
1

On Proactive, Transparent and Verifiable
Ethical Reasoning for Robots:

Supplementary Material
Paul Bremner, Louise A. Dennis, Michael Fisher and Alan F. Winfield

I. INFORMAL PROOFS THAT THE COMPARISON
FUNCTIONS IN BOX 1 DEFINE ANTISYMMETRIC,

TRANSITIVE RELATIONS

We wish to prove that our comparison relations
are antisymmetric and transitive on the assumption
that certain properties hold in the real world (e.g.
if position x is closer to some danger than position
y and position y is closer to it than position z, then
position x is closer to the danger than position z.)

Recall we defined (in Box 1 definition 3) a
set of relations ≺m where m ∈ {hd, ro, rd} (hd
for human danger distance, ro for robot objective
distance, rd for robot danger distance). So, for
instance, x ≺hd y means that task y results in the
the human being closer to danger than task x. So
for any two tasks either t1 ≺m t2 or t2 ≺m t1 or
t1 ≈m t2. In particular if t1 ≈m t2 then t1 6≺m t2
and t2 6≺m t1.

We now seek to prove that Cwd is antisymmetric
(theorem 1) and transitive 2.

Theorem 1: If ≺m is antisymmetric for all m
then Cwd is antisymmetric.

Proof: Let us assume, for a contradiction, that
t1 Cwd t2 and t2 Cwd t1. We consider each case in
Box 1 definition 1 in turn.

1) t1 ≺hd t2 (definition 1 case 1). Since ≺hd is
antisymmetric then if t2 ≺hd t1, t1 = t2 and
we are done. Alternatively t2Cwd t1 because
of one of the other cases in 1. However all
these cases have t1 ≈hd t2 as a condition
which implies by Box 1 definition 4 that
t1 6≺hd t2.

2) t1 ≈hd t2 and t1 ≺ro t2 (definition 1 case 1).
if t2 ≺ro t1 then t1 = t2 (by antisymmetry)
and we are done. Otherwise t2Cwdt1 because
of one of the other clauses in definition 1.
This means either t2 ≺hd t1 (case 1) which
contradicts t1 ≈hd t2 or t1 ≈ro t2 (cases 3
and 4) which contradicts t1 ≺ro t2.

3) Similar reasoning applies as in case 2.
4) Similar reasoning applies as in case 2 with

the additional observation that < is anti-
symmetric.

Theorem 2: If

1) ≺m is transitive for all m, and
2) ∀t1, t2, t3.(t1 ≈m t2∧t3 ≺m t1)→ t3 ≺m t2

then Cwd is transitive.
Proof: Let us suppose that t1Cwdt2 and t2Cwd

t3. We need to show that t1Cwd t3. Once again we
proceed by considering each case in definition 1 in
turn, but now need to consider these as they apply
to both t1 Cwd t2 and t2 Cwd t3.

1) t1 ≺hd t2 (t1 Cwd t2 because of case 1)
• t2 ≺hd t3 (t2 Cwd t3 because of case 1).

In this case t1 ≺hd t3 by the transitivity
of ≺hd and so t1 Dwd t3.

• t2 ≈hd t3 and t2 ≺ro t3 (case 2). Since
t2 ≈hd t3 and t1 ≺hd t2. t1 ≺hd t3 (by
our third assumption) and so t1 Cwd t3.

• Similar reasoning applies to cases 3 and
4 with the additional observation that <
is transitive.

2) Similar reasoning applies as in case 1.
3) Similar reasoning applies as in case 1.
4) Similar reasoning applies as in case 1.

It remains to show that the assumptions we have
stated for each theorem hold in our system – i.e,
that our relations ≺m are antisymmetric, transitive
and have the property that ∀t1, t2, t3.(t1 ≈m t2 ∧
t3 ≺m t1) → t3 ≺m t2. Since these relations
are based on distances or times (i.e., t1 ≺hd t3
if t3 places the human closer to danger than t1)
then transitivity follows from the transitivity of
relations on distances and times. We have made the
assumption that the tasks are chosen to make these
relations antisymmetric (i.e., no two tasks share the
same distance or time valuation1).

For our last assumption we need to recall from
definition 3 that t1 ≈m t2 if for some valua-
tion, v on t1 and t2 and some threshold thm if
v(t1) < thm and v(t2) < thm in the case where
some value is to be minimized or v(t1) > thm and
v(t2) > thm in the case where some value is to be
maximised.

Theorem 3: For all metrics m ∈ {hd, ro, rd}
∀t1, t2, t3.(t1 ≈m t2 ∧ t3 ≺m t1)→ t3 ≺m t2

1It is further work to adapt our implementation to make this
assumption unnecessary.



2

Proof: We present the proof for when m is
a property that is to be minimised. t1 ≈m t2 if
v(t2) < thm and v(t1) < thm (from Box 1 defini-
tions 3 and 4). By assumption, t3 ≺m t1, since m
is to be minimised this means v(t3) > thm. In this
case t3 ≺m t1 again by definition 3.

II. SEMANTICS OF BDIPython BELIEF BASES

BDIPython belief bases are represented as dic-
tionary of key/value pairs, k → v where the key,
k, is a string and the value, v can be 0/1, a double,
d or an array of strings, [s1, . . . , sn].

We assume a logical language L consisting of
constant symbols, c, predicate/function symbols f ,
(and variable symbols, v, though these are not
relevant here). We assume that each string k, si
appearing in the Python belief base can be inter-
preted as a constant or function symbol, written as
[[k]] etc., (In practice we simply interpret the string
“k” as the constant or function k).

These are interpreted as predicates as follows:
k → 0 ¬[[k]]
k → 1 [[k]]
k → d [[k]](d)
k → [[s1, . . . , sn]] [[k]]([[s1]]), . . . , [[k]]([[sn]])

So for instance if the string ‘danger_close’ in-
dexes the value 1 in our belief base dictionary then
we interpret that as meaning the agent believes
danger is close, B(danger_close). If the string
‘task’ indexes a list of strings [‘t1’, ’t2’, ’t3’]. Then
this is interpreted as meaning the agent believes t1,
t2 and t3 are tasks – B(task(t1)),B(task(t2)) and
B(task(t3)).

Where the value of the belief is 0/1 then the
belief is interpreted a logical constant during
reasoning. So the value 1, indexed by the string
" obstacle_close " is considered to be the logical
constant, obstacle_close Where the value of the
belief is some list, then the belief is considered
to be a set of predicates with the list members as
parameters. So the value [’ john ’,’ jane ’,’ emily’]
indexed by the string "name" is considered
to be the set of logical predicates
name(′john ′),name(′jane ′),name(′emily ′).

Where the value of the belief is some Python
built-in type it is interpreted to be a logical pred-
icate with the value as a parameter. So the value
0.5, indexed by the string " distance " is considered
to be the logical predicate distance(0 .5 ).


	Informal Proofs that the Comparison Functions in Box 1 Define Antisymmetric, Transitive Relations
	Semantics of BDIPython Belief Bases

