very closely related in terms of their chemical and physical 

properties making them difficult to separate or differentiate. Chromatographic methods 

can be optimised for improved specificity, although they are often only selective for a 

specific class or group of chemically related compounds. 

Figure 1.12. Diagram showing the output chromatogram for gas chromatography. 
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1.3.1 Chromatographic principles 

A modern gas chromatographic system is comprised of an injector, detector, oven, 

column, gas supply, gas flow controller and data recorder. These parts, with the addition 

of an optional autosampler, are illustrated in Figure 1.13. The integral parts are the 

injector, gas flow controller, detector and oven. Whereas, the gas supply (carrier gas and 

detector gas), column and data recording device are usually obtained from a different 

supplier to the instrument manufacturer (Rood 2007). The data recording device is usually 

a personal computer (PC), or with older GC systems a chart recorder. Most PC systems 

can also operate the GC instrumentation, this allows for automation and the use of an 

autosampler.  

A fundamental measurement in gas chromatography is retention time (tR), this is the 

duration taken for a compound to elute from the column and is considered to be a 

qualitative characteristic. The retention time of a compound is simply the sum of the time 

spent in the mobile phase and the stationary phase. However, as previously mentioned 

all compounds spend the same amount of time in the mobile phase for a given 

temperature and carrier gas velocity (Rood 2007). Therefore, the difference in retention 

time from one compound to another is simply a result of time spent in the stationary 

Figure 1.13. Diagram showing the main components of a modern gas chromatograph. 
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phase. It is possible to measure the time spent in the mobile phase by injecting a non-

retained compound. The peak resulting from the non-retained compound will be the first 

to elute, this is known as the void or dead time (tM) (Hansen et al. 2012).  

The solute species separate at different times due to the difference in the strength of the 

interactions with the stationary phase; these can be theoretically explained by equilibrium 

constants (Skoog et al. 2007). The equilibrium distribution coefficient, also known as the 

distribution constant, KC, is equal to the concentration of the analyte in the stationary 

phase, CS, over the concentration of the analyte in the mobile phase, CM, shown in 

Equation 19. This can also be calculated using the number of moles of the analyte and the 

volume of both the stationary and mobile phase. 

𝐾𝐾𝐶𝐶 =
𝐶𝐶𝑆𝑆
𝐶𝐶𝑀𝑀

=
𝑛𝑛𝑆𝑆/𝑉𝑉𝑆𝑆
𝑛𝑛𝑀𝑀/𝑉𝑉𝑀𝑀

Distribution constant (KC); Concentration in stationary phase (CS); Concentration in mobile phase (CM); 

Number of moles in stationary phase (nS); Number of moles in mobile phase (nM); Volume of stationary 

phase (VS); Volume of mobile phase (VM). 

This partition ratio is ideally constant over a wide concentration window so that the 

concentration in the stationary phase is proportional to the concentration in the mobile 

phase; this results in Gaussian peaks (symmetrically shaped) and analyte retention times 

that are independent of the amount injected (Skoog et al. 2007). The distribution constant 

only describes the theoretical separation of components, and a more practical 

measurement of separation is the retention time (tR).  

Equation 19 
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Another useful value is the retention factor, k, which is independent of the mobile phase 

flow rate and column length, this is contrary to the retention time (Hansen et al. 2012). 

The retention factor can be easily determined from the chromatogram using Equation 20. 

𝑘𝑘 =  
𝑡𝑡𝑅𝑅 − 𝑡𝑡𝑀𝑀
𝑡𝑡𝑀𝑀

Retention factor (k); Retention time (tR); Void time (tM). 

It should be mentioned that the instrumental parameters, such as oven temperature and 

carrier gas flow rate, in order to separate compounds of a similar structure. The resulting 

chromatogram will then exhibit resolved chromatographic peaks. Chapter three includes 

a variety of chromatograms that show complete separation of peaks resulting from the 

target analyte and other compounds present in the sample. 

1.3.2 Quantitative analysis 

One of the most popular ways of carrying out quantitative analysis in gas chromatography 

is to use a calibration procedure known as the “internal standard method”; the following 

section will describe in detail the approach used in this thesis. 

 Quantitative results were obtained by first identifying the sample analyte peak in the 

chromatogram by its retention time compared to that of a known standard of the 

compound of interest (this is the qualitative part of the experiment) and extrapolating the 

concentration from the compounds respective calibration curve (quantitative). In GC 

either the peak height or peak area can be used for quantitative purposes, however peak 

area was used for all GC measurements in this thesis. Peak height has an inverse 

relationship with peak width, the latter of which broadens when the retention factor 

increases which results in a decrease in peak height. Therefore, peak height is less reliable 

Equation 20 
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than peak area which is independent of changes in the retention factor (Hansen et al. 

2012). The calibration curves in this thesis were generated from a set of standard 

injections of increasing known concentrations. Each concentration was injected in 

triplicate and an average of the replicate peak areas was calculated and plotted against 

known concentration, the use of replicates reduces any variation from injection volumes 

thereby increasing accuracy. All calibration curves were generated from a minimum of 

four points i.e. using four different known concentrations of the analyte. The use on an 

internal standard was also employed as an additional measure for improved accuracy for 

the GC data acquisition in this thesis. An internal standard was included in both the 

calibration standard solutions and sample solutions, this normalises the data by reducing 

any variation from detector sensitivity. An internal standard should have a structure very 

similar to that of the analyte but should be absent from the sample being analysed, the 

internal standards chosen for this project are described in chapter three section 3.1.2. 

Calibration curves were generated by plotting the area ratio against concentration. The 

internal standard concentration is kept the same for every solution prepared, and the 

peak area of the analyte (standard or sample) is divided by the peak area of the internal 

standard (area ratio value). The inclusion of an internal standard is particularly important 

in the operation of a NPD (nitrogen-phosphorous detector) detector, as the sensitivity of 

this detector tends to drift. 

1.3.3 Injector 

The gas chromatographic data in this thesis was mostly obtained with an autosampler 

injection system (Clarus 580, Perkin Elmer), which provides precise sample introduction 

and eliminates user error. The sample volume must be consistent and should be 

introduced at a constant flow rate. The sample is introduced at the high temperature inlet 

with a rapid injection using a calibrated microsyringe, either manually or automatically. 

The inlet port should be heated to a temperature well above that of the boiling point of 
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the least volatile sample component (Skoog et al. 2007). The needle of the microsyringe 

pierces the septum housed in the inlet, this consumable part has a relatively short lifetime 

and regular replacement prevents bleed of volatile compounds onto the column. An inlet 

splitter is often used with modern capillary columns, which divides the sample between 

the column and the waste outlet preventing column overloading. Another component 

located in the inlet section before the column is the liner. This is a deactivated glass tube 

that allows the sample vapour to be directed onto the column, these can be modified with 

glass wool which traps any particulate matter and prevents column contamination. 

Before samples are introduced to the GC they have to be collected, stored and 

transported before preparation. Biological samples contain a complex mix of compounds 

often requiring preparation procedures to extract the analyte and remove as many 

impurities as possible. There are many different types of extraction procedures such as 

solid phase extraction, liquid-liquid extraction, or microwave-assisted extraction to name 

a few. Sample transportation and sample storage requires conditions appropriate for 

preservation, for biological materials this usually requires refrigeration or freezing. 

Depending on the sample state, the method of collection and pre-treatment will vary. The 

primary focus of this project involved the analysis of porcine adipose tissue. Samples 

collected from the abattoir had to be transported and stored at -18°C until analysis could 

be performed. The preparation procedure for GC analysis utilised microwave-assisted 

extraction followed by solvent extraction, centrifugation, and in one method a solvent 

exchange step (see chapter three). Modern chromatographic systems can be fitted with 

automated sample preparation systems these utilise techniques such as solid-phase 

extraction, accelerated solvent extraction, or rapid evaporation. These systems are 

commercially available however they are often elaborate and expensive (Majors 2013), 

consequently they were not utilised for this project. 
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1.3.4 Carrier gas 

The carrier gas is the mobile phase of the separation system. It is an inert gas that 

transports the sample from the injector, through the column, to the detector. The mobile 

gas phase is usually either high-purity helium, nitrogen or hydrogen. Optimisation of the 

carrier gas flow rate is required to efficiently separate the sample components. It should 

be noted that with some detectors, such as the nitrogen-phosphorous detector, the 

carrier gas must not influence the stability of the detector; in the current project the 

carrier gas was helium instead of hydrogen as the latter is used in the operation of the 

detector and would destabilise its response.  

1.3.5 Stationary phase 

GC columns vary by type (i.e. packed or capillary), dimensions (i.e. inner diameter and 

length), and stationary phases (i.e. polysiloxanes or polyethylene glycols).  Most modern 

GCs tend to use capillary columns, also known as open-tubular columns, which have small 

internal diameters and lengths between 6-50 metres (Rotzsche et al. 2014). Capillary 

columns can be categorised into three groups: wall-coated open tubular columns (WCOT); 

porous-layer open tubular columns (PLOT); and support-coated open tubular columns 

(SCOT).  WCOT columns are by far the most popular today, with use in over 80% of all 

applications, however PLOT columns are still in use for very volatile compounds whilst 

SCOT columns are rarely used today and were of most interest in the early days of capillary 

column development (Rotzsche et al. 2014). 

Almost all modern commercial capillary columns are made from a fused-silica tubing 

consisting of high purity silicon dioxide that provides a very inert surface. This is usually 

coated with polyimide for increased strength and support, this coating results in the usual 

yellow-brown outer appearance (Rotzsche et al. 2014). In the case of WCOT columns the 

deactivated silica layer is coated with a thin-film of liquid stationary phase. Liquid 

stationary phases can be produced to achieve different polarities and it is common to use 
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polar phases for polar analytes and non-polar phases for non-polar analytes (Willett and 

Kealey 1987). Consequently, two columns were employed in this project to separate the 

target analytes from the other compounds in the solvent extract of adipose tissue; a low-

polarity 5% phenyl 95 % methylpolysiloxane phase was used for androstenone 

determination and a high-polarity polyethylene glycol phase was used for skatole 

determination. Therefore, the procedures used in this thesis are considered to be gas-

liquid chromatography, the gas is the mobile phase whereas the stationary phase is a high 

boiling point liquid adsorbed onto a solid coating.  

1.3.6 Detectors 

This project utilised both a flame ionisation detector (FID) and a nitrogen phosphorous 

detector (NPD) linked to a gas chromatograph as the reference technique for the analysis 

of the target analytes androstenone and skatole respectively in porcine adipose tissue 

samples. The NPD is a specific detector that responses to compounds containing nitrogen 

and/or phosphorous, whereas the FID is responsive to most compounds however it is less 

sensitive than the former (Scott, 2005). These detectors both work on the principle of 

ionisation; compounds eluting from the column are ionised and the magnitude of 

ionisation response, in the form of an electrical signal, is related to the quantity of the 

compound of interest (Patterson 1992). 
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The FID, illustrated in Figure 1.14, is considered to be a universal detector and is mass 

sensitive, responding to carbon containing compounds (McMinn and Hill 1992). Ions are 

generated when the sample enters the detector and burned in the presence of hydrogen 

and air. These ions are collected and measured by the detector and the resulting signal is 

directly proportional to the concentration of the compounds present. A negative voltage 

is applied to the detector which enhances ion collection via a polarised electric field 

(CLARUS 500/580 GC User’s Guide 2010). 

Figure 1.14. Diagram of a flame ionisation detector (FID). Reproduced with modification from 
the CLARUS 500/580 GC User’s Guide (2010). 
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The NPD, or thermionic detector, employed for the detection of skatole in this project 

uses a rubidium bead, as illustrated in Figure 1.15. The glass bead containing the alkali 

metal, in this case rubidium, is moulded onto an electrical heater wire; this controls the 

source temperature through an adjustable applied current. The bead and wire constitute 

the thermionic source; this is where a plasma forms in the presence of hydrogen and air, 

which acts as the combustion zone. The most substantiated theory for the NPD response 

mechanism is the surface ionisation theory. This model assumes that the sample 

components are electronegatively decomposed at the source and selectively ionised, the 

increase in current measured is the result of the negative ions formed from this process 

(Poole 2015). 

Figure 1.15. Diagram of a nitrogen-phosphorous detector (NPD). Reproduced with modification from the 
CLARUS 500/580 GC User’s Guide (2010). 
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1.4 Research aims and objectives 

The primary aim of the project was to evaluate, validate and apply the novel 

electrochemical sensor technology (Hart et al, 2017) to the analysis of boar taint 

compounds in porcine subcutaneous adipose tissue. In addition, studies investigating the 

electrochemical behaviour of compounds naturally occurring in porcine subcutaneous 

adipose tissue led to the development of a novel assay for the simultaneous quantification 

of the water-soluble vitamins thiamine, riboflavin, and pyridoxine. 

Objectives: 

• Evaluate peer-reviewed literature to identify compounds that naturally occur in

porcine subcutaneous adipose tissue, documenting their reported concentrations.

• Evaluate peer-reviewed literature to determine which of these compounds could

exhibit electrochemical behaviour that could interfere with the (bio)sensor response.

• Characterise the electrochemical behaviour of any compound identified that could

interfere with the electrochemical measurements.

• Characterisation of the electrochemical measurement of skatole and androstenone

using voltammetry and amperometry respectively.

• Develop extraction procedures and adapt gas chromatographic methods (the

reference method) for the quantification of skatole and androstenone in samples of

porcine subcutaneous adipose tissue.

• Validate the novel electrochemical sensor system, for the analysis of subcutaneous

adipose tissue samples, against the gas chromatographic reference method.

• Investigate and adapt electrochemical instrumentation and apparatus to allow for

dual potentiostatic measurements of skatole and androstenone simultaneously with

control from a single portable device.

• Conduct an initial evaluation of the prototype device on the abattoir processing line

and validate the responses with the laboratory based reference method.
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Chapter Summary 

The second chapter begins with a literature review of the compounds endogenous to pork 

meat and adipose tissue, this includes the two boar taint analytes, skatole and 

androstenone, and any other compounds such as amino acids, vitamins, fatty acids and 

hormones. This review also looks into the redox properties of these compounds as a 

primary indicator as to whether they may or may not respond at the electrochemical 

sensor and biosensor used for the measurement of the boar taint compounds. This is 

followed by a description of the experimental procedures used to quantify the boar taint 

compounds and determine if the other endogenous compounds identified as possible 

interferences result in a response at the electrochemical sensor or biosensor. A discussion 

of the results follows; the quantification of the boar taint compounds in a controlled 

buffered solution is described and a conclusion is drawn that none of the identified 

endogenous compounds interfere with the measurement of skatole or androstenone.  
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Chapter Two 

2.1 Introduction and literature review 

The voltammetric sensor and amperometric biosensor were developed to measure 

skatole and androstenone respectively (Hart et al., 2017). These compounds have been 

attributed to the unfavourable phenomenon known as boar taint in pig meat products. 

The two electrochemical sensors have been developed with the aim of directly analysing 

these compounds in porcine adipose tissue. Initial characterisation studies for this sensor 

system began with an investigation into the endogenous compounds reported in porcine 

adipose tissue, with an additional search into the redox properties of these naturally 

occurring compounds. This formed the first phase of the investigation into compounds 

which could possibly interfere with the voltammetric or amperometric response observed 

at the sensor and biosensor. The compound groups of interest are vitamins, fatty acids, 

amino acids, and hormones. The target analytes, skatole and androstenone, and other 

identified endogenous species, were studied by voltammetry or chronoamperometry 

using disposable screen-printed carbon sensors; the resulting electrochemical behaviour 

is discussed in section 2.3. 

2.1.1 Endogenous compounds and their redox properties 

2.1.1.1 Vitamins 

Vitamins are grouped into two classes based on their solubility in either lipid or aqueous 

media. Vitamins that are more lipophilic can be stored in adipose tissue for long periods 

of time, whereas water soluble vitamins are easily excreted (Arneson and Brickell 2007). 

An extensive study of the literature reporting concentrations of both fat and water soluble 

vitamins in pig tissue are displayed in the Appendix Tables 5-12. There are many variables 

involved in the measurement of endogenous concentrations, this includes but is not 
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limited to the feed content, pig breed, age or weight at slaughter, sample preparation 

method and analytical measurement technique; all of which have been outlined in the 

tables where available. 

2.1.1.1.1 Water soluble vitamins 

Vitamin C is the common name for the L-enantiomer of ascorbic acid. This water-soluble 

compound requires derivatisation to a synthetic compound such as ascorbyl palmitate or 

ascorbyl stearate before it can be miscible with a lipid phase (Reische et al. 2008). 

Therefore, it is unsurprising that no reports have indicated its detection or measurement 

in porcine adipose tissue. 

L-ascorbic acid is well known to exhibit strong redox properties, which has been exploited 

by several research groups using carbon based electrodes under similar buffer conditions 

to those employed in this project (Hu et al. 2001, Nassef et al. 2008, Revlin and John 2012); 

Appendix Table 4. The reported concentrations of L-ascorbic acid have been documented 

in Appendix Table 5 for pig muscle tissue obtained from both loin and ham cuts; this 

information could be useful for future work where SPCEs could be used to interrogate 

muscle tissue directly.  

Vitamin B is the term used for a group of 8 vitamins: thiamine (B1), riboflavin (B2), 

nicotinamide (B3), pantothenic acid (B5), pyridoxine (B6), biotin (B7), folic acid (B7), 

cobalamin (B12); all of which play important roles in cell metabolism, some of which will 

be discussed in more detail in chapter five. These B vitamin compounds have little 

structural resemblance, but they have a physical similarity in that they are all water-

soluble. Their concentrations in muscle tissue are well documented and these values have 

been collated in Appendix Table 6 (Jackson et al. 1945, Müller 1993, Hägg and 

Kumpulainen 1994, Leonhardt and Wenk 1997, Esteve et al. 2002, Lombardi-Boccia et al. 

2005, Böhmer and Roth-Maier 2007, Greenfield et al. 2009, USDA 2009). Only a single 
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literature source has been found to report the concentration of B vitamins in porcine 

adipose tissue. Greenfield's (2009) research group performed an extensive review into 

the nutritional composition of pork, in order to update the national food composition 

database (NUTTAB) compiled by Food Standards Australia New Zealand (FSANZ). This 

study provides a range of concentrations determined for seven B-vitamins from a variety 

of pork cuts sourced from several retail outlets; the values have been listed in Appendix 

Table 7. The B vitamins biotin and cobalamin will not be investigated in the interference 

studies; biotin was not measurable in adipose tissue, whereas cobalamin was reported at 

very low concentrations (≤0.01 mg/kg). 

The electro-activity of thiamine has been documented at various electrode materials, 

including some based on carbon (Hart et al. 1995, Aboul-Kasim 2000, Oni et al. 2002, 

Sutton and Shabangi 2004); however it should be noted that none of these studies 

reported a response at a neutral pH (Appendix Table 4). 

The electroanalysis of riboflavin has however been achieved at a neutral pH by several 

research groups using carbon electrodes. However, the oxidation peak potentials were in 

the negative region, outside of our potential window of interest (Safavi et al. 2010, Revlin 

and John 2012, Nie et al. 2013); experimental parameters are outlined in Appendix Table 

4. 

The electrochemical oxidation of nicotinamide has been documented by Hu and co-

workers (2001) at a carbon disk electrode. Other authors who have explored the 

electrochemistry of niacin have exploited the reduction of this compound at -1.5 V and -

1.3 V (Çakir et al. 2001, Kotkar and Srivastava 2008); Appendix Table 4. 

Only the D (+) form of pantothenic acid is naturally occurring and biologically active (Bird 

and Thompson 1967). A review of the literature has found that pantothenic acid has not 
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been measured at carbon electrodes; however the alcohol derivative, pantothenol, is 

measureable by voltammetry (Wang and Tseng 2001). However, the measurement of this 

compound has not been reported in porcine adipose tissue. 

There are six B6 vitamers, however, pyridoxine is the only one used as a food fortifier and 

it is commercially available as its hydrochloride salt (Ball, 2006). Pyridoxine electro-

oxidation at carbon based electrode has been reported using pH conditions similar to 

those of interest in this project (Hu et al. 2001, Qu et al. 2004, Teixeira et al. 2004, Fonseca 

et al. 2011, Zhang 2011); Appendix Table 4. The peak potential values ranged from +0.71 

to +1.05 V; this suggests that we may encounter electro-activity at the SPCEs (vs. Ag/AgCl) 

in our potential window of interest (+0.2 to +1.2 V). 

Folic acid, also known as pteroylmonoglutamic acid, has been reported in several studies 

to be electrochemically active at glassy carbon electrodes (Xiao et al. 2008, Kalimuthu and 

John 2009, Revlin and John 2012); two of these studies were performed with a neutral pH 

electrolyte and reported an oxidation peak at +0.8 V (Appendix Table 4); this is also within 

the applied potential window of interest for skatole determination in this project. 

2.1.1.1.2 Fat soluble vitamins 

 Vitamins A, D, E, and K are fat soluble, therefore their measurement in porcine adipose 

tissue has been reported with regards to the nutritional content of pork far more 

frequently than that of water-soluble vitamins. Pig producers sometimes supplement 

animal feed with approved nutritional compounds, including some vitamins (Burild et al. 

2016), this can enhance the quality of the final product by improving the health of 

livestock. The antioxidant properties of vitamin E and C have been well documented for 

their stabilising effects on meat colour and flavour (Warriss 2010). However, the naturally 

occurring concentrations of both vitamin C and vitamin K in meat are not considered to 

be of nutritional value (Warriss 2010). Subsequently, like that of vitamin C, values for 
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vitamin K concentration have only been reported for muscle tissue (Appendix Table 9) and 

not adipose tissue. 

The concentration of vitamin A, retinol, in porcine adipose tissue was shown to increase 

more than two fold where dietary supplementation was employed (Olivares et al. 2009); 

Appendix Table 10. The retinol concentrations reported in the adipose tissue of shop 

purchased pork cuts was in the range of 0.17-0.3 mg/kg (Greenfield et al. 2009).  

There are several forms of vitamin D: vitamin D3 or cholecalciferol is the most important 

source of dietary vitamin D along with its metabolite calcifediol or 25-hydroxyvitamin D3; 

both of which have been approved for supplementary use in pig feed (Burild et al. 2016). 

Appendix Table 11 displays the reported concentration of these two compounds in 

porcine adipose tissue; the ranges are D3 0.057-0.590 µg/100g and 25(OH)D3 0.186-0.244 

µg/100g (Clausen et al. 2003, Jakobsen et al. 2007). 

It is common place for vitamin E, α-tocopherol, and its more stable derivatives to 

supplement pig diets (Anderson et al. 1995). The wealth of studies reporting their 

concentration in porcine tissue supports this notion (Appendix Table 12). Concentrations 

of vitamin E in adipose tissue, where the diet was not enriched, ranged from 0.99 to 12.24 

mg/kg (Leonhardt et al. 1997, Gebert et al. 1999).  

The electrochemical measurement of these fat-soluble compounds has been achieved in 

both acetonitrile and methanol, as outlined in Appendix Table 4 (Hart et al., 1984, Wring 

et al., 1988, Hart et al., 1992, Wilson et al., 2006). Owing to their lack of solubility in water, 

measurement in aqueous media has not been reported. Therefore, their measurement 

will not be investigated in the upcoming interference studies. 
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2.1.1.2 Fatty acids 

Adipose tissue contains a range of hydrophobic compounds including saturated, mono-

unsaturated, and poly-unsaturated fatty acids (Sinclair et al. 2010). These have not been 

reported as directly electrochemically active at plain screen-printed carbon electrodes, 

therefore, their presence was not considered to be a potential interference in the 

measurement of skatole. In addition, a previous study has shown the fatty acids linoleic 

acid, oleic acid and palmitic acid do not respond at the androstenone biosensor (Crew, 

2018). 

2.1.1.3 Amino acids 

Many publications reporting amino acid quantification in porcine tissue analysed samples 

from processed meats which have undergone proteolysis and lipolysis (Toldra´ 1998). The 

complex biochemical pathways of proteolysis result in high levels of free amino acids, 

therefore these reports are not comparable to the raw unprocessed tissue concentrations 

required for this review. The documentation of amino acid concentrations in fresh tissue 

is limited; Toldrà and co-workers (1992) measured the concentration of nine amino acids 

in both muscle and adipose tissue whereas Lorenzo and co-workers (2008) only analysed 

the muscle tissue. A comparison of the concentrations reported in muscle tissue 

(Appendix Table 13) show lower concentrations for the later study; this could be 

attributed to the different methods of analysis (HPLC vs. enzyme assay), however a similar 

distribution pattern was displayed for the concentrations of the different compounds 

(indicated by the superscript ranking in Appendix Table 13). The adipose tissue levels 

ranged from 188 mg/kg for alanine down to 6.92 mg/kg for histidine. 

Most amino acids and their peptides are not readily oxidisable at common electrode 

materials (Flanagan, Perrett, and Whelpton, 2005). Jacobs, Peairs, and Venton (2010) note 

that the three readily electroactive amino acids are tyrosine, tryptophan, and cysteine 
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and a summary of their electrochemical behaviour at carbon electrodes under neutral pH 

conditions has been compiled in Appendix Table 14; (Fiorucci and Cavalheiro 2002, Huang 

et al. 2008, Deng et al. 2009). These particular amino acids have not been quantified in 

raw adipose tissue, therefore it is likely that they are either not present as free amino 

acids or present at negligible concentrations. Therefore, these electroactive amino acid 

compounds will not be investigated in the interference studies using SPCEs (vs. Ag/AgCl) 

as they are unlikely to be present at a concentration in adipose tissue that would result in 

an interference. 

The reported amino acids measurable in porcine adipose tissue: alanine, glycine, taurine, 

glutamine, glutamic acid, proline, arginine, threonine, histidine are only documented in 

the literature as being electrochemically detectable at modified electrode surfaces, often 

using amino acid oxidase enzymes (Kacaniklic et al. 1994, Sarkar et al. 1999, Rosini et al. 

2008, Revenga-Parra et al. 2017).  The electrochemical biosensor used in this thesis does 

not use enzymes that respond to amino acids, therefore it was not considered necessary 

to further investigate their electrochemical behaviour in this project.  

2.1.1.4 Hormones 

Hormone compounds can be generally categorised as; single amino acid derived, protein 

and peptide derived, and steroidal (Kovacs and Ojeda 2011). The steroid hormone group 

are generally the most lipophilic, therefore their measurement has been most heavily 

reported in porcine adipose tissue. Appendix Table 15 lists the concentrations of nine 

steroid hormones measured in porcine tissue (Claus et al. 1989, Hartmann et al. 1998, 

Yang et al. 2009); the concentrations of which varied depending on whether the 

measurement was made in muscle or adipose tissue, and also depending on the type of 

pig. Pig type often relates to gender, ability to breed, and age; the common types are 

boars, barrows, gilts, and sows. All of these factors, whether based on genetic or 
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environmental differences, can vary the endogenous levels of chemicals within the 

animal. 

It appears that there are no reports on the electrochemical measurement of steroid 

hormones at plain SPCEs. Pemberton, Mottram and Hart (2005) note that although some 

steroids are directly electrochemically oxidisable at traditional electrode materials, such 

as glassy carbon electrodes, they require high overpotentials and do not exhibit the 

required specificity for biological samples. Therefore, it is unlikely that steroid hormones 

would be oxidisable at the relatively low operating potentials applied to the sensor (+0.2 

to +1.2 V) and the biosensor (+0.05 V). In addition, a personal communication has 

confirmed that the biosensor does not respond to several steroid hormones commonly 

found in porcine adipose tissue at the maximum concentrations reported in the literature 

(Claus et al. 1989); including testosterone (20 ppb), estrone (1.38 ppb) and β-estradiol 

(0.78 ppb) (Crew, 2018). 

2.1.2 Boar taint compounds and their redox properties 

2.1.2.1 Skatole 

The mechanism in Figure 2.1 (reproduced from European Patent 2966441) shows the 

proposed reactants and products involved in the electrochemical oxidation of skatole (3-

methylindole) which gives rise to a voltammetric response at the SPCE (vs. Ag/AgCl). The 

H2O 
+ 2e- + 2H+

Figure 2.1. Oxidation of 3-methylindole to 3-methyl-2-oxindole (reproduced from 
European Patent 2966441) 
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species of interest, commonly known as skatole,  is a heterocyclic secondary amine; it is a 

weak base with a pKa of 4.6 (Bansal 1999). Skatole is derived from the amino acid 

tryptophan (Claus et al. 1994), it has a fecal odour (Whitmore 1951) which can result in 

an unpleasant taste or scent when present in pork. Indole, also a derivative of tryptophan 

(Claus et al. 1994), has been suggested to play a minor role in the unpleasant odour of 

boar taint. It is structuraly similar to skatole but is a stronger base than skatole; with a pKa 

of 3.63 (Bansal 1999).  

The electrochemical oxidation of indole, and its derivatives, has been of relevance to the 

clinical sector and food industry for several decades (Goyal, Kumar and Singhal, 1998). A 

variety of electrode materials have been reported for the determination of indolic-

compounds, such as platinum (Pingarron Carrazon, Reviejo Garcia and Polo Diez, 1990), 

carbon-fibre (Gómez-Gil et al., 2003), mercury (Tucker et al. 1989), boron-doped diamond 

(Belghiti et al., 2016), glassy carbon electrodes and screen printed carbon electrodes 

(Maesa et al. 2013). Many of these would be unsuitable for the proposed measurement 

in adipose tissue on the abattoir line; for example mercury would be unsuitable due to its 

toxic nature in a food production environment. Additionally, many of the other electrode 

materials suffer significant fouling effects, making them unsuitable for rapid analyses 

owing to the time-consuming cleaning process required between scans. Consequently, 

the report by Maesa and co-workers (2013) is of most relevance to the patented sensor 

as they also use screen-printed electrodes to measure skatole, however, they did not 

achieve a limit of detection suitable for the measurement skatole in real samples. The 

inventors of the UK patent (application 1212727.0, file date: 31-07-09) were the first to 

report the application of disposable screen-printed carbon electrodes for the direct 

voltammetric measurement of skatole in adipose tissue without any sample preparation 

(Hart et al., 2017).  
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2.1.2.2 Androstenone 

The other analyte of interest in this project is 5α-androst-16-en-3-one, commonly known 

as androstenone; shown in Figure 2.2. The electrochemical process giving rise to the 

androstenone response at the patented biosensor has been described in detail in chapter 

one section 1.2.4.5; a schematic diagram depicting the proposed electron transfer 

mechanism is shown in chapter one Figure 1.11. 

The analyte androstenone is an androgen, it belongs to a group of C19 Δ16 steroid 

compounds, which after production in the testes can be transported via the blood stream 

to the liver where it can be metabolised. Remaining androstenone, which has not been 

metabolised, can be stored in the adipose tissue of pigs (Bonneau and Terqui 1983). 

Androstenone is the most lipophilic of the C19 Δ16 steroids (Claus 1979). The water 

solubility of the steroidal compound androstenone has been reported by Amoore and 

Buttery (1978) to be 0.00023 g/l (at 25°C), indicating that it is more lipophilic than skatole 

which has a reported solubility of 0.45 g/l (at 20°C) (Windholz and Budavari 1983). 

The biosensor (UK patent application 1212727.0, file date: 31-07-09) patented for the 

determination of androstenone is the first to use 3α-hydroxysteroid dehydrogenase (3α-

HSD) as the biological recognition element in a screen printed biosensor (Hart et al., 

2017). The mapping of this enzyme to chromosome 4q16-4q21 has been successfully 

Figure 2.2. Structure of 5α-androst-16-en-3-one 
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achieved in pigs (von Teichman et al. 2001). Another publication in the same year by 

Dufort and co-workers (2001) confirmed that this enzyme, 3α-HSD, converts 

androstenone to androstenol in the presence of NADPH. In a later study, Doran and co-

workers (2004) demonstrated that the enzyme 3β-HSD is capable of catalysing the same 

reaction. This study also demonstrated that the level of 3β-HSD protein expression in 

isolated pig liver microsomes was shown to be positively related to the rate of 

androstenone metabolism. Therefore, the literature studies demonstrates that both, the 

rate of androstenone metabolism and the rate of androstenone production play an 

important role in the regulation of androstenone deposition in the adipose tissue of pigs 

and consequently the development of boar taint. 

The first reported use of 3α-HSD for the electrochemical determination of a steroidal 

compound was reported by Teodorczyk and Purdyt in 1990; in this study an enzyme 

modified glassy carbon electrode was used to monitor the NADH produced from the 

enzymatic oxidation of androsterone. In 2012, Mundaca and co-workers adopted a similar 

approach to the analysis of androsterone. The composite electrode contained the enzyme 

3α-HSD, multi-walled carbon nanotubes, the co-factor NAD+ and an ionic liquid; this 

biosensor was used in conjunction with amperometry in stirred solution to detect the 

NADH generated in the enzymatic reaction. The only other reported use of a 3-

hydroxysteroid dehydrogenase enzyme for the determination of steroidal compounds, 

used a mutated strain of the enzyme in conjunction with fluorescence detection (Xiong et 

al. 2009). Therefore, the authors of the patent (European Patent 2966441) are the first to 

report the use of a screen-printed biosensor incorporating the enzyme 3α-HSD for the 

measurement of androstenone, via the depletion of NADH, directly in the adipose tissue 

of pigs post-mortem. 
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2.2 Experimental 

2.2.1 Apparatus and instrumentation 

All voltammetric and chronoamperometric measurements were carried out with a 

µAutolab III potentiostat interfaced to a PC for data acquisition via the NOVA v1.10 

(Metrohm, Netherlands) software package. Figure 2.3 depicts the SPCEs supplied by 

Gwent Electronic Materials Ltd (Pontypool, UK); the working electrode is fabricated using 

a carbon ink (C2030519P4) and the reference electrode is fabricated using a Ag/AgCl ink 

(C61003P7).  

Figure 2.4. Diagram of a screen printed biosensor 

Figure 2.3. Diagram of a screen printed sensor 
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Figure 2.4 depicts the screen-printed Meldola’s Blue modified carbon electrode 

(BE2031028D1/247) supplied by Gwent Electronic Materials Ltd (Pontypool, UK) with an 

additional working electrode modification of drop-coated cofactor (NADH) and enzyme 

(3α-HSD) (Hart et al., 2017). 

Measurements of pH were obtained with a Testo 205 probe (Testo Ltd, Alton): this dual 

device also monitors temperature and has sharp sensor tips suitable for piercing adipose 

or muscle tissue. The Agriculture and Horticulture Development Board (2010) released a 

report evaluating a range of pH-temperature probes for pork monitoring, the results 

concluded that the Testo 205 probe was the most practical in terms of stability, ease of 

use, and maintenance.  
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2.2.2 Chemicals and reagents 

All reagents were of analytical grade and purchased from Sigma Aldrich (Poole, UK) unless 

specified otherwise. Monosodium dihydrogen phosphate, disodium monohydrogen 

phosphate and trisodium phosphate were obtained from BDH Lab Supplies (Poole, UK). 

Stock solutions of these phosphate buffers were prepared to a concentration of 0.5 M by 

dissolving the appropriate mass in deionised water; these were then titrated together to 

achieve the desired pH. Stock solutions of 1.0 M sodium chloride and 0.1 M sodium 

hydroxide were prepared by dissolving the appropriate mass in deionised water. 

A 10 mM skatole stock solution was prepared by dissolving the required mass in methanol 

(HPLC grade purchased from Fisher Scientific (Loughborough, UK)). Working standards 

were prepared by diluting the skatole stock solution with phosphate buffer (0.1 M final 

concentration), sodium chloride (0.1 M final concentration) and methanol (5% final 

volume); working skatole concentrations specified in each procedure. The pH of the 

phosphate buffered solution was pH 7 unless specified otherwise. 

Stock solutions (50 mM) of thiamine, pantothenic acid, nicotinamide, and pyridoxine were 

prepared by dissolving the required mass in deionised water. Working standards (5 mM) 

for cyclic voltammetric studies were prepared by diluting the stock solution with the 

phosphate buffer and sodium chloride solutions (0.1 M final concentration). Riboflavin 

and folic acid stock solutions (20 mM) were prepared by dissolving the required mass in 

0.1 M sodium hydroxide.  Working standards (5 mM) for cyclic voltammetric studies were 

prepared by diluting the stock solution with the phosphate buffer and sodium chloride 

solutions (0.1 M final concentration). The working concentrations of each vitamin 

compound used in the differential pulse voltammetric studies are listed in Table 3. 

A 30 µg/ml stock solution of the reduced form of ß-nicotinamide adenine dinucleotide 

disodium salt (NADH) was prepared with a 0.1 M pH 7.0 phosphate buffer solution. A 
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solution of 3αHSD, 3α-Hydroxysteroid Dehydrogenase from Pseudomonas testosterone, 

was prepared by adding 150 µL of 0.1 M phosphate buffer to 50 units of enzyme; this was 

mixed by slow speed vortex. Then 100 µL of the NADH solution was added to the enzyme 

vial and mixed by slow speed vortex. The final mass of NADH was 120 µg with 2 units of 

3αHSD per biosensor. The solution was deposited using a Barky pipette to dispense 10 µL 

of the solution onto the MB-SPCEs which were stored in a refrigerated (4°C) desiccator 

under a vacuum for 24 hours to allow the coating to dry down. All analyses with 

biosensors were carried out within 48 hours of preparation. 

A 1 mg/ml stock solution of androstenone was prepared by dissolving the required mass 

in methanol. Working standards were prepared by diluting the androstenone stock 

solution with the phosphate buffer (0.1 M final concentration), sodium chloride (0.1 M 

final concentration) and methanol (5% final volume); working androstenone 

concentrations specified in each procedure. 
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2.2.3 Procedures 

2.2.3.1 Cyclic voltammetric behaviour of skatole 

All measurements of skatole were performed by lowering a SPCE (vs. Ag/AgCl) into a 

voltammetric cell containing 10 ml of the working solution (cell configuration shown in 

chapter one Figure 1.1B). The cyclic voltammetric scan window was 0 V to +1 V, scan rate 

has been specified in each procedure. 

The effect of the presence of sodium chloride on the voltammetric behaviour of skatole 

(1 mM) was studied at scan rates of 50 and 100 mV/s. 

The effect of pH on the cyclic voltammetric behaviour of skatole (1 mM) was observed 

with a phosphate buffered solution in the range pH 5-9. This study was performed at a 50 

mV/s scan rate.  

The effect of scan rate on the cyclic voltammetric behaviour of skatole (1 mM) was 

determined over the scan rate range 20-200 mV/s. 

The possibility of re-using screen printed carbon electrodes for the measurement of 

skatole was investigated; repeat scans were obtained using a single SPCE (vs. Ag/AgCl) in 

a skatole solution (1 mM) at a scan rate of 50 mV/s. 

2.2.3.2 Differential pulse voltammetric calibration of skatole 

The parameters for the differential pulse voltammetry procedure were as follows: 

equilibration time 10 s; starting potential 0 V; end potential +1 V; scan rate 50 mV/s; step 

potential 0.005 V; step width 0.1 s; modulation amplitude 0.005 V; modulation time 0.05 

s. The skatole calibration study was performed over the concentration range 2-100 µM.
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2.2.3.3 Interference studies with water soluble vitamins 

2.2.3.3.1 Cyclic voltammetry 

Initial studies were carried out into the electrochemical behaviour of thiamine, riboflavin, 

nicotinamide, pantothenic acid, pyridoxine, and folic acid at a scan rate of 50 mV/s. 

2.2.3.3.2 Differential pulse voltammetry 

The differential pulse voltammetric measurement of skatole (20 µM) was carried out in 

the presence and the absence of the individual vitamins (concentrations listed in Table 3). 

2.2.3.4 Chronoamperometric determination of androstenone 

2.2.3.4.1 Androstenone calibration 

An androstenone calibration was performed using biosensors (3αHSD-NADH-MB-SPCEs 

vs. Ag/AgCl) prepared 24 hours prior to use; the biosensor fabrication method is described 

in section 2.2.2. The standards were prepared in 0.1 M phosphate buffer with 0.1 M 

sodium chloride, and a 100 µL aliquot was pipetted onto the electrode surface to give full 

electrode coverage as previously shown in chapter one Figure 1.1C. The androstenone 

concentration range was 1.835–7.341 µM (0.5-2.0 ppm) with a final methanol volume of 

5%. Measurements were performed by applying a potential of 0.05 V at the working 

electrode 5 s after the solution was pipetted on the electrode surface. The current 

response was monitored for a duration of 60 s. 
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2.3 Results and discussions 

2.3.1 Voltammetric behaviour of skatole 

2.3.1.1 Cyclic voltammetric behaviour and optimisation of buffer conditions 

2.3.1.1.1 Effect of sodium chloride  
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Figure 2.5. Cyclic voltammograms obtai ning using SPCEs (vs. Ag/AgCl) with a solution 
containing 1 mM skatole in 0.1 M phosphate buffer at pH 7 without sodium chloride. Starting 
potential: 0 V, switching potential: +1 V. Scan rate: 50 mV/s. 

Figure 2.6. Cyclic voltammograms obtaining using SPCEs (vs. Ag/AgCl) with a solution 
containing 1 mM skatole in 0.1 M phosphate buffer at pH 7 with 0.1 M sodium chloride. 
Starting potential: 0 V, switching potential: +1 V. Scan rate: 50 mV/s. 
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Salt naturally occurs in cells, including those found in adipose tissue (Ho et al. 1994) 

therefore any voltammetric studies performed in solution should contain this component 

to best represent the sample that the sensors will be applied to. Sodium chloride is often 

used in electroanalysis to improve the conductivity of the electrolyte (Zoski 2007) which 

allows for a stable half-cell. The cyclic voltammograms in Figure 2.5 and Figure 2.6 

demonstrate the stabilisation of the skatole oxidation current response in the presence 

of sodium chloride (n=5); this study was performed at pH 7 which was the average pH of 

adipose tissue observed on the abattoir line (Appendix Table 1 – data obtained by K 

Westmacott). The coefficient of variation values presented in Table 2.1 and Table 2.2 

indicate that incorporating sodium chloride into the electrolyte improves response 

precision. Additionally, these measurements were performed at both 50 and 100 mV/s 

scan rates; 50 mV/s provided better measurement precision over 100 mV/s. Figure 2.7 

demonstrates that the presence of sodium chloride significantly improves precision.   

These studies were performed with a single solution using new SPCEs (vs. Ag/AgCl) for 

each measurement, this data therefore indicates that the electrodes have been printed 

with excellent precision.  

 

 

Scan rate 0.0 M Sodium chloride 0.1 M Sodium chloride 
50 mV/s Coefficient of variation = 13.4 % Coefficient of variation = 3.6 % 

100 mV/s Coefficient of variation = 10.3 % Coefficient of variation = 7.4 % 

Table 2.1. Effect of sodium chloride concentration and scan rate on the precision of skatole peak 
current values represented as coefficient of variation calculations (n=5). 

Scan rate 0.0 M Sodium chloride 0.1 M Sodium chloride 
50 mV/s Coefficient of variation = 8.2 % Coefficient of variation = 0.0 % 

100 mV/s Coefficient of variation = 6.3 % Coefficient of variation = 3.4 % 

Table 2.2. Effect of sodium chloride concentration and scan rate on precision of skatole peak potential 
values represented as coefficient of variation calculations (n=5). 
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Figure 2.7. Bar chart of skatole peak height (µA) in the presence and absence of sodium chloride 
at 50 mV/s and 100 mV/s scan rate (n=5).  

2.3.1.1.2 Effect of pH 

Skatole is electroactive over the pH range 5-9. Figure 2.8A shows that the peak potential 

decreases with increasing pH with a break point around pH 7; this suggests an apparent 

pKa value of 7. Figure 2.8B shows that the peak current also decreases with pH and again 

there is a break point of around 7. It should be mentioned that the pH of adipose tissue is 

typically pH 7.02 (pH range 6.7-7.54: Appendix Table 2.1), consequently there is little 

change in the magnitude of the peak current at the expected pH of the samples. At this 

stage the results indicate that the voltammetric method for the measurement of skatole 

in adipose tissue is readily feasible.  
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Figure 2.8. (A) Plot of peak current vs. pH and (B) plot of peak potential vs. pH (n=5). 
Plots were constructed from cyclic voltammograms obtained using SPCEs (vs. Ag/AgCl) 
with a solution containing 1 mM skatole in 0.1 M phosphate buffer at pH 7 with 0.1 M 
sodium chloride. Starting potential: 0.0 V, switching potential: +1.0 V. Scan rate: 50 
mV/s. 
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2.3.1.1.3 Effect of scan rate 

In order to deduce the nature of the electrode reaction occurring at pH 7 the effect of 

scan rate on the magnitude of the peak current was studied. Figure 2.9 shows the 

resulting voltammograms obtained with scan rates between 20-200 mV/s. Figure 2.10 

shows a deviation in linearity with scan rate which is indicative of reactant adsorption at 

the electrode surface. All scans were started straight after the electrodes were lowered 

into the solution, the practical delay between lowering the electrodes and starting a scan 

is around five seconds. This delay time will not alter the performance of the electrode as 

the system is held at open circuit until the scan begins and a potential is applied therefore 

this wait time is standardised. 

Applied potential (V) 

Cu
rr

en
t (

µA
) 

Figure 2.9. Cyclic voltammograms obtained using SPCEs vs (Ag/AgCl) with a solution 
containing 1 mM skatole in 0.1 M phosphate buffer with 0.1 M sodium chloride at pH 7 using 
scan rates (mV/s): (A) 20; (B) 50; (C) 100; (D) 150; (E) 200. Starting potential: 0.0 V, switching 
potential: +1.0 V. 
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Figure 2.10. Plot of ip vs. v1/2 following direct cyclic voltammetry of 1.0 mM skatole in 0.1 M 
phosphate buffer with 0.1 M sodium chloride. 

2.3.1.1.4 Effect of electrode re-use 

 

To determine if the electrodes could be re-used for subsequent runs a study was 

performed with a single screen-printed carbon electrode (vs. Ag/AgCl) five times in a 

solution containing skatole. Figure 2.11 indicates that the product also appears to adsorb 
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Figure 2.11. Cyclic voltammograms obtained using the same SPCE (vs. Ag/AgCl) with 
a solution containing 1.0 M skatole in 0.1 M phosphate buffer at pH 7 with 0.1 M 
sodium chloride. Scans: (A) 1, (B) 2, (C) 3, (D) 4, (E) 5. 
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on the electrode surface resulting in electrode fouling. Consequently these electrodes can 

only be used once for the measurement of skatole. In the interest of preventing carcass 

contamination, this finding is not a disadvantage.  

2.3.1.1.5 Summary of cyclic voltammetric analyses 

The cyclic voltammetry experiments show that skatole is oxidised at the SPCE around 

+0.55 V (vs.Ag/AgCl), therefore an operating scan window +/- 0.5 V of the peak potential 

was chosen for sufficient observation of the skatole peak. The inclusion of sodium chloride 

was shown to significantly improve precision, therefore it was included in all future 

studies. The scan rate study shows reactant adsorption to the electrode surface whereas 

the electrode re-use study shows product adsorption. Therefore, the each scan is 

obtained under identical scan conditions and each scan uses a new screen printed strip to 

avoid electrode fouling. At this point the main operating parameters for the measurement 

of skatole were considered to be optimised. However, it was decided to use the more 

sensitive and selective electroanalytical method, known as differential pulse voltammetry 

(which effectively removes the interfering charging current) in order to measure the 

endogenous skatole concentrations in adipose tissue; these are expected to be in the low 

ppm range (boar taint threshold 0.2-0.25 ppm) as mentioned in chapter one section 1.1.4. 
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Figure 2.13. Skatole calibration plot prepared from the peak height currents obtained by 
differential pulse voltammetry (n=3). 

2.3.1.2 Differential pulse voltammetry calibration in buffered solution 

Figure 2.12. Differential pulse voltammograms obtained using SPCEs (vs. Ag/AgCl) with 
solutions containing µM concentrations of skatole: 0, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100 in 0.1 
M phosphate buffer at pH 7 with sodium chloride. Equilibration time 10 s; starting potential 
0 V, end potential +1 V, scan rate 50 mV/s, step potential 0.005 V, step width 0.1 s, 
modulation amplitude 0.005 V, modulation time 0.05 s. 

y = 0.0142x 

R2 = 0.995 
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Figure 2.12 shows the differential pulse voltammograms of skatole over the concentration 

range 2-100 µM; well-defined oxidation signals were obtained over the whole range 

studied. The magnitude of the peak currents were then plotted against the corresponding 

concentration, as seen in Figure 2.13 a linear response was obtained; the sensitivity was 

calculated to be 14.2 µA/mM.  

The reproducibility of peak current was calculated at a concentration of 10 µM as this is 

close to the level of interest for boar taint, the resulting coefficient of variation was 

calculated to be 7.69% (n=3). Further studies on the reproducibility of the voltammetric 

method is discussed in section 4.3.4.2.1, where samples of adipose tissue were spiked 

with relevant concentrations of skatole and the sensitivites were similar to that seen in 

buffered solutions.  

2.3.2 Interference studies with water soluble vitamins 

2.3.2.1 Cyclic voltammetry 

The pH of interest in these interference studies was determined to be pH 7; this value was 

obtained from the calculated mean value measured from a range of carcasses analysed 

on the abattoir line (Appendix Table 1). The compounds of interest identified in the 

literature review (section 2.1), that could potentially result in an interfering response, 

were analysed by cyclic voltammetry. A vitamin concentration of 5 mM was selected for 

these studies as it is well above the concentration expected in adipose tissue. For 

the purpose of ease of interpretation the vitamin cyclic voltammograms have been 

overlaid with both a buffered control solution and a 1 mM skatole buffered solution; 

this allows for a comparison of peak potentials where a response has been observed. 
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Figure 2.16. Cyclic voltammograms obtained using an SPCE (vs. Ag/AgCl) with a 
solution containing (A) 1 mM skatole (B) 5 mM pyridoxine and (C) 0 mM analyte [solid 
line] solution in 0.1 M phosphate buffer at pH 7 with 0.1 mM sodium chloride. Scan rate: 
50 mV/s; start potential: 0.0 V; switching potential: +1.0 V. 

Figure 2.14. Cyclic voltammograms obtained using an SPCE (vs. Ag/AgCl) with a 
solution containing (A) 1 mM skatole (B) 5 mM thiamine and (C) 0 mM analyte [solid 
line] solution in 0.1 M phosphate buffer at pH 7 with 0.1 mM sodium chloride. Scan 
rate: 50 mV/s; start potential: 0.0 V; switching potential: +1.0 V. 

Figure 2.15. Cyclic voltammograms obtained using an SPCE (vs. Ag/AgCl) with a solution 
containing (A) 1 mM skatole (B) 5 mM riboflavin and (C) 0 mM analyte [solid line] solution 
in 0.1 M phosphate buffer at pH 7 with 0.1 mM sodium chloride. Scan rate: 50 mV/s; start 
potential: 0.0 V; switching potential: +1.0 V. 
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Figure 2.17. Cyclic voltammograms obtained using an SPCE (vs. Ag/AgCl) with a 
solution containing (A) 1 mM skatole (B) 5 mM folic acid and (C) 0 mM analyte [solid line] 
solution in 0.1 M phosphate buffer at pH 7 with 0.1 mM sodium chloride. Scan rate: 50 
mV/s; start potential: 0.0 V; switching potential: +1.0 V. 

Figure 2.18. Cyclic voltammograms obtained using an SPCE (vs. Ag/AgCl) with a 
solution containing (A) 1 mM skatole (B) 5 mM nicotinamide and (C) 0 mM analyte [solid 
line] solution in 0.1 M phosphate buffer at pH 7 with 0.1 mM sodium chloride. Scan rate: 
50 mV/s; start potential: 0.0 V; switching potential: +1.0 V. 

Figure 2.19. Cyclic voltammograms obtained using an SPCE (vs. Ag/AgCl) with a 
solution containing (A) 1 mM skatole (B) 5 mM pantothenic acid and (C) 0 mM analyte 
[solid line] solution in 0.1 M phosphate buffer at pH 7 with 0.1 mM sodium chloride. Scan 
rate: 50 mV/s; start potential: 0.0 V; switching potential: +1.0 V. 
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The cyclic voltammetric studies into the electrochemical behaviour of thiamine, 

riboflavin, nicotinamide and pantothenic acid at pH 7 found there to be no current 

response for these compounds over the potential window of -0.1 to +1.0 V at the SPCE 

(vs. Ag/AgCl). This can be seen in Figures 2.14, 2.15, 2.18 and 2.19; no peak response was 

observed at pH 7 (B) in comparison to a buffer solution (C) and a skatole buffered solution 

(A). 

However, the same study of pyridoxine and folic acid at pH 7 revealed a current response 

over the potential window of -0.1 to +1.0 V at the SPCE (vs. Ag/AgCl). Comparing the peak 

potential values of pyridoxine and skatole in Figure 2.16 results in a potential separation 

of 0.2 V. Similarly, the comparison of the peak potentials in Figure 2.17 indicates a good 

separation for folic acid and skatole; with a difference of 0.25 V. Therefore, the 

endogenous measurement of skatole is still feasible in the presence of pyridoxine or 

folic acid; this will be discussed in more detail in section 2.3.2.2.  

2.3.2.2 Differential pulse voltammetry 

The voltammetric technique differential pulse voltammetry was chosen for the 

quantification of skatole in adipose tissue using SPCEs (vs. Ag/AgCl), as discussed in 

section 2.3.1.2. The compounds reported to be present in adipose tissue, and possess 

redox properties, were further studied close to their minimum and maximum reported 

concentration ranges with the more sensitive technique differential pulse voltammetry. 

Table 3 presents the reported concentration ranges of the different compounds found in 

adipose tissue, these were calculated from those listed in Appendix Table 7 which were 

originally obtained from various literature sources as discussed in section 2.1. 

The differential pulse voltammetry study was performed by first analysing a solution 

containing a fixed concentration of skatole, prepared in a buffered solution; the peak 

magnitudes were calculated and recorded. These values were subsequently compared to 
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the magnitudes measured in the presence of vitamin standards, the standards were 

pipetted into the original solution at concentrations above the reported minimum and 

maximum endogenous concentrations; these concentrations are labelled as A1 and A2 in 

Table 2.3. 

The ability to measure skatole in the presence of these vitamins has been reported as a 

percentage difference in peak current, these values were obtained for skatole in the 

absence and presence of the individual vitamins. All studies were carried out in triplicate, 

therefore the values reported in Table 2.4 are averages of the skatole peak current values 

before addition (A0), after addition one (A1) and after addition two (A2). Clearly, there 

was no significant change in measured skatole concentrations in the presence of the 

vitamins which demonstrates the applicability of the method for boar taint analysis in the 

presence of these endogenous compounds. In summary the response for skatole is a 

simple electro-oxidation at the plain carbon electrode and there is no interference from 

the vitamins studied as they are oxidised at higher potentials. 

Table 2.3. Reported concentration ranges of vitamin compounds in porcine adipose 
tissue converted to µM values from those shown in Appendix Table 7 reported by 
Greenfield (2009). The added concentrations used for differential pulse voltammetry 
studies: (A1) addition 1 and (A2) addition 2 relating to the solutions analysed in Table 
2.4. 
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Table 2.4. Skatole peak current measurements (n=3) made in the absence of vitamin compounds 
(A0) and in the presence of a low concentration vitamin (A1) and high concentration vitamin 
(A2); concentrations added are listed in Table 2.3. All solutions prepared in 0.1 M phosphate 
buffer with 0.1 M sodium chloride. 

(µA) (µA) (µA) 
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2.3.3 Chronoamperometric determination of androstenone 

Previous research studies leading to the European Patent 2966441 were carried out to 

optimise the conditions for the fabrication and operation of the biosensor. Consequently, 

more detailed studies on the performance of the biosensor and its application to 

boar taint analysis in adipose tissue were performed in this project. The results of  these 

studies are described in the section 2.3.3.1 for buffered solution and sections 3.3.1.2 and 

4.3.4.2.2 for application with porcine adipose tissue samples.  

2.3.3.1 Calibration in buffered solution 

Figure 2.20 shows the chronoamperograms obtained for androstenone over the 

concentration range 0.5-2.0 ppm (1.8 – 7.3 µM); a buffered solution free of androstenone 

is also included in the Figure. The current measurements were taken at 10, 20, and 30 

seconds after the application of the applied potential (+0.05 V vs. Ag/AgCl). These values 

A 

 B 

C 

 D 

Figure 2.20. Chronoamperograms obtained with biosensors (3αHSD-NADH-MB-SPCE vs. 
Ag/AgCl) at a range of concentrations (A) 0 µM (B) 1.835 µM (C) 3.671 µM (D) 7.341 µM. 
Solutions prepared with 0.1 M phosphate buffer containing 0.1 M sodium chloride and 5 
% methanol. Applied potential +0.05 V. Solution volume: 100 µl. Biosensors operated at 
30°C. 
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were plotted against concentration in Figure 2.21. It is evident from Figure 2.21 that a 

linear relationship exists between current and androstenone concentration over the 

concentration range studied in aqueous buffer solution. This linear current-concentration 

relationship demonstrates the possibility of measuring this boar taint compound in the 

fluid of an incision made in adipose tissue. 

Figure 2.21. Androstenone calibration graph plotting chronoamperometric 
current measurements at 10s (A) 20s (B) and 30s (C). 
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2.4 Conclusions 

The electrochemical behaviour of skatole at a SPCE (vs. Ag/AgCl) was investigated using 

cyclic voltammetry. The inclusion of sodium chloride was shown to improve measurement 

precision and the variation of electrolyte pH showed negligible current difference over 

the expected pH range in pig adipose tissue (pH 6.7 to pH 7.54). A scan rate study showed 

that weak reactant adsorption occurs at the SPCE surface. Another adsorption 

phenomenon was also observed, namely product adsorption; this electrode fouling 

precluded the multiple use of the SPCE. A calibration study for skatole was performed 

using the more sensitive technique differential pulse voltammetry. A calibration study for 

androstenone was performed using chronoamperometry with an electrochemical 

biosensor.  

A selection of endogenous compounds present in adipose tissue have been investigated 

for their potential interference with the measurement of skatole using plain screen-

printed carbon electrodes in conjunction with voltammetric methods. No interfering 

signals were observed for any of the compounds examined under the relevant conditions 

investigated.  

The performance of the voltammetric method strongly indicated that the approach with 

a screen-printed carbon electrodes would be suitable for the measurement of skatole in 

adipose tissue. Similarly, the performance of the chronoamperometric method with a 

screen-printed androstenone biosensor demonstrated the possibility of measuring this 

analyte in adipose tissue. The next chapter, chapter 3, will describe the application of the 

individual sensor and biosensor for the measurement of target analytes, skatole and 

androstenone, in porcine adipose tissue samples obtained from various sources.  
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Chapter Summary 

Chapter three explains the need for an electrochemical sensor and biosensor that can 

measure boar taint compounds, skatole and androstenone, directly in adipose tissue. The 

novel sensing system developed for this purpose will be compared to the traditional 

laboratory based technique, gas chromatography. A review of gas chromatographic 

methodology for boar taint analysis has been presented, followed by a summary of the 

adapted methods used for the validation of the sensor technology reported in this thesis. 

The experimental procedures are reported for both the electroanalysis and 

chromatographic analysis of porcine adipose tissue. The application of these 

methodologies to real samples in a laboratory environment has been presented and the 

resulting quantitative data of each method has been compared. A positive correlation was 

observed between the two techniques which demonstrates the viability of the novel 

sensor technology for the measurement of boar taint compounds on the abattoir 

processing line. 
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Chapter Three 

3.1 Introduction 

In chapter two, the possibility of measuring skatole with a disposable screen-printed 

carbon electrode in aqueous buffer systems was demonstrated, as well as measuring 

androstenone with a disposable screen-printed amperometric biosensor. However, as 

mentioned earlier in the thesis the main purpose of this project was to explore the 

possibility of developing an analytical approach for the direct measurement of skatole and 

androstenone in adipose tissue. In this chapter the electrochemical approaches using 

screen-printed sensors for this purpose will be discussed. In addition the application of 

this approach to the analysis of a range of adipose tissue samples (obtained from both a 

pig producer and local retailers) will be described. In order to validate the novel 

electrochemical technology it was necessary to compare the results from these samples 

with a conventional analytical technique, for this purpose high-resolution gas-

chromatography was considered to be appropriate. No suitable method was available for 

this purpose, consequently a detailed investigation was carried out to develop new gas 

chromatographic methods for the analysis of the boar taint compounds in adipose tissue. 

In this chapter a full description of the development of the gas chromatographic method 

and its application to a range of samples corresponding to those analysed by the 

electrochemical approach will be discussed. Finally, the results obtained with the 

electrochemical techniques will be compared to those obtained with the gas 

chromatographic techniques.  

3.1.1 Rationale for the direct electrochemical analysis of porcine tissue 

As previously discussed, there are currently no reported methods for the direct analysis 

of boar taint compounds in adipose tissue. The novel patented approach, which was 
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discussed at length in chapter two, will form the basis of the work reported in this thesis. 

Having shown that boar taint compounds can be measured by screen printed sensors in 

aqueous buffer solutions (chapter two) the next step was to develop a suitable approach 

for the direct analysis of the compounds in adipose tissue. In previous studies Hart and 

co-workers (2010) demonstrated that a modified screen-printed carbon electrode could 

be inserted into a whole fruit for the direct measurement of citric-acid. Consequently, it 

was decided to explore the possibility of a similar approach for the determination of 

skatole and androstenone in pig adipose tissue.  

3.1.2 Gas chromatographic analysis of porcine adipose tissue 

The determination of boar taint, using chromatographic techniques, to separate the 

complex biological matrix that is adipose tissue, has been the subject of many reports. 

High-resolution gas-chromatography (HRGC) and high-performance liquid-

chromatography (HPLC) have been used with a range of detection systems such as mass-

spectrometry (Sørensen and Engelsen, 2014)(Meier-Dinkel et al., 2013)(Bekaert et al., 

2012), time-of-flight mass spectrometry (Fischer et al., 2014), tandem mass-spectrometry 

(Buttinger et al., 2014), fluorescence (Verheyden et al., 2007)(Lunde et al., 2012)(Liu et 

al., 2014)(Trautmann et al., 2014)(Mörlein et al., 2012), and flame ionisation detection 

(Kaufmann, Ritter and Schubert, 1976). A wide range of approaches have been reported 

in these publications for the preparation of adipose tissue samples prior to 

chromatographic separation. The initial step usually involves a form of liquefaction such 

as ultra-sonication in a solvent, microwaving, or freezing followed by blending. A clean-

up step is sometimes included in the preparation procedure such as centrifugation to 

remove particulate matter, solid-phase-extraction, or size exclusion chromatography. 

Sometimes, derivatisation procedures are included to improve separation and detection. 

Evaporating the sample to increase concentration has also been reported. Introduction of 

the sample to the chromatographic instrumentation also varies, gas chromatography 
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often uses the analysis of volatiles in headspace or the direct injection of the liquid extract 

which is subsequently volatilised at the high temperature inlet.   

It should be mentioned that, in the current project, the basic gas chromatographic 

method was supplied by Whittington (2014); this was modified and evaluated for the 

determination of the target analytes in adipose tissue. The method supplied was similar 

to those reported in two publications by this research group; which used 5-methylindole 

as the internal standard for skatole quantification (Nicolau-Solano et al., 

2007)(Whittington et al., 2004). The sample preparation method for the liquid-liquid 

extraction of skatole from liquid adipose tissue was adapted from (Dehnhard et al., 1993). 

This procedure involves dissolution of liquid fat in hexane, followed by skatole extraction 

with acetonitrile, the method reported a 98.9% recovery. An additional preparation step 

was employed for the GC studies in this thesis to ensure that the solvent introduced to 

the GC was compatible with the nitrogen-phosphorous detector. The exchange of solvent 

to ethyl acetate provided the opportunity to pre-concentrate the sample extract, this was 

achieved with rotary evaporation followed by reconstitution in a smaller volume of ethyl 

acetate. It should be mentioned that this sample preparation procedure has not been 

previously documented in peer-reviewed literature. 

The sample preparation procedure adopted for the extraction of androstenone was 

modified from a method developed by Verheyden and co-workers (2007). This method 

involved melting the adipose tissue and centrifuging the liquid fat to remove any water 

present. The remaining fat was added to a mixed solution of methanol and hexane (9:1) 

before ultrasonication, vortex mixing, and finally cooled to clarify the supernatant.  

All samples were stored at -18°C prior to GC analysis due to the time consuming sample 

preparation and gas chromatographic analysis methods. A study by Ampuero Kragten and 

colleagues (2011) reported no degradation of androstenone 2-3 years after sampling after 
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being stored at -18°C, therefore this storage method was sufficient for the duration of this 

project.  

3.2 Experimental 

3.2.1 Electroanalysis 

3.2.1.1 Apparatus and instrumentation 

The (bio)sensors, potentiostat and pH-temperature probe used in this chapter have been 

previously described in chapter two section 2.2.1. In some circumstances it was not 

practical to measure the internal temperature of tissue samples as this would remove 

interstitial fluid from the incision location which in turn would reduce the available fluid 

for electroanalysis with the (bio)sensors. In those cases surface temperature was 

monitored using an infrared thermometer with laser targeting (Maplin Electronics, 

Rotherham). 

3.2.1.2 Chemicals and reagents 

The standards skatole and androstenone were prepared at a stock concentration of 1 

mg/ml in methanol. 

3.2.1.3 Procedures 

3.2.1.3.1 Skatole measurement using a voltammetric plain sensor 

Figure 3.1 shows a SPCE inserted into a sample of adipose tissue (approximately 10x5cm) 

temperature controlled at 30°C. The screen-printed electrode was connected to a 

µautolab potentiostat, interfaced to a computer operated with the NOVA v1.10 

(Metrohm, Netherlands) software package to carry out differential pulse voltammetry. 

The monitor shows a typical differential pulse voltammogram obtained with the adipose 

tissue sample.   
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In order to carry out a representative calibration study, individual adipose tissue sub 

samples were fortified with different concentrations of skatole prepared in methanol. The 

fortification additions were calculated using the weight of the section of adipose tissue 

and the concentration of the skatole solution prepared in methanol: µg/g 

(skatole/adipose tissue). To ensure that no solution was lost when pipetted into the 

adipose incision only very small volumes (< 20 µL) of skatole solution were used to fortify 

the adipose tissue samples. These samples were stored in the fridge for 24 hours to allow 

skatole to diffuse through the sample. The following day, the samples were brought to 

30°C on a temperature controlled heated block and interrogated with the system shown 

in Figure 3.1. The DPV parameters are described in the previous chapter in section 2.2.3.2. 

3.2.1.3.2 Androstenone measurement using an amperometric biosensor 

The analysis of androstenone in adipose tissue was performed with the same instrumental 

set up as shown Figure 3.1, except that the SPCE was replaced with an amperometric 

Figure 3.1. Screen printed sensor (shown in chapter two Figure 2.3) inserted into a sample 
of subcutaneous porcine adipose tissue (warmed to 30°C). The resulting differential pulse 
voltammogram is displayed.   
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screen printed biosensor and the chronoamperometric waveform was applied. An 

androstenone calibration was performed using biosensors (3αHSD-NADH-MB-SPCEs vs. 

Ag/AgCl) prepared 24 hours prior to use; the biosensor fabrication method is described in 

section 2.2.2. The androstenone solution concentration range analysed was 0.0; 0.1; 0.5; 

1.0; 2.0 µg/ml with a final methanol volume of 5%. Measurements were performed by 

applying a potential of 0.05 V at the working electrode and monitoring the current 

response for a duration of 60s.The design of the biosensor and the instrumental 

parameters used in the analysis are described in chapter two; section 2.2.1, section 2.2.2 

and section 2.2.3.4.  

In order to carry out a calibration study individual adipose tissue sub samples were 

fortified with different concentrations of androstenone prepared in methanol. The 

fortification additions were calculated using the weight of the section of adipose tissue 

and the concentration of the androstenone solution prepared in methanol: µg/g 

(androstenone/adipose tissue). To ensure that no solution was lost when pipetted into 

the adipose incision only very small volumes (< 20 µL) of androstenone solution were used 

to fortify the adipose tissue samples. These samples were stored in the fridge for 24 hours 

to allow androstenone to diffuse through the sample. The following day, the samples 

were brought to 37°C on a temperature controlled heated block and interrogated with 

the system shown in Figure 3.1 (but instead using the technique chronoamperometry).  

3.2.2 Gas chromatographic analysis 

3.2.2.1 Skatole analysis 

3.2.2.1.1 Apparatus and instrumentation 

A Clarus 580 Gas Chromatograph with autosampler interfaced to a PC for data acquisition 

with the TotalChrom Navigator software package was used for the gas chromatographic 

analyses. The GC has two detectors; a flame ionisation detector (FID) and a nitrogen-
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phosphorous detector (NPD). Hydrogen supplied to the instrumentation for was filtered 

using a Hydrogen Specific Triple Purifier (Bellefonte, Restek) to ensure that no impurities 

were present in the gas supply for both the mobile phase and detector. Sample injections 

made to the GC used either a manual SGE syringe 1 µL 23 ga 50 mm needle or a Hamilton 

autosampler syringe 5 µL 23 ga 70 mm needle (Merck, Darmstadt). The inlet was fitted 

with a glass inlet focus liner with a 4.0 mm ID single taper with quartz wool (Merck, 

Darmstadt) to trap non-volatile residues. 

A Perkin Elmer Clarus 580 Gas Chromatograph linked to a nitrogen phosphorous detector 

(also known as a nitrogen specific or thermionic detector) was used for skatole 

quantification. The capillary column CP-Wax 57 CB [25m x 0.32 mm x 0.2 µm] (Agilent, 

Santa Clara USA), which has a chemically bonded polyethylene glycol stationary phase, 

was used for this method. The GC method uses a split injection (4.5:1) and helium (BOC, 

Guilford) as the carrier gas. To ensure the quality of the gas is as high as possible a Super 

Clean (helium specific) Trap (Bellefonte, Restek) was fitted between the cylinder and 

instrumentation. The injector port temperature was 230°C and an oven temperature 

programme was used; 60°C for 1 min, 20°/min to 200°C held for 5 min, 10°C/min to 220°C 

held for 5 min. The autosampler programme included a 5 minute equilibrium time 

between runs to allow for the NPD to stabilise after each run. The detector temperature 

was set at 250°C with a gas flow of hydrogen 2 ml/min and air 100 ml/min. The NPD 

sensitivity can be altered by adjusting the voltage at the potentiometer; the baseline 

reading for the NPD was maintained daily at 0.5 mV.  The GC was interfaced to a PC for 

data acquisition using the Perkin Elmer TotalChrom Navigator software package version 

6.3.2. Additional consumables for the instrumentation include:  Thermolite septa [max 

temp 340°C] (Bellefonte, Restek); polar fused silica guard column 0.32 mm (Darmstadt, 

Merck); fused silica connectors (Darmstadt, Merck); NPD bead assembly (Perkin Elmer, 

Connecticut USA). 
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3.2.2.1.2 Chemicals and reagents 

3-methylindole (skatole) and 5-methylindole were obtained from Sigma Aldrich (Dorset,

UK). Stock solutions of these compounds were prepared by dissolving the required mass 

in a known volume of solvent. Solvents used were acetonitrile and ethyl acetate where 

specified. The standard 5-methylindole stock solution was prepared in the relevant 

solvent to a concentration of 200 µg/ml and added to sample extracts to give a final 

concentration of 0.5 µg/ml.  Standards were stored in a spark-free refrigerator for a 

maximum of one-week and taken out an hour before use to reach room temperature 

(20°C) before use. Glassware was cleaned with the following procedure; Decon soak, 

deionised water rinse, and finally an acetone rinse, before being placed in a drying 

cabinet. 

3.2.2.1.3 Procedures 

3.2.2.1.3.1 Solvent extraction method 

Stored adipose tissue samples (-18°C) were thawed for 24 hours at 4°C, and finally left to 

reach room temperature (20°C) for one hour. The adipose tissue was then prepared by 

Incision 

Hypodermal layer 

Superficial backfat layer 

Deep backfat layer 

Figure 3.2. Layering of subcutaneous adipose tissue, with an example of an 
incision in the superficial backfat layer. Incision shown as a white dotted line. 
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removing the skin, hypodermal layer and lower deep back fat layer leaving the superficial 

back fat layer (Figure 3.2). This layer is then cut into 5 mm3 pieces, weighed to 10 g in a 

glass jar and microwaved for 4 minutes at 320 W. Once the liquid adipose had cooled to 

50°C 1.5 ml was transferred to an Eppendorf tube; this step was performed in duplicate. 

The Eppendorf tubes were centrifuged at 10,000 rpm for 5 minutes to clarify the liquid 

supernatant. Then 1 g of the liquid adipose was transferred to a 50 ml Pyrex centrifuge 

tube containing 15 ml hexane (this step was again performed in duplicate). The centrifuge 

tubes were vortexed for 30 seconds and then shaken for 1 minute, this step was repeated 

two more times and the pressure was released from the tube between each repeat. Then 

5 ml acetonitrile was added to each tube and the mixing procedure was repeated again 

(triplicate vortex and shake). The tubes were centrifuged at 2000 rpm for 15 minutes. The 

upper hexane layer was then removed and 4 ml of the acetonitrile layer was transferred 

into a 10 ml round bottom flask containing anti-bumping granules. A rotary evaporator 

was used to take the sample to dryness. Then 500 µl ethyl acetate was added and the 

flask, this was vortexed for two minutes followed by one minute of ultrasonication. Then 

400 µl of this extract solution was transferred into a sample vial. An internal standard (5-

methylindole) was added to give a final concentration of 0.5 µg/ml. The sample vials were 

mounted on the carousel of the autosampler and 1 µl volumes were injected into the GC 

using the autosampler.     

3.2.2.1.3.2 Calibration method 

Initially, acetonitrile was employed in the calibration studies as this was initially proposed 

as the sample preparation solvent. However, acetonitrile’s incompatibility with the NPD 

was soon realised and this led to a further calibration study using ethyl acetate. Skatole 

standards were prepared in either acetonitrile or ethyl acetate over the concentration 

range 0.01-0.5 µg/ml. Each working standard of skatole was prepared with an internal 

standard (5-methyl indole) at a working concentration of 0.5 µg/ml.  
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3.2.2.1.3.3 Sample analysis 

The reconstituted sample extracts obtained with the procedure in section 3.2.2.1.3.1 

were analysed by the gas chromatographic method procedure described in section 

3.2.2.1.1. The peak areas of the analyte and internal standard were obtained from the 

corresponding chromatogram for each sample, these values were compared to slope of 

the calibration plot to determine the final concentrations in the sample extracts. Using an 

appropriate calculation, taking into account dilution and concentration steps, the 

endogenous concentrations of skatole were calculated. To ensure that skatole was not 

lost in the reconstitution process a recovery study was performed by fortifying liquid 

adipose tissue extracts (prepared in acetonitrile) that were taken to dryness and 

reconstituted in ethyl acetate; process described in section 3.2.2.1.3.1. The process was 

repeated without the fortification step using a portion of the same liquid adipose tissue 

extract to allow for background skatole concentration subtraction; results discussed in 

section 3.3.2.3. 

3.2.2.2 Androstenone analysis 

3.2.2.2.1 Apparatus and instrumentation 

A Perkin Elmer Clarus 580 Gas Chromatograph linked (Perkin Elmer, Connecticut USA) to 

a flame ionisation detector was used for androstenone determination. The capillary 

column CP-Sil 8 CB [25 m x 25 mm x 0.25 µm] (Agilent, Santa Clara USA), which has a cross-

linked and bonded methylpolysiloxane (5% phenyl) stationary phase which is non-polar, 

was used for this method. The GC method uses a split injection (48:1) and hydrogen (BOC, 

Guilford) as the carrier gas. The injector port temperature was 285°C and an oven 

temperature programme was used; 50°C for 8 min, 20°/min to 280°C held for 15 min, 

20°C/min to 300°C held for 25 min. The detector temperature was set at 290°C with a gas 

flow of hydrogen 45ml/min and air 450ml/min. The GC was interfaced to a PC for data 

acquisition using the Perkin Elmer TotalChrom Navigator software package version 6.3.2. 
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Additional consumables for the instrumentation include: Thermolite septa [max temp 

400°C] (Bellefonte, Restek); non-polar fused silica guard column 0.25 mm (Darmstadt, 

Merck); fused silica connectors (Darmstadt, Merck). 

3.2.2.2.2 Chemicals and reagents 

Androstenone and androsterone were obtained from Sigma Aldrich (Dorset, UK). Stock 

solutions of these compounds were prepared by dissolving the required mass in a known 

volume of methanol and hexane (9:1). The internal standard (androsterone) stock 

solution was also prepared in methanol and hexane (9:1) to a concentration of 200 µg/ml 

and added to sample extracts to give a final concentration of 2 µg/ml. Standard chemical 

solutions were stored following the procedure described in section 3.2.2.1.2. 

3.2.2.2.3 Procedures 

3.2.2.2.3.1 Solvent extraction 

 Stored adipose tissue samples (-18°C) were thawed for 24 hours at 4°C, and finally left to 

reach room temperature (20°C) for one hour. The adipose tissue was then prepared by 

removing the skin, hypodermal layer and lower deep back fat layer leaving the superficial 

back fat layer (Figure 3.2). This layer is then cut into 5 mm3 pieces, weighed to 10 g in a 

glass jar and microwaved for 1 minutes at 480 W. Once the liquid adipose had cooled to 

50°C 1.5 ml was transferred to an Eppendorf tube; this step was performed in duplicate. 

The Eppendorf tubes were centrifuged at 10,000 rpm for 5 minutes to clarify the liquid 

supernatant. Then 0.25 g of the liquid adipose was transferred to a 1.5 ml Eppendorf tube 

containing 1 ml methanol and hexane at a 9:1 ratio (this step was again performed in 

duplicate). The Eppendorf tubes were vortexed for 30 seconds and then placed in an 

ultrasonication bath for 5 minute, this step was repeated two more times and the 

pressure was released from the tube between each repeat. The tubes were centrifuged 

at 10,000 rpm for 5 minutes. The tubes were then placed in a cooling block for one hour 
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to clarify the supernatant. Then 500 µl of this extract supernatant was transferred into a 

sample vial, the internal standard (androsterone) was added to give a final concentration 

of 2.0 µg/ml. The sample vials were mounted on the carousel of the autosampler and 1 µl 

volumes were injected into the GC using the autosampler.  

3.2.2.2.3.2 Calibration 

Androstenone standards were prepared in methanol over the concentration range 0.1-

5.0 µg/ml. Each working standard of androstenone was prepared with an internal 

standard (androsterone) at a working concentration of 2.0 µg/ml. 

3.2.2.2.3.3 Sample analysis 

The reconstituted sample extracts obtained with the procedure in section 3.2.2.2.3.1 

were analysed by the gas chromatographic method procedure described in section 

3.2.2.2.1. The peak areas of the analyte and internal standard were obtained from the 

corresponding chromatogram for each sample, these values were compared to slope of 

the calibration plot to determine the final concentrations in the sample extracts. Using an 

appropriate calculation, taking into account dilution and concentration steps, the 

endogenous concentrations of androstenone were calculated.  

3.3 Results and discussion 

3.3.1 Electroanalysis 

3.3.1.1 Skatole measurement using differential pulse voltammetry with a plain 

screen-printed carbon electrode  

3.3.1.1.1 Calibration study in adipose tissue 

The magnitude of the peak currents in this study were used in the construction of a 

calibration plot which was used for the subsequent determination of skatole 

concentration in unknown samples of porcine adipose tissue. Figure 3.3 shows typical 

differential pulse voltammograms obtained for increasing concentrations of skatole in 
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fortified adipose tissue samples. As is evident, the magnitude of the currents increase in 

proportion to the added concentrations and the peak potential is typically + 0.7V +/- 5mV. 

This behaviour demonstrates that the voltammetric method should be suitable for the 

measurement of endogenous levels of skatole. Figure 3.4 shows the resulting skatole 

calibration plot which was found to be linear over the range required for these studies. It 

should also be mentioned that the differential pulse voltammetric scans were achieved in 

20 seconds; the scan rate was 50 mV/s and the scan window was 1 V (0 to +1 V). This is 

an important aspect of the method as rapid analysis times are required for on-line 

monitoring in abattoirs. 

A 

B 

C 

Figure 3.3. Differential pulse voltammograms obtained in adipose tissue fortified with skatole. 
DPVs obtained with SPCEs (vs. Ag/AgCl) in porcine subcutaneous adipose tissue fortified with (A) 
0 µg/g; (B) 5.25 µg/g; (C) 7.85 µg/g skatole. 
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3.3.1.1.2 Endogenous concentrations of skatole in adipose tissue samples 

Samples of adipose tissue obtained from local retailers and from a pig producer (JSR 

Genetics Ltd) were interrogated using SPCEs (vs. Ag/AgCl) in conjunction with differential 

pulse voltammetry; procedure described in section 3.2.1.3.1. The endogenous 

concentration of skatole was calculated by referring the magnitude of the peak current 

for the individual samples to the calibration graph constructed from fortified adipose 

tissue samples; described in section 3.3.1.1.1. Each sample was analysed in duplicate and 

an average response was calculated. All but one sample showed the presence of skatole. 

At this point it was clear that the voltammetric approach developed in this study was 

capable of measuring endogenous skatole directly in adipose tissue. The sample data has 

been presented in a later section (3.3.2.5), in order to compare the concentrations from 

those obtained with gas chromatographic method. 

Figure 3.4. Calibration graph plotted from voltammetric peak height current measurements 
from adipose tissue fortified with 1.23 µg/g 3.95 µg/g; (B) 5.25 µg/g; (C) 7.85 µg/g skatole. 
Reproduced from patent EP 2966441A1. 
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Figure 3.5. Androstenone chronoamperometric responses from fortified adipose tissue samples. 
Chronoamperograms obtained with biosensors (3αHSD-NADH-MB-SPCE vs. Ag/AgCl) in porcine 
adipose tissue fortified with (A) 0 µg/g; (B) 1 µg/g; and (C) 2 µg/g. Scans performed simultaneously 
with differential pulse voltammetry. 

3.3.1.2 Androstenone measurement using an amperometric biosensor 

3.3.1.2.1 Calibration study in adipose tissue 

A 

B 

C 

y = -1.89x + 7.675 

R2 = 0.99 

Figure 3.6. Calibration graph for androstenone measured in subcutaneous porcine adipose 
tissue. Androstenone calibration graph plotted from chronoamperometric currents measurements 
at 20s obtained from adipose tissue fortified with 0 µg/g, 1 µg/g, and 2 µg/g. Reproduced from 
patent EP 2 966 441 A1. 
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The chronoamperograms in Figure 3.5 show that the magnitude of the current decreases 

in the presence of androstenone and the current difference is proportional to the 

concentration of the analyte; the sequence of reactions responsible for the analytical 

response is explained in Figure 1.11 chapter one. The magnitude of the peak currents at 

20 seconds were used in the construction of a calibration plot which was used for 

subsequent determination of androstenone concentration in unknown samples of 

porcine adipose tissue. Figure 3.6 shows the resulting androstenone calibration plot which 

was linear over the range required for these studies. As with the differential pulse 

voltammetric scans, the chronoamperometric scans were performed within a minute and 

current measurements were taken from the 20 second time point. This demonstrates that 

both of the electrochemical methods can achieve rapid measurements that would be well 

suited to the proposed fast-paced abattoir processing line.  

3.3.1.2.2 Endogenous concentrations of androstenone in adipose tissue samples 

Samples of adipose tissue obtained from local retailers and from a pig producer (JSR 

Genetics Ltd) were interrogated using biosensors (3αHSD-NADH-MB-SPCEs vs. Ag/AgCl) 

in conjunction with chronoamperometry; procedure described in section 3.2.1.3.2. The 

endogenous concentration of androstenone was calculated by referring the current value 

on the chronoamperogram at 20 seconds for the individual samples to the calibration 

graph constructed from fortified adipose tissue; described in section 3.3.1.2.1. Each 

sample was analysed in duplicate and an average response was calculate. At this point it 

was clear that the chronoamperometric approach developed in this study was capable of 

measuring endogenous androstenone directly in adipose tissue. The sample data has 

been presented in a later section (3.3.2.6), in order to compare the concentrations from 

those obtained with gas chromatographic method. 
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3.3.2 Gas chromatographic analysis 

3.3.2.1 Identification of optimum solvent for GC-NPD studies 

Skatole and the internal standard 5-methylindole were prepared in either acetonitrile or 

ethyl acetate, the two standard preparations were analysed by GC-NPD independently. 

The resulting gas chromatograms are shown in Figure 3.7 for acetonitrile and Figure 3.8 

for ethyl acetate. Clearly, the chromatogram obtained for the latter solvent produced a 

more stable baseline with better defined peaks. In order to confirm that ethyl acetate was 

indeed superior to acetonitrile, calibration studies were carried out and the results are 

discussed in the section 3.3.2.2. 

Figure 3.7. Typical gas chromatographic separation of (A) skatole (analyte) and (B) 5-
methylindole (internal standard) prepared in acetonitrile. 
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Figure 3.8. Typical gas chromatographic separation of (A) skatole (analyte) and (B) 5-
methylindole (internal standard) prepared in ethyl acetate.  

3.3.2.2 Skatole calibration studies 

Chromatograms were obtained for skatole over the concentration range 0.01-0.5 µg/ml 

in acetonitrile and ethyl acetate, the peak areas were subsequently plotted against 

concentration; shown in Figure 3.9 and Figure 3.10 respectively. Standards were run in 

triplicate and the standard deviation of each data set has been displayed in the error bars 

of each figure. The error observed for the acetonitrile calibration identified that this 

solvent was not suitable for use with the detector and therefore could not be used with 

the final adipose tissue extract. The internal standard method however does allow for 

normalisation between runs, which significantly reduced the error in the triplicate data 

sets. The peak ratios were subsequently plotted against concentration, these are shown 

in Figure 3.11 and Figure 3.12 respectively. As may be seen from these calibration plots, 

ethyl acetate was shown to be superior as the LOD and precision were better than that 

obtained with acetonitrile.  
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Figure 3.9. Calibration plot of peak area vs. concentration for skatole prepared in acetonitrile 
(n=3) at 0.05, 0.1, 0.2, and 0.5 µg/ml. 

Figure 3.10. Calibration plot of peak area vs. concentration for skatole prepared in ethyl 
acetate (n=3) at 0.01, 0.025, 0.05, 0.1, 0.2, and 0.5 µg/ml 
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The lower concentrations investigated were not detectable with the acetonitrile 

preparation, and the correlation coefficient was calculated to be 0.99 in ethyl acetate 

compared to 0.95 in acetonitrile. Consequently, an investigation into ethyl acetate was 

undertaken to determine the suitability of this solvent for the analysis of adipose tissue.  

 y = 2.6335x 

R2 = 0.95    

Skatole concentration (µg/ml) 

Pe
ak

 ra
tio

 (A
/I

S,
 µ

V/
s)

 

y = 1.8464x 

R2 = 0.99 

Skatole concentration (µg/ml) 

Pe
ak

 ra
tio

 (A
/I

S,
 µ

V/
s)

 

Figure 3.11. Calibration plot of peak ratio (analyte/internal standard) vs. concentration of 
skatole prepared in acetonitrile (n=3). Internal standard 5-methylindole. 

Figure 3.12. Calibration plot of peak ratio (analyte/internal standard) vs. concentration of skatole 
prepared in ethyl acetate (n=3). Internal standard 5-methylindole. 
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Figure 3.13 and Figure 3.14, show GC chromatograms for a sample of adipose tissue and 

a skatole standard preparation respectively; clearly, complete separation of these two 

compounds has been achieved. 

Figure 3.13. Typical gas chromatographic separation of (A) endogenous skatole (analyte) and (B) 
0.5 µg/ml 5-methylindole (internal standard) prepared in an ethyl acetate adipose tissue extract. 
Skatole retention time 10.13 m, peak area: 50.57 µV/s. 5-methylindole retention time 10.47 m, peak 
area 378.24 µV/s. 
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Figure 3.14. Typical gas chromatographic separation of a standard containing (A) 0.025 µg/ml 
skatole (analyte) and (B) 0.5 µg/ml 5-methylindole (internal standard) prepared in ethyl acetate. 
Skatole retention time: 10.08 m, Peak area: 13.95 µV/s. 5-methylindole retention time: 10.42 m, 
Peak area: 268.92 µV/s. 
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3.3.2.3 Validation of sample preparation with ethyl acetate 

In order to extract skatole from adipose tissue a suitable solvent combination must be 

employed to allow for the subsequent gas chromatographic separation of the analytes 

from other compounds of a similar affinity for the final solvent phase. The inital method 

employed for the preparation of adipose tissue used acetonitrile as the final solvent 

extract. However, the imprecision encountered when using this solvent with the NPD 

resulted in the investigation of a modified approach. An additional sample preparation 

step, solvent exchange, allowed for the sample extract to be reconstituted in ethyl 

acetate; a solvent better suited to use with a NPD. A fortification study was performed to 

ensure that no significant loss of skatole occurred during this additional sample 

preparation step. The results presented in Table 3.1 demonstrate that a 96 % recovery 

was achieved for skatole after reconstitution of the fortified liquid adipose tissue extracts 

in ethyl acetate (n=4).  

To ensure that this additional preparation step would provide a more accurate 

measurement of skatole in adipose tissue samples, a set of six adipose tissue samples 

were analysed by both the electrochemical method and the GC-NPD method with and 

without the reconstitution step. The correlation of skatole concentrations shown in Figure 

3.15 indicated that the GC-NPD response for endogenous skatole was in better agreement 

with the electrochemical method when prepared with the additional reconstitution step. 

Table 3.1. Recovery of skatole from fortified samples reconstituted in ethyl acetate by GC-NPD (n=4). 
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This can be attributed to the improved accuracy of measurements made by the GC-NPD 

method when the sample extract is reconstituted in ethyl acetate for injection to the GC 

as opposed to acetonitrile (Figure 3.11 vs. Figure 3.9). Therefore, the modified GC sample 

preparation method was used in all further studies.  

3.3.2.4 Androstenone calibration 

The chromatogram in Figure 3.16 shows the separation of peak responses for a solution 

containing standards of both the analyte androstenone and the internal standard 

androsterone. The chromatogram of an analysed adipose tissue sample extract has been 

presented in Figure 3.17 for comparative purposes. This chromatogram shows the 

separation of the peak responses for endogenous androstenone, the internal standard 

A 

B 

y = 0.38x + 0.028 

R2 = 0.58 

y = 0.134x + 0.0135 

R2 = 0.25 

Figure 3.15. Comparison of GC-NPD concentration for skatole in adipose tissue extracts prepared 
with different solvents: (A) ethyl acetate (B) acetonitrile. Comparison of skatole 
concentration calculated with GC-NPD method compared to the DPV method (n=6). Responses 
are averages of duplicate data sets. 
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(androsterone) and the other endogenous compounds present in an analysed adipose 

tissue sample.  

Figure 3.16. Typical gas chromatographic separation of a standard containing (A) 1 µg/ml 
androstenone (analyte) and internal standard (B) 2 µg/ml androsterone prepared in methanol hexane 
(9:1) adipose tissue extract. Androstenone retention time 20.6 m, peak area 80.38 µV/s. Androsterone 
retention time 22.7 m, peak area 97.18 µV/s. 

Figure 3.17. Typical gas chromatographic separation of (A) endogenous androstenone (analyte) 
and (B) added internal standard 2.0 µg/ml androsterone prepared in methanol hexane (9:1) 
adipose tissue extract. Androstenone retention time 20.1 m, peak area 67.75 µV/s, Androsterone 
retention time 21.9 m, peak area µV/s. 
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Chromatograms were obtained for androstenone over the concentration range 0.01-5.00 

µg/ml. The peak areas have been plotted against concentration for androstenone in 

Figure 3.18. The peak area ratios were plotted against concentration, and as shown in 

Figure 3.19 a linear response was obtained over the concentration range studied. This 

data demonstrated that the chromatographic method had a sufficient linear range and 

detection limit to measure androstenone at levels associated with boar taint.  

Figure 3.18. Calibration plot of peak area vs. concentration for androstenone prepared in methanol 
hexane (9:1) (n=3) at 0.1, 0.2, 0.5, 0.75, 1.0, 3.0 and 5.0 µg/ml. 
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Figure 3.19. Plot of peak ratio (analyte/internal standard) vs. concentration of androstenone (n=3). 
Internal standard androsterone. 
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3.3.2.5 Comparison of gas chromatographic response vs. voltammetric sensor 

The results obtained in the previous sections (differential pulse voltammetry and gas 

chromatography with nitrogen-phosphorous detection) were used to construct a 

correlation plot for skatole. Figure 3.20 shows that a good correlation was obtained, the 

correlation coefficient was calculated and the value was found to be R2 0.80. Therefore, 

the results of this study shows that the sensor is in good agreement with the conventional 

gas chromatographic method. This demonstrates that the sensor approach shows 

promise for rapid measurements of skatole on the abattoir processing line, this will be 

discussed in the next chapter.  

Figure 3.20. Preliminary correlation plot for the concentration of skatole in adipose tissue measured 
by both the voltammetric sensors and the corresponding GC-NPD method (n=14).   

y = 0.8373x 

R2 = 0.80 
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3.3.2.6 Comparison of gas chromatographic response vs. amperometric biosensor  

The results obtained in the previous sections (chronoamperometry and gas 

chromatography with flame ionisation detection) were used to construct a comparison 

plot for androstenone. Figure 3.21 shows that a good correlation was obtained for 

concentrations of androstenone in adipose tissue samples from retailers and a pig 

producer, the correlation coefficient was calculated and the value was found to be R2 0.93. 

Therefore, the results of this study shows that the biosensor is in good agreement with 

the conventional gas chromatographic method. This demonstrates that the biosensor 

approach shows promise for rapid measurements of androstenone on the abattoir 

processing line, this will be discussed in the next chapter.  

Figure 3.21. Preliminary correlation plot for the concentration of androstenone in adipose 
tissue measured by both the amperometric biosensors and the corresponding GC-FID method 
(n=21).   

y = 1.0426x 

R2 = 0.93 
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3.4 Conclusion 

In this chapter the preliminary studies, using samples from a local retailer and pig 

producer, have demonstrated the successful application of rapid electroanalytical 

approaches using a sensor and biosensor for the measurement of boar taint compounds, 

skatole and androstenone, in adipose tissue. It should be mentioned that these devices 

were used in the laboratory, on adipose tissue samples, whereby the techniques were 

used independently. Skatole was measured using differential pulse voltammetry in 

conjunction with SPCEs (vs. Ag/AgCl). Whereas, androstenone was measured with a 

biosensor in conjunction with chronoamperometry. The total analysis time for both 

measurements and the application of the sensor or biosensor to the tissue sample was 

achieved in under a minute. The biosensor was constructed by depositing an enzyme, 

namely 3α-hydroxysteroid dehydrogenase, onto the surface of a Meldola’s Blue modified 

screen printed carbon electrode (MB-SPCE). The sensor and biosensor could be simply 

inserted into the adipose tissue sample for direct measurements. This showed the 

possibility of developing a dual system for the analysis of both androstenone and skatole 

simultaneously in adipose tissue. The next chapter will discuss the development of the 

system and its application for online measurements in an abattoir.  

To validate the electrochemical methods reference procedures based on gas 

chromatography with ionisation detection. Skatole was measured with a nitrogen-

phosphorous detector whereas, androstenone was measured with a flame ionisation 

detector. In both methods an extraction procedure was required, these were adapted 

from available literature sources. These methods were successful in measuring skatole 

and androstenone over the concentration range expected in the adipose tissue of pigs. A 

comparison of the two methods for the same set of samples gave correlation coefficients 

of 0.8 and 0.93 for skatole and androstenone respectively. This data demonstrated that 
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the electrochemical techniques should be suitable for the analysis of boar taint 

compounds on the abattoir processing line; this is discussed in detail in chapter four.   



Chapter Four 

Investigations into a dual electrochemical 

system for the analysis of boar taint 

compounds at the abattoir processing line 
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Chapter Summary 

Chapter four investigates the electroanalytical instrumentation configuration suitable for 

the simultaneous measurement of skatole and androstenone. The pig production industry 

requires a rapid measurement system to determine if a pork product exhibits boar taint. 

Therefore, a single device that can measure both compounds simultaneously would 

suitably achieve this brief.  

Simultaneous measurement of the two compounds using the laboratory based 

potentiostats (mains powered) proved unsuccessful. Consequently, further investigations 

were performed with portable potentiostats (battery powered) and an electrical isolator 

to determine a suitable instrument configuration that could be used to successfully 

measure skatole and androstenone simultaneously in a sample of adipose tissue.  

The portable measurement system was taken to an abattoir processing line and used to 

interrogate the adipose tissue of pig carcasses. The interrogated samples were collected 

and analysed with the gas chromatographic methodologies for both skatole and 

androstenone quantification. The endogenous concentrations of the boar taint 

compounds were compared and a positive correlation was observed between the two 

measurement techniques.  
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Chapter Four 

4.1 Introduction 

In chapter three the direct electroanalysis of adipose tissue for the quantification of boar 

taint compounds was investigated; the determination and quantification of skatole and 

androstenone, using an independent sensor and biosensor respectively, was 

demonstrated. A calibration study was performed by fortifying adipose tissue of a known 

mass with corresponding concentrations of the target analytes, skatole and androstenone 

(µg/g) and measuring the change in current with increasing concentration. A linear 

positive relationship was observed for both compound calibration plots; subsequently 

measurements of skatole and androstenone were obtained from samples of adipose 

tissue and referred back to the standard addition calibration to determine their 

endogenous concentration. The same samples were analysed by gas chromatographic 

methods and the concentrations were compared; a positive correlation was observed for 

both compounds. 

4.1.1 Development of a dual electrochemical measurement system 

The correlation studies in chapter three demonstrated that the voltammetric sensor and 

amperometric biosensor could be used to quantify skatole and androstenone 

respectively, however these electrochemical measurements were obtained 

independently. The pork production industry requires an analytical system that can 

measure both compounds rapidly and simultaneously in a portable system, allowing 

processors to make a decision on the presence or absence of boar taint in carcasses to 

facilitate on-line carcass sorting. In chapter three fast analysis times were demonstrated 

with both the voltammetric and amperometric scans being achieved in under one minute. 
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Investigations into a portable system capable of running both a chronoamperometric and 

differential pulse voltammetric method simultaneously will be discussed in this chapter. 

4.1.2 Abattoir measurements of skatole and androstenone 

The abattoir processing line is a cold environment, with ambient temperatures 

maintained below 5°C, this is the temperature recommended by Red Tractor; the largest 

food standards scheme in the UK (Meat Processing Scheme v3.1, 2018). In addition, the 

heavy dripping carcasses move at speed through the plant. Therefore, any analytical 

equipment taken into this environment must be able to withstand these conditions. The 

potentiostat instrumentation must be sealed in a water tight robust housing, have 

minimal wiring and ideally be small enough to carry around the abattoir. Modern 

advances in electrochemical instrumentation and equipment have made this a possibility; 

using Bluetooth technology measurement waveforms can be sent wirelessly to the 

potentiostat. Additionally, tablets with splash proof coverings can be employed to 

operate the potentiostatic software which would be a practical solution in this 

environment. However, the ability to use two potentiostats from a single device via 

Bluetooth is not yet possible; the software requires new coding to use either Bluetooth 

or a Wifi connection to achieve this so undoubtedly this will be possible very soon.  

4.2 Experimental  

4.2.1 Electroanalysis 

4.2.1.1 Apparatus and instrumentation 

The sensor and biosensors first described in chapter two are used in conjunction with two 

types of potentiostat in this chapter. The configurations for the connection arrangements 

are described in the procedures section (4.2.1.3). The sensors and biosensors for dual 

studies were mounted into a single connector with a back to back layout, this can be seen 

in Figure 4.1.  The µAutolab III potentiostat was interfaced to a laptop for data acquisition 



Chapter Four 

128 

Figure 4.1. Configuration for the dual sensor and biosensor connector. (1) Depicts the planar 
surfaces of the different screen printed strips, and (2) depicts the sensor strips held back to 
back in the holder. 

via NOVA v.2.0.2 (Metrohm, Netherlands). The Emstat3 potentiostats (Palmsens BV, 

Netherlands) were interfaced to a laptop using USB A-B cables (resistance <1 ohm) for 

data acquisition with the MultiTrace v3.4 and PSTrace software v3.4 depending on 

whether the two methods of electroanalysis (differential pulse voltammetry or 

chronoamperometry) were run simultaneously or independently. A USB-ISO (Olimex Ltd., 

Bulgaria) isolator was fitted between the laptop and potentiostat, using USB A-B cables, 

where stated.   

4.2.1.2 Chemicals and reagents 

All chemicals and reagents have been previously described in chapter two section 2.2.2 

and chapter 3 section 3.2.1.2. 
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4.2.1.3 Procedures 

4.2.1.3.1 Simultaneous applied DPV and CA waveforms 

Differential pulse voltammograms and chronoamperograms were obtained using SPCEs 

(vs. Ag/AgCl) in a solution containing 0.01 mM skatole in 0.1 M phosphate buffer pH 7 and 

0.1 M sodium chloride. The apparatus set-ups are displayed in Figure 4.2; µAutolab III 

potentiostats were used in this study.  

 

 

 

4.2.1.3.2 Investigation to isolate waveforms 

4.2.1.3.2.1 µAutolab potentiostats 

Differential pulse voltammograms and chronoamperograms were obtained using SPCEs 

(vs. Ag/AgCl) in a solution containing 0.1 M phosphate buffer pH 7 and 0.1 M sodium 

chloride. The apparatus set-ups are displayed in Figure 4.3; µAutolab III potentiostats 

were used in this study and isolators were employed in set-ups B-D.  

BA

Figure 4.2. Apparatus and instrumentation configuration for the application of independent and 
simultaneous waveforms with µAutolab potentiostats. (A) µAutolab potentiostats mains powered 
(MP) operated independently with a laptop (MP) to obtain a differential pulse voltammogram 
(DPV) and chronoamperogram (CA). (B) µAutolab potentiostats (MP) operated simultaneously with 
a laptop (MP) to obtain a DPV and CA. SPCEs (vs. Ag/AgCl) side by side with individual holders in 
the voltammetric cell. 



Chapter Four 

130 

 

 

 

 

 

 

4.2.1.3.2.2 Emstat3 potentiostats 

Differential pulse voltammograms were obtained using SPCEs (vs. Ag/AgCl) and 

chronoamperograms were obtained using NADH-MB-SPCEs (vs. Ag/AgCl) in a solution 

containing 0.1 M phosphate buffer pH 7 and 0.1 M sodium chloride. The apparatus set-

ups are displayed in Figure 4.4; Emstat3 potentiostats were used in these studies and 

isolators were employed in set-ups B, D and E. All laptops and potentiostats were battery 

powered. 

BA

C D

Figure 4.3. Apparatus and instrument configuration for waveform isolation study with µAutolab 
potentiostats. (A) µAutolab potentiostats mains powered (MP) operated independently with a 
laptop (MP) to obtain a differential pulse voltammogram (DPV) and chronoamperogram (CA). (B) 
µAutolab potentiostats (MP) operated simultaneously with a laptop (MP) to obtain a DPV and CA. 
SPCEs (vs. Ag/AgCl) back to back using one holder in the voltammetric cell. Isolator fitted between 
the laptop and the CA potentiostat. (C) µAutolab potentiostats (MP) operated simultaneously with 
a laptop (battery powered) to obtain a DPV and CA. SPCEs (vs. Ag/AgCl) side by side with individual 
holders in the voltammetric cell. Isolator fitted between the laptop and the CA potentiostat. (D) 
µAutolab potentiostats (MP) operated independently with a laptops (battery powered) to obtain a 
DPV and CA. SPCEs (vs. Ag/AgCl) side by side with individual holders in the voltammetric cell. 
Isolator fitted between the laptop and the CA potentiostat. 
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Figure 4.4. Apparatus and instrumentation configuration for waveform isolation study with 
Emstat3 potentiostats. (A) Emstat3 potentiostats operated simultaneously with a laptop to obtain 
a differential pulse voltammogram (DPV) and chronoamperogram (CA). (B) Emstat3 potentiostats 
operated simultaneously with a laptop to obtain a DPV and CA. Isolators fitted between the laptop 
and both potentiostats. (C) Emstat3 potentiostats operated independently with a laptop to obtain 
a DPV and CA. (D) Emstat3 potentiostats operated simultaneously with a laptop to obtain a DPV 
and CA. Isolator fitted between the laptop and the DPV potentiostat. (E) Emstat3 potentiostats 
operated simultaneously with a laptop to obtain a DPV and CA. Isolator fitted between the laptop 
and the CA potentiostat. In all set up’s except (C) SPCEs (vs. Ag/AgCl) are back to back using one 
holder in the voltammetric cell. 

A B

D E

C
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4.2.1.3.3 Performance comparison of Emstat3 and µAutolab III potentiostats  

Calibration studies were performed using the same chemicals and reagents and 

procedures as those described in chapter two. However, this study was performed in 

using two different instruments; the µAutolab potentiostat and the Emstat3 potentiostat. 

4.2.1.3.4 Dual studies in adipose tissue 

4.2.1.3.4.1 Initial endogenous measurement 

Differential pulse voltammograms were obtained using SPCEs (vs. Ag/AgCl) and 

chronoamperograms were obtained using MB-SPCEs (vs. Ag/AgCl) inserted into an 

adipose tissue sample warmed to 30°C on a heater plate. The apparatus set-ups are 

displayed in Figure 4.5; Emstat3 potentiostats were used in this study and an isolator was 

employed in set-up B. All laptops and potentiostats were battery powered.  

A B

C  

Figure 4.5. Apparatus and instrumentation configuration for the dual electroanalysis of adipose 
tissue. (A) Emstat3 potentiostats operated independently with a laptop to obtain a differential 
pulse voltammogram (DPV) and chronoamperogram (CA) from an adipose tissue sample. (B) 
Emstat3 potentiostats operated simultaneously with a laptop to obtain a DPV and CA. Isolator 
fitted between the laptop and the DPV potentiostat. (C) Emstat3 potentiostats operated 
simultaneously with a laptop to obtain a DPV and CA. SPCEs (vs. Ag/AgCl) back to back using one 
holder inserted into an adipose tissue sample. 
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4.2.1.3.5 Prototype device implementation on the abattoir processing line 

The mobile apparatus set-up, displayed in Figure 4.6, was used in a commercial abattoir 

to analyse carcasses on the processing line. An incision was made in the subcutaneous 

adipose tissue of each carcass at the first rib position. The temperature and pH of the 

adipose tissue was measured before and after each application of the dual 

electrochemical measurement system; to best represent the temperature and pH at the 

time of electrochemical measurement an average was calculated from the two values. 

Differential pulse voltammograms were obtained using SPCEs (vs. Ag/AgCl) and 

chronoamperograms were obtained using biosensors (3αHSD-NADH-MB-SPCE vs. 

Ag/AgCl). The measured section of adipose tissue was removed with a scalpel and stored 

in a grip seal bag in a battery powered cool box. The samples were taken back to the 

laboratory (refrigerated storage during 24hr transport period) and stored at -18°C until 

analysis using the gas-chromatographic methods. Figure 4.7 displays photos taken on the 

abattoir processing line; Figure 4.7A shows the application of the dual electrochemical 

instrument system, whereas Figure 4.7B shows the use of the Testo 205 probe (Testo Ltd, 

Alton) for the measurement of adipose tissue pH and temperature.   

Figure 4.6. Apparatus and instrumentation for abattoir study. (A) Battery powered laptop running 
differential pulse voltammetry and chronoamperometry via the MultiTrace v3.4 software package 
interfaced to the; (B) Dual Emstat3 potentiostat prototype device (two Emstat3 potentiostats 
housed in a water tight case) with an isolator fitted between the laptop and the DPV potentiostat, 
connected to a; (C) Back to back sensor holder, supported by a; (D) Clamp stand. (E) Scalpel for 
carcass incisions. (F) Waste bin for used sensors. (G) Temperature and pH meter (H) Cooled storage 
for sensors, biosensors and adipose tissue samples. (I) Metal trolley. 
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4.2.2 Chromatographic analysis  

4.2.2.1 Apparatus and instrumentation 

The apparatus and instrumentation used in this chapter are the same as those 

previously described in chapter three section 3.2.2.1.1 for skatole and section 3.2.2.2.1 

for androstenone.  

4.2.2.2 Chemicals and reagents 

All chemicals and reagents used in this chapter are the same as those previously 

described in chapter three section 3.2.2.1.2 for skatole and section 3.2.2.2.2 for 

androstenone. 

4.2.2.3 Procedures 

The procedures described for the gas chromatographic sample analysis and calibration 

are the same as those described in chapter three section 3.2.2.1.3 for skatole and 3.2.2.2.3 

for androstenone. 

A B 

Figure 4.7. Abattoir photos. (A) Prototype device inserted in a carcass for dual electrochemical 
analysis and (B) a Testo 205 probe inserted into the carcass for temperature and pH 
measurement. 
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4.3 Results and discussion 

4.3.1 Simultaneous applied waveforms 

In order to achieve the goal of measuring the two boar taint compounds at a speed 

appropriate for the abattoir production line we investigated the possibility of measuring 

skatole and androstenone simultaneously.  
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Figure 4.9. Independent (A) and simultaneously (B) obtained chronoamperograms using µAutolab 
potentiostats. SPCEs (vs. Ag/AgCl) in a solution containing 0.01 mM skatole in 0.1 M phosphate 
buffer pH 7 with 0.1 M sodium chloride. Instrument and apparatus arrangements displayed in Fig 
4.2. 
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Figure 4.8. Independent (A) and simultaneously (B) obtained differential pulse voltammograms 
using µAutolab potentiostats. SPCEs (vs. Ag/AgCl) in a solution containing 0.01 mM skatole in 0.1 
M phosphate buffer pH 7 with 0.1 M sodium chloride. Instrument and apparatus arrangements 
displayed in Fig 4.2. 
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To compare the output waveforms when differential pulse voltammetry and 

chronoamperometry were ran simultaneously and independently, two instrument 

configurations were employed (Figure 4.2). Figure 4.8A and Figure 4.9A show the scans 

performed independently, whereas Figure 4.8B and Figure 4.9B show the simultaneous 

scans. Both simultaneous responses displayed issues with the output signal; the 

chronoamperogram (Figure 4.9B) displayed a superimposed differential pulse waveform 

whereas the differential pulse voltammogram (Figure 4.8B) displayed more noise than the 

independently operated scans. This can be attributed to the electrical interference 

resulting from the cross-over of the applied input waveforms. This is confirmed by the 

shape and duration of the signal cross-over shown in Figure 4.9B which strongly resembles 

the current output for differential pulse voltammetry (Figure 4.8). 

4.3.2 Investigation to isolate waveforms 

4.3.2.1 µAutolab potentiostats 
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Figure 4.10. Differential pulse voltammograms obtained in an investigation into waveform isolation 
with µAutolab potentiostats. SPCEs (vs. Ag/AgCl) in a solution containing 0.1 M phosphate buffer 
pH 7 with 0.1 M sodium chloride. Instrument and apparatus arrangements displayed in Fig 4.3; (A) 
Independent scan (B) Simultaneous scan with dual control from one laptop with mains power (C) 
Simultaneous scan with dual control from one laptop without mains power and with the addition of 
an isolator on the chronoamperometry potentiostat; (D) Simultaneous scan with two laptops 
(battery power) and an isolator on the chronoamperometry potentiostat. 
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The next step involved a study to try to isolate the applied waveforms and obtain 

individual output signals, to overcome the unwanted signal cross-over observed in the 

previous study. The instrument configurations investigated in this study are displayed in 

Figure 4.3. The resulting differential pulse voltammograms (Figure 4.10) and 

chronoamperograms (Figure 4.11) show that none of the arrangements employing an 

isolator with the µAutolab potentiostats prevented signal cross-over. The µAutolab 

potentiostats are mains powered, it is therefore possible that a circuit was formed 

between the potentiostats and the electrochemical cell via the mains power. At this point 

the µAutolab potentiostats did not seem to offer the possibility of dual operation for the 

measurement of skatole and androstenone using two different applied waveforms in the 

same electrochemical cell. Consequently, an alternative approach using battery powered 

potentiostats was investigated. It was decided to investigate applying simultaneous 

waveforms with Emstat3 potentiostats as these are not mains powered, preventing a 

possible circuit between the two potentiostats; this study is described in section 4.3.2.2. 
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Figure 4.11. Chronoamperograms obtained in an investigation into waveform isolation with 
µAutolab potentiostats. SPCEs (vs. Ag/AgCl) in a solution containing 0.1 M phosphate buffer pH 7 
with 0.1 M sodium chloride. Instrument and apparatus arrangements displayed in Fig 4.3; (A) 
Independent scan (B) Simultaneous scan with dual control from one laptop with mains power (C) 
Simultaneous scan with dual control from one laptop without mains power and with the addition 
of an isolator on the CA potentiostat; (D) Simultaneous scan with two laptops (battery power) and 
an isolator on the CA potentiostat. 
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4.3.2.2 Emstat3 potentiostats 

A 

B 

C 

D 

E 

Figure 4.12. Differential pulse voltammograms obtained in an investigation into 
waveform isolation with Emstat3 potentiostats. SPCE (vs. Ag/AgCl) in a solution 
containing 0.1 M phosphate buffer pH 7 and 0.1 M sodium chloride. Instrument and 
apparatus arrangements displayed in Fig 4.4; (A) Simultaneous scan without isolation; 
(B) Simultaneous scan with isolators on both potentiostats; (C) Independent scan; (D)
Simultaneous scan with isolator on the DPV potentiostat; (E) Simultaneous scan with isolator
on the CA potentiostat.
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Figure 4.13. Differential pulse voltammograms demonstrating the use of the smooth function 
to reduce noise. Typical DPVs as described in Figure 4.12. Scan (D) has been smoothed using 
the inbuilt PSTrace4 v3.4 software function (Palmsens BV). 
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In order to find a dual instrument configuration that allows for the two different 

waveforms to be applied to a single electrochemical cell without resulting in signal cross-

over (i.e. resembles the output signal when operated independently), battery powered 

potentiostats (Emstat3’s) were sourced. In terms of the practical application of this boar 

taint technology to the analysis of carcass adipose tissue on the abattoir processing line, 

portable devices would be much better suited. The output waveforms for the different 

instrument arrangements shown in the experimental section 4.2.1.3.2.2 Figure 4.4 are 

displayed in Figure 4.13 for differential pulse voltammetry and Figure 4.14 for 

chronoamperometry. The chronoamperograms indicate that without isolation 

simultaneous scans result in signal cross-over with the two Emstat3 potentiostats (Figure 

4.14A), therefore isolators were used in the following experiments. Figure 4.14C 

illustrates an interference free chronoamperogram obtained with a single Emstat3 
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Figure 4.14. Chronoamperograms obtained in an investigation into waveform isolation with 
Emstat3 potentiostats. NADH-MB-SPCE (vs. Ag/AgCl) in a solution containing 0.1 M phosphate 
buffer pH 7 and 0.1 M sodium chloride. Instrument and apparatus arrangements displayed in Fig 
4.4; (A) Simultaneous scan without isolation; (B) Simultaneous scan with isolators on both 
potentiostats; (C) Independent scan; (D) Simultaneous scan with isolator on the DPV potentiostat; 
(E) Simultaneous scan with isolator on the CA potentiostat.



Chapter Four 

140 

potentiostat. Two isolators appeared to suppress the current response as shown in Figure 

4.14B. Incorporating an isolator between the laptop and the potentiostat running the DPV 

waveform (Figure 4.14D) resulted in a chronoamperogram similar to that obtained on an 

independent run (Figure 4.14C).  Whereas, the current response was amplified when an 

isolator was incorporated between the laptop and the potentiostat running the 

chronoamperometry waveform (Figure 4.14E).  

Therefore, the most similar output waveform in dual mode to that obtained 

independently was achieved with the isolator fitted between the laptop and the 

potentiostat applying the differential pulse voltammetry waveform. The corresponding 

differential pulse voltammogram for this set-up exhibited more noise than the 

independently obtained differential pulse voltammogram. Figure 4.13D demonstrates 

that the additional noise can easily be removed with the inbuilt smooth function provided 

in the PSTrace/MultiTrace software package for the Emstat3 potentiostats. It should be 

mentioned that all the experiments performed in this section, employed a holder allowing 

back to back sensor configuration. Consequently, it should be feasible to insert the 

sensors into the adipose tissue using this configuration for simultaneous measurement of 

the two boar taint compounds. This will be discussed in section 4.3.4. 

4.3.3 Performance comparison of Emstat3 and µAutolab potentiostats 

In order to compare the sensitivities of the µAutolab III potentiostat with the Emstat3 

potentiostat, a calibration study was carried out with skatole over a similar concntration 

range to that reported in chapter two and chapter three. To ensure that the portable 

potentiostats could operate at a similar sensitivity a calibration study was performed with 

both the portable and mains powered laboratory instruments. The sensitivites obtained 

for the two instruments correlate well as demonstrated by the slopes for both sets of 

calibration data. The Emstat3 could measure concentrations down to 0.15 ppm with ease 
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whereas the µAutolab III potentiostat gave a peak for only 2 out of 3 scans, this suggests 

that the limit of detection was better for that the Emstat3 potentiostat.  

4.3.4 Dual studies in adipose tissue 

4.3.4.1 Initial studies comparing simultaneous and independent measurements 

 

A 

B 

C 

Figure 4.16. Independent and simultaneously obtained differential pulse voltammograms in 
porcine adipose tissue. SPCEs (vs. Ag/AgCl) inserted into an incision made in an adipose tissue 
sample. Instrument and apparatus arrangements displayed in Fig 4.5: (A) Independent scan; (B) 
Dual scan with isolator; (C) Dual scan without an isolator. 

Figure 4.15. Skatole calibration used to compare the performance of the two different 
potentiostat models A) Emstat3 and B) µAutolab III. Skatole concentrations 0.15 ppm, 0.2 ppm, 
0.25 ppm, 0.5 ppm, and 1 ppm prepared in 0.1 M pH 7 phosphate buffer with 0.1 M sodium 
chloride with 5 % methanol (n=3). Skatole response obtained for 2/3 scans with 0.15 ppm 
skatole using the µAutolab potentiostat. 
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The dual studies performed in this section were carried out in adipose tissue, using the 

sample preparation procedures described in chapter three. The peak potentials measured 

for skatole in adipose tissue (Figure 4.16) are around +0.2 V higher than those measured 

in buffered solutions at a similar pH; this peak potential is still well within the potential 

window scanned. The same incision was used for measurement A and B which both show 

endogenous skatole peak responses; the first measurement used the dual system with 

DPV isolator (Figure 4.16B) whereas the second measurement was performed with a 

single potentiostat (Figure 4.16A). The chronoamperometric response observed in Figure 

4.17C showed an interfering DPV signal which prevents the measurement of 

androstenone current response, whereas the measurements made both independently 

(Figure 4.17A) and dual with a DPV isolator (Figure 4.17B) show typical 

chronoamperometric responses.  

Figure 4.17. Independent and simultaneously obtained chronoamperograms in porcine adipose 
tissue. MB-SPCEs (vs. Ag/AgCl) inserted into an incision made in an adipose tissue sample. 
Instrument and apparatus arrangements displayed in Fig 4.5: (A) Independent scan; (B) Dual scan 
with isolator; (C) Dual scan without an isolator. 
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4.3.4.2 Dual adipose calibration study with skatole and androstenone 

4.3.4.2.1 Skatole calibration 

A 

B 
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D 

Figure 4.18. Differential pulse voltammograms obtained in adipose tissue for a range of 
skatole concentrations. SPCEs (vs. Ag/AgCl) in porcine subcutaneous adipose tissue fortified 
with (A) 0 µg/g; (B) 1 µg/g; (C) 2 µg/g; (D) 4 µg/g skatole. Scans performed simultaneously 
with chronoamperometry using the optimised dual configuration shown in Fig 4.5B.     

Figure 4.19. Calibration graph for fortified skatole measured in two different subcutaneous 
porcine adipose tissue samples. Peak height current measurements obtained from 
subcutaneous porcine adipose tissue fortified with 1 µg/g, 2 µg/g, and 4 µg/g. Peak currents 
subtracted from endogenous peak current measurement. Study performed in duplicate using 
subsamples from two different pigs (A & B). Scans performed simultaneously with 
chronoamperometry. 

A 

B 
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Adipose tissue sub-samples, from two different pigs, fortified with a range of skatole 

concentrations were analysed with the dual prototype device. The differential pulse 

voltammograms from this study are displayed in Figure 4.18; an increase in current 

response is shown with increasing concentration of skatole over the concentration range 

1-4 µg/g. The calibration was performed in duplicate and the peak current data has been

plotted against concentration (Figure 4.19). The sensitivity observed for skatole 

calibration in buffered solution in section 4.3.3 was 44 nA/ppm, which can be converted 

to 44nA/µg/g; this correlates well with the calibrations presented in Figure 4.19. The 

successful calibration in adipose tissue, with a sensitivity similar to that in buffered 

solution, indicates that this method of analysis is suitable for the measurement of skatole 

in adipose tissue. 

4.3.4.2.2 Androstenone calibration 

A 

B 
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D 

Figure 4.20. Chronoamperograms obtained in adipose tissue for a range of androstenone 
concentrations. Biosensors (3αHSD-NADH-MB-SPCE vs. Ag/AgCl) in porcine subcutaneous 
adipose tissue fortified with (A) 0 µg/g; (B) 1 µg/g; (C) 2 µg/g; (D) 4 µg/g androstenone. Scans 
performed simultaneously with differential pulse voltammetry using the optimised dual 
configuration shown in Fig 4.5B. 
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Figure 4.21. Calibration graph for androstenone measured in subcutaneous porcine adipose tissue. 
Calibration graph plotted from currents measurements at (A) 10s (B) 20s and (C) 30s obtained from 
adipose tissue fortified with 0 µg/g, 1 µg/g, 2 µg/g, and 4 µg/g androstenone. Study performed in 
duplicate using subsamples from two different pigs (a & b). Scans performed simultaneously with 
chronoamperometry. 
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Fortified adipose tissue sub-samples from two different pigs were analysed with the dual 

prototype device. Typical chronoamperograms are overlain in Figure 4.20; decreasing 

current response is displayed with increasing concentration of androstenone over the 

range of 1-4 µg/g. The current measurements were subtracted from the endogenous 

response and plotted against androstenone concentration; displayed in Figure 4.21. All of 

the time points (10 s, 20 s, 30 s) shown in Figure 4.21 could be used to determine 

concentration for the endogenous levels of androstenone, however the earlier time 

points provide better sensitivity as demonstrated by the steeper slope for the line of best 

fit plotted for the calibration data points. The repeatability of the measurements were 

shown to be within 5 % using a measurement time of 20 seconds. 

4.3.5 Abattoir study 

Dual measurement of skatole and androstenone in the subcutaneous adipose tissue of 

pig carcasses on the abattoir processing line resulted in two output responses; typical 

responses have been displayed in Figure 4.22. 

 

 

Figure 4.22. Typical simultaneous output responses obtained from the adipose tissue of a pig 
carcass on the abattoir processing line using the dual instrument system. Differential pulse 
voltammogram obtained with a SPCE (vs. Ag/AgCl) and a chronoamperogram obtained with a 
biosensor (3αHSD-NADH-MB-SPCE vs. Ag/AgCl). 
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4.3.5.1 Skatole determination 

 

Figure 4.23 shows a typical differential voltammogram obtained from a pig carcass online 

in the abattoir (B) together with a separate sample of adipose tissue fortified with skatole 

A 

B 

Figure 4.23. Comparison of an endogenous adipose tissue skatole peak and a fortified skatole peak. 
Differential pulse voltammograms obtained with SPCEs (vs. Ag/AgCl) in (A) a sample of adipose 
tissue fortified with 0.25 ppm skatole measured in the laboratory, (B) an adipose tissue of a carcass 
on the abattoir processing line.  Scans performed simultaneously with chronoamperometry. 

Figure 4.24. Calibration graph for skatole measured in subcutaneous porcine adipose tissue. Peak 
currents obtained from adipose tissue fortified with 0.5 µg/g, 1.0 µg/g, 2.0 µg/g, and 4.0 µg/g. 
Peak currents subtracted from endogenous peak current measurement.  
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(A) at 0.25 ppm. This confirms that the analytical peak response, obtained at 0.8V, is due

to the presence of skatole.  In addition, a large sample of adipose tissue was divided into 

subsamples and fortified with a range of skatole concentrations. The resulting differential 

pulse voltammetric peaks were used to construct a calibration plot (Figure 4.24).  

 

 

The concentrations of skatole obtained by differential pulse voltammetry for the 

carcasses monitored at the abattoir were deduced from the calibration graph previously 

constructed. The skatole concentration for the same samples were also calculated using 

the gas-chromatographic method previously described in chapter three. The comparison 

plot obtained for the two methods is shown in Figure 4.25; the corresponding correlation 

coefficient was calculated to be 0.8. This data demonstrates the successful application of 

the dual measurement system to the determination of skatole online in an abattoir. It 

should be mentioned that the boar taint threshold occurs for skatole at 0.2-0.25 ppm, 

from Figure 4.25 it was possible to readily detect endogenous concentrations below these 

Figure 4.25. Comparison of skatole concentration measured by GC-NPD and differential pulse 
voltammetry. Comparison between gas chromatographic nitrogen-phosphorous detector analysis and 
in situ sensor (SPCE vs. Ag/AgCl) measurement of skatole in the subcutaneous adipose tissue of 
carcasses analysed on the abattoir production line (n = 45). 

y = 0.6616x 

R2 = 0.8 
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values. As the incidence of boar taint would result in concentrations higher than these 

values the sensor for skatole would clearly be able to identify the contamination by 

skatole. 

4.3.5.2 Androstenone determination 

The chronoamperograms in Figure 4.26A-C were obtained from the adipose tissue of an 
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Figure 4.26. Comparison of an endogenous adipose tissue androstenone current response and 
fortified androstenone current responses. Chronoamperograms obtained with biosensors (3αHSD-
NADH-MB-SPCEs vs. Ag/AgCl) in porcine adipose tissue fortified with (A) 0 µg/g; (B) 1 µg/g; (C) 2 
µg/g; (D) 4 µg/g and (E) the adipose tissue of a carcass on the abattoir processing line. Scans 
performed simultaneously with differential pulse voltammetry. 

D 

Figure 4.27. Calibration graph for androstenone measured in subcutaneous porcine adipose tissue. 
Androstenone calibration graph plotted from current measurements at 20 s obtained from adupose 
tissue fortified with 0 µg/g, 1 µg/g, 2 µg/g, and 4 µg/g



Chapter Four 

150 

abattoir carcass sample fortified with  a  range  of  androstenone  concentrations;  the

current response was taken at 20 seconds from the application of the applied 

potential and plotted against concentration in Figure 4.27. Figure 4.26D shows 

a typical chronoamperogram obtained from the subcutaneous adipose tissue of 

a carcass measured on the abattoir processing line with the dual instrument system.  

 

 

The concentrations of androstenone obtained by chronoamperometry for the carcasses 

monitored at the abattoir were deduced from the calibration graph previously 

constructed. The androstenone concentration for the same samples were also calculated 

using the gas-chromatographic method previously described in chapter three. The 

correlation plot obtained for the two methods is shown in Figure 4.28; the corresponding 

correlation coefficient was calculated to be 0.67. This data demonstrates the successful 

application of the dual measurement system to the determination of androstenone online 

Figure 4.28. Comparison of androstenone concentration measured by GC-FID and 
chronoamperometry. Comparison between gas chromatographic flame ionisation detector 
analysis and in situ biosensor (3αHSD-NADH-MB-SPCE vs.Ag/AgCl) measurement of androstenone 
in the subcutaneous adipose tissue of carcasses analysed on the abattoir production line (n = 40). 

y = 2.30x 

R2 = 0.67 
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in an abattoir. It should be mentioned that the boar taint threshold occurs for 

androstenone at 0.5-1.0 ppm, from Figure 4.28 it was possible to readily detect 

endogenous concentrations below 0.5 ppm. As the incidence of boar taint would result in 

concentrations higher than these values the biosensor for androstenone would clearly be 

able to identify this contaminant. 

4.4 Conclusions 

The studies in this chapter demonstrate that a portable battery-powered dual instrument 

system, with sensitivity comparable to the laboratory mains-powered instruments, is 

capable of measuring androstenone and skatole simultaneously over the concentration 

range of interest for pig meat considered to exhibit boar taint characteristics. It was 

demonstrated that the in-house prepared biosensors were capable of giving repeatable 

responses (within 5 %) in fortified tissue samples from different pigs. 

The characterisation studies for the boar taint measurement technology, consisting of a 

skatole sensor and androstenone biosensor, began with individual measurements using 

separate potentiostats. The pig production industry requires technology that can measure 

both skatole and androstenone rapidly in order to keep up with the fast processing line 

speeds used in many abattoirs today. The preliminary laboratory studies investigating the 

measurement of the two compounds simultaneously ran into issues involving the cross-

over of the electrical input signals from the two applied waveforms (differential pulse 

voltammetry and chronoamperometry). Subsequent studies determined that an electrical 

circuit must have been established between the potentiostats and the electrochemical 

cell via the mains power connections. The investigation of battery powered potentiostats 

meant that there was no longer a possibility for signal cross-over via the mains power 

connections, however both potentiostats should ideally be controlled by a single device. 

A single device would provide a new circuit route for the applied potential to travel 
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through the electrochemical cell, via the two potentiostats and the laptop. The unwanted 

electrical signal cross-over was eliminated with the addition of an electrical isolator. 

Prior to trialling the dual instrument system on the abattoir processing line a calibration 

study was performed in the laboratory by fortifying adipose tissue samples with both 

skatole and androstenone. These fortified samples were interrogating with the sensor and 

biosensor simultaneously from a single holder fitted to the dual potentiostat system, this 

system was controlled by a single laptop. The resulting current responses from both the 

differential pulse voltammograms and the chronoamperograms were plotted against the 

fortification concentration (µg/g). This in-situ calibration study was repeated and the two 

data sets were in good correlation with one another, in addition to this the calibration 

plots also correlate well with the previous calibration studies performed with 

independent potentiostats. 

The dual potentiostat system was taken to an abattoir and trialled on the processing line 

and the interrogated adipose tissue from pig carcasses was sampled, stored and 

transported back to the laboratory for analysis via gas chromatographic methodologies. 

The results from each method, electrochemical vs. gas chromatography, were then 

compared and a positive correlation was observed between both the novel 

electrochemical methods and the traditional chromatographic methodologies.   

In conclusion, this chapter has described the successful development of a dual 

electrochemical instrument incorporating a bespoke dual sensor holder for the 

interrogation of adipose tissue samples online for the determination of boar taint 

compounds. The data obtained with this dual system compared well with the 

conventional gas chromatographic methods, and strongly demonstrates that the former 

has potential for online boar taint detection.  
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Chapter Summary 

Chapter five describes the development of an electrochemical assay for the measurement 

of three water-soluble vitamins using screen-printed sensors. During the investigation of 

electroactive compounds endogenous to adipose tissue (described in chapter two) it was 

observed that the B-vitamins; thiamine, riboflavin and pyridoxine, gave an anodic 

voltammetric response when prepared in a phosphate buffer at pH 11. Subsequently, a 

method for the simultaneous measurement of these compounds, using the rapid 

technique square wave voltammetry, has been described. This method was successfully 

applied to the measurement of riboflavin in a food product and the simultaneous 

measurement of thiamine, riboflavin and pyridoxine in a commercial supplement product. 
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Chapter Five 

5.1 Introduction 

Vitamins were first proposed by Funk (1912) when he demonstrated that a deficiency of 

‘some’ substances resulted in disease, he termed these compounds vitamines; in more 

recent years the word vitamin has replaced the old terminology. Over a century later we 

understand a great deal more about the importance of these dietary components. They 

are grouped by their solubility and similarities in chemical structure; water soluble 

(vitamin B & C) and fat soluble (A, D, E and K). They all play important roles in the human 

body and the B-group vitamins have a diverse range of functions. Thiamine (vitamin B1) is 

a co-enzyme precursor which indirectly contributes to the metabolism of carbohydrates, 

it has also been shown to play a role in neurological development and the immune system 

(Manzetti et al. 2014). Riboflavin (vitamin B2) has been linked to wide range of biological 

processes; some important processes include the oxidation of fatty acids and the transfer 

of electrons in the generation of ATP (Penberthy 2000). Pyridoxine (vitamin B6) also has 

many proposed roles, one of which is the metabolism of amino acids as a component of 

a co-enzyme (Berdanier 2014). These important micronutrients are present in both 

processed and unprocessed foods; with some processed foods fortified to improve public 

health. Fortification has been in practice for over 90 years (World Health Organisation 

2006) and supplements are becoming more popular in an ever aging and increasingly 

health-conscious society. In 2006 a UK regulation on the addition of vitamins and minerals 

to food was published, this regulation became a law in 2007 therefore it is important that 

reliable analytical methods are established for the analysis of these compounds in 

commercial foods and pharmaceutical products.  

One of the most commonly used methods for vitamin analysis in industry involves the use 

of high performance liquid chromatography (Faye Russell 2000). However, this technique 
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requires high operator skill, can be costly to operate on a routine basis and is time 

consuming. Simple, low cost, reliable methods for vitamin analysis are required in both 

the food and pharmaceutical industries and a promising approach is to employ disposable 

screen-printed carbon electrodes (SPCEs). These can be mass produced in a wide range of 

geometries at low cost since the working electrode material is carbon; consequently, they 

can be considered disposable. Most vitamins have been reported to possess electro-

activity in media of a specific pH; these reports have involved various electrode materials 

such as diamond (Chatterjee and Foord 2009), glassy carbon (GCE) (Qu et al. 2004), and 

mercury (Gonzalez-Rodríguez et al. 2011). Siddiqui and Pitre (2001) used the latter 

material for the separate measurement of vitamins B1 B2 and B6, however the authors 

reported different experimental conditions for each vitamin therefore their simultaneous 

measurement was not achieved. A recent review of the electroanalysis of vitamins 

showed that no other publication has described the simultaneous measurement of the 

three vitamins of interest (Brunetti 2016). Only a few reports have appeared which 

describe the application of unmodified SPCEs to vitamin analysis, however, these devices 

have been shown to hold great promise for a wide range of chemical classes (Hughes et 

al. 2016) 

The purpose of the present study was to develop a novel voltammetric assay in 

conjunction with plain SPCEs (vs. Ag/AgCl) for the simultaneous measurement of vitamins 

thiamine (B1), riboflavin (B2), and pyridoxine (B6) in a pharmaceutical product; these 

studies will also demonstrate the possibility of using a similar approach for measuring a 

vitamin in a food product, vitamin B2 was selected for this purpose. The studies in this 

chapter determine the optimal pH of the phosphate buffer solution, as well as the initial 

potential, all three vitamins can be measured in a single anodic scan, using square wave 

voltammetry, in only 8 seconds. 
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5.2 Experimental 

5.2.1 Apparatus and instrumentation 

All voltammetric measurements were carried out with a µAutolab III potentiostat 

interfaced to a PC for data acquisition via NOVA v1.10 (Metrohm, Netherlands). SPCEs 

were supplied by Gwent Electronic Materials Ltd (Pontypool, UK); the working electrode 

is fabricated using a carbon ink (C2030519P4) and the reference electrode is fabricated 

using a Ag/AgCl ink (C61003P7). All pH measurements were carried out with a Testo 205 

(Testo Limited, Hampshire UK) pH meter. 

5.2.2 Voltammetry 

All voltammetric studies were carried out with a screen-printed strip, comprising the 

working and reference electrodes mentioned above, placed in a voltammetric cell 

containing a 10 ml aliquot of 0.1 M phosphate and 0.1 M sodium chloride (PBS). The 

possibility of using SPCEs more than once was investigated however there was a reduction 

in sensitivity on subsequent scans; consequently the sensors were disposed of after each 

analysis. 

The initial cyclic voltammetric conditions used to study the effect of pH over the range 

7-11 were as follows: (A) for thiamine initial potential -0.1 V; switching potential +1.0 V,

final potential -0.1 V; (B) for riboflavin initial potential -1.1 V; switching potential 0.0 

V, final potential -1.1 V; (C) for pyridoxine initial potential -0.1 V; switching potential 

+1.2 V, final potential -0.1 V. The scan rate chosen for all these studies was 100 mV/s.

A further cyclic voltammetric study was performed with a phosphate buffer pH 11 

using the following scan rates: 20, 50, 100, 150, and 200 mV/s. The data was used to 

determine the nature of the reactions occurring with our screen-printed carbon 

electrodes. 
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After deducing the voltammetric behaviour of each vitamin at the SPCEs (vs. Ag/AgCl) 

quantitative studies were performed using square wave voltammetry. Calibration studies 

were carried out at 250 mV/s with a step height of 0.005 V and an amplitude of 0.05 V 

scanning from an initial potential of -1.0 to a final potential of +1.0. The simultaneous 

analysis of all three vitamins in a pharmaceutical preparation was performed under the 

same conditions as those used in the calibration study. To do this a 10 ml extract (details 

of preparation procedure in section 5.2.4) of the sample containing the three vitamins 

was first subjected to square wave voltammetry using the conditions stated above with a 

screen printed strip; this was followed by the addition of standard solutions (0.02 M) of 

thiamine, riboflavin and pyridoxine after which the second square wave voltammogram 

was recorded. This process was continued with a further two additions of the individual 

vitamin solutions. Similarly the analysis of a Marmite® extract was performed at 250 mV/s 

with a step height of 0.005 V and an amplitude of 0.05 V; the initial potential was -1.0 V 

and the final potential was 0.0 V. To do this a 10 ml extract of the sample containing 

riboflavin was first subjected to square wave voltammetry with the conditions stated 

above using a screen printed strip, this was followed by the addition of a riboflavin 

standard solution after which the second square wave voltammogram was recorded. This 

process was continued with a further two additions of the riboflavin standard solution. 

5.2.3 Reagents 

All chemicals were obtained from Sigma Aldrich (Dorset, UK), unless otherwise stated. 

Deionised water was obtained from a Purite RO200 – Stillplus HP System (Oxon, UK). Stock 

solutions of disodium phosphate buffer and trisodium phosphate buffer were made at a 

concentration of 0.5 M by dissolving the appropriate mass in deionized water, these were 

then titrated to give the desired pH. Sodium chloride was prepared to a concentration of 

1.0 M by dissolving the appropriate mass in deionised water; this was added to the 

working standard giving a final concentration of 0.1 mM sodium chloride. Primary stock 
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solutions of thiamine hydrochloride and pyridoxine hydrochloride were prepared by 

dissolving the required mass in deionised water to give 0.02 M concentration solutions. 

Sodium hydroxide was prepared to a concentration of 0.1 M by dissolving the appropriate 

mass in deionised water; a primary stock solution for riboflavin was prepared to a 

concentration of 0.02 M by dissolving the appropriate mass in 0.1 M sodium hydroxide. 

Working standards for voltammetric studies were prepared by dilution of the primary 

stock solution with either phosphate buffer or water to give a final concentration of 0.1 

M phosphate buffer.  

5.2.4 Sample preparation 

The food product Marmite® was prepared by diluting a 2 gram quantity in 5 ml of 0.2 M 

trisodium phosphate buffer. This was prepared in a 15 ml centrifuge tube and gently 

warmed to 30°C for 10 minutes to allow the viscous sample to dissolve in the buffer. The 

sample was then vortexed and finally centrifuged in an MSE Centaur 2 (Fisons, UK) for 10 

minutes at 2500 rpm. The final solution was prepared in a voltammetric cell with a 1.25 

ml aliquot of the supernatant and 0.1 M phosphate buffer (pH 11) with 0.1 M sodium 

chloride taking the total volume to 10 ml.  

The vitamin B tablet Ultra Vit B Complex™ by Vitabiotics© was prepared by crushing a total 

of 5 tablets with a pestle and mortar, 0.1 g of the powdered tablets was transferred to a 

centrifuge tube containing a 5 ml solution of 0.1 M (pH 11) phosphate buffer which was 

shaken, vortexed, and finally centrifuged in an MSE Centaur 2 for 10 minutes at 2500 rpm. 

The final solution was prepared in a voltammetric cell with 0.25 ml of the supernatant and 

0.1 M phosphate buffer (pH 11) with 0.1 M sodium chloride taking the total volume to 10 

ml.
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5.3 Results and discussion 

5.3.1 Cyclic voltammetric behaviour and optimisation of buffer conditions 

In order to determine the optimum conditions for the simultaneous electrochemical 

measurement of the water soluble vitamins thiamine, riboflavin, and pyridoxine at plain 

SPCEs, cyclic voltammetric studies were performed over the pH range 7-11 at a fixed scan 

rate of 100 mV/s.  

 Figure 5.2. Cyclic voltammetric profiles of thiamine in a buffered solution at pH 10 and pH 11. 
Cyclic voltammograms were obtaining using a SPCE (vs. Ag/AgCl) with a solution containing 
0.1 M sodium chloride with 0.1 M phosphate buffer at pH 10 with 1 mM thiamine 
hydrochloride (i), pH 11 with 1 mM thiamine hydrochloride (ii), and pH 11 with 0 mM thiamine 
hydrochloride (iii). Initial/final potential 0.0 V, switching potential +1.0 V & -0.1 V, scan rate 

100 mV/s. 

Figure 5.1. Plot summarising the anodic peak currents (ipa) obtained over the pH range 7 – 11 
for vitamin B1, vitamin B2, and vitamin B6. 
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Figure 5.3. Cyclic voltammetric profiles of riboflavin in a buffered solution at pH 10 and pH 11 
Cyclic voltammograms were obtaining using a SPCE (vs. Ag/AgCl) with a solution containing 
0.1 M sodium chloride with 0.1 M phosphate buffer at pH 10 with 1 mM riboflavin (i), pH 11 
with 1 mM riboflavin (ii), and pH 11 with 0 mM riboflavin (iii). Initial/final potential -1.0 V, 
switching potential 0.0 V & -1.1 V, scan rate 100 mV/s. 

. 

Figure 5.4. Cyclic voltammetric profiles of pyridoxine in a buffered solution at pH 10 and pH 11. 
Cyclic voltammograms were obtaining using a SPCE (vs. Ag/AgCl) with a solution containing 0.1 
M sodium chloride with 0.1 M phosphate buffer at pH 10 with 1 mM pyridoxine hydrochloride (i), 
pH 11 with 1 mM pyridoxine hydrochloride (ii), and pH 11 with 0 mM pyridoxine hydrochloride 
(iii). Initial/final potential -0.0 V, switching potential +1.2 V & -0.1 V, scan rate 100 mV/s. 
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Figure 5.1 summarises the peak responses for the three vitamins of interest over the pH 

range 7-11.  Figure 5.2 clearly shows well defined cyclic voltammetric responses for 

thiamine in phosphate buffer (0.1 M) at pH 10 and pH 11; no significant oxidation peak 

was observed below pH 10 (Figure 5.1). Similar behaviour was observed by Hart and co-

workers (1995) using a GCE, who suggested that the electrochemically inactive thiamine 

is converted to an electro-oxidisable thiol derivative at pH values above pH 9. The 

proposed mechanism is shown in Equation 1, and the proposed free-radical (RS.) 

production and subsequent dimerization are shown in Equations 2 and 3. In order to 

deduce whether the mechanism obtained with a SPCE was the same as that obtained with 

the glassy carbon electrode mentioned above, we carried out wave analysis of the 

voltammogram in  Figure 5.2. The αna value was calculated using the relationship: 

αna=0.048/Ep (V) - Ep2 (V) (Nicholas et al. 2018). The value obtained was 0.52 and as the 

value of α is usually close to 0.5 this implies that n is 1. Consequently this value is in 

agreement with that obtained using a GCE. 

Riboflavin also exhibited well-defined cyclic voltammetric responses using the same 

buffers (Figure 5.3). The voltammetric oxidation and reduction peak currents were of 

similar magnitude over the whole pH range studied (Figure 5.4), suggesting that any of 

these buffers could be used for the analysis of this vitamin. It should be mentioned that 

riboflavin is initially in the oxidised form, therefore at the initial potential (-1.0 V) the 

vitamin is reduced prior to the scan and subsequently re-oxidised during the forward 

anodic scan. This behaviour is consistent with an electrochemically quasi-reversible redox 

Equation 1 

Equation 2 

Equation 3 
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couple and has also been reported to occur with other electrode materials and the 

proposed mechanism is shown in Equation 4 (Qijin et al. 2001). The quasi-reversible 

nature of the redox reaction with a SPCE is evident from the separation of the Epa and 

Epc values; the expected value would be 59/n (mV) for a truly reversible electrode process 

(Kissinger and Heineman 1983).  

Figure 5.4 shows the cyclic voltammetric behaviour of pyridoxine using pH 10 and pH 11 

phosphate buffers; clearly there is an influence of pH on the anodic response of the 

vitamin. As shown in Figure 5.1 a break point occurs in the plot of peak current vs. pH at 

a value of pH 9.0. This is consistent with the occurrence of a pKa value at the pyridine 

moiety of the vitamin (Hart and Hayler 1986). From the data shown in Figure 5.1 we 

deduced that a pH of 11 was optimum for the voltammetric measurement of all three 

vitamins.  

Equation 4 
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Figure 5.5. Cyclic voltammetric profile of thiamine in a pH 11 buffered solution at different scan 
rates. Cyclic voltammograms were obtained using SPCEs (vs. Ag/AgCl) with a solution 
containing 50 mM thiamine hydrochloride prepared in 0.1 M phosphate buffer at pH 11 with 
0.1 M sodium chloride. Scan rates: (i) 20, (ii) 50, (iii) 100, (iv) 150, and (v) 200 mV/s. Blank 
voltammetric scan (vi) was performed at 20 mV/s with the buffered solution. Initial/final 
potential 0.0 V, switching potential +1.0 V & -0.1 V. 

Figure 5.6. Cyclic voltammetric profile of pyridoxine in pH 11 buffered solution at different scan 
rate. Cyclic voltammograms were obtained using SPCEs (vs. Ag/AgCl) with a solution containing 
20 mM pyridoxine hydrochloride prepared in 0.1 M phosphate buffer at pH 11 with 0.1 M 
sodium chloride. Scan rates: (i) 20, (ii) 50, (iii) 100, (iv) 150, and (v) 200 mV/s. Blank 
voltammetric scan (vi) was performed at 20 mV/s with the buffered solution. Initial/final 
potential 0.0 V, switching potential +1.2 V & -0.1 V. 
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Figure 5.7. Cyclic voltammetric profile of riboflavin in a pH 11 buffered solution at different scan 
rates. Cyclic voltammograms were obtained using SPCEs (vs. Ag/AgCl) with a solution 
containing 20 mM riboflavin prepared in 0.1 M phosphate buffer at pH 11 with 0.1 M sodium 
chloride. Scan rates: (i) 20, (ii) 50, (iii) 100, (iv) 150, and (v) 200 mV/s. Blank voltammetric scan 
(vi) was performed at 20 mV/s with the buffered solution. Initial/final potential -1.0 V,
switching potential 0.0 V & -1.1 V.

Figure 5.8. Current function versus V½ for the anodic peak of thiamine, riboflavin and 
pyridoxine. 
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A scan rate study was performed next in order to further deduce the nature of the 

electrode reaction for each of the water soluble vitamins at the optimum pH. The cyclic 

voltammetric behaviour for thiamine (Figure 5.5), riboflavin (Figure 5.7), and pyridoxine 

(Figure 5.6) were studied over the scan rate range 20-250 mV/s. The current function was 

plotted against the square root of the scan rate (V½) for each vitamin (Figure 5.8). The 

linear profiles observed in Figure 5.8 indicate the anodic current for both thiamine and 

riboflavin is controlled by diffusion. However a slight negative slope is observed for 

pyridoxine which could be a result of adsorption phenomena of the oxidation product at 

the electrode surface. At the pH used for the analytical determinations (pH 11) the anionic 

species would be expected to undergo oxidation of the dissociated phenolic group as 

shown in Equation 5. In a similar manner to that described above for thiamine, we 

calculated the αna value to be 0.52, which implies that the oxidation step involves the 

transfer of one electron from the anion.  

5.3.2 Calibration studies 

The cyclic voltammetric studies in section 5.3.1 led to the optimisation of the electrolyte 

solution for the analysis of thiamine, riboflavin, and pyridoxine. Quantitative studies 

performed to determine the linear working range of the SPCE’s (vs. Ag/AgCl) in the 

presence of the three analytes were performed in the optimised pH 11 0.1 M phosphate 

buffered solution with 0.1 M sodium chloride. These studies used the more sensitive 

voltammetric technique square wave voltammetry, where the anodic peak potentials 

Equation 5 
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(Epa) were found to be -0.7 V, +0.2 V, +0.6 V for riboflavin, thiamine, and pyridoxine 

respectively.  

The linear ranges for these vitamins were as follows: thiamine 15-110 µg/ml (R2 = 0.987); 

riboflavin 0.1-20.0 µg/ml (R2 = 0.999); and pyridoxine 2-80 µg/ml (R2 = 0.999). The 

sensitivities were thiamine 0.0298 µA µg/ml, riboflavin 4.105 µA µg/ml, and pyridoxine

0.375 µA µg/ml. The precision of the method was calculated as the coefficient of variation 

(n=4), the calculated values were: thiamine 6.05 % (50 µg/ml); riboflavin 6.26 % (7.5 

µg/ml); pyridoxine 5.42 % (32 µg/ml).  The limit of detection was calculated from the 

sensitivity in conjunction with three times the baseline noise for a blank solution at the 

peak potential of the individual vitamins. The detection limits were: 0.1 µg/ml (riboflavin); 

3.5 µg/ml (thiamine); 0.4 µg/ml (pyridoxine). 
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5.3.3 Analytical application 

5.3.3.1 Food analysis 

The successful measurement of riboflavin in the food spread Marmite® was achieved 

using the standard addition method. The square wave voltammograms obtained for a 

typical standard addition study are shown in Figure 5.9. The riboflavin content for each 

sample was calculated using the method of standard addition (Nicholas et al. 2018); a 

Figure 5.9. Square wave voltammograms of riboflavin standard additions in a Marmite® 
sample extract. Square wave voltammograms were obtained using SPCEs (vs. Ag/AgCl) with a 
solution containing Marmite® extract in a pH 11 0.1 M phosphate buffer with 0.1 M sodium 
chloride with the following standard additions of riboflavin (i) 0.0, (ii) 1.0, (iii) 2.0, (iv) 3.0 
µg/ml. Initial potential -1.0 V, final potential 0.0 V, scan rate 250 mV/s.  

Figure 5.10. Typical riboflavin standard addition plot obtained with a Marmite® sample 
extract. 

y = 0.452x +1.65 

R2 = 0.99 
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Vitamin B2 Declared 
(μg/g) 

Measured 
(μg/g) 

Recovered 
(%) Sample 

1 70.0 69.3 99.0 

2 70.0 69.3 95.9 

3 70.0 64.7 92.5 

4 70.0 66.3 94.7 

5 70.0 64.6 92.3 

Average recovery (%) 95.8 

Standard deviation   3.24 

Coefficient of variation (%) 3.38 

typical plot is shown in Figure 5.10. The average recovery for riboflavin was calculated to 

be 95.8 % with the precision (coefficient of variation) calculated to be 3.38 % (Table 5.1) 

n=5. The recoveries agree well with the declared content provided in the manufacturer’s 

specification and the method could have application for quality control analysis of food 

products.  

5.3.3.2 Pharmaceutical analysis 

Table 5.1 Recovery data for vitamin B2 in Marmite (n=5). 

Figure 5.11. Square wave voltammograms of vitamin B1, B2, & B6 standard additions in a 
supplement extract. Square wave voltammograms were obtained using SPCEs (vs. Ag/AgCl) with 
a solution containing an extract from a vitamin B tablet (Ultra Vit B Complex™ by Vitabiotics©) 
in a pH 11 0.1 M phosphate buffer with 0.1 M sodium chloride (i) with the following standard 
additions of thiamine hydrochloride (ii) 0, (iii) 16, (iv) 32, (v) 48 µg/ml, riboflavin (ii) 0, (iii) 4, (iv) 
8, (v) 12 µg/ml, & pyridoxine hydrochloride (ii) 0, (iii) 18, (iv) 34, (v) 50 µg/ml. Initial potential -
1.0 V, final potential +1.0 V, scan rate 250 mV/s. 
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Figure 5.14. Typical pyridoxine standard addition plot obtained with a Vitabiotics© Ultra Vit B 
Complex™ sample. 

Figure 5.12. Typical thiamine standard addition plot obtained with a Vitabiotics© Ultra Vit B 
Complex™ sample. 

y = 0.039x + 1.19 

R2 = 0.99 

Figure 5.13. Typical riboflavin standard addition plot obtained with a Vitabiotics© Ultra Vit B 
Complex™ sample. 

y = 0.62x + 6.47 

R2 = 0.99 

y = 0.127x + 4.93 

R2 = 0.99 
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The simultaneous measurement of the three water soluble vitamins has been successfully 

achieved for a commercially available pharmaceutical preparation, (Ultra Vit B Complex™ 

by Vitabiotics©) using square wave voltammetry in conjunction with unmodified SPCEs. 

Figure 5.11 shows well defined peaks for all three vitamins in the sample extract with no 

interference from the other components of the sample matrix. The standard addition 

plots for thiamine, riboflavin, and pyridoxine are shown in Figure 5.12, Figure 5.13, and 

Figure 5.14 respectively; the recoveries were calculated to be 110% thiamine; 114% 

riboflavin; 112 % (pyridoxine) and precision data (coefficient of variation) for the same 

three vitamins were 7.14 % (thiamine), 6.28 % (riboflavin), 5.66 % (pyridoxine) (Table 5.2). 

The data shows that the method holds promise for the analysis of pharmaceutical 

products. 
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Vitamin B1 Declared 
(mg/tablet) 

Measured 
(mg/tablet) 

Recovered 
(%) Sample 

1 5.00 5.78 118 

2 5.00 5.55 109 

3 5.00 5.94 102 

4 5.00 5.19 110 

5 5.00 6.12 114 

Average recovery (%) 110 

Standard deviation   7.88 

Coefficient of variation (%) 7.14 

Vitamin B2 Declared 
(mg/tablet) 

Measured 
(mg/tablet) 

Recovered 
(%) Sample 

1 1.40 1.65 116 

2 1.40 1.52 111 

3 1.40 1.43 119 

4 1.40 1.53 104 

5 1.40 1.59 122 

Average recovery (%) 114 

Standard deviation   7.18 

Coefficient of variation (%) 6.28 

Vitamin B6 Declared 
(mg/tablet) 

Measured 
(mg/tablet) 

Recovered 
(%) Sample 

1 5.00 5.31 106 

2 5.00 5.76 115 

3 5.00 6.05 121 

4 5.00 5.40 108 

5 5.00 5.37 107 

Average recovery (%) 112 

Standard deviation   6.32 

Coefficient of variation (%) 5.66 

Table 5.2 Recovery data for vitamin B1, B2, and B6 in analysed tablets. 
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5.4 Conclusions 

In this chapter the development of a novel voltammetric assay for the simultaneous 

measurement of thiamine, riboflavin and pyridoxine using square wave voltammetry in 

conjunction with unmodified SPCEs has been described. It was possible to perform the 

analysis in a single voltammetric scan, in only 8 seconds, owing to the judicious choice of 

the optimum pH 11 phosphate buffer to allow conversion of thiamine to its electroactive 

thiol form; in addition, the initial negative potential allowed the conversion of the oxidised 

form of riboflavin to its reduced form which is re-oxidised in the anodic scan. We have 

also shown that a simple sample pre-treatment step could be used prior to the 

quantification of these vitamins in both a food (riboflavin alone) and pharmaceutical 

product (thiamine, riboflavin and pyridoxine). The pre-treatment step simply consisted of 

mixing the product with trisodium phosphate buffer solution and centrifuging, the 

supernatant was added to a pH 11 phosphate buffer and sodium chloride solution to form 

the final solution for interrogation with a SPCE (vs. Ag/AgCl). It should be readily feasible 

to develop similar methods based on this approach for other important vitamins in a 

variety of food and pharmaceutical matrices. 
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Conclusions and future studies for the electroanalysis of boar taint compounds 

The first part of this thesis was concerned with the characterisation of the patented 

sensor-biosensor system (European Patent 2966441). An initial review of the literature 

identified a wide range of potential compounds present in porcine adipose tissue. 

However, of these only the water-soluble vitamins were considered to be possible 

interferences to the sensor measurements. Voltammetric studies were performed on 

thiamine, riboflavin, pyridoxine, folic acid, pantothenic acid and nicotinamide under the 

conditions used for the analysis of skatole. It was shown that there were no responses for 

any of these vitamins that interfered with the measurement of skatole at the screen 

printed carbon electrodes (vs. Ag/AgCl).  

The characterisation studies were first performed with the skatole sensor and are 

reported in chapter two. It should be mentioned that these studies were performed in 

aqueous buffer solutions under a variety of conditions. The results of the voltammetric 

calibration studies strongly indicated that the approach with a screen-printed carbon 

electrode (vs. Ag/AgCl) would have the desired sensitivity and selectivity for the 

measurement of skatole in adipose tissue. Similarly, the results of the 

chronoamperometric calibration studies with a screen-printed biosensor (vs. Ag/AgCl), 

prepared by drop-coating a 3α-hydroxysteroid dehydrogenase and NADH solution on the 

surface of the Meldola’s blue screen-printed carbon electrode, demonstrated the 

feasibility of applying the device to the measurement of this androstenone in adipose 

tissue.  

The next chapter, chapter three, was concerned with demonstrating the application of 

the sensor and biosensor to the direct measurement of boar taint compounds, skatole 

and androstenone respectively, in porcine adipose tissue. In the initial application studies 

samples from a local retailer and pig producer were examined using a simple direct 
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insertion approach. In parallel, gas chromatographic methods were developed and 

applied to the quantification of boar taint compounds in the same samples previously 

analysed by the electrochemical methods. The concentrations calculated for both skatole 

and androstenone in adipose tissue samples were compared and a positive correlation 

was observed. This demonstrated the successful application of electroanalytical 

approaches using a sensor and biosensor for the measurement of boar taint compounds 

in adipose tissue. It should be mentioned that these devices were used in the laboratory 

setting, on adipose tissue samples, where the techniques were applied using separate 

potentiostats for independent measurements. 

In contrast in the following chapter, chapter four, it was shown that a convenient 

approach using a dual potentiostat system could be developed for the simultaneous 

measurement of skatole and androstenone in adipose tissue. The developed portable 

system, comprising of a dual potentiostats in conjunction with a dual sensor-biosensor 

holder, was successfully used for the measurement of the boar taint compounds online in 

an abattoir. The data obtained with this dual system compared well with the conventional 

gas chromatographic methods, and strongly demonstrates that the former has potential 

for online boar taint detection. In conclusion, this investigation has described the 

successful development of a dual electrochemical instrument, incorporating a bespoke 

dual sensor holder, for the interrogation of adipose tissue samples online for the 

determination of boar taint compounds.  

In this section some suggestions for future work involving the dual boar taint system are 

discussed. It should be mentioned that to date there are no systematic studies 

documenting the distribution of boar taint compounds throughout the whole pig carcass. 

The main reason for this is the extremely long analysis times that would be required for 

such a study using traditional chromatographic method. This would provide important 
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information with regards to the carcass cuts containing the least boar taint, which would 

be beneficial for the producer and consumer. In addition, it might reveal important 

information about the metabolism of these compounds. Which could be important for 

reducing boar taint in live animals. It should also be possible to monitor the boar taint 

compounds in live pigs using this technology. For example one possibility would be to 

monitor androstenone levels in saliva, which would be far more convenient that the 

complicated gas chromatographic methods reported by both Gower (1972) and 

Dehnhard, Rohrmann and Kauffold (2012). It may also be feasible to measure the boar 

taint compounds in a very small volumes of blood in a similar way to the measurements 

of glucose using a glucose biosensor. This simply involves depositing microliter volumes 

directly onto the surface of the device prior to application of a suitable electrochemical 

waveform. This could lead to important information on the role of the pig diet on the 

formation of the boar taint compounds, consequently this could provide information on 

the most suitable diet to reduce boar taint in pigs. 

Ideally producers would like to slaughter at higher weights, like those used in other 

countries where castration is still performed thereby avoiding the issue of high 

androstenone levels in boar taint. Studies have shown that a 10 kg increase changed the 

incidence of androstenone over the acceptable threshold (1 µg/g) from 33% to 55% 

(D’Souza et al., 2011). Therefore, using the rapid portable sensor system alongside weight 

trials could allow for carcass weights to be raised without a negative impact on consumers 

by allowing for the sorting of carcasses. Carcasses with higher incidences of boar taint can 

be used in processed low value products or can be diluted with untainted meat to lessen 

the concentration and negative perception of boar taint. 

This dual sensor-biosensor technology could be used with a wireless system, which would 

be better suited to an abattoir environment. Where the results are made available to 
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operators more rapidly to remove contaminated carcasses; this is an important aspect for 

operations in large abattoirs where the system could be automated. In 2018 the voluntary 

ban on pig castration will come into operation, therefore it is envisaged that the 

implementation of this technology will play an important role in the future production of 

boar taint free pig meat.  

Conclusions and future studies for the electroanalysis of vitamins 

An investigation into the development of a novel electrochemical assay for the 

measurement of water-soluble vitamins in food and pharmaceutical products has been 

successfully developed and is described in chapter five (Westmacott et al., 2018). The 

optimum conditions for the determination of vitamin B1 (thiamine), B2 (riboflavin) and B6 

(pyridoxine) in phosphate buffer were established using cyclic voltammetry in conjunction 

with screen printed carbon electrodes (SPCEs). The optimum current response for all 

three vitamins was achieved in 0.1 M phosphate buffer pH 11 using an initial potential of 

-1.0 V. Using square wave voltammetry, the linear ranges for thiamine, riboflavin, and

pyridoxine were found to be: 15-110 µg/ml, 0.1-20 µg/ml, and 2-80 µg/ml respectively. 

The application of the method to a commercial food product yielded a recovery of 95.78 

% for riboflavin, with a coefficient of variation (CV) was 3.38% (n=5). The method was also 

applied to a multi-vitamin supplement for the simultaneous determination of thiamine, 

riboflavin and pyridoxine. In both cases only simple dilution with buffer followed by 

centrifugation was required prior to analysis. The resulting square wave voltammetric 

signals were completely resolved with Ep values of -0.7 V, +0.2 V, and +0.6 V respectively. 

The recoveries determined for the vitamin B complex in a commercial supplement 

product were found to be 110 %, 114 %, and 112 % respectively (CV= 7.14%, 6.28 %. 5.66 

% respectively, n=5). 
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In this section some suggestions for future work are discussed. As mentioned in earlier 

chapters several important markers of boar taint could be analysed by direct insertion of 

the (bio)sensor into porcine subcutaneous adipose tissue. Consequently, it should be 

feasible to apply a similar approach to the measurement of a range of vitamins directly in 

food samples. For example it has been shown that citric acid could be measured by direct 

insertion of a SPCE into the flesh of a lime (Honeychurch, Gilbert and Hart, 2010). As 

mentioned above B1 B2 and B6 could be determined simultaneously following a simple 

sample preparation step, therefore it should be feasible to carry out the analysis of 

pumpkin fruit, which contains the same three vitamins (Assous, Saad and Dyab, 2014), by 

direct insertion of the screen printed sensors. It is known that vitamin C is 

electrochemically active under a wide range of conditions, so it should be possible to 

simply insert the screen-printed sensor into various citrus fruits, including oranges and 

lemons. In addition tomatoes are known to contain both ascorbic acid and vitamin A 

(retinol), both are oxidisable at carbon electrodes (see Table 4: Wring, Hart and Knight, 

1988; Pemberton, Mottram and Hart, 2005; Revlin and John, 2012, Hu et al., 2001) 

therefore, it should be feasible to carry out analysis of these vitamins by direct insertion 

into the fresh flesh of the fruit using SPCEs (Klein and Perry, 1982). It should also be 

feasible to apply a similar procedure to the direct measurement of vitamins in a range of 

vegetables.  

In chapter two, a review of the literature revealed that various vitamins, both water 

soluble and fat soluble, were present in the muscle tissues of pigs. Therefore, a similar 

direct measurement approach could be employed for the determination of a range of 

water soluble vitamins, including vitamin C (Eichenberger et al., 2004; Gebert et al., 2006; 

Lechowski, 2006) and eight B vitamins (Jackson et al., 1945; Müller, 1993; Hägg and 

Kumpulainen, 1994; Leonhardt and Wenk, 1997; Esteve et al., 2002; Lombardi-Boccia, 
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Lanzi and Aguzzi, 2005; Böhmer and Roth-Maier, 2007; Greenfield et al., 2009; USDA, 

2009); Appendix Tables 5 and 6. 

These methods could be exploited in the food industry as simple quality control tools as 

well as for application in nutritional research.  
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The data in the Tables 1-3 were obtained on the abattoir line by K Westmacott.  
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Table 16. Skatole concentrations, measured in adipose tissue samples, values 
for the preliminary comparison of the voltammetric sensor method and the 
corresponding GC-NPD method (n=14).  All concentrations are mean values 
calculated from duplicate data sets (n=2). 
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 Table 17. Androstenone concentrations, measured in adipose tissue samples, 
for the preliminary comparison of the amperometric biosensor method and the 
corresponding GC-FID method (n=21). All concentrations are mean values 
calculated from duplicate data sets (n=2).  
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Table 18. Concentration of androstenone and skatole in the adipose tissue 
of pig carcasses. Quantification performed using gas chromatography and 
the dual electrochemical sensor-biosensor system. Electrochemical 
measurements made on the abattoir processing line. 
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