
1

Evolutionary n-level Hypergraph Partitioning with
Adaptive Coarsening

Richard J. Preen and Jim Smith

Abstract—Hypergraph partitioning is an NP-hard problem
that occurs in many computer science applications where it is
necessary to reduce large problems into a number of smaller,
computationally tractable sub-problems. Current techniques use
a multilevel approach wherein an initial partitioning is performed
after compressing the hypergraph to a predetermined level. This
level is typically chosen to produce very coarse hypergraphs in
which heuristic algorithms are fast and effective. This article
presents a novel memetic algorithm which remains effective
on larger initial hypergraphs. This enables the exploitation of
information that can be lost during coarsening and results in
improved final solution quality. We use this algorithm to present
an empirical analysis of the space of possible initial hypergraphs
in terms of its searchability at different levels of coarsening.
We find that the best results arise at coarsening levels unique
to each hypergraph. Based on this, we introduce an adaptive
scheme that stops coarsening when the rate of information loss
in a hypergraph becomes non-linear and show that this produces
further improvements. The results show that we have identified
a valuable role for evolutionary algorithms within the current
state-of-the-art hypergraph partitioning framework.

Index Terms—Evolutionary algorithms, hypergraph partition-
ing, memetic algorithms, multilevel algorithms.

I. INTRODUCTION

HYPERGRAPH PARTITIONING (HGP) is an NP-hard
problem [1] that occurs in many computer science ap-

plications where it is necessary to reduce large problems into
a number of smaller, computationally tractable sub-problems.
Common applications include very large scale integration
(VLSI) design [2] and scientific computing [3].

Hypergraphs are a generalisation of graphs where each
hyperedge may connect more than two vertices. Formally, a
hypergraph can be defined [4], [5] as H = {V, E , c, ω} where:

• V = {v1, . . . , vn} and E = {e1, . . . , em} are finite sets
of vertices and hyperedges.

• Edges and vertices may have associated weights: c(v)
denotes the weight of a vertex v ∈ V and ω(e) denotes
the weight of a hyperedge e ∈ E .

A hyperedge e ∈ E is said to be incident on a vertex v ∈ V if,
and only if, v ∈ e. Vertices u, v ∈ V are said to be adjacent in
a hypergraph, if, and only if, there exists a hyperedge e ∈ E
such that u ∈ e and v ∈ e. The degree of a vertex d(v) is the
number of distinct hyperedges in E that are incident on v, and
the length of a hyperedge is defined as its cardinality |e|.

Manuscript date of current version January 26, 2019.
The authors are with the Department of Computer Science and Creative

Technologies, University of the West of England, Bristol BS16 1QY, UK
(e-mail: richard2.preen@uwe.ac.uk; james.smith@uwe.ac.uk).

Algorithm 1: Multilevel Hypergraph Partitioning
1 Input: Hypergraph H(V, E , c, ω), t, k, ε
/* coarsening */

2 while |V ′| > k × t do
3 {a, b} = SelectNodes(V ′)
4 V ′ ← Contract(V ′, a, b)
5 end
6 PartitionListV ′ = InitialPartition(V ′, k, ε)
/* uncoarsening */

7 while |V ′| < |V | do
8 c← SelectNodeToExpand(V ′)
9 V ′ ← Expand(V ′, c)

10 PartitionListV ′ ← Refine(V ′, PartitionListV ′)
11 end
12 Output: PartitionListV

The k-way HGP problem is to partition the set of vertices
into k approximately equal disjoint subsets whilst minimising
an objective function. Typically this is the cut-size: the sum
of the weights of those hyperedges that span different subsets.
However, minimising cut-size often leads to an uneven distri-
bution of the cut hyperedges between partitions. Alternatives
are the sum of external degrees, and (K − 1) metric, which
includes the number of subsets connected by a hyperedge [5].

Current state-of-the-art algorithms, including MLPart [6],
hMetis [7], PaToH [8], Zoltan [9], Parkway [10], UMPa [11],
and KaHyPar [12], use a multilevel approach as illustrated
in Algorithm 1. The approach recursively coarsens a hyper-
graph by contracting a single pair of vertices at each level
until t × k hypernodes remain. During coarsening, KaHyPar,
hMetis, and PaToH use a greedy heavy-edge rating function
in SelectNodes() however more sophisticated techniques
respecting the community structure have recently been ex-
plored [13]. Various methods may be used to generate the
assignment of super-nodes to partitions in InitialPartition().
This assignment is further improved using the Fiduccia-
Mattheyses [14] (FM) move-based local search algorithm. The
uncoarsening phase recursively selects a node to expand (e.g.,
{a, b} ← c) and then uses FM to refine which partition nodes
a and b are assigned. Using a larger number of levels [15]
and performing repeated iterations of the entire multilevel
partitioning, known as V-cycles [7], can improve the solution
quality, albeit at a computational cost.

Direct k-way partitioning (Algorithm 1) has the potential
advantage of allowing the search algorithm to take a global
view. This can result in better solutions for large hypergraphs
and tighter balance constraints [16]. However, for scalability
reasons recursive bisection approaches are more widely used.

2

Despite their sophistication, it is notable that these ap-
proaches stop coarsening at some predefined threshold t of
remaining supernodes. Most implementations, such as hMetis,
PaToH, and KaHyPar, use default thresholds of t ≈ 150,
resulting in hypergraphs with around 300 vertices for initial
partitioning. This value may result in fast and reasonably effec-
tive heuristic algorithms, but does not necessarily correspond
to a good trade-off between scale and information content.

Karypis and Kumar [17] showed that a good partitioning of
the coarsest hypergraph generally leads to a good partitioning
of the original hypergraph. This can reduce the amount of
time spent on refinement in the uncoarsening phase. However,
it is important to note that the initial hypergraph partitioning
with the smallest cut-size may not necessarily lead to the
smallest final cut-size after refinement is performed during
uncoarsening [18]. Since information may be hidden to the
global optimisation algorithm during compression, the more
the hypergraph is coarsened the greater this effect may be.

Many approaches have been developed to perform the
initial partitioning, ranging from random assignment [6] to
the use of various greedy growing techniques [8], recursive
bisection [7], and evolutionary algorithms (EAs) [19]. Greedy
growth algorithms quickly produce balanced partitions, but
are sensitive to the initial randomly chosen vertex [8]. Since
the initial partitioning usually takes place on very small
hypergraphs these algorithms can be rerun multiple times.
The best partitioning found is subsequently propagated for
refinement during the uncoarsening phase [8].

It is difficult to generalise measures to select the optimal al-
gorithm to use for a given problem instance, i.e., the algorithm
selection problem [20]. Therefore, a portfolio approach is used
in practice by PaToH, hMetis, and KaHyPar [21]. For example,
PaToH uses 11 different random and greedy growth heuristic
algorithms [22]. The KaHyPar ‘Pool’ portfolio approach to
initial partitioning also uses a range of simple algorithms,
including fully random, breadth-first search (BFS), label prop-
agation, and nine variants of greedy hypergraph growing. Each
algorithm is executed r number of times, then the partition
with the smallest cut-size and lowest imbalance is presented
for uncoarsening where it is projected back to the original
hypergraph. This approach has been extensively parameter
tuned [21], finding that r = 20 produces the overall best results
at t = 150, with partitions that are only marginally worse than r
= 75, yet significantly faster. Over a wide range of hypergraphs
this approach has recently been shown to identify similar or
better partitions in a faster time than the most popular general
purpose HGP algorithms, hMetis and PaToH [12], [16], neither
of which are open source.

In this article, we examine the case where there exists
a large computational budget and many evaluations can be
performed on less coarsened hypergraphs to identify the best
final partitions, i.e., the potential for larger r and t exists.
We explore the use of EAs to perform the initial partitioning
within the state-of-the-art, open source (GPLv3), Karlsruhe
n-level hypergraph partitioning framework, KaHyPar from
https://github.com/SebastianSchlag/kahypar.

In particular, the following contributions are made:

1) We characterise the ‘searchability’ of the space of initial
partitions at different levels of coarsening.

2) Based on that analysis, we identify a role for EAs in
terms of the level of coarsening, and hence the speed
vs. quality of solutions produced. We also identify some
key algorithm characteristics.

3) We develop a novel memetic algorithm and demonstrate
that this discovers significantly better final solutions
across a range of classes of hypergraphs and across a
range of different coarsening thresholds.

4) Finally, we develop an adaptive mechanism for deciding
when to perform initial partitioning based on the rate of
change of information content in the hypergraph as it
is coarsened. We show that this also gives significant
performance improvements.

In the remainder of this article, Section II discusses the
related work. Section III describes the test framework, the
memetic-EA initial partitioner, and comparison metrics. Sec-
tion IV presents a landscape analysis with respect to EA design
at different levels of coarsening. Section V presents the results
of parameter sensitivity testing. Section VI introduces and
presents results from a novel adaptive coarsening algorithm
to identify the EA niche. Finally, Section VII summarises the
conclusions.

II. RELATED WORK

Many EAs have been applied to the more well-known
problem of graph partitioning; see Kim et al. [23] for an
overview. Soper et al. [19] were the first to use an EA within
a multilevel approach. They introduced variation operators
that modify the edge weights of the graph depending on the
input partitions. Subsequently presenting these to a multilevel
partitioner, which uses the weights to obtain a new partition.

More recently, Benlic and Hao [24] used a memetic al-
gorithm within a multilevel approach to solve the perfectly
balanced graph partitioning problem ε = 0. They hypothesised
that a large number of vertices will always be grouped together
among high quality partitions and introduced a multiparent
crossover operator, with the offspring being refined with a
perturbation-based tabu search algorithm.

Sanders and Schulz [25] used an EA within a multilevel
approach and showed that the usage of edge weight per-
turbations decreases the overall quality of the underlying
graph partitioner; subsequently introducing new crossover and
mutation operators that avoid randomly perturbing the edge
weights. Their algorithm has recently been incorporated within
a faster parallelised approach [26].

In addition to performing the initial partitioning, EAs can
also be used in other areas of the multilevel approach. For
example, Küçükpetek et al. [27] used an EA to perform the
coarsening phase in a multilevel graph partitioning algorithm.

Merz and Freisleben [28] showed that the fitness landscape
depends on the structure of the graph and, perhaps unintu-
itively, that the landscape can become smoother as the average
degree increases. Consequently, Pope et al. [29] proposed the
use of genetic programming as a meta-level algorithm to select
the best combination of existing algorithms for coarsening,

https://github.com/SebastianSchlag/kahypar

PREEN and SMITH: EVOLUTIONARY N-LEVEL HYPERGRAPH PARTITIONING WITH ADAPTIVE COARSENING 3

partitioning, and refinement, based on the characteristics of
the graph being solved.

The most popular chromosome representation is group-
number encoding, wherein each gene represents the partition
group to assign a given vertex, i.e., there are as many genes
as there are vertices |V | and alleles as there are partitions.
This has led to a wide variety of proposed crossover and
normalisation schemes since different assignments of allele
values to groups still represent the same solution. For example,
Mühlenbein and Mahnig [30] used the simple normalisation
technique of inverting each candidate and selecting the one
with the smallest Hamming distance.

EAs have been relatively under-explored for the more gen-
eral case of HGP however: there has been a small amount of
prior work on VLSI circuit partitioning. For example, Schwarz
and Oc̆enás̆ek [31] briefly studied several EAs including the
Bayesian optimisation algorithm for direct (i.e., not multi-
level) small VLSI partitioning. Kim et al. [32] explored a
memetic algorithm using a modified FM for local optimisation
and reported smaller bipartition cut-sizes on a number of
benchmark circuits when compared with hMetis. Notably,
Areibi and Yang [2] explored VLSI design via the use of
memetic algorithms using FM for local optimisation within a
multilevel approach and reported improvements of 35% over a
simple genetic algorithm. This has since been implemented in
hardware using reconfigurable computing [33]. Significantly,
none of these algorithms are considered to be competitive with
state-of-the-art hypergraph partitioning tools.

Recently a memetic EA has been introduced to build on
the KaHyPar framework [34]. This algorithm runs a steady-
state EA with a population at the original uncoarsened level.
The initial population is seeded using a variant of KaHyPar.
Each generation, binary tournament selection is used to choose
two parents, then variation operators are applied to the fit-
ter of those, running a number of V-cycles of coarsening–
initial partitioning–uncoarsening, using different randomisa-
tion seeds. The recombination operator only runs V-cycles
on the subset of original-level vertices that are in different
partitions in the two parents. Two mutation operators were
defined: one starting from the original level, and another which
preserves more locality by skipping the coarsening phase and
starting from the initial partition corresponding to the fitter
parent (these are cached to save time.) To maintain diversity,
a variant of restricted tournament selection is used and the
authors introduce a novel distance measure that they claim is
better suited to this problem domain than Hamming distance.

The work presented here and that in [34] share the idea
that the memetic algorithm should work at a less coarsened
level. However, there are key differences: in [34] the EA works
at the wholly uncoarsened level, which can mean millions of
vertices/genes. Therefore, to make the search tractable the sub-
space in which search occurs (via the V-cycles) is restricted
and initial partitioning run at a highly coarsened level.

III. METHODOLOGY

A. Test Framework
To ensure the comparability of results we use the KaHyPar

n-level hypergraph partitioner [12], [16], [21]. This is a

mature toolkit to which considerable attention has been
paid to parameter tuning, so no further optimisation was
applied. We also use a selection of the hypergraphs used
previously for benchmarking KaHyPar, available from
http://doi.org/10.5281/zenodo.30176. Specifically, we use: the
10 largest from the well-known ISPD98 VLSI circuits [35];
and 10 each randomly selected from the University of
Florida sparse matrix collection (SPM) [36] (Airfoil_2d,
Reuters911, usroads, stokes128, Andrews, Baumann,
HTC_336_9129, NotreDame_actors, Stanford, nasasrb)
and the 2014 international SAT competition (SAT) [37]
(gss-20-s100, MD5-28-2, ctl_4291_567_5_unsat_pre, aaai10-
planning-ipc5-pathways-17-step21, slp-synthesis-aes-top29,
hwmcc10-timeframe-expansion-k45-pdtvisns, dated-10-11-u,
atco_enc1_opt2_05_4, UCG-15-10p1, openstacks-p30_3.085).

Since KaHyPar is currently the best general state-of-the-art
hypergraph partitioner [12], [16], and recursive bipartitioning
can scale with increasing k more effectively, here we use an
initial testing regime of k = 2 and ε = 0.1. For benchmark
comparisons, we use the KaHyPar Pool portfolio algorithm
described above, and compare results at equivalent numbers
of evaluations. An evaluation consists of generating an initial
partitioning followed by an application of the FM algorithm.
However, it should be noted that one evaluation of an algo-
rithm in the Pool (e.g., a BFS) has a longer wall-clock time
than an EA evaluation. The total partitioning times for the
experiments reported here are approximately 1.9× longer for
the Pool when compared at the same t threshold. For k = 2,
the (K-1) and hyperedge cut-size metrics are identical [4], and
so here we use this as the objective function.

B. Representation, Algorithm Operators and Parameters
We adopt a simple vertex-to-cluster encoding of the N

coarsened hypernodes, and use a (µ+λ) EA where each
subsequent generation consists of the µ fittest from the parental
population and λ offspring. Each offspring is created as the
product of two (independently) randomly selected parents.
Uniform crossover is applied with X = 80% probability.
Symmetry in the fitness landscape can severely obstruct the
evolutionary search [38], so we apply parental alignment
(normalisation) during crossover: if the Hamming distance
between the parents exceeds N/2 then the gene values of one
parent are inverted. A self-adaptive mutation scheme is then
applied, setting genes to random values. Following Serpell
and Smith [39], each candidate maintains its own mutation
rate. This is initially inherited from the fitter of its parents,
and then with A = 10% probability may be randomly reset
to one of 10 possible values before applying mutation at
the resulting rate. If an offspring has an imbalance greater
than ε, a repair mechanism is invoked, randomly moving
vertices from the largest to the smallest partition. Lamarkian
evolution is performed by subsequently applying the FM local
search algorithm using default [12] KaHyPar settings and the
offspring acquiring any modifications. See Algorithm 2.

C. Comparison Metrics and Statistical Analysis of Results
The distribution of values observed from repeated runs was

not normally distributed—especially when there is a ‘hard’

http://doi.org/10.5281/zenodo.30176

4

Algorithm 2: Memetic EA(µ+ λ) initial partitioner
1 n = 1

|V | ; M = [n
100

, n
10
, n
5
, n
2
, n, n, 2n, 5n, 10n, 100n]

2 initialise parent population: P = {a1 . . . aµ}
3 while evaluation budget not exhausted do

/* create offspring population */
4 for i = 1 to λ do
5 parent p1 = RandomSelection(P)
6 parent p2 = RandomSelection(P)
7 offspring ai = p1
8 if rand() < X then
9 perform uniform crossover with normalised p2

10 if p1.fitness < p2.fitness then
11 ai.mut = p2.mut
12 end
13 end
14 if rand() < A then
15 ai.mut = RandomSelection(M)
16 end
17 for each hypernode in ai do
18 if drand() < ai.mut then
19 assign hypernode to a random partition
20 end
21 end
22 repair partition if necessary
23 apply FM local search (Lamarkian)
24 evaluate ai
25 end

/* select next parental population */
26 P = µ fittest from P + λ
27 end

lower or upper limit. We therefore apply non-parametric tests.
For each run, we recorded two values: the initial cut-size as

the value found by a search algorithm operating at the coarsest
level, and the final cut-size as the value at the original level,
i.e., after uncoarsening has taken place. Since these values will
depend on the coarsening threshold t and choice of algorithm,
we denote these as cuttalg. In some cases below we also report
the best-case cut-size: cut∗alg , the value observed at whichever
coarsening threshold gave the best results for a given dataset.

To measure the performance of different algorithms across
the full range of thresholds, we also present the area under
the curve (AUC) results, estimated from the experiments at
individual thresholds using a composite Simpson’s rule. When
comparing methods on a single problem, we use the Wilcoxon
ranked-sums test, with the null hypothesis that all observed
results come from the same distribution.

To draw any firm overall conclusions about the performance
of the two approaches, we follow the recommendations in [40]
for comparing algorithms over multiple data sets. First, we ex-
amine the results to ensure that for each algorithm-hypergraph
combination the arithmetic mean is a reliable estimate of
performance, i.e., that the distribution of observations from the
20 runs is unimodal with low standard deviation. This results
in a pair of values (one per algorithm) for each hypergraph,
to which the Wilcoxon signed ranks test can be applied with
the null hypothesis that taken across all hypergraphs there is
no difference in performance.

Finally, run-times are recorded as total-wall-clock time for
the whole process because the time taken in each phase is

heavily linked to the results of the previous stage.

IV. LANDSCAPE ANALYSIS AT DIFFERENT LEVELS

One of the tenets of the multilevel approach to solving HGP
is that the sheer size of the search space makes it impractical
to solve at the original, uncoarsened level, and that therefore
it is better to conduct the search for a good initial partitioning
within a much smaller space. It has also been suggested that
the graph-partitioning counterparts become easier to search as
the level of coarsening increases [28]. Nevertheless, there is
clearly a trade-off. It is inevitable that the coarsening process
reduces the information content, so the mapping between qual-
ity of initial and final cuts becomes more noisy—especially
given the greedy uncoarsening process.

To investigate the nature of the search spaces at different
levels of coarsening, we used KaHyPar to generate 10000
random starting points, apply FM to each and stored these
local optima. For each problem we then identified the (usually
singleton) set of ‘quasi-global’ optima. For each local optima,
we measured its Hamming distance (and that of its inverse) to
each of the global optima, and recorded the smallest distance
(scaled [0,1]), together with the relative cut-size, i.e., divided
by the landscape’s estimated global minimum. This was done
at t = 150 and t = 15000 for four hypergraphs from each of
ISPD98, SPM, and SAT collections.

Landscapes were examined through a combination of visual
analytics (scatter and kernel-density-estimate, KDE plots) and
a model of the fitness-distance correlation (FDC). The FDC
model is a linear regression of local optima l in the form
cut(li) = m × distance(li, g). The proportion of observed
variation in relative cut-size that can be described by the model
was recorded, i.e., the co-efficients of determination (R2).

This analysis showed a significant similarity between prob-
lems, with the exception of Stanford where coarsening stops
prematurely. Fig. 1 shows KDE plots for the two thresholds
overlaid with the FDC results for two typical hypergraphs.
Note the y scales were chosen to permit comparison between
different thresholds and so significant numbers of local optima
with high relative cut-sizes are not shown. This is why the
linear regression lines lie above the main cloud of points
visible at t = 150. The results of this analysis, and the
implications for search algorithm design are:

1) On some problems the coarsening process was observed
to stop prematurely, and at different values when re-
peated (e.g., between 34000 and 65000 hypernodes for
Stanford). This suggests that search algorithms should
be designed to cope with large search spaces.

2) The FM process greatly reduced cut-sizes and there was
no correlation between the cut-sizes of solutions before
and after improvement. This suggests a lack of global
structure of the landscape as a whole, i.e., considering
all points rather than just local optima. This indicates
algorithms should incorporate local search.

3) All search landscapes contained large numbers of dis-
tinct local optima. Only a few tens of duplicates were
found; more than one copy of the global optima was
only found in 2 of the 24 runs, and never at t = 15000.

PREEN and SMITH: EVOLUTIONARY N-LEVEL HYPERGRAPH PARTITIONING WITH ADAPTIVE COARSENING 5

0.0 0.1 0.2 0.3 0.4 0.5

Hamming Distance

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
v
e
 I
n
it

ia
l
cu

t-
si

ze

R
2 0.49

ibm16, t=150

0.0 0.1 0.2 0.3 0.4 0.5

Hamming Distance

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
v
e
 I
n
it

ia
l
cu

t-
si

ze

R
2 0.93

ibm16, t=15000

0.0 0.1 0.2 0.3 0.4 0.5

Hamming Distance

1

2

3

4

5

6

7

R
e
la

ti
v
e
 I
n
it

ia
l
cu

t-
si

ze

R
2 0.38

usroads, t=150

0.0 0.1 0.2 0.3 0.4 0.5

Hamming Distance

1.0

1.1

1.2

1.3

1.4

R
e
la

ti
v
e
 I
n
it

ia
l
cu

t-
si

ze
R

2 0.94

usroads, t=15000

Fig. 1. The relationship between local optima initial cut-size and Hamming
distance at thresholds t = 150 and t = 15000. Each graph shows a kernel
density plot of the results from 10000 randomly seeded FM local searches
and FDC results. y-axes are scaled to facilitate comparison between thresholds
and so do not show many poor optima for t = 150.

It was common to see cut-sizes an order of magnitude
worse than the quasi-global optimum. This suggests that
it is worth devoting computational effort to finding good
starting points for the search process.

4) On all landscapes there was a positive FDC, i.e., the
global optimum was likely to be near other good local
optimum. This mirrors previous findings on the related
graph partitioning problem [28], [41]. This suggests
benefits for search algorithms that can exploit this in-
formation such as population-based search with some
form of recombination.

5) This effect was noticeably more present on the large
landscapes (t = 15000). This suggests that there may
be a role for population-based search in partitioning at
less coarse levels than is possible with single-member
search algorithms such as BFS.

6) There was almost always a ‘gap’ between the best solu-
tion found and next best. The lack of duplicates makes it
unlikely the global optima had large basins of attraction.
Given the numbers of ‘good’ local optima found just
beyond this gap, this suggests a concentric structure.
This may be because points “in the gap” are infeasible,
or because the basins of attraction of the good-but-not-
optimal local optima are large. Again this suggests a
role for recombination, but as this has less effect as
populations converge, it also suggests a changing role
for mutation during search. Self-adaptation of mutation
rates has often been shown successful in a wide range
of domains [42] and simple approaches can be shown
theoretically to be capable of overcoming both fitness
and entropic barriers in combinatorial landscapes [43].

V. SENSITIVITY TO EA DESIGN CHOICES

A. Population Seeding

The landscape analysis suggests that for some hypergraphs
there is good reason to devote significant effort to finding
good starting points for search. To examine this hypothesis,
and conversely, whether seeding is detrimental when those

conditions do not apply, we exploit the portfolio of algorithms
in the Pool as a selection of heuristics for quickly finding
approximate solutions. To examine the performance of the
EA (µ = 100, λ = 1000) with different amounts of initial
seeding, experiments were run with the EA seeded with µ× s
Pool evaluations: for example, when s = 10, the first 1000
evaluations are generated from the Pool before the EA begins.

In Fig. 2 the cut-sizes of the best solutions discovered
are shown for the ibm18, Reuters911, Stanford, and usroads
hypergraphs at coarsening threshold t = 15000. All results
are averages of 20 runs. On both ibm18 and Reuters911,
the EA quickly identifies better solutions than the Pool al-
gorithm regardless of the seeding strategy, showing that the
evolutionary search is able to effectively follow a gradient
in the fitness landscape. However, on Stanford and usroads,
the EA without seeding (s = 0) performs very poorly, being
an order of magnitude worse than s = 100 after 30000
evaluations. Given that so many local optima are present in
such a fitness landscape, starting with fully random solutions
(s = 0) or only a few good solutions (s = 1, s = 10) can
cause the EA to converge prematurely. Only by starting the
EA at a suitable point in the landscape, here after 10000
Pool evaluations (s = 100), is it able to consistently find very
good solutions regardless of the effectiveness of coarsening.
Further increasing the amount of seeding (s = 200) did not
result in additional improvements. In all following experiments
therefore we use s = 100, i.e., 10000 initial Pool evaluations.

The top-right KDE plot in Fig. 1 suggests a reason for these
observations. The huge majority of local optima lie far from
the global optimum and considering the high-density contours,
there is little or no slope to guide the search towards the global
optimum. Although there is a correlation between local optima
cut-size and distance from the global optimum, this gradient
only emerges when enough seeds have been considered to
sample the lower-density contours of the KDE.

B. Population Size

EA sensitivity to µ and λ was explored by repeating the
previous experiments across the spectrum of coarsening levels
on the same 12 hypergraphs. A ratio of 1:10 was employed
as this is a commonly used setting, especially with self-
adaptive mutation [39]. The EA(10+100) was found to produce
significantly worse final cut-sizes than EA(100+1000). How-
ever, EA(50+500) and EA(200+2000) were not significantly
different than EA(100+1000). This shows that the EA is
reasonably robust to these parameters and the use of 100+1000
is justified here for the use of fixed parameters. However, as
shown in Table I, the optimum coarsening threshold t∗ differs
for each hypergraph. Therefore, adaptive population sizing
schemes would further optimise wall-clock partitioning time
and have been shown to increase EA performance [44].

C. Variation Operators

Further experimentation on less coarsened hypergraphs
(t = 15000) confirmed results widely reported for graph
partitioning [23] that both the use of uniform crossover and
parental alignment significantly improved performance. This

6

0 5000 10000 15000 20000 25000 30000
Evaluations

2000

2500

3000

3500

4000
In

it
ia

l
cu

t-
si

ze
ibm18, t=15000, EA(100+1000)

Pool
EA: s= 0
EA: s= 1

EA: s= 10

EA: s= 100

EA: s= 200

0 10000 20000 30000 40000 50000 60000
Evaluations

3120

3140

3160

3180

3200

3220

3240

3260

3280

3300

In
it

ia
l
cu

t-
si

ze

reuters, t=15000, EA(100+1000)

Pool
EA: s= 0
EA: s= 1

EA: s= 10

EA: s= 100

EA: s= 200

0 10000 20000 30000 40000 50000 60000
Evaluations

150

200

250

300

350

In
it

ia
l
cu

t-
si

ze

stanford, t=15000, EA(100+1000)

Pool
EA: s= 0
EA: s= 1

EA: s= 10

EA: s= 100

EA: s= 200

0 10000 20000 30000 40000 50000 60000
Evaluations

80

100

120

140

160

180

200

In
it

ia
l
cu

t-
si

ze

usroads, t=15000, EA(100+1000)

Pool
EA: s= 0
EA: s= 1

EA: s= 10

EA: s= 100

EA: s= 200

Fig. 2. The affect of population seeding on the ibm18, Reuters911, Stanford, and usroads initial partitioning. Shown are the cut-sizes of the best solutions
discovered by the Pool (circle), and the EA initially seeded with µ × s number of Pool evaluations; µ = 100, λ = 1000. On the Stanford and usroads
hypergraphs the EA without seeding (s = 0) is not observable since the cut-size values exceed the y-axis limit.

finding remained consistent even with the use of self-adaptive
mutation. For example, EA(100+1000) with X = 80% pro-
duced initial cut-sizes on average 30% smaller than X = 0%
on ibm18 after 30000 evaluations, p ≤ 0.05.

Estimation of distribution algorithms (EDAs) have been
used to generate many state-of-the-art results by replacing
recombination and mutation with a process of building and
then sampling probabilistic graphical models (PGMs) of the
current populations. We adapted Pelikan’s implementations
of the Bayesian optimisation algorithm (BOA) [45] to work
within our seeding regime, and to explicitly exploit the rep-
resentation’s symmetry during model building. With small
t no significant differences in performance were observed.
However, the scalability of the model building process was
an issue with large t. Runs on a MacBook Pro with a 2.8GHz
4-core Intel i7 processor with 16GB RAM were halted after
6 hours stuck in initial model building for both decision tree
and graph-based variants of BOA, even after restricting the
space of PGMs to bivariate models. Simplifying still further
to a univariate model removed the ability to accurately capture
interactions. Runs with s=100 initial seeding produced signif-
icantly larger mean initial cut-sizes after 30000 evaluations
on the 4 hypergraphs in Fig. 2; 2422, 3154, 210, and 128 on
ibm18, Reuters911, Stanford and usroads, respectively.

D. Search at Different Coarsening Levels

The more coarsening performed on a hypergraph before
partitioning, the more information is potentially hidden from
the optimisation algorithm, i.e., it must move larger blocks.

However, the less coarsening performed, the larger the search
space and potentially the worse the optimisation algorithm will
perform. To explore this relationship between algorithm and
coarsening threshold, we examine the results of initial and final
partitioning by the Pool and EA with s=100 seeding across a
spectrum of coarsening levels. For each of the three classes
of hypergraph, we perform experiments across the spectrum
of coarsening thresholds on 4 of the 10 selected benchmark
hypergraphs1. Additionally we ran tests at t = 150 and t =
15000 on all 30 hypergraphs. Results presented are an average
of 20 runs of each algorithm run to 30000 initial partitioning
evaluations at each coarsening threshold; each threshold is
sampled in intervals of 250 for t ≤ 5000, and of 5000 above
that. The initial and final cut-sizes can be seen in Fig. 3.

1) Overall Performance: Using the AUC metric to compare
performance across all coarsening thresholds, initial cut sizes
found by the EA were smaller than those found by Pool on
all 12 problems. The same is seen for final cut sizes with
the exception of Stanford, where it should be noted that the
coarsening algorithm produces hypergraphs with |V | ≥ 30000
(200000 pins) even at t = 150.

2) Highly Coarsened Hypergraphs: The nature of the
search landscapes for highly coarsened hypergraphs results
in little difference between the algorithms. No statistically
significant difference between algorithms was observed on any
of the 30 benchmarks for either initial or final cut-sizes.

1 ibm 15–18; gss-20-s100, aaai, MD5-28-2, and slp from the SAT collec-
tion; and SPMs Airfoil_2d, Reuters911, Stanford, and usroads.

PREEN and SMITH: EVOLUTIONARY N-LEVEL HYPERGRAPH PARTITIONING WITH ADAPTIVE COARSENING 7

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

2500

3000

3500

4000

4500

5000
C

u
t-

si
ze

0

120

240

360

480

600

P
in

s
(t

h
o
u
sa

n
d
s)

ibm15

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

1500

2000

2500

3000

3500

4000

C
u
t-

si
ze

0

120

240

360

480

600

P
in

s
(t

h
o
u
sa

n
d
s)

ibm16

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

2000

2500

3000

3500

4000

4500

5000

5500

C
u
t-

si
ze

0.0

85.7

171.4

257.1

342.9

428.6

514.3

600.0

P
in

s
(t

h
o
u
sa

n
d
s)

ibm17

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

1500

2000

2500

3000

3500

C
u
t-

si
ze

0

150

300

450

600

P
in

s
(t

h
o
u
sa

n
d
s)

ibm18

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

310

320

330

340

350

360

370

380

390

C
u
t-

si
ze

0.0

37.5

75.0

112.5

150.0

187.5

225.0

262.5

300.0

P
in

s
(t

h
o
u
sa

n
d
s)

Airfoil_2d

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

3000

4000

5000

6000

7000

8000

C
u
t-

si
ze

210

228

246

264

282

300

P
in

s
(t

h
o
u
sa

n
d
s)

Reuters911

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

0

50

100

150

200

250

300

C
u
t-

si
ze

200.0

283.3

366.7

450.0

533.3

616.7

700.0

P
in

s
(t

h
o
u
sa

n
d
s)

Stanford

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

70

80

90

100

110

120

130

C
u
t-

si
ze

0.0

41.7

83.3

125.0

166.7

208.3

250.0

P
in

s
(t

h
o
u
sa

n
d
s)

usroads

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

900

1000

1100

1200

1300

1400

1500

1600

C
u
t-

si
ze

0.0

35.7

71.4

107.1

142.9

178.6

214.3

250.0

P
in

s
(t

h
o
u
sa

n
d
s)

gss-20-s100

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

2000

2500

3000

3500

4000

4500

5000

C
u
t-

si
ze

0

100

200

300

400

500

600

P
in

s
(t

h
o
u
sa

n
d
s)

aaai

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

3400

3600

3800

4000

4200

4400

4600

4800

5000

C
u
t-

si
ze

0.0

31.2

62.5

93.8

125.0

156.2

187.5

218.8

250.0

P
in

s
(t

h
o
u
sa

n
d
s)

MD5-28-2

0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t)

2000

3000

4000

5000

6000

7000

8000

9000

C
u
t-

si
ze

0.0

85.7

171.4

257.1

342.9

428.6

514.3

600.0

P
in

s
(t

h
o
u
sa

n
d
s)

slp

Fig. 3. Cut-sizes for the initial and final partitioning of 12 hypergraphs from the ISPD98, Univeristy of Florida Sparse Matrix Collection, and 2014 SAT
competition. Shown are the results of 20 runs of the Pool and EA(100+1000) run to 30000 evaluations at each coarsening threshold, sampled in intervals of
250 for t ≤ 5000, and in intervals of 5000 for t > 5000. Pool initial cut-size (circle); EA initial cut-size (square); Pool final cut-size (triangle); EA final
cut-size (star); number of pins in the hypergraph (cross). For the Airfoil_2d, Reuters911, and MD5-28-2 hypergraphs, |V | ≈ 15000, therefore the affects of
coarsening can only be observed at t < 10000.

8

3) Less Coarsened Hypergraphs: The difference between
algorithms becomes more significant the less coarsening is
performed. For example, at t = 15000 the EA mean best initial
cut-sizes are significantly smaller than the Pool on all 10 of
the ISPD98 hypergraphs (Wilcoxon rank-sum test, p ≤ 0.05).
Furthermore, these improvements in initial partitioning lead to
smaller final cut-sizes. The mean and median are lower for the
EA than the Pool algorithm on all 10 of the ISPD98 hyper-
graphs; but not significantly different at the 95% confidence
interval on ibm10 and ibm11. On ibm18, the EA mean inital
and final cut-size were 20% and 16% smaller than the Pool.

Similar improvements to initial partitioning are found by the
EA on the SPM hypergraphs. For example, with t = 15000,
the EA mean initial cut-sizes on 8 of the 10 SPM hypergraphs
are significantly smaller than the Pool (Wilcoxon rank-sum
test, p ≤ 0.05); no significant difference was observed on
the nasarb and Andrews hypergraphs. Interestingly, despite
the improvement in initial partitioning, this only resulted in
significant differences in final cut-sizes on the Airfoil_2d,
Reuters911, and usroads hypergraphs, where the EA resulted
in improvements to mean final cut-size of 0.7%, 4%, and 15%
respectively. At this t setting, no coarsening is performed on
either the Airfoil_2d or Reuters911 hypergraphs and therefore
the cut-sizes are entirely a result of the memetic EA.

For SAT hypergraphs at t = 15000, both the mean EA initial
and final cut-size is significantly smaller than the Pool on 6
of the hypergraphs (p ≤ 0.05), with no significant difference
on the other 4, again showing that the EA performs a more
effective search on larger hypergraphs.

Performing Wilcoxon signed-ranks tests of the initial par-
titionings across all runs on the 10 ISPD98 hypergraphs
confirms that the EA has a significantly lower cut-size than the
Pool at t = 15000 (p ≤ 0.05). Moreover, this also translates to
significant improvements in the final partitioning (p ≤ 0.05).
Similar results were found when repeating the class tests for
the 10 SPM hypergraphs and the 10 SAT hypergraphs.

4) Optimum Coarsened Hypergraphs: Table I shows the
smallest (average) final cut-sizes discovered by the Pool and
EA across all coarsening thresholds on the 4 hypergraphs
from each benchmark set. This shows that when the optimum
coarsening threshold for each algorithm-problem combination
is known, the smallest final cut-size discovered by the EA is
less than the Pool algorithm on all 4 of the largest ISPD98
hypergraphs. On the SAT hypergraphs, the best EA final cut-
sizes are on average smaller by 5.8% on gss-20, 2.2% on
aaai10, 2.75% on MD5-28-2, and 2.6% on slp-synthesis. These
improvements are statistically significant for all but ibm15 and
Stanford. The improvements were achieved by the EA carrying
out a more effective search at the same or higher coarsening
threshold than the Pool and therefore able to take advantage
of any additional information in the larger initial hypergraph.

Also shown in Table I is the average total EA partitioning
time, time∗EA, relative to that taken by the Pool, time∗Pool.
As can be seen, the EA is faster on 7 of the 12 hypergraphs
despite operating on a similar or larger initial hypergraph.

5) Summary:
• The results for all 30 hypergraphs at the coarsest level

(t=150) show no significant difference between algo-

TABLE I
THE SMALLEST (AVERAGE) EA AND POOL FINAL CUT-SIZES ON FOUR

HYPERGRAPHS FROM EACH OF THE BENCHMARK SETS AND THE RELATED
COARSENING THRESHOLDS. CUT-SIZE HIGHLIGHTED IN BOLD FACE

WHERE IT IS SIGNIFICANTLY DIFFERENT, p ≤ 0.05.

Hypergraph t∗Pool t∗EA cut∗Pool cut∗EA
time∗EA
time∗

Pool

ibm15 1000 3250 2649 2632 2.69
ibm16 3250 25000 1762 1720 3.15
ibm17 15000 15000 2276 2244 0.74
ibm18 3000 3250 1612 1564 0.57
Airfoil_2d 15000 15000 312 311 0.66
Reuters911 5000 10000 3199 3125 0.60
Stanford 500 250 30 29 0.40
usroads 750 2250 80 79 1.87
aaai10-planning 5000 5000 2312 2261 0.65
gss-20-s100 1250 30000 1002 944 9.67
MD5-28-2 500 10000 3580 3483 6.41
slp-synthesis 2500 4500 2618 2549 0.96

rithms.
• However, with larger initial hypergraphs (t=15000), the

EA significantly outperforms the Pool (p ≤ 0.05).
• Furthermore, the wall-clock time of the Pool algorithm

was significantly higher than the EA’s (p ≤ 0.05).
Moreover, results confirm our hypothesis that if initial

partitioning is done on large hypergraphs, the picture changes
dramatically. Taken as a whole, for the 12 instances where the
spectrum of coarsening thresholds was explored:

• the EA significantly outperforms the Pool algorithm over
all coarsening thresholds (AUC metric).

• The final cut-sizes of the EA at t∗ are significantly smaller
for all 12 hypergraphs than the Pool algorithm at the
default t=150.

• Taking the optimum threshold for each algorithm-
problem combination, and comparing the best-case cut-
sizes across the 12 problems, the EA results are signifi-
cantly better than the Pool algorithm (p ≤ 0.05).

VI. ADAPTIVE COARSENING TO IDENTIFY THE EA NICHE

The less coarsening is performed, the more information may
be available to the initial partitioning algorithm to potentially
achieve higher quality partitions. This is particularly evident
in a number of the hypergraphs in Fig. 3 by observing the
final cut-sizes where t < 5000; see, for example, ibm18.
However, for each algorithm there exists a point at which
further increases in the size of the search space result in
declining performance; for example, see the algorithm cut-
sizes on the ibm18 hypergraph where t > 15000 in Fig. 3.
Simply selecting a fixed larger t does not help since the
‘optimal’ threshold is clearly hypergraph-dependent..

From Fig. 3 it can be seen that the sum of the number of
vertices in each hyperedge, |pins|, initially declines relatively
linearly with the number of hypernodes before reaching a point
of exponential decay. This suggests that for each hypergraph
there may exist a tipping point at the balance between maximal
information content and maximal hypergraph compression,
akin to ‘knee-points’ in Pareto fronts. We therefore propose an
adaptive coarsening scheme that halts hypernode contraction
in response to the changing characteristics of the hypergraph.

PREEN and SMITH: EVOLUTIONARY N-LEVEL HYPERGRAPH PARTITIONING WITH ADAPTIVE COARSENING 9

Algorithm 3: Adaptive coarsening stopping criteria
1 R: regression buffer of length tn
2 while |V | > t× k do
3 for each hypernode do
4 select contraction partner
5 perform contraction
6 if |V | < tmax × k then
7 if ts hypernodes coarsened since last update then
8 update R with |pins|
9 r ← coefficient of linear regression on R

10 if r2 < tr then
11 stop coarsening
12 end
13 end
14 end
15 if |V | < t× k then
16 stop coarsening
17 end
18 end
19 end

A. Algorithm

We perform a linear piecewise approximation of the curve
based on a sliding window of observations, and seek to identify
the knee-point at which the linear approximation is least
representative of the curve. Coarsening occurs as normal until
there are fewer than tmax×k hypernodes; here tmax = 15000.
Thereafter, a linear regression is performed on |pins|, sampled
after every ts hypernodes have been contracted, and calculated
on the most recent tn samples. Coarsening is terminated and
initial hypergraph partitioning performed as usual when the
correlation coefficient R2 < tr or the original t = 150
threshold reached. See Algorithm 3.

A grid search of these parameters was performed to min-
imise the final EA(100+1000) cut-sizes on the 12 hypergraphs
for which partitioning was previously performed across the
range of coarsening thresholds and the best performing pa-
rameters ts = 50, tn = 100 and tr = 0.99 were identified.

B. Results

Results show that over a wide range of different hypergraphs
this simple adaptive threshold can identify better places to stop
coarsening, although with some large variations:

• Across all 30 hypergraphs there was an overall reduction
in the mean final cut-size of 1.6% (p ≤ 0.05) compared
with the results achieved at t=150; and a 1.25% reduction
(p > 0.05) compared with results at t=15000.

• The mean final cut-size is smaller on 22 of the 30
hypergraphs when using the adaptive threshold compared
with the EA at t=150. This difference is statistically
significant on 6 of the 10 ISPD98 hypergraphs, 2 of the
10 SPM hypergraphs (Reuters911 and usroads) and 2
of the 10 SAT hypergraphs (gss-20-s100 and UCG-15-
10p1). Similar improvements are found when compared
with the Pool at t=150.

• Excluding the 12 hypergraphs used for training the coars-
ening parameters, the EA achieves an overall reduction

in the mean final cut-size of 1.8% (p ≤ 0.05) compared
with the results achieved at t=150.

• Taken hypergraph-by-hypergraph, the mean final cut-size
is smaller on 13 of the 18 hypergraphs. There is no
significant difference compared with t=15000 and yet
overall the average wall-clock time was ≈ 7.4× faster.

• Total partitioning time with t=150 is of course much
faster than the adaptively coarsened hypergraphs (≈
10×), however with larger cut-sizes. Thus, showing the
existence of the aforementioned knee-points.

The use of a range of visual analytics tools failed to uncover
any obvious relationships between the characteristics of the
uncoarsened hypergraphs and the magnitude and direction of
the performance difference arising from adaptive coarsening.

VII. CONCLUSIONS

Our analysis of the state-of-the-art in hypergraph partition-
ing algorithms reveals that despite considerable sophistication,
all algorithms use a somewhat arbitrary threshold for determin-
ing the size of the initial partitioning problem to be solved.
This is perhaps driven by the poor scaleability of the search
algorithms involved, such as BFS.

However, experimental analysis of the ‘searchability’ of
initial partition landscapes at different coarsening thresholds
shows that larger landscapes may have properties that can
be exploited by population-based search, and we derive some
guidelines for algorithm design based on that analysis.

Experimental results confirm our hypothesis that there is
valuable ‘niche’ for EA-based search that leads to statistically
significant reductions in final cut-size: up to 20% compared
to the default settings (Pool algorithm at t=150). Searching
effectively in larger search spaces comes at a cost of approxi-
mately ten-fold in run-time, but this may well be warranted in
many contexts such as ‘one-off’ design, or where subsequent
processing is needed within the partitions.

Sensitivity analysis confirmed the guidelines derived from
landscape analysis: recombination is useful, population size is
not critical, and it is worth devoting a significant proportion
of the computational budget to seeding the EA-base search.

Examining the search performance of different algorithms
at different coarsenening levels, we observe that there is a
‘sweet-spot’ for EA-based search that is instance-dependent.
We identify a novel, computationally cheap method for halting
coarsening by monitoring the rate of change in information
content as the hypergraph is contracted. This gives as good
results as stopping at a predefined arbitrary larger threshold
and with run-times reduced 7.5-fold.

We do not claim to have developed the ‘best’ EA to work
in that niche. Rather, the aim of this paper was to establish the
presence of a valuable role for EAs in hypergraph partitioning,
working at a less coarsened level than currently used. In
future work we will focus on (i) improved adaptive coarsening
schemes, and (ii) tighter integration and re-use of information
from the FM local search with the EA search processes and
EDA model-building.

10

ACKNOWLEDGMENTS

The authors would like to thank the Karlsruhe Institute of
Technology for KaHyPar and benchmark hypergraphs, and
Martin Pelikan for his implementations of the BOA algorithm.

REFERENCES

[1] T. Lengauer, Combinatorial algorithms for integrated circuit layout.
New York, NY, USA: John Wiley & Sons, 1990.

[2] S. Areibi and Z. Yang, “Effective memetic algorithms for VLSI design
= genetic algorithms + local search + multi-level clustering,” Evol.
Comput., vol. 12, no. 3, pp. 327–353, Fall 2004.

[3] O. Selvitopi, S. Acer, and C. Aykanat, “A recursive hypergraph biparti-
tioning framework for reducing bandwidth and latency costs simultane-
ously,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 345–358,
Feb. 2017.

[4] A. Trifunović, “Parallel algorithms for hypergraph partitioning,” Ph.D.
dissertation, Department of Computing, Imperial College of Science,
Technology and Medicine, University of London, London, UK, 2006.

[5] F. Lotfifar, “Hypergraph partitioning in the cloud,” Ph.D. dissertation,
School of Engineering and Computing Sciences, Durham University,
Durham, UK, 2016.

[6] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel circuit partition-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 17,
no. 8, pp. 655–667, Aug. 1998.

[7] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: Applications in VLSI domain,” IEEE Trans.
VLSI Syst., vol. 8, no. 1, pp. 69–79, Mar. 1999.

[8] U. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication,” IEEE
Trans. Parallel Distrib. Syst., vol. 11, no. 7, pp. 673–693, Jul. 1999.

[9] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.
Çatalyürek, “Parallel hypergraph partitioning for scientific computing,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp., P. Spirakis and H. J.
Siegel, Eds. Piscataway, NJ, USA: IEEE Press, 2006, p. 10.

[10] A. Trifunović and W. J. Knottenbelt, “Parallel multilevel algorithms for
hypergraph partitioning,” J. Parallel Distrib. Comput., vol. 68, no. 5, pp.
563–581, May 2008.

[11] U. V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar, “UMPa: A multi-
objective, multi-level partitioner for communication minimization,” in
Contemporary Mathematics: Graph Partitioning and Graph Clustering,
D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds. Provi-
dence, RI, USA: AMS, 2013, vol. 588, pp. 53–66.

[12] S. Schlag et al., “k-way hypergraph partitioning via n-level recursive
bisection,” in Proc. ALENEX, M. Goodrich and M. Mitzenmacher, Eds.
Philadelphia, PA, USA: SIAM, 2016, pp. 53–67.

[13] T. Heuer and S. Schlag, “Improving coarsening schemes for hypergraph
partitioning by exploiting community structure,” in 16th Int. Symp.
Experimental Algorithms, (SEA 2017), ser. Leibniz International Pro-
ceedings in Informatics (LIPIcs), C. S. Iliopoulos, S. P. Pissis, S. J.
Puglisi, and R. Raman, Eds., vol. 75. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 21:1–21:19.

[14] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for
improving network partitions,” in Proc. IEEE Design Autom. Conf., J. S.
Crabbe, Ed. Piscataway, NJ, USA: IEEE Press, 1982, pp. 175–181.

[15] V. Osipov and P. Sanders, “n-level graph partitioning,” in Proc. Euro.
Symp. Algor., ser. LNCS, M. de Berg and U. Meyer, Eds., vol. 6346.
Berlin, Germany: Springer, 2010, pp. 278–289.

[16] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, “Engineering a
direct k-way hypergraph partitioning algorithm,” in Proc. ALENEX,
S. Fekete and V. Ramachandran, Eds. Philadelphia, PA, USA: SIAM,
2017, pp. 28–42.

[17] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Aug. 1998.

[18] G. Karypis, “Multilevel hypergraph partitioning,” in Multilevel Optimiza-
tion in VLSICAD, ser. Combinatorial Optimization, J. Cong and J. R.
Shinnerl, Eds. New York, NY, USA: Springer US, 2003, vol. 14, ch. 3,
pp. 125–154.

[19] A. J. Soper, C. Walshaw, and M. Cross, “A combined evolutionary search
and multilevel optimisation approach to graph-partitioning,” J. Global
Optim., vol. 29, no. 2, pp. 225–241, Jun. 2004.

[20] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” AI Mag., vol. 35, no. 3, pp. 48–60, Fall 2014.

[21] T. Heuer, “Engineering initial partitioning algorithms for direct k-way
hypergraph partitioning,” Bachelor thesis, Department of Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany, 2015.

[22] U. V. Çatalyürek and C. Aykanat, “PaToH: Partitioning tool for hyper-
graphs,” http://bmi.osu.edu/umit/PaToH/manual.pdf, pp. 22–23, 2011.

[23] J. Kim, I. Hwang, Y.-H. Kim, and B.-R. Moon, “Genetic approaches
for graph partitioning: A survey,” in Proc. GECCO, N. Krasnogor, Ed.
New York, NY, USA: ACM, 2011, pp. 473–480.

[24] U. Benlic and J. K. Hao, “A multilevel memetic approach for improving
graph k-partitions,” IEEE Trans. Evol. Comput., vol. 15, no. 5, pp. 624–
642, Oct. 2011.

[25] P. Sanders and C. Schulz, “Distributed evolutionary graph partitioning,”
in Proc. ALENEX, D. A. Bader and P. Mutzel, Eds. Philadelphia, PA,
USA: SIAM, 2012, pp. 16–29.

[26] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning
for complex networks,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9,
pp. 2625–2638, Sep. 2017.

[27] S. Küçükpetek, F. Polat, and H. J. OğuztüzüÃijn, “Multilevel graph
partitioning: An evolutionary approach,” J. Oper. Res. Soc., vol. 56,
no. 5, pp. 549–562, May 2005.

[28] P. Merz and B. Freisleben, “Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitioning,” Evol. Comput., vol. 8, no. 1,
pp. 61–91, Spring 2000.

[29] A. S. Pope, D. R. Tauritz, and A. D. Kent, “Evolving multi-level graph
partitioning algorithms,” in Proc. IEEE Symp. Series Comput. Intell.,
Y. Jin and S. Kollias, Eds. Piscataway, NJ, USA: IEEE Press, 2016,
pp. 1–8.

[30] H. Mühlenbein and T. Mahnig, “Evolutionary optimization and the esti-
mation of search distributions with applications to graph bipartitioning,”
Int. J. Approx. Reason., vol. 31, no. 3, pp. 157–192, Nov. 2002.

[31] J. Schwarz and J. Oc̆enás̆ek, “Experimental study: Hypergraph parti-
tioning based on the simple and advanced genetic algorithm BMDA
and BOA,” in Proc. 5th Int. Mendel Conf. Soft. Comput. (MENDEL’99),
1999, pp. 124–130.

[32] J.-P. Kim, Y.-H. Kim, and B.-R. Moon, “A hybrid genetic approach for
circuit bipartitioning,” in Proc. GECCO, ser. LNCS, K. Deb, Ed. Berlin,
Germany: Springer, 2004, vol. 3103, pp. 1054–1064.

[33] S. Coe, S. Areibi, and M. Moussa, “A hardware memetic accelerator
for VLSI circuit partitioning,” Comput. Elect. Eng., vol. 33, no. 4, pp.
233–248, Jul. 2007.

[34] R. Andre, S. Schlag, and C. Schulz, “Memetic multilevel hypergraph
partitioning,” in Proc. GECCO, K. Takadama, Ed. New York, NY,
USA: ACM, 2018, pp. 347–354.

[35] C. J. Alpert, “The ISPD98 circuit benchmark suite,” in Proc. Int. Symp.
Phys. Design, M. Sarrafzadeh, Ed. New York, NY, USA: ACM, 1998,
pp. 80–85.

[36] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, Nov.
2011.

[37] A. Belov, D. Diepold, M. Heule, and M. Järvisalo, “SAT competition
2014,” http://satcompetition.org/2014/, 2014.

[38] S. S. Choi, Y. K. Kwon, and B. R. Moon, “Properties of symmetric
fitness functions,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 743–
757, Dec. 2007.

[39] M. Serpell and J. E. Smith, “Self-adaptation of mutation operator and
probability for permutation representations in genetic algorithms,” Evol.
Comput., vol. 18, no. 3, pp. 491–514, Fall 2010.

[40] J. Dems̆ar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

[41] K. D. Boese, A. B. Kahng, and S. Muddu, “A new adaptive multi-
start technique for combinatorial global optimizations,” Oper. Res. Lett.,
vol. 16, no. 2, pp. 101–113, Sep. 1994.

[42] S. Meyer-Nieberg and H.-G. Beyer, “Self-adaptation in evolutionary
algorithms,” in Parameter setting in evolutionary algorithms, ser. Studies
in Computational Intelligence, F. Lobo, C. Lima, and Z. Michalewicz,
Eds. Berlin, Germany: Springer, 2007, vol. 54, pp. 47–75.

[43] J. E. Smith, “Parameter perturbation mechanisms in binary coded GAs
with self-adaptive mutation,” in Foundations of Genetic Algorithms 7,
C. Potta, R. Poli, J. Rowe, and K. DeJong, Eds. San Francisco, CA,
USA: Morgan Kauffman, 2003, pp. 329–346.

[44] M. Z. Ali, N. H. Awad, P. N. Suganthan, and R. G. Reynolds, “An
adaptive multipopulation differential evolution with dynamic population
reduction,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2768–2779, Sep.
2017.

[45] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
optimization algorithm,” in Proc. GECCO, D. E. Goldberg, Ed. San
Francisco, CA, USA: Morgan Kaufmann, 1999, pp. 525–532.

http://bmi.osu.edu/umit/PaToH/manual.pdf
http://satcompetition.org/2014/

	Introduction
	Related Work
	Methodology
	Test Framework
	Representation, Algorithm Operators and Parameters
	Comparison Metrics and Statistical Analysis of Results

	Landscape Analysis at Different Levels
	Sensitivity to EA design choices
	Population Seeding
	Population Size
	Variation Operators
	Search at Different Coarsening Levels
	Overall Performance
	Highly Coarsened Hypergraphs
	Less Coarsened Hypergraphs
	Optimum Coarsened Hypergraphs
	Summary

	Adaptive Coarsening to identify the EA niche
	Algorithm
	Results

	Conclusions
	References

