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Abstract: The use of high strength to weight ratio laminated fiber-reinforced composites is emerging 14 

in engineering sectors such as aerospace, marine and automotive to improve productivity. 15 
Nevertheless, delamination between the layers is a limiting factor for the wider application of 16 
laminated composites, as it reduces the stiffness and strengths of the structure. Previous studies 17 
have proven that ply interface nanofibrous fiber reinforcement has an effective influence on 18 
delamination resistance of laminated composites materials. This paper aims to investigate the effect 19 
of nanofiber ply interface reinforcement on mode I properties and failure responses when subjected 20 
to static and fatigue loadings. For this purpose, virgin and nanomodified woven laminates were 21 
subjected to Double Cantilever Beam (DCB) specimens. Static and fatigue tests were performed and 22 
the acoustic emission data were acquired during the tests. The results showed a 130% increase of 23 
delamination toughness for nanomodified specimens in the static loadings and more crack growth 24 
resistance in the fatigue loading. The AE results showed that different types of failure mechanisms 25 
were the cause of these improvements for the nanomodified composites compared with the virgin 26 
ones.  27 
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1. Introduction 31 

Carbon fiber reinforced polymer (CFRP) composites have many applications in different sectors, 32 
such as aerospace, superstructure of ships, automotive, civil engineering and sports goods, due to 33 
their high strength-to-weight ratio and rigidity. CFRP are usually produced by stacking several 34 
sheets of prepregs together. Unlike the excellent in-plane properties of CFRP, they suffer from 35 
damage between the plies such as delamination or cracks, which happen mostly in the matrix areas 36 
[1–5].  37 

Different methods such as matrix toughening, stitching of the plies, and three-dimensional 38 
woven fabrics have been used to prevent delamination. Matrix-toughening has recently attracted a 39 
lot of attention at which delamination toughness increases by using toughened material layers during 40 
the manufacturing [6-8]. A lot of works have been done on toughening laminated composites using 41 
nanofibers interleaving and the overall conclusion was that nanofibers can bring significant benefits 42 
to the composite under certain conditions of resin-polymer compatibility, size and amount of 43 



 

interleave, and type of material [9–11]. New observations showed that mode I fracture toughness of 44 
epoxy-resin composites increased with the use of Nylon 66 nanofibers [12, 13] both in static and 45 
fatigue loading conditions, if they are treated in a defined condition such as appropriate selection of 46 
thickness of nanofibrous and curing temperature.  47 

The aim of this paper is to identify failure mechanisms in the Nylon 66 nanofibers-interleaved 48 
composites under static and fatigue loadings. Acoustic Emission (AE) technique was used to monitor 49 
the generated AE signals originated from the failure mechanisms during static and fatigue loadings 50 
of the Nylon 66 nanofiber-interleaved laminates. AE technique was used to identify the damage types 51 
in laminated composite and it has been a useful and applicable method [14-21]. AE signal is an 52 
intrinsic energy that is generated during various damage mechanisms under loading condition.  53 

This paper reports a good correlation between the mechanical data and recorded AE signals that 54 
were obtained from the experiments on CFRP interleaved with the Nylon 66 nanofibers under both 55 
static and fatigue mode I interlaminar loadings. 56 
 57 

2. Materials and Methods  58 

Two types of samples, i.e. virgin and nano-interleaved, were fabricated and tested. The samples 59 
were made from 14 plies of plain weave (PW) carbon-epoxy prepreg (GG204P-IMP503Z), with 220 60 
gcm, which were stacked together. The prepreg was supplied by Impregnatex Composite Srl (Milan, 61 
Italy). The virgin and nano-interleaved laminates were cut from two rectangular panels (300*170 62 
mm2) that were cured in an autoclave at 60oC cycle for 2 hours and 130oC cycle for 1 hour, with 6 bar 63 
pressure, below Nylon’s melting temperature which is 260oC. Later the rectangular plates were cut 64 
to the size of the test samples according to ASTM D5528 standard [23] as illustrated in Figure 1. The 65 
only difference between the virgin and nano-interleaved samples was the addition of a Nylon 66 66 
nanofiber mat between plies 7 and 8 in the nano-interleaved samples. This nanofibre mat had a 40 67 
µm thickness, 18 g/m2 areal density and 400 to 650 nm diameter nanofibers. Electrospinning 68 
technology (see Figure 1a for the schematic) was used to fabricate the Nylon 66 nanofiber mats. 69 
Electrospun non-woven mats were fabricated using an in-house electrospinning apparatus (Figure 70 
1A) composed of: (1) a high voltage power supply, (2) a syringe pump (KDScientific 200 series), (3) 71 
four syringes, (4) four Teflon tubes, (5) four needles with diameter of 0.6 mm and (6) a grounded 72 
rotating collector (length = 500 mm, diameter = 160 mm) which position relative to needles can be 73 
changed. The electrospinning process was carried out at room temperature and under applied 74 
voltage of 12 kV, feed rate of 0.01 mL/min and 120 mm was the distance between the collector and 75 
tip of the needle. More details regarding the manufacturing process of the composite samples can be 76 
found in our previously published paper [13]. 77 

Although the nano-fibre mat had a 40 µm thickness, but no thickness difference was observed 78 
between the nano-interleaved and virgin samples after the curing process and their thickness was 79 
measured as 3.5±0.1 mm. 80 

As illustrated in Figures 1c and 1d, ASTM D5528 standard was followed in fabrication and 81 
testing of the virgin and nano-interleaved DCB specimens [23]. 82 

The quasi-static experiments were done in an Instron 8033 (a servo presses machine) with a 250 83 
N load level, using displacement controlled system with a fixed crosshead speed of 3 mm/min. The 84 
load and displacement data was captured by the Instron machine and the crack length was measured 85 
by an optical microscope. Modified Beam Theory (MBT) recommended in [23] was used to evaluate 86 
energy release rate in mode I. 87 

The fatigue samples were identical to the static samples. A naturally developed fatigued crack 88 
with 1mm length was created within the specimens prior to the main fatigue tests. This was done by 89 
applying cyclic load and producing a 1 mm crack length before the main fatigue tests. ASTM D6115 90 
was used for the Fatigue tests [24] and the experiments were done by the same machine used for the 91 
static tests, with a 200 N load cell, under 3 Hz load frequency and in displacement control mode, with 92 
max/min ratio of R=0.3 . Load, displacement and crack length values were used to evaluate Gmax as 93 



 

suggested in [25]. Three samples were tested for the quasi-static test and just one sample was tested 94 
for each fatigue condition. 95 

 
Figure 1. Electrospinning and testing equipment: (a) Schematic of the electrospinning process. (b) The 

electrospinning equipment. (c) Schematic of the DCB specimens. (d) DCB specimens and experimental 

setup. 

  96 
PCI-2 AE system was used to record the AE wave forms with a sampling rate of 10 MHz. Figure 97 

2 shows a schematic of AE wave form and its parameters. A piezoelectric sensor (PAC R15) was used 98 
to record the AE signals. A preamplifier (2/4/6-AST) with the gain selector of the 40 dB and 35 dB 99 
threshold was used. Calibration of the sensors was done with a pencil lead break test. The AE signal 100 
parameters that contain amplitude, duration, counts, rise time, energy, etc. was calculated by AE 101 
software (AEWin). 102 

 103 

 

Figure 2. The definitions for acoustic-emission parameters [26]. 

 104 



 

3. Results and discussion 105 

3.1. Mechanical results 106 

Load-displacement curves for the nano-interleaved and virgin samples are illustrated in Figure 3. 107 

The energy release rates are calculated using Equation (1) and are reported in Figure 4. In Equation 108 

(1), GIc is the critical energy release rate, P is the applied load, B is specimen’s width, a is the pre-crack 109 

length and ∆ is the crack growth. For the fatigue samples, the energy release rates are calculated at 110 

the peak value of different number of cycles using Equation (1). The results are clearly showing 111 

improvement in the fracture toughness for both static and fatigue loadings. 112 

 113 

 

 

Equation (1) 

As summarized in table 1, the nano-interleaved samples have shown a 137% and a 124% increase of 114 

GIC, compared to the virgin samples. The fracture toughness is improved at both crack initiation and 115 

propagation for the fatigue tests as illustrated in Figure 4. 116 

 117 
Table 1. Fracture parameters obtained from mode I fracture tests. 118 

 GIC (J/m2) measured based on ASTM D5528 

Methods 
Non-linearity method 

Visual inspection 

method 
5%/max 

Virgin 340±15 20±385  25±415  

Nano-interleaved 30±790  50±860  60±1000  

 119 

 

Figure 3. Load-displacement curves of the static tests. 

 120 



 

 

Figure 4. GImax-Na for the fatigue tests calculated based on ASTM D6115 [22]. GImax is the critical energy 

release rate that is required for the crack initiation under different number of cycles (Na). 

3.2. AE results 121 

Load-time and AE energy–time curves of a virgin sample is illustrated in Figure 5 as a representative 122 

of the investigated samples behavior. The load-time is presented instead of the load-displacement 123 

diagram to be able to present the mechanical and AE data in one graph. A similar trend was observed 124 

for the nano-interleaved samples, where two different stages are observable regarding the 125 

mechanical and AE behavior as illustrated in Figure 5.  126 

1) Linear elastic region: this is before the initiation and propagation of delamination with no major 127 

damage in the specimens, therefore no change in mechanical data, such as stiffness, and no AE 128 

signals with high energy content.  129 

2) Crack initiation and propagation: crack initiation is where the delamination initiates as the strain 130 

energy level reaches the critical strain energy in the laminates. Delamination onset is recognizable 131 

where the slope of the load curve versus time decreases (non-linearity point in ASTM5528 [21]) 132 

and the first significant AE signal is observable. In the propagation stage, the pre-crack is 133 

extended and considerable AE signals appeared from delamination extension and arrest, and 134 

therefore development of the failure mechanisms. Induced failure mechanisms generate different 135 

types of AE signals that can provide valuable information about the type of these failures. The 136 

crack arresting stage occurs when there is an increase in the load and therefore stored strain 137 

energy. When the strain energy attains the critical value, the crack propagates again and causes 138 

different types of damage modes such as fiber breakage, matrix cracking, etc. 139 



 

 

Figure 5. Load–time and AE energy time curves for the reference laminate. 

 140 

This section analyzes the AE signals to recognize the failure modes. There is a wide literature about 141 

energy or amplitude based characterization of failure modes in composite laminates [27-33]. These 142 

studies represent various energy and amplitude domains for the damage modes. These studies 143 

reported that the high domains of energy, amplitude and frequency of AE signals are associated with 144 

fibre failure, while the middle and low domains are related to delamination/debonding and 145 

transverse/longitudinal crack of matrix, respectively. Therefore, three types of signals classification 146 

is presented in table 2 based on the recorded AE signals in this paper. This classification is according 147 

to previously published works in damage characterization of composite materials using AE [27-33]. 148 

 149 

Table 2. Classification of the AE signals based on their amplitude and energy content. 150 

Signal type Amplitude (dB) Energy (aJ) 

Matrix cracking 40–65 0–30 

Debonding 60–85 30–800 

Fibre failure 75–100 800–65,000 

 151 

The received AE data are useful to realize the damage modes and help to understand the reason 152 

behind the improvement in the fracture toughness of the laminates. Figures 6 and 7 show the 153 

obtained AE signals classified based on the aforementioned criteria for the static and fatigue loadings, 154 

respectively. The AE events appeared in the virgin samples are higher than the nano interleaved 155 

samples (see Figure 6.b.). Matrix cracking related AE signals were less in the nano-interleaved 156 

samples compared with the virgin samples as well. 157 

Comparing the damage mechanisms in the fatigue loading in Figure 7, the initial damage in the virgin 158 

sample is matrix cracking and debonding, whereas the damage in the nano-interleaved sample 159 

started with a higher amplitude that is associated with fibre breakage. It means that the toughness 160 

improvement in the modified samples is not due to the thicker resin area, and it is mainly due to the 161 

existence of tough Nylon 66 nanofibers. 162 



 

 
Figure 6: (a) Classification of the AE data by Energy and Amplitude levels, (b) Number of the AE 

signals associated with different damage modes for the static loading. 

 

 163 

 

Figure 7. Amplitude versus time distribution of the AE signals for the fatigued samples (a) Virgin 

and (b) Nano-interleaved. 

 164 

The morphology of the fractured surface for the virgin and nanomodified specimens is illustrated in 165 

Figure 8. Fracture surface of the virgin specimen is mostly containing matrix cracking in the resin-166 

rich section near the fibers between two adjacent plies. On the other hand, fractured surface of the 167 

nanomodified specimen is affected by the nanofiber interlayer, so a plastic zone occurred in front of 168 

the crack tip during the crack growth. 169 



 

 

Figure 8. Morphology of the fractured surface for the a) virgin specimen and b) nano-modified 

samples under quasi-static loading.  

 170 

5. Conclusions 171 

This paper investigated the effect of Nylon 66 nanofibers reinforcement effect on interlaminar 172 
properties in mode I and resulted failure mechanisms of carbon/epoxy laminates under fatigue and 173 
static loadings. Static test (based on ASTM5528) and fatigue tests (based on ASTM D6115) were 174 
applied to the DCB specimens and the samples were monitored by the AE sensors during the tests. 175 
The mechanical results proved the effectiveness of the interleaved Nylon 66 nanofibre mate to 176 
improve fracture toughness in the delamination propagation and initiation stages for both of the 177 
static and fatigue loading conditions. The AE results showed that the number of interlaminar 178 
occurred failure modes reduced in the nano-interleaved samples. There were more matrix cracking 179 
associated AE signals in the virgin samples compared with the nano-interleaved samples. It means 180 
that the reason for the improved fracture toughness is due to the change in the appeared damage 181 
mechanisms that require higher energy level to initiate and propagate. Finally, it can be concluded 182 
that the nano-interleaved samples can improve the delamination resistance of laminated composites 183 
under static and fatigue loadings.  184 
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