Test-retest reliability for common tasks in vision science
Kait Clark¹, Charlotte R. Pennington¹, Craig Hedge ², Joshua Lee¹, & Austin Petrie¹
¹University of the West of England, ²Cardiff University

Reliability
- Consistency in results produced by a measure
- Test-retest reliability: Correlation of scores taken at 2+ points in time
- How well can a measure consistently distinguish between individuals who have high/low scores?

Repeatability = reliability
- Highly robust tasks are often unreliable (e.g., Stroop)
- Test-retest reliability is required to assess individual differences

Intraclass correlation coefficient (ICC)
\[ICC = \frac{\text{Variance between individuals}}{\text{Variance between individuals} + \text{error variance}} \]

- Low ICC could represent high error or the fact that individuals are very similar
 - *cognitive tasks often designed to minimize variance

Test-retest reliability is required to assess individual differences

Participants
- 165 undergraduate psychology students
- Testing sessions:
 - Two sessions, separated by 1-3 weeks
 - Each session two hours in length:
 - 1 hour social cognition tasks (Pennington et al., in prep)
 - 1 hour perceptual tasks (current paper)

Tasks
- Motion coherence (MoCo)
 - Indicate direction of motion
 - 400 dots, random motion
 - Starting trial: 24% coherent
 - 3 staircases, 1-up/1-down (%)

- Useful field of view (UFOV)
 - Fixate in the centre
 - Central number / peripheral dot flash for 90 ms
 - Report number and dot location

- Multiple-object tracking (MOT)
 - 3-6 items flash (targets)
 - All items move for 6.5 seconds
 - Track the locations of targets
 - Items stop moving
 - Click on all of the targets

- Visual working memory (VWM)
 - Two sets of squares presented
 - One square might change (50%) indicate change or no change
 - Set sizes range from 2-7

Test-retest reliabilities

<table>
<thead>
<tr>
<th>Task/measure</th>
<th>ICC</th>
<th>Rho</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoCo Threshold</td>
<td>0.60</td>
<td>0.57</td>
</tr>
<tr>
<td>UFOV Number Accuracy</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>Inner Accuracy</td>
<td>0.43</td>
<td>0.48</td>
</tr>
<tr>
<td>Middle Accuracy</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>Outer Accuracy</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>MOT Max Items</td>
<td>0.41</td>
<td>0.36</td>
</tr>
<tr>
<td>Threshold</td>
<td>0.36</td>
<td>0.31</td>
</tr>
<tr>
<td>VWM Capacity</td>
<td>0.75</td>
<td>0.77</td>
</tr>
</tbody>
</table>

*similar to Xu et al., 2018

Spearman’s Rho
- Accounts for outliers
- Tends to be a more lenient measure
- Aligns with ICC

Relative size of variance components:

Consider test-retest reliability before assessing individual differences

- Many cognitive tasks not designed to discriminate between individuals
- Unlikely to find IDs for tasks with low ICCs
- If a measure does not correlate with itself, it’s unlikely to correlate with anything else

References

Participants and testing
- 165 undergraduate psychology students
- Testing sessions:
 - Two sessions, separated by 1-3 weeks
 - Each session two hours in length:
 - 1 hour social cognition tasks (Pennington et al., in prep)
 - 1 hour perceptual tasks (current paper)

References