
1

On Proactive, Transparent and Verifiable
Ethical Reasoning for Robots

Paul Bremner, Louise A. Dennis, Michael Fisher and Alan F. Winfield

Abstract—Previous work on ethical machine rea-
soning has largely been theoretical, and where such
systems have been implemented it has in general
been only initial proofs of principle. Here we address
the question of desirable attributes for such systems
to improve their real world utility, and how con-
trollers with these attributes might be implemented.
We propose that ethically-critical machine reasoning
should be proactive, transparent and verifiable. We
describe an architecture where the ethical reasoning
is handled by a separate layer, augmenting a typical
layered control architecture, ethically moderating the
robot actions. It makes use of a simulation-based
internal model, and supports proactive, transpar-
ent and verifiable ethical reasoning. To do so the
reasoning component of the ethical layer uses our
Python based Beliefs, Desires, Intentions (BDI) im-
plementation. The declarative logic structure of BDI
facilitates both transparency, through logging of the
reasoning cycle, and formal verification methods. To
prove the principles of our approach we use a case
study implementation to experimentally demonstrate
its operation. Importantly, it is the first such robot
controller where the ethical machine reasoning has
been formally verified.

I. INTRODUCTION

Robots are increasingly autonomous: semi-
autonomous flying robots are commercially avail-
able, and driverless cars are undergoing real-world
tests [1]. This trend is expected to continue [2].
Such systems have expanding abilities for making
unsupervised decisions. This makes it imperative
both that robotic systems are capable of taking
human ethical values1 into account when they make
decisions, and that mechanisms are in place to guar-
antee that the behaviour executed by the robot re-
spects those values. A particularly important value,
and one at the forefront of many people’s minds
when considering robotic systems that will interact
closely with humans, is the question “is it safe?"
– highlighting the importance of mechanisms for
guaranteeing safety [3], [4]. However, many other
ethical considerations, such as human free will,
privacy and dignity also come into play when con-
sidering autonomous robotics, particularly robots

The work described in this paper was funded by the EPSRC
“Verifiable Autonomy” project (EP/L024845/1 (Liverpool) and
EP/L024861/1 (UWE))

1We define human values here as broad preferences con-
cerning appropriate courses of actions or outcomes, and ethical
values as generally agreed right actions which, for instance,
maintain safety and dignity.

that may be operating in domestic or healthcare
situations.

Safe robot behaviour is clearly essential, but
not sufficient. Smart autonomous robots should be
more than safe; they should also be transparent, at
least where ethical reasoning is concerned -– able
to both choose and justify [2] actions that relate
to human values. Following Moor [5] our focus in
this paper is on explicit ethical agents in which
ethics are represented explicitly, and actions chosen
on the basis of those ethics. As the cognitive,
perceptual and motor capabilities of robots expand,
they will be expected to have an improved capacity
for moral judgment2. By transparent we mean that
ethical machine reasoning should be accountable
and accessible, such that human scrutiny of such
decision processes is possible [6]. Making ethical
machine reasoning scrutible in this way enables ex-
position of the reasoning behind actions taken, and
facilitates trust in such systems. It is clear, through
international efforts such as the developing IEEE
P7001 standard on Transparency in Autonomous
Systems, that this view is becoming mainstream.

We are used to the idea of safety-critical systems
and that such systems require high standards of
validation – preferably formal verification. Clearly,
since safety is one of the ethical principles3 rel-
evant to robotic systems these will also require
high standards of validation. More generally, since
ethical principles are fundamental to the way a
society judges both itself and others we would
argue that ethically-critical systems (systems that
have the capacity to impact adversely any ethical
value considered important by the community it is
created for) should in general be held to high stan-
dards of validation, just as safety-critical systems
are. Therefore ethical machine reasoning should be
verifiable [7].

Initial approaches to the implementation of ethi-
cal machine reasoning have focused on the idea of
an ethical layer that can veto actions suggested by
the underlying system [8]. However, as was notably
observed in Asimov’s construction of his three

2Note we are not claiming that a robot must be a full moral
agent – capable of not only reasoning about ethics but also
justifying its ethical choices [5] – only that its reasoning needs
to take ethical considerations into account.

3We regard ethical principles as simply expressions of ethical
values. So the principle ‘do no harm’ expresses the human value
of respect for others’ safety.



2

Laws of Robotics [9], ethical reasoning cannot
simply be reactive (it is insufficient to state simply
that a robot may not harm a human) but must also
be proactive (‘a robot should not, through inaction,
allow a human to come to harm’). We suggest
that in order to make proper ethical judgements
any ethical reasoning component should be capable
of generating and evaluating ethically proactive
actions, not just evaluating those proposed by some
underlying goal-directed system.

We therefore obtain three key desirable prop-
erties for ethical machine reasoning for robotic
systems:

• It should be proactive and able to initiate
action where inaction risks violating ethical
principles.

• It should be transparent in order to allow
direct inspection of its reasoning by stake-
holders, and potentially also allow human-
understandable explanations of its reasoning.

• It should be possible to verify that it re-
spects the values it reasons about, particularly
(though not exclusively) where safety is con-
cerned.

Clearly ethical machine reasoning is possible
without adhering to these properties. However, we
argue that adherence improves the utility for an
ethical machine operating in the real world. More-
over, while transparency and verifiability are of
benefit to most computational systems (including
robot controllers in general), we argue that they
are of particular importance in ethically-critical sys-
tems where the dual importance of both respecting
human ethical values and being seen to do so is
key to acceptance.

To demonstrate the practicality and utility of
our proposed key properties we have devised an
extension of the ethical layer in the architecture
proposed in [10]. The extension we have proposed
consists of two main components. The first is the
addition of a pro-active Planner Module to produce
ethically pro-active plans as required. Second is the
addition of an ‘ethical black box’ recorder module,
that logs the operation of the ethical layer and
allows for post-hoc scrutiny of ethical decisions.
As the ethically-critical component of our proposed
architecture, it is the ethical layer in which our
desirable properties are implemented.

To better illustrate the architecture, we detail
an implementation following the proposed model.
To do so we have developed a Python library for
Beliefs, Desires, Intentions-style agent reasoning
called BDIPython. BDIPython allows us to ex-
plicitly express the ethical layer’s ethical decision
module using logical rules. Doing so facilitates
transparency of the reasoning in the ethical layer.
In this implementation we have used Asimov’s
Laws of Robotics as our code of ethics, chosen not

because they represent a viable code of machine
ethics, but because they are a well-known and
straightforward set of ethical rules that can be used
to illustrate our approach.

To demonstrate that our implementation fulfils
the desired verifiable property, we detail a means of
formal verification of the ethical decision module.
We have linked BDIPython directly to the Agent
JavaPathfinder (AJPF) model-checker by imple-
menting a parser for the BDIPython code into a
Java data structure that is used to generate a model.
We can then verify that the BDIPython ethical
decision module respects some given ethical system
using an established methodology for the formal
verification of autonomous systems supported by
AJPF [11].

Finally we have validated our approach experi-
mentally using a simple case study with real robots.
Through a series of experiments we demonstrate
that our implementation is capable of making
demonstrably correct ethical decisions, and the rea-
soning process is transparent to human scrutiny. We
then verify that this system obeys Asimov’s three
laws of robotics.

II. BACKGROUND

In this section we elaborate upon the background
motivation and design principles of the components
comprising the proposed architecture and imple-
mentation thereof. Each subsection that follows
relates to a particular element of the work presented
in this paper. First, we consider the motivation
behind ethical reasoning in robots; second, the
simulation-based approach to robot anticipation,
and how this can provide a robot with the capability
to reason about ethical consequences; third, we
detail the case for an ‘ethical black box’ (EBB)
recorder; fourth, we describe the Beliefs, Desires,
Intentions (BDI) paradigm, and why it is suitable
for implementation of transparent ethical reasoning;
finally, we discuss formal verification, and how we
can apply such a methodology to our BDI ethical
reasoning.

A. Ethical Robots

As robots are increasingly expected to operate in
environments within which their actions have moral
or ethical implications, especially those with other
agents, they require the capability to reason about
these implications. Indeed, the need for robots
equipped with ethical reasoning capabilities has
been recognised in much recent work (e.g., [5], [8],
[12]–[14]). Studies have shown that people expect
ethical decision making from robots, holding them
to moral standards according to their appearance
[15].

In order for a robot to reason about ethics
it requires inter-alia a set of ethical rules. How



3

these rules should be selected is, in general, an
open problem, and various authors have suggested
multiple approaches (see [16] for a review). Two
paradigms of human ethical reasoning underlie
the main approaches to machine ethics thus far
suggested: consequentialist and deontological [16].
The central premise of consequentialist ethics is
that actions should be evaluated on the basis of
their consequences. Asimov’s laws of robotics [9]
are a well known set of rules for governing ma-
chine ethics. However, their suitability has been
justifiably questioned for a range of reasons, in-
cluding the lack of any mechanism for resolving
ethical dilemmas caused by intra-law conflicts, e.g.,
if two humans are in danger and only one can
be saved [2]. Deontological ethics on the other
hand, is concerned with evaluating the motivation
behind actions, i.e., does the intended purpose of
the selected action abide by a given code of ethics.
However, such an ethical paradigm has difficulties
for artificial morality since it requires the correct
attribution of mind states to artificial agents [16].

Allen et al [16] defined two clear approaches
to implementing machine ethics for either ethical
paradigm: top-down, whereby ethical decisions are
incorporated into a robot’s control architecture;
or bottom-up, where a learning system is used
to emulate ethically acceptable behaviour without
necessarily understanding the underlying ethics ad-
hered to. Here we consider the top-down approach
because of its suitability both for verification and
human scrutability.

B. Anticipation in Robotics (for Proactive Ethics)

In order for a robot to reason about ethics to be
based on consequentialism it is necessary for it to
be able to anticipate the outcomes of its actions.
More generally, for a robot designed to operate in
the highly dynamic environment of the real world,
the ability to ‘anticipate’ future events is a major
advantage. Such predictions can allow a system to
make decisions in a way that combines past, present
and future events, so it is better equipped to react
appropriately to unconstrained environments [17].
We follow Rosen’s definition of an anticipatory
system as “[...] a system containing a predictive
model of itself and/or of its environment, which
allows it to change state at an instant in accord
with the model’s predictions pertaining to a later
instant.” [18].

The conventional use of internal models, in
which a system is mathematically modelled, is
encompassed within Rosen’s definition. However,
even though such approaches have been extended
to cover well-defined uncertainties and non-linear
plant [19], their anticipatory capabilities are lim-
ited. Typcally the external environment is not ex-

plicitly modelled beyond a-priori defined exoge-
nous disturbances to the system model.

A newer and more powerful way in which a
robot can be equipped with the cognitive machinery
to enable anticipation is through an embedded
simulation of the robot, its environment and agents
therein [20]. A robot so equipped, has the potential
to generate and test what-if hypotheses: what if I
carry out action x?; of several possible actions xi
which should I choose? One aim of such hypothesis
testing is to enable assessment of the consequences
of proposed actions without needing to commit
to carrying out those actions [21]. That is to say,
alternative sequences of motor actions are evaluated
to find the sequence that best achieves the goal,
before executing the best sequence. Identification
of the best actions typically requires sufficient
environment simulation to establish action context.

Arguably these simulation-based internal models
of others are a step in the direction of an artificial
theory of mind [22], i.e., the ability to form a
predictive model of others [23]; indeed one of the
several theories of mind is the simulation theory of
mind [24].

Here we utilise simulation-based hypothesis test-
ing as a fundamental component of our architec-
ture. We do so to enable the ethical layer in our
robot controller to assess the ethical consequences
of potential behaviours; thus, it can select the most
ethically appropriate. Central to the simulation we
use are assumptions of how the human being mod-
elled (in the robot’s environment) will act – as a
crude form of theory of mind.

C. Ethical Black-box Recorder (for Transparency)

In line with expectations of ethical decision
making, there is also a requirement that such an
ethical robot’s control processes are transparent and
understandable. There are a number of reasons for
this: it enables trust if stakeholders can understand
a robot’s reasons and validate for themselves that
those reasons align with their ethics; in accident
investigation scenarios, transparency helps in diag-
nosing the causes of error, and in their subsequent
correction [25].

Winfield and Jirotka argue for a robot equivalent
of the flight data recorder or black-box installed in
aircraft to facilitate this [25]. By recording sensor
data, and the control processes that acted on this
data, post-hoc scrutiny of robot behaviour becomes
possible. While some modern vehicles with partial
autonomy have a data recording device, companies
have thus far constrained access to this data to their
own experts. We suggest that to be of real value this
data needs to be open to outside scrutiny, outweigh-
ing any liability fears. To this end we incorporate
a data logging module into our proposed ethical
layer. Following the proposal in [25], it records



4

the information needed for human scrutiny of the
ethical decision process followed.

D. Beliefs-Desires-Intentions Programming (for
Transparent Ethics)

However, we argue that records of sensor data
and control processes are insufficient by them-
selves. For the key parts of ethical reasoning it
must be possible for a human to understand how
a deduction was generated from sensor data. More
importantly this process of deduction needs to be
explainable in a way that is similar to the way hu-
mans justify their own actions. At present it is often
challenging to extract such explanations from utility
functions in general, and virtually impossible with
opaque control techniques such as artificial neural
networks. We argue therefore that ethical reasoning
should be represented in a declarative fashion as
typified, for example, by the logic programming
paradigm – for this we turn to ideas from the field
of rational agents.

At its most general, an agent is an abstract
concept that represents an autonomous computa-
tional entity that makes its own decisions [26]. A
general agent is thus simply the encapsulation of
some distributed computational component within
a larger system. However, in settings such as ours,
it is increasingly important for the agent to have
explicit reasons (that it could explain, if necessary)
for making one choice over another.

Beliefs, Desires, and Intentions (BDI) agent pro-
gramming languages provide this capability. They
are based on the concept of rational agency [27]–
[30] and draw heavily from the logic programming
paradigm. Crucially BDI agents make decisions
based on intuitive concepts of how an agent’s
beliefs and desires lead to particular choices. These
intuitive concepts were first elaborated by Brat-
man [27] and gave rise to a selection of BDI logics
which were subsequently operationalised as BDI
programming languages. In the BDI programming
paradigm, beliefs represent the agent’s (possibly
incorrect) information about its environment, de-
sires represent the agent’s long-term goals, while
intentions represent the goals that the agent is
actively pursuing.

There are many different agent programming
languages and agent platforms based, at least in
part, on the BDI approach (e.g., AgentSpeak [31],
Jason [32], 3APL [33], Jadex [34], Brahms [35],
GOAL [36], and GWENDOLEN [37]). Agents pro-
grammed in these languages commonly contain a
set of beliefs, a set of goals (representing desires
and usually forming part of intentions), and a set
of rules. Rules determine how an agent acts based
on its beliefs and goals.

In general a rule is selected based on the beliefs
and goals of the agent, and transforms the goal

(desire) into an intention which is some executable
structure that is supposed to achieve the goal. As
a result of executing a rule/intention, the agent
may perform actions and its beliefs and goals may
change, often as a result of the actions. Crucially
the reasoning that is performed over beliefs and
goals is based on logic programming, and is of-
ten explicitly expressed in Prolog. This makes it
possible to understand the choice of rules (and
by extension actions), as deduction in first-order
predicate logic, and to explain such choices in these
terms.

At the core of most BDI programming lan-
guages lies a reasoning cycle. The details vary
from language to language but key aspects are:
polling an external environment for new percep-
tions represented as beliefs; reasoning over beliefs
and goals to select appropriate rules; executing
rules to perform actions or manipulate beliefs and
goals. In general the execution of actions causes
some effect in the external environment. This ex-
ternal environment may be a software artefact,
or software that mediates between the agent and
the real world. The explicit assumption of inter-
action with an external environment makes BDI
programs particularly suitable for embedding as
reasoning components in larger systems. Thus, as
we desire the reasoning executed by our ethical
layer to be human comprehensible, we implement
the reasoning part of the ethical layer using BDI
programming. To facilitate the integration of a BDI
component within the ethical layer as a whole, we
have developed a Python BDI implementation.

E. Verification of Agent-based Autonomous Sys-
tems (for Verifiable Ethics)

In addition to human scrutability, we also desire
that the ethical reasoning be verifiable, i.e., can be
proven to abide by a given code of ethics. A prop-
erty to which a BDI implementation lends itself
well. The approach used for formal verification is
dependent on the control architecture. Hybrid con-
trol architectures such as ours, comprising discrete
and continuous parts are becoming increasingly
popular in the construction of autonomous systems.
A typical hybrid system architecture is shown in
Figure 1. The discrete part is often represented by
a rational agent taking the high-level decisions,
providing explanations of its choices, and invoking
lower-level continuous procedures [38].

Formal verification is essentially the process of
assessing whether a specification given in formal
logic is satisfied on a particular formal description
of the system in question. For a specific logical
property, ϕ, there are many different approaches to
this [39]–[41], ranging from deductive verification
against a logical description of the system ψS (i.e.,
` ψS ⇒ ϕ) to the algorithmic verification of the



5

Figure 1: A Typical Hybrid Agent Architecture.

property against a model of the system, M (i.e.,
M |= ϕ). The latter has been extremely successful
in Computer Science and Artificial Intelligence, pri-
marily through the model checking approach [42].
This takes a model of the system in question,
defining all the model’s possible executions, and
then checks a logical property against this model
(and, hence, against all possible executions).

In a hybrid autonomous system the continu-
ous control and the higher-order decision-making
components can (ideally) be cleanly separated.
The lower-level procedures generally also appear
in non-autonomous systems, and well understood
techniques for their validation exist. One approach,
therefore, is to focus formal verification efforts on
the decisions the rational agent makes, given the
beliefs and goals it has [7], [43]. In any system that
interacts with a highly unpredictable real world, we
cannot show that an agent always does the right
thing, but we can show its actions are taken for
the right reasons.

This approach has been adopted as as method-
ology by a range of work considering applications
in autonomous aircraft, spacecraft and road vehi-
cles [11], [43]–[45], in which a rational agent is
verified using model-checking to assess all its po-
tential decisions. This methodology clearly adapts
well if we can implement the Ethical Decision
Module component of our supervisory ethical layer
as a BDI agent, allowing us to verify that such a
system always chooses options that align with a
given code of ethics based on the information that
it has.

III. A SIMULATION BASED ETHICAL
REASONING LAYER FOR ROBOT CONTROL

ARCHITECTURES

Though robot controller architectures are many
and varied (see [46] for a review), most can be con-
sidered to fit a three-layered model paradigm [46],
given the hierarchical organisation of behaviours
being controlled [47]. The layers in such a hierar-
chy are characterised by the degree of abstraction
and temporal granularity at which they operate.
The highest level control layer generates overall
goals to be achieved (e.g., retrieve the beer from
the fridge). At the next control layer the goals are

broken down into a series of tasks that make up the
goal (e.g., move to fridge, open door). At the lowest
level tasks are broken down into motor actions that
the robot must execute (e.g., move forward, raise
arm)4.

Although this generalization of robot controllers
ignores defining features of individual architec-
tures, it serves as a useful framing mechanism for
the addition of ethical decisions via a specialised
fourth layer. Arkin proposed that the purpose of
an ethical layer is to moderate the outputs of the
other layers by evaluating them against a set of
ethical criteria [8], [48]. Ensuring ethical behaviour
through a separate layer has a number of advan-
tages. One key advantage is that the functionality
can be verified independently of the rest of the
robot controller [45].

However, an ethical layer that acts only as a
moderator can only evaluate behaviours that are
proposed as part of the normal controller’s opera-
tion. As discussed previously, acting ethically might
also involve being proactive, i.e. choosing a new
action specifically to adhere to ethical principles.
An example of such proactive behaviour is acting
to prevent a human from coming to harm even if
it might put the robot in danger (as per Asimov’s
laws).

A previous approach to addressing this issue was
to have the controller suggest all possible tasks as
behavioural alternatives, and not just those relating
to system goals [10]. However, the possibility of
modifying a controller to suggest alternatives in
the whole behaviour space relies on there being
a practicable number of behavioural alternatives.
In [10] this approach was possible due to a highly
constrained experimental setting where the environ-
ment could be discretised into a grid, and each grid
square was considered as a possible behavioural
choice. It seems reasonable to assume that in
most settings this will not be possible (due to
challenges in defining suitable discretisation, and
computational cost of evaluating a large number of
behaviours). Moreover, modifying the core robot

4Where a rational agent is used, as described in section II-E,
then it generally combines the processes of goal selection and
breaking the goal down into tasks.



6

controller in this way eschews the benefit of a
separate layer as an independently testable system.

By having the ethical layer generate behaviours
it can do so in a more constrained manner, given
the ethical principles being utilised. Further, it only
needs to do so when the behaviours suggested by
the other control layers do not satisfy those ethical
principles.

To this end we describe here an ethical layer that
not only evaluates options suggested by the other
control layers, but also generates and evaluates
behavioural alternatives. These behavioural alterna-
tives are generated as a consequence of ethical is-
sues it anticipates will occur if only the behaviours
suggested by the other layers are considered.

Where the ethical layer sits in the layer structure
(and hence what we mean by behavioural alterna-
tives) is dependent on the level of abstraction used
at each layer, and hence whether the outputs from a
given layer can be considered for their adherence to
the adopted code of ethics. Here we suggest that it
sits between the task and action layers as this is the
level of abstraction that best fits our adopted code
of ethics. Thus, tasks proposed by the task layer
need to be tested before they are used to generate
action sequences. The ethical layer takes as input
the tasks the task layer suggests, and outputs the
most ethically appropriate task to the action layer.

The ethical layer detailed here consists of four
modules: a Simulation Module to predict the out-
come of tasks; a Planner Module to generate al-
ternative tasks if those proposed by the task layer
have ethical issues; an Ethical Decision Module to
compare the simulated actions and select the most
ethically appropriate using declarative BDI reason-
ing, and an EBB data logging Module to record the
situations encountered and decisions made. Data
flow and module integration is shown in Figure 2,
and detailed in its caption. This is an extended
version of the architecture proposed in [49], but
with a more sophisticated, and transparently ethical
decision process.

In order to prove the principles of operation for
the control architecture and verification process,
and to provide a clearer system description, we
consider here a simple demonstration use case. In
this case a second robot is used as a proxy human
(H-robot), operating with the ethical robot (E-robot)
in a sparsely featured environment containing a few
objects which can be defined as safe or dangerous
(dependent on experimental settings, see Figure 4).
This demonstration use case will be elaborated
upon in the module descriptions, and in Section V.
In this context if the proxy human is predicted to
move towards a dangerous location, the Planner
Module will suggest points at which the robot can
intercept the human path as potential tasks to be
evaluated.

In the demonstration use case we have treated
Asimov’s laws of robotics [9] as a test code of
ethics, despite their obvious shortcomings, noted
above and in [2], [50]. There is currently no
agreement on the code of ethics a robot should
adhere to, even in simple scenarios [2]. However,
we require ethical rules against which a robot’s
behaviour can be evaluated, and hence demonstrate
our architecture. In the context of the current paper,
therefore, we choose to make use of Asimov’s
laws to demonstrate the efficacy of our approach to
proactive, transparent and verifiably ethical robots
without assigning any particular status to these
laws.

Asimov’s Laws of robotics [9] are the earliest
and best known set of ethical rules proposed for
governing robot behaviour. Despite originating in
a work of fiction, Asimov’s Laws explicitly gov-
ern the behaviour of robots and their interaction
with humans. This contrasts with more traditional
consequentialist ethical frameworks which would
need adapting to this purpose. The laws are simply
described as follows.

1 A robot may not injure a human being or,
through inaction, allow a human being to come
to harm.

2 A robot must obey the orders given it by hu-
man beings, except where such orders would
conflict with the First Law.

3 A robot must protect its existence as long as
such protection does not conflict with the First
or Second Laws.

We have supplemented Asimov’s laws with addi-
tional rules that relate to the likely success of an
intercept plan. These are given a lower priority than
the 3rd law, so will only influence behaviour if no
other law is violated.
4a If the human is far from danger prioritize

waiting time at the intercept point.
4b If the human is close to danger prioritize

shorter robot walking distance.
The rationale behind 4a is that the longer the wait
time for the robot after arriving at the intercept
location before the human arrives, the more ro-
bust the system is to errors in predicted paths
and travel times. The rationale behind 4b is that
walking incurs some risk of falling over. This risk
increases the further the robot walks, so a shorter
walking distance increases the chance of achieving
the robot’s goal.

A. Simulation Module

The Simulation Module predicts the outcomes of
behavioural alternatives. In order to do so it needs
to be equipped with:

1) a model of the robot controller;
2) a domain specific model of the human;



7

Ethical Layer 

Robot Controller 

Goals	

Tasks	

Ac+ons	

Ethical	Decision	
Module	

Simula+on	
Module	

Planner	
Module	

✗
✗
✓

Most	ethical	
alterna+ve	

Performance	

metrics	

Pro-ac+ve	plans	 Ethical	
Black	Box	

Behavioural	
alterna+ves	

Pro-ac+ve	
Plans	needed	

Figure 2: The architecture of our proposed Ethical Layer alongside the Robot Controller. The task layer in
the Robot Controller generates a set of tasks that might fulfil the current goal proposed by the goal layer.
Before generating the actions needed for task execution, the set of proposed tasks is sent to the Ethical
Layer, along with sensor data for the current situation and the goal to be achieved. The Simulation Module
simulates each of the tasks (behavioural alternatives), producing a set of evaluation metrics for each, that
are sent to the Ethical Decision Module. The Ethical Decision Module checks its ethical criteria to see if
ethically proactive tasks are required, and triggers the Planner Module if so. When triggered the Planner
Module generates a set of pro-active tasks to send to the Simulation Module, and as with the controller
generated tasks they are simulated. If the Planner Module was triggered the Ethical Decision Module
adds the pro-active task simulation results to its current set. The Ethical Decision Module evaluates the
set of simulated task alternatives to determine the most ethically appropriate, and sends this selection to
the action layer for execution. A solid arrow is a flow of data, a dashed arrow is a control signal. The
Ethical Black Box (EBB) Module logs data from each of the other modules (for clarity these data flows
are not shown).

3) a model of the world; and
4) a set of metrics against which the simulated

plans are measured.

As stated in [49] the models need only be of
sufficient fidelity to handle the domain in which
the robot is to operate. In the demonstration case
presented here, a low fidelity simulation, modelling
the motions of agents as ballistic trajectories, is
adequate to prove the principles of operation.

In order to simulate its own behaviour the eth-
ical robot uses three basic assumptions: (1) the
robot uses a path planning algorithm that navigates
the shortest path to its goal; (2) the robot has
collision avoidance, so it plans a path to avoid
known obstacles, and stops when 0.5m or closer to
the human or a dangerous obstacle, and (3) valid
goal locations are objects in the environment. It is
also important to note that behavioural alternatives
consist of target locations in the arena to be moved

to.
In order to simulate the behaviour of the human

the robot’s model also incorporates four basic as-
sumptions: (1) The human walks in a straight line
to its goal. (2) The human goal is always an object
in the environment. From these two assumptions
the human goal can be inferred by projecting a line
in its direction of travel, and the closest object to
that line is assumed to be the goal. (3) The human
is unaware of which objects are dangerous. And
(4) the human has collision avoidance, so it plans
a path to avoid known obstacles, and stops when
0.5m or closer to the robot.

The world model in this demonstration case
consists only of static objects, designated as safe
or dangerous (see Figure 4).

Using the goal estimated for the human robot,
and the ethical robot’s goal as suggested for a
particular behavioural alternative, paths are simu-



8

lated for both agents. We also simulate the obstacle
avoidance process running on both agents. Hence,
if the paths of the two agents would come within
0.5m of one another they will stop.

The simulated paths are scored on a set of per-
formance metrics which will be used in the Ethical
Decision Module to evaluate the plans. The set of
metrics chosen reflects the characteristics of a given
simulation – some metrics will reflect goal utility
and others ethical implications. These metrics are
not combined into an overall utility function but
passed to the ethical decision module where they
are reasoned about declaratively (see section III-C).
The precise set of metrics chosen is both domain
and ethical criteria specific, but the set used here
demonstrates the basis upon which they should be
selected:

• H-robot distance to danger – danger to the
human can be considered to increase the closer
it gets to a dangerous object;

• E-robot distance to danger – danger to the
robot can be considered to increase the closer
it gets to a dangerous object;

• E-robot distance to objective – here the robot
objective is to get to a designated object in the
environment, the closer it gets to this object
the better its goal can be considered achieved;

• E-robot wait time at intercept point – how
long before the human the robot arrives at the
intercept point (used for law 4a);

• E-robot walking distance – how far the robot
walks (used for law 4b).

While the set described here is relatively simple,
more complex metrics could be calculated if the
context demands it. One caveat being that any
metric added must produce a numerical output
(however it is calculated), such that plans can be
compared using the declarative logic structures of
the Ethical Decision Module, resulting in a defini-
tively best plan.

B. Planner Module

The Planner Module generates additional proac-
tive behavioural alternatives, and does so in such
a way that they are likely to satisfy the ethical
criteria. It is triggered if, after simulation and eval-
uation (by the other modules) of the behavioural
alternatives suggested by the robot controller, the
outcomes are deemed not to satisfy the ethical
criteria by the ethical decision module.

In the current implementation the plans are gen-
erated using a heuristic based on assumptions of the
ethical issues that will be encountered, and features
specific to the use case. That is, plans that are
likely to keep the human and robot from danger and
give a range of values for the other metrics being
evaluated. We have chosen this approach to allow
us to demonstrate the utility of the architecture

as a whole. Clearly it does not generalize well,
requiring the existence of an appropriate heuristic.
In Section VII we suggest future work in which the
Planner Module could utilise probabilistic methods
to intelligently sample the behaviour space.

In the demonstration case presented here, if the
H-robot is predicted to be heading toward danger
(as evaluated by the Ethical Decision module),
proactive tasks are generated and tested. Three task
alternatives are generated as points on the projected
path of the H-robot. They are selected as the earliest
point along the path the E-robot is able to reach
in time to intercept, and then two equally spaced
points further along the path. This simple heuristic
is used as it is likely to produce behaviours in which
the E-robot intercepts the H-robot, preventing it
from reaching danger. We choose a limited number
of alternatives to improve the responsiveness of the
E-robot and prevent the Ethical Decision module
from introducing delays. Further, considering a
small number of alternatives matches with models
of human cognition for similar processes [51], from
which our architecture draws inspiration [49].

C. Ethical Decision Module

In order to select a behavioural alternative, the
Ethical Decision Module utilises the simulation
metrics (reported by the simulation module) to
assess each task against a set of ethical rules. In our
previous work describing a related architecture [49]
simulation metrics were collated using a mathemat-
ical function to give a single numerical value for
each alternative to allow comparison. Although this
has advantages in terms of computational efficiency
and performance tuning (through parameters in the
function), it presents difficulties in terms of both
human understanding and formal verification of the
decision process. This is particularly problematic if
model-checking is the chosen verification method,
since this requires a finite search space and arbitrary
numerical values tend to introduce infinite (or at
least very large) search spaces. To overcome these
two issues, our ethical decision module makes use
of declarative logic based reasoning as typified by
BDI agents.

An obstacle here is that current BDI program-
ming languages are not widely known and represent
a style of programming unfamiliar to those in
robotics. Furthermore the need to use one pro-
gramming language for decision making and a
different one for the underlying control and then
integrate these programs together on a robotic plat-
form increases, rather than decreases the potential
for errors. We have opted therefore to integrate
BDI style reasoning into Python as a library,
BDIPython. (Python is widely used for robotics
coding.) BDIPython has been designed as a generic
module that could be used in many settings and



9

can be considered as simply the tool by which
we enabled verifiable BDI reasoning in our ethical
decision module. However, since it has not been
described elsewhere, we will digress briefly into
an outline of its key features.

In BDIPython a BDI agent is a Python object
and its reasoning cycle can be started and stopped
as the program so desires. This agent object then
interacts with the rest of the Python program which
can be viewed as its environment.

BDIPython maps BDI concepts to Python con-
structs:

• Beliefs. We implemented a data structure for
an agent’s beliefs, referred to as the belief
base in BDI programming, using a Python
dictionary. The belief base represents a set of
ground first order predicates for the purposes
of logical reasoning5 and will be treated as
such in what follows. We briefly outline some
implementation details in the supplementary
materials Section II.

• Goals are also stored in a Python dictionary.
We did not use goals in this case study6 and
so will not discuss them in any further detail.

• Rules consist of of two Python functions one
of which represents a logical guard which
determines whether the rule is applicable
by inspection of the agent’s belief and goal
bases. This guard function may return values,
representing the instantiation of variables in
queries, that can be passed as parameters to
the second function, the rule body. The rule
body is executed if the rule is applicable.
When more than one rule is applicable the sys-
tem simply selects the first in the list of rules
– as is standard in many logic programming
languages.

Rule guards and bodies may contain arbitrary
Python code, but BDIPython supplies several sup-
port functions to assist their construction, in par-
ticular functions for inspecting the belief and goal
dictionaries and composing the results using propo-
sitional logic connectives such as AND and OR. It
also provides functions for adding and removing
beliefs and goals from within rule bodies.

The reasoning cycle for a BDIPython agent first
updates its belief dictionary (in an application
specific fashion) typically as a response to sensor
inputs, then it manages its goals (checking and
removing any that have been achieved), lastly it
selects a rule and executes it. This reasoning cycle
is shown in Figure 3.

BDIPython is best suited for rules whose guards
can be expressed as propositional logic formulae

5Note that the belief base represents actual beliefs, hence it
is ground. Queries over the belief base may contain variables
which are instantiated by logical reasoning.

6since our ethical decision module is not motivated by the
desire to achieve some particular outcome.

Figure 3: The Python BDI Reasoning Cycle

over the agent’s beliefs and goals and thus as func-
tions which simply return true or false. However
limited support is provided for richer reasoning
in guards. In particular it is possible to construct
a rule which selects the best option from among
several beliefs, based upon a comparison function
defined by the programmer, and passes this option
as a parameter to the rule body. If the comparison
function does not define an antisymmetric transitive
relation (for instance, the relation it defines repre-
sents a cyclic graph) so no ‘best’ option can be
identified, then the rule is considered inapplicable
(i.e., its guard is considered to be false) and so
not selected for execution. This requirement for
antisymmetry and transitivity will turn out to be a
key consideration when we discuss the verification.

We use BDIPython to implement two behaviours
within the Ethical Decision Module. Firstly the
agent controls the triggering of the Planner Module.
In the get percepts part of the reasoning cycle
the human distance to danger is checked for a set
of robot controller task alternative simulations. If
it is below a threshold for all of them, a belief
that pro-active tasks are needed is added to the
belief base. This belief in turn is used as a guard
for a rule that when executed signals the Planner
Module. This mechanism is used as the Planner
Module is a separate process, not part of the BDI
agent; importantly it allows logging of said process
through the belief base and rule activation.

Secondly we use the ability to select a best option
to allow our ethical layer to select the most ethical
of the tasks available to it and then transform the
rule body into an intention to add the belief that
this should be the current task. The Action layer
then executes the current task.

At the start of the process for selecting the most
ethical task in accordance with Asimov’s laws, the
agent’s belief base contains a number of beliefs
about the existence of candidate tasks suggested
either by the underlying robot control system or
by the Planner Module. The tasks are labelled,
t1, . . . , tn (one label for each task), and the belief
task(ti) is in the agent’s belief base for each of
these labels.

We implement two comparison functions for
comparing two tasks ti and tj . The underlying



10

BDIPython implementation for selecting a best op-
tion ensures that all matching beliefs are compared
to find the best (by iterating twice over the belief
base), so we can use it to compare all tasks, ti, tj ,
such that task(ti) and task(tj) appear in the belief
base.

These comparison functions used to implement
Asimov’s Laws, are designed to respect the order
of precedence of said Laws. This is accomplished
using a series of if-then-else statements which
explicitly state this order. Two rules, one for each
different comparison function, are used, the first
for when the agent believes the human is close to
danger and the second for when the agent believes
the human is not close to danger (to represent the
distinction between rules 4a and 4b discussed in
Section III). This core set of rules and compari-
son functions form the primary component of the
Ethical Decision Module. As the Ethical Decision
Module implements the ethical rules, it is this
component which needs to be verified.

We show mathematically the algorithm used by
the Ethical Decision Module in Box 1 and discuss
it here. In Box 1 we use the following notation:

• G← RB is our syntax for a BDIPython rule
where G is the guard (evaluated against the
belief and goal bases) and RB is the rule
body which is executed if the guard is true.
We use quantification with this notation – e.g.
∃x.(G(x) ← RB(x)) – to indicate when a
parameter, x, is returned by the guard and
passed to the rule body.7

• B(p) means that p is a predicate in the belief
base of the agent.

• add_belief(p) adds the predicate p to the belief
base of the agent.

The two rules are shown in equations 1 and 2.
These both use BDIPython’s support for picking a
best option. In equation 1 the best task is chosen
according to the comparison relation Cwd (where
t1 Cwd t2 means t1 is preferable to t2 as t1 has a
lower walking distance) in the situation where the
agent believes danger_close. In equation 2 the best
task is chosen according to the comparison function
Cwt (the preferable task will have longer wait time
between task completion and human interception)
in the situation where the agent does not believe
danger_close. Both rule bodies add a belief that
the selected task is the ‘current task’ (this belief is
then consulted by the Action Layer when deciding
which task to execute).

The two comparison functions are very simi-
lar and are defined as relations in definitions 1
and 2 (and implemented as nested if-then-else

7Note that a use of an arrow symbol here is inherited
from logic programming notation (and is commonly used in
this context in BDI languages) but does not imply a logical
relationship between guard and rule body.

statements). These relations represent our modified
version of Asimov’s Laws and use three other
specially designed relations ≺hd, ≺ro, ≺rd which
compare the two tasks with respect to how close
the human is to danger (≺hd), how close the robot
is to its objective (≺ro) and how close the robot
is to danger (≺rd). These are used in order of
precedence – i.e., the two tasks are only compared
with respect to ≺ro if they are indistinguishable in
terms of how close the human is to danger. Lastly
– if there is no difference between the two tasks
in terms of these three orders then Cwd compares
them using the valuations of the walking distance
associated with each task vwd(t1) < vwd(t2), and
Cwt compares them according to the waiting time
associated with each task.

Our three relations pertaining to each individual
Law are implemented in the same way using ≺m

(the relation between two tasks according to metric
m) where m is one of hd, ro or rd and t1 ≺m t2
means t1 is preferable to t2 according to metric
m In order to prevent small changes in sensor
information having too great an effect on robot
behaviour we use a threshold, thm, for each metric
so that if two tasks are both ‘good enough’ –
e.g., in the outcome of neither task the human
ends up particularly close to the danger – then
they are considered comparable, ≈m. Therefore in
the case of a metric to be minimised (e.g., the
closeness of the robot to its goal), t1 is better than
t2 if the value calculated for t1 on that metric,
vm(t1), is below the threshold for the metric, and
vm(t2) is above the threshold; t1 is also better
than t2 if both vm(t1) and vm(t2) exceed the
threshold and vm(t1) < vm(t2). This is formalised
in definitions 3 and 4.

We assume, in what follows, that tasks t1
and t2 have been generated in such a way that
vm(t1) 6= vm(t2) for any metric. This means that
≺m is antisymmetric.

The ethical behaviour of the robot is hence
embedded not only in the BDI agent rules, but also
in the set of thresholds used to govern if, and when,
a law might be violated. For example, a high thresh-
old for robot danger distance could make the robot
more prone to self preservation, only considering
tasks incomparable on this metric if both placed
the robot a long way from the dangerous area. It is
important to note that how these values are labelled
and used makes their impact transparent to human
observation and interpretation.

Clearly this approach to ethical decision making
assumes that the chosen code of ethics used can
be expressed in a similar way, i.e., with scorable
metrics that can be used to compare the desirability
of behavioural alternatives in a declarative fashion.



11

(∃x. B(danger_close) ∧ B(task(x)) ∧ ∀y 6= x. xCwd y)← add_belief(current_task(x)) (1)

(∃x. ¬B(danger_close) ∧ B(task(x)) ∧ ∀y 6= x. xCwt y)← add_belief(current_task(x)) (2)

Note: In what follows we use the notation vm(t) to indicate the valuation of task, t, according to metric
m. So vhd(t) indicates the distance task t leaves the human from danger and vwd(t) indicates the walking
distance associated with task t.

Definition 1 (Cwd): Task, t1, is preferable to task t2 if t2 places the human closer to danger (t1 ≺hd t2),
else it is preferable if t1 places the robot closer to its objective (t1 ≺ro t2), else t2 places the robot closer
to danger (t1 ≺rd t2) else t1 has a shorter walking distance t1 <wd t2. Formally t1 Cwd t2 iff

1) t1 ≺hd t2 or,
2) t1 ≈hd t2 and t1 ≺ro t2 or,
3) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≺rd t2 or,
4) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≈rd t2 and vwd(t1) < vwd(t2).

Definition 2 (Cwt): Task, t1, is preferable to task t2 if t2 places the human closer to danger (t1 ≺hd t2),
else it is preferable if t1 places the robot closer to its objective (t1 ≺ro t2), else t2 places the robot closer
to danger (t1 ≺rd t2) else t1 has a shorter waiting distance t1 <wt t2. Formally t1 Cwt t2 iff

1) t1 ≺hd t2 or,
2) t1 ≈hd t2 and t1 ≺ro t2 or,
3) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≺rd t2 or,
4) t1 ≈hd t2 and t1 ≈ro t2 and t1 ≈rd t2 and vwt(t1) > vwt(t2).

Definition 3 (≺m): Given a metric, m and a threshold thm then ≺m defines a relation on tasks such
that t1 ≺m t2 iff vm(t1) < thm ∧ thm < vm(t2) or v(t1) < vm(t2) < thm (where the metric is to be
maximised – ≺hd and ≺rd) and t1 ≺m t2 iff thm < vm(t1) ∧ vm(t2) < thm or thm < vm(t2) < vm(t1)
(where the metric is to be minimised – ≺ro).

We use the notation t1 ≈m t2 if t1 and t2 are considered incomparable on ≺m (i.e., both are below the
threshold, thm, introduced in definition 3).
Definition 4 (≈m): t1 ≈m t2 iff t1 6≺m t2 and t2 6≺m t1.

Box 1: Mathematical description of the BDI Code for the Ethical Decision Module

D. Ethical Black-box Module

In line with the suggestion by Winfield and
Jirotka [25] we have a module that logs the outputs
of the other modules. Specifically, it logs:

• location data;
• behavioural alternative parameters;
• metrics for each alternative as scored by the

evaluation module; and
• the reasoning process used in the ethical deci-

sion module: the belief base at each iteration,
rule invocations, task selection decisions and
reasoning, the plan output to the robot con-
troller

Each item of data is logged with a time stamp to
allow recreation and analysis of a given moment.
Further details of the data logged, particularly of
the reasoning process, are given in Section V as
they relate to the BDI implementation explained in
Section III-C.

IV. VERIFICATION OF THE ETHICAL DECISION
MODULE

We adopt the verification methodology from [11]
which describes the formal verification of rational
agent components in autonomous systems. This
uses model checking to demonstrate that the ra-
tional agent always tries to act in line with require-
ments and never deliberately chooses options that
lead to bad states (e.g. ones the agent believes are
unsafe). The agent’s program is assessed to deter-
mine logical predicates that represent information
coming in from the outside world. All possible
combinations of these inputs are then explored via
the model checker, allowing the verification to be
agnostic about how the real world might actually
behave; it simply verifies how the agent behaves no
matter what information it receives.

In this context, model checking can be viewed as
a kind of exhaustive testing. The BDIPython agent
executes its reasoning cycle – at given moments
in this cycle the agent receives some information
from the external program (that certain tasks are
available, for instance, and the human is close to



12

danger and that the walking distance is less for one
task than for another) and then continues execution.
When execution completes, or the agent reaches a
state that has already been examined, the model-
checker backtracks to the last perception of interest
and supplies a different set of information to the
agent until the result of all possible sets have been
explored. During this process, the model checker
checks that certain properties hold (e.g., that the
agent never selects a task that places the human in
danger).

In order to apply model-checking to our Eth-
ical Decision Module we need to translate our
BDIPython program, plus the semantics of the
BDIPython reasoning cycle into the input language
of a model checker.

The approach from [11] is implemented in the
MCAPL framework [52] which provides access
to model checking facilities to programs written
in a wide range of BDI-style agent programming
languages so long as those languages have a Java-
based program interpreter. The MCAPL frame-
work has two main sub-components: the AIL-
toolkit [53] for implementing interpreters for ra-
tional agent programming languages and the Agent
JPF (AJPF) model checker which is an extension
of the Java Pathfinder (JPF) model-checker for Java
programs [54].

AJPF is a customisation of JPF that is opti-
mised for AIL-based language interpreters. Agents
implemented using the AIL-toolkit can thus be
model checked in AJPF. It provides a property
specification language to support reasoning about
temporal properties of BDI programs and also
provides support for implementing models of the
agent’s external environment in Java so that these
models return combinations of the possible inputs
to the agent. The AIL provides data structures
for beliefs, intentions, goals, etc., which are sub-
sequently accessed by the model checker and on
which the modalities of the property specification
language are defined.

Thus, we must first implement an interpreter for
the BDIPython reasoning cycle in the AIL. Second,
a parser must be implemented from BDIPython
programs into suitable Java data structures in or-
der for the program to execute in this interpreter.
Third, we must create an appropriate environment
to model the rest of the Python program, and finally
our properties of interest must be expressed in
the AJPF property specification language. Some of
this work was independent of the specific applica-
tion described here and can be re-used in future
applications – for instance once the parser was
implemented it could be used for any BDIPython
program not just ones expressing ethical deci-
sion making. Nevertheless, as when we introduced
BDIPython, we briefly outline this work here since

it is not described elsewhere.

A. Verification of Python-based Ethical Decision
Module

We use the AIL-toolkit not to create an inter-
preter for a full programming language but to build
a model of a BDIPython agent. Because BDIPython
has an explicit reasoning cycle we can model this
easily within AIL and then AJPF can be used to
simultaneously build and verify a model of the
BDIPython agent. Much of the supporting and
surrounding Python code is then treated as part of
the agent’s environment in a black-box fashion.

The use of the MCAPL framework is not funda-
mental to our approach. We have adopted it because
of its dual convenience as a framework for building
verified models of BDI agents and for its support
for the formal verification of autonomous systems
controlled by rational agents. For full assurance of
Ethical Decision Modules of this kind, we would
recommend the development of a program model-
checker for Python (that is a model-checker that
operates directly on Python code rather than on a
model of some sub-system), or possibly a customi-
sation of AJPF to Jython [55] (the JVM Python
interpreter).

In order to use the MCAPL framework to verify
our Ethical Decision Module we need to use the
AIL to build a Java data structure that represents
the BDIPython agent and then execute this in our
implementation of the BDIPython reasoning cycle
in order to create a model of the engine’s reason-
ing. This is a different challenge to the normal
implementation of a BDI-language in the AIL.
Python lacks the formal operational semantics that
underpin most BDI languages (though semantics
have been reverse engineered for large parts of
the language [56], [57]) which in turns means
BDIPython lacks a formal semantics. Hence, the
system, as a whole, lacks the clear separation be-
tween BDI concepts and the ‘environment’ (which
is how we will need to treat the rest of the Python
program) that is present in many BDI languages.

From the BDIPython code for an agent, we auto-
matically construct a representation of the Python
‘agent’ object using data structures from the AIL-
toolkit and then impose an operational semantics
upon the Ethical Decision Module based on the rea-
soning cycle shown in Figure 3. The AIL provides
a data structure for agents which contain a belief
base, a goal base and a rule base. The belief and
goal bases are sets of ground first order predicates.
We translate the Python dictionaries representing
the Python agent’s belief and goal bases into a set
of such predicates according to semantics outlined
in supplementary material Section II.

AIL rule structures consist of a guard (evaluated
against the agent’s belief and goal base, and poten-



13

tially other structures if relevant) and a sequence of
deeds which represent atomic actions (again repre-
sented as first order predicates) in the environment
or the addition or removal of beliefs and goals. We
impose restrictions on the Python code that may
appear in the functions defining guard and rule
bodies in order to more easily construct these rule
descriptions in Java.

We assume that a rule body contains only
a sequence of atomic Python expressions (i.e.,
no control structures such as ‘if’ statements or
‘for’ loops). Each of these atomic expressions is
treated as an action in the environment unless
it is add_belief or drop_belief from BDIPython,
in which case it is treated as belief addition or
removal. Where this function definition contains
extra parameters these are converted to variables
wherever they occur in the body of the rule. So,
for instance, if param1, is a parameter of the rule
definition and do_something_with(param1) appears
in the rule body then this will be converted into the
predicate do_something_with(X) where X will
be bound to the input variable at run time.

We require rule guards to be expressions built up
from the library functions B (the agent believes),
G (the agent has a goal) and the support provided
for propositional logic: AND, OR, and NOT plus
comparison functions (as used when the rule is
to select the best option). With the exception of
comparison functions these can be converted to an
AIL guard expression with the obvious semantics.

We restrict comparison functions, x C y, to a
sequence of nested if statements, each if with
condition conditioni (for 1 ≤ i ≤ n) such that the
function returns true (i.e., x C y) if the condition
is satisfied. Thus xC y if conditioni(x, y) returns
true for some i and x�Cy otherwise). Each condi-
tion is a conjunction of (possibly negated) Python
expressions (treated as functions on x and y that
return true or false).

We add an additional phase into the reason-
ing cycle of agents in our AIL-model in which
Python calculations can take place and expect the
verification environment to return the results of
these calculations which the agent then stores in a
special calculation base. This calculation base can
be consulted when evaluating the guards on rules
in the same way that the belief base is consulted8.
The Python expressions that make up the conditions
in our comparison functions are treated as such
Python calculations and stored in the calculation
base.

From the rule expression and the conditions and
Python expressions that make up the comparison
function, it is straightforward, if fiddly, to construct

8The AIL toolkit contains considerable support for this kind
of customised base construction.

a logical expression representing the rule guard.
Consider a rule of the form shown in equation 3.

∃x. (B(something(x))∧
∀y 6= x.B(something(y)→ xC y)←

rb(x) (3)

The guard of this rule is essentially the expression
on the left hand side of the ← though it is trans-
formed slightly for use in logic programming style
reasoning 9. xCy is expanded out to the expression
condition1(x, y) ∨ . . . ∨ conditionn(x, y). Each
expression conditioni(x, y) is expanded out in
turn to a conjunction of (possibly negated) Python
expressions. So, for instance if conditioni(x, y)
were x 6≺hd y ∧ y 6≺hd x ∧ x ≺ro y then each
of x ≺hd y, y ≺hd, and x ≺ro y is treated as a
Python expression and the calculation base will be
consulted for their value. If some x is found that
satisfies the expression then it will be passed to the
rule body as a parameter10.

Therefore our functions from Box 1 for compar-
ing two tasks according to specific metrics ≺hd,
≺ro and ≺rd as well as simple comparisons of
walking distance and time using < and > become
Python calculations under this process.

Once the translation of the Python code into an
AIL agent data structure has been carried out it can
be executed using a reasoning cycle created for it,
using support for this provided by the AIL.

The agent data structure and executable reason-
ing cycle can be combined with an application spe-
cific implementation of an environment (i.e., one
that can return all possible combinations of beliefs
and calculations as required by the methodology we
are using). This enables AJPF to construct a model
of all possible executions of the agent.

Once we have such a model we can formally
verify properties expressed in the AJPF prop-
erty specification language. In general, constructing
such properties is straightforward (the language
has constructs that refer to the agent’s beliefs and
goals etc.). Python calculations, however, represent
a non-standard part of our model and so we treat
these as percepts in the property specification lan-
guage. Percepts are facts that are perceptible to
some observer of the environment but not necessary
believed by the agent.

Note: Beliefs vs. Python Calculations: The de-
cision about what information should be stored as
beliefs and what should be calculated on the fly
by Python is in the hands of the programmer using
BDIPython. Input from sensors should be stored as
beliefs, but other information can often plausibly be

9The details are unimportant here but the mechanism is
entirely standard.

10via a process of unification in the AIL implementation
which uses many concepts from logic programming.



14

treated either way. In the current system, the dis-
tinction makes little difference to the verification.

V. EXPERIMENTAL VALIDATION AND FORMAL
VERIFICATION

We have conducted a series of experiments in
order to validate that our approach results in robot
behaviour that adheres to the ethical rules described
in Section III, and allows the system’s reasoning to
be transparently ethical, verifiable and proactive.

To first establish the system obeys Asimov’s
Laws we reconstructed the experiments previously
carried out in [49], with our supplemental rules
(laws 4a and 4b) disabled. We then duplicated the
experiment that demonstrates human safety with
those supplemental rules enabled to observe how
they change the robot behaviour, while demonstrat-
ing that the robot still adheres to Asimov’s Laws. A
summary of the aims of each experiment is shown
in Table I.

A secondary purpose of our experiments is to
demonstrate the feasibility of an ethical black-
box recorder as proposed in [25]. In particular,
we aim to demonstrate the suitability of our BDI
based approach for producing human scrutable logs
through a highly transparent decision process. At
each update iteration we record the belief base,
the rule executed, and – if a compare rule is ex-
ecuted – the comparison results used for behaviour
selection. Also logged is the data from the tracking
system, the behavioural alternatives evaluated, and
the scores in each evaluation metric. Each item of
data is time-stamped to enable later reconstruction
of all decisions made. This log data is then used to
produce a description of the process that has been
followed

In addition to the validation experiments, we
have also followed the previously described formal
verification procedure for the ethical decision mod-
ule. The BDI rules and comparison functions were
extracted from the Ethical Decision Module and
parsed into data structures in the AIL. Properties
expressing adherence to Asimov’s laws were then
verified using AJPF.

A. Experimental Setup

In these experiments we use two NAO robots as
the H-robot and E-robot, as defined in Section III,
i.e., a robot acting as a proxy for the human, and a
robot controlled using our ethical architecture. All
experiments were carried out in a 3m × 2.5m arena,
with 2 objects designated A and B on the opposite
side of the arena from the start locations of the
robots; the setup is shown in Fig 4. Object A was
designated ‘dangerous’, and B was designated as
‘safe’. The robots are considered to have encoun-
tered danger if they get within 1m of the dangerous

object. To enable the robots to navigate, and the E-
robot’s controller to simulate the environment and
both robots, a 4 camera tracking system was used
that, via reflective markers, tracks positions and
orientations of the robots and objects (though the
objects were static) at 30Hz.

At the start of each trial both H and E robots
move to their designated start locations (see Fig-
ure 4), and when both have arrived the trial itself
begins. Both H and E robots have pre-determined
objective positions (to move to), which are varied
by experiment. Whether the E-robot’s objective is
attributed to its own controller or via an instruction
from the H-robot is determined in the experimental
script and varied by experiment.

Figure 4: The experimental setup, the red NAO is
H-robot and the blue NAO is E-robot.

Both H and E robots use the tracking information
to simulate low-level collision detection that would
cause them to stop if within 0.5m of each other
or an object. The E-robot assumes that the H-robot
does not know if a location is dangerous. The E-
robot controller can re-start its motion if the H-
robot is observed to be stationary – it treats a
stationary human as an obstacle to be avoided.

As the H-robot has no ethical layer it simply
moves to its predetermined objective unless prox-
imity to the E-robot causes it to stop. The ethical
layer in the E-robot operates at about 1Hz11, re-
evaluating a set of plans and selecting the most
ethical course of action, determining the goal of the
E-robot. The E-robot’s control layer suggests A and
B as possible goals for evaluation, supplemented if
required by the Planner Module in its ethical layer.

The walking speed of the H-robot robot is set
to be lower than the speed of the E-robot. The
difference in speed gives the E-robot a larger range
for intercepting the H-robot. The speeds of the H-
robot and E-robot were approximately 0.02ms−1

and 0.04ms−1 respectively. These speeds were not
varied during the experiment.

B. Experiment Settings and Results
All results reported below are obtained with

no changes to the controllers of the H and E-

11empirically determined to provide sufficiently reactive plan-
ning, without overburdening the NAO controller with control
requests.



15

Experiment Law(s) Tested
Self Preservation Law 3
Obedience Law 2 overrides Law 3
Save Human Law 1 overrides Law 3
Save Human and Obey Law 1 overrides Law 2 and 3
Save Human with Supplementary Rules Law 4a

Table I: Summary of experiments

robots. The E-robot danger distance threshold and
H-robot danger distance thresholds are set to 1.5m;
this allows for some errors in E-robot simulations
while still keeping the H-robot safe. The E-robot
objective distance threshold is set to 0.5m, the
distance needed to consider the objective reached.
The different experimental conditions are set by
the goals of the robots, and whether or not the
E-robot goal is commanded by the H-robot. Each
experiment is a single demonstration trial (repre-
sentative of multiple trials conducted with the same
settings) to facilitate clear discussion of the data
logs recorded in the EBB. For each experiment the
decision processes are obtained directly from those
logs.

1) Self Preservation: The aim of this experiment
is to demonstrate adherence to Law 3, i.e., that the
E-robot acts to keep itself safe, if (and only if) this
does not conflict with obedience (Law 2) or human
safety (Law 1). For this experiment the H-robot
remains stationary at its start location, the E-robot
objective is A and it is not H-robot commanded.

There is no inferred goal as the H-robot is sta-
tionary, so the H-robot is believed to be safe. There
is no H-robot command, and of the two behavioural
alternatives, moving to location A or to location
B, A is considered dangerous to the E-robot (i.e.,
danger distance is below the threshold) while B
is not. Hence, the E-robot moves to location B
(Figure 5).

Figure 5: The tested behavioural alternatives for the
initial plan (yellow dots), are the A and B objects.
The E-robot path (blue dots) moves to the non-
dangerous object B and stops 0.5m from it (due to
collision avoidance). The orange circle shows the
E-robot and H-robot danger thresholds.

2) Obedience: The aim of this experiment is
to demonstrate that adherence to Law 2 overrides

Law 3, i.e., the E-robot will walk toward danger if
commanded by the H-robot. This experiment only
differs from the previous one in that the robot’s
objective is now H-robot commanded.

There is no inferred goal as the H-robot is
stationary, so the H-robot is believed to be safe.
There is belief in an H-robot command, so for the
two behavioural alternatives, locations A and B, B
is above the distance to E-robot objective threshold,
while A is below the threshold. The values for robot
distance to danger are not compared due to Law 2
having priority. Hence, we observe that the E-robot
moves to location A even though it is dangerous to
the robot (Figure 6).

Figure 6: The tested behavioural alternatives for
the initial plan (yellow dots), are the A and B
objects. The E-robot path (blue dots) moves to the
dangerous object A and stops 0.5m from it (due to
collision avoidance). The orange circle shows the
E-robot and H-robot danger thresholds. The purple
circle is the robot objective distance threshold.

3) Save Human: The aim of this experiment is
to demonstrate that adherence to Law 1 overrides
Law 3, i.e., the E-robot will act to prevent the H-
robot from coming to harm even if doing so is
dangerous for itself. For this experiment the H-
robot objective is A, the E-robot objective is B and
it is not H-robot commanded.

The inferred goal for the H-robot is A, so the E-
robot believes the H-robot is in imminent danger.
Of the 5 behavioural alternatives the objects A and
B and intercept point i3 (see Figure 7) allow the
H-robot to come closer to danger than the allowed
threshold. Hence, points i1 and i2 are considered
more desirable than any of the others, and though it
puts the E-robot closer to danger than the threshold,
i1 is selected as it puts the robot further from
danger than i2. The robot objective distance is not



16

checked due to there being no belief in any H-
robot command. Hence, we observe the E-robot
moves to intercept the H-robot. Due to inaccuracies
in simulated movement times the intercept occurs
with the E-robot approaching from the side. The
precise target point shifts over time due to replan-
ning compensating for inaccuracies in simulated
potential intercept points and movement times. It
is important to note that despite this reality gap
the intercept still occurs. After interception, the H-
robot is no longer believed to be in danger and the
E-robot moves to its remaining goal B (Figure 7).

Figure 7: The tested behavioural alternatives for
the initial plan (yellow dots), are the A and B
objects, and the intercept points i1-i3. The E-robot
path (blue dots) moves to intercept the H-robot
(path in red dots). The H-robot stops when the E-
robot approaches within 0.5m. The E-robot then
continues to the safe object B, and stops 0.5m from
it (due to collision avoidance). The orange circle
shows the E-robot and H-robot danger thresholds.

4) Save Human and Obey: The aim of this
experiment is to demonstrate that adherence to Law
1 overrides Law 2 and 3, i.e., the E-robot will act
to prevent the H-robot from endangering itself even
if doing so is dangerous for itself and also ignores
a direct command. For this experiment the H-robot
objective is A, and the E-robot objective is also A,
as commanded by the H-robot.

Initial behaviour and beliefs are the same as
in the previous experiment, the notable difference
being that points i0-i2 are seen as being too far
from the human-commanded objective, but this is
overridden in the same way as the perceived danger
to the E-robot. After interception, the H-robot is
no longer believed to be in danger and the E-robot
obeys the human command in the same way as in
the Obedience experiment above (Figure 8).

5) Save Human with Supplementary Rules:
The aim of this experiment is to demonstrate the
effect of one of our context-specific extension to
Asimov’s Laws, Law 4a, and hence the flexibility
of our approach while still maintaining verifiable
and scrutable ethical decisions. This mainly differs
from the Save Human experiment above by the
inclusion of the additional ethical rules. To do so

Figure 8: The tested behavioural alternatives for
the initial plan (yellow dots), are the A and B
objects, and the intercept points i1-i3. The E-robot
path (blue dots) moves to intercept the H-robot
(path in red dots). The H-robot stops when the E-
robot approaches within 0.5m. The E-robot then
continues to object A as it was commanded by the
H-robot, and stops 0.5m from it (due to collision
avoidance). The orange circle shows the E-robot
and H-robot danger thresholds. The purple circle is
the robot objective distance threshold.

we extended the conditional rule set in the BDI
logic to enable selection of the appropriate plan
comparison function. In addition, to allow for the
secondary rules to operate properly with our arena
size, a robot is considered in danger if it is within
0.5m of a dangerous object; this reduces the E-
robot and H-robot danger thresholds to 1m.

We observe that an intercept occurs at a point
much closer to the danger than without the sup-
plementary rules. In the initial plans, the H-robot
is believed to be far from danger, and only points
i1 and i2 do not put the human or robot too close
to danger; i2 is selected as it allows for a longer
wait time than i1. However, it is important to
note that the intercept occurs actually on the H-
robot path, rather than from the side as in previous
experiments; the waiting time allowed for, com-
bined with frequent replanning, compensates for
inaccuracies in simulated travel times, resulting in
better interception (Figure 9).

C. Verification of Ethical Reasoning in our Asimov-
based Proactive Ethical Decision Module

While we were able to experimentally validate
the behaviour of the robot in several specific ex-
amples, the link between BDIPython and the AJPF
verification system allows us to provide deeper
analysis of the ethical layer. We consider here the
implemented Ethical Decision Module associated
with task selection when the human has specified
an objective through a direct command. This is the
engine shown in Box 1.

This agent should believe that some task t is the
current task if it conforms to our modified version



17

Figure 9: The tested behavioural alternatives for the
initial plan (yellow dots), are the A and B objects,
and the intercept points i1-i3. The E-robot path
(blue dots) moves to intercept the H-robot (path in
red dots). The H-robot stops when it approaches
within 0.5m of the E-robot. The E-robot then
continues to the safe object B, and stops 0.5m from
it (due to collision avoidance). The orange circle
shows the E-robot and H-robot danger thresholds.

of Asimov’s laws – i.e., it is the best of all the
tasks available as described in Section III. The
Python code for the Ethical Decision Module is
automatically converted to a Java data structure as
described in Section IV-A.

We also construct a verification environment for
this agent. Verification environments are designed
to generate random choices for inputs to the agent
(in this case, beliefs put by the environment in the
belief base and the possible results of Python cal-
culations in comparison functions). The process of
model-checking then explores all possible combi-
nations of these choices. Therefore, our verification
environment may, at random, return danger_close
as a belief. We considered cases where either two
or three tasks are available: task1, task2 and
task3. Therefore the environment always returns
task(task1) and task(task2) as beliefs in the
case of two tasks and task(task1), task(task2)
and task(task3) in the case of all three. Note
that in our experimental set-up the ethical layer
automatically generates three additional tasks for
consideration when it deduces that the tasks sug-
gested by the task layer result in the human moving
too close to danger; hence, the three task case is
sufficient to verify this layer.

At the point where the agent requests the value of
Python calculations then the environment considers
all possible results for the Python expressions ap-
pearing in the comparison functions. For instance,
in the case of ≺hd it returns either

1) task1 ≺hd task2 or
2) task2 ≺hd task1 or
3) neither (indicating that task1 ≈hd task2 ).

It similarly returns a choice for the comparison of
task1 and task3 and for the comparison of task2

and task3. In the case of the movement and waiting
times, we assume that these impose a strict order
on tasks so that there are only two possible results.
Model-checking allows us to consider all possible
combinations of the results of these beliefs and
calculations and so verify that our Ethical Decision
Module makes the correct (most ethical) choice in
each case.

Equations (4), (5) and (6) describe three prop-
erties representing Asimov’s laws in the AJPF
property specification language. The AJPF property
specification language uses standard Linear Tempo-
ral Logic (LTL) operators: � means "it is always
the case that" and ♦ means "it is eventually the
case that". LTL is extended with specific operators
for BDI concepts, so B means that something is in
the agent’s belief base and P means that something
is "perceptible" – in the case of our Python agent
we interpret this as meaning it is in the agent’s
calculation base (a full description of the AJPF
property specification language and its semantics
can be found in [52]).

�((B(current_plan(task1))→
¬P(task1 ≺hd task2) (4)

�((B(current_plan(task1)) ∧
P(task2 ≺ro task1)→

P(task1 ≺hd task2) (5)

�((B(current_plan(task1))∧
P(task2 ≺hd task1)→
P(task1 ≺ro task2) ∨

P(task1 ≺rd task2) (6)

The three properties state that: it is always the
case that if task1 is believed to be the current
task then Python has calculated that task1 either
does not place the human in significant danger
or, if it does, then task2 places the human in
greater danger (property (4) – corresponding to
Asimov’s first law); it is always the case that if
task1 is believed to be the current task and Python
calculates that it places the robot further away
from its (human specified) objective than task2
then Python has calculated that task2 places the
human in more danger than task1 (property (5) –
corresponding to Asimov’s second law); and lastly
that if task1 is believed to be the current task and
Python calculates that it places the robot in more
danger than task2 then either task2 places the
robot much further from its objective than task1
or it results in the human being in much closer to
danger than task1 (property (6) – corresponding
to Asimov’s third law). Similar properties can be
constructed to compare task1 and task3 etc.



18

Table II: Results of Verification in the 2 Plan Case

Time (seconds) States in the Model
(4) 43 1192
(5) 48 1192
(6) 52 1192

The results of verifying the three properties for
the 2 plan case on a 4 core 3.4 GHz iMac with 8 GB
memory running MacOS 10.13.1 are shown in ta-
ble II. We record the time taken for the verification
and the number of states in the resulting model of
Ethical Decision Module execution created by the
system.

We were unable to perform a similar verification
in the three task case because the combinatorial
explosion involved caused the size of the model to
become too large and we terminated the verification
process after one week. We will discuss this further
in Section VII.

As mentioned previously, BDIPython’s support
for picking a best option selects no task in the
case that the comparison function does not rep-
resent an antisymmetric transitive relation and the
corresponding guard expression in our AIL imple-
mentation naturally behaves the same way. Our ver-
ification environment generates many cases where
this is not the case – it does not even guarantee that
the subsidiary relations represented by ≺m are tran-
sitive. This meant that the attempt to prove property
(7) (Eventually either task1, task2 or task3 is
believed to be the current task), for instance, failed
rapidly with a counter-example.

♦B(current_task(task1))∨
B(current_task(task2))∨

B(current_task(task3)) (7)

This is a known issue with so-called unconstrained
environments. While they are agnostic about the
behaviour of the world and system beyond the BDI
agent, and while they capture correct behaviour
for all possible inputs, they usually represent over-
generalisations of reality and flag up many false
negatives. The solution to this is to create a con-
strained abstraction of the environment that em-
bodies certain assumptions about the behaviour of
the real world.

We modified our unconstrained environment
with the following assumptions:

• All the predicates: ≺hd, ≺ro, ≺rd, < and >
represent transitive relations (i.e., if t1 ≺hd t2
and t2 ≺hd t3 then it is automatically the case
that t1 ≺hd t3).

• The overall relations specified by Cwd and
Cwt are antisymmetic and transitive.

This allowed us to verify (7) in approximately 3
days for the three task case (thanks to the reduced
search space) as well as properties (4), (5) and (6).

Table III: Results of Verification in the 3 Plan Case

Time (hours minutes seconds) States in the Model
(4) 64h 10m 23s 1,708,076
(5) 72h 33m 22s 1,708,076
(6) 76h 19m 07s 1,708,076

The times taken for these verifications on a 4 core
3.4 GHz iMac with 8 GB memory running MacOS
10.13.1 are shown in Table III.

We note that there is no guarantee that as-
sumptions made for constrained environments are
correct. It may, however, be possible to validate
them through other means – for instance it is
straightforward to prove that our comparison func-
tions are antisymmetric and transitive given some
basic assumptions about the behaviour of objects
in space; informal proofs are given in section I
of supplementary materials. A methodology has
recently been developed to allow such assumptions
to be checked using runtime verification [58]. In
this methodology a specification of the assumptions
is created as a trace expression [59] which is then
automatically converted into both the environment
used by the AJPF model-checker and a runtime
monitor that operates when the system is deployed
and can react if it detects that the environment is
violating the assumptions used during verification
(and so the system is now operating in an "unveri-
fied" state).

While the time taken to perform verification
may seem slow. It is important to note that the
work we did on the translation of BDIPython
programs into the input for AJPF does not need
to be repeated. Therefore a programmer need only
write a BDIPython program and supply a list of
sensor inputs and Python calculations in order to
automatically verify properties of their programs.
This has advantages over many other verification
techniques which require programs to be trans-
formed by hand into some modelling language, and
may also require manual intervention to guide the
proof process.

VI. RELATED WORK

Here we review three areas of research which
relate to different elements of the work described in
this paper. Firstly, we discuss anticipation in robots,
a core design principle of our architecture. The
ability to model and predict ethical consequences
is, we believe, a differentiating feature of our work.
Secondly, we note the paucity of experimentally
tested ethical robots, and relate our contribution
to previous work. Finally we argue that we have
advanced the field of machine ethics verification
significantly beyond that which was undertaken
previously.



19

A. Anticipation in Robots

Providing robots with the ability to anticipate
the future through the use of simulation-based
internal models integrated into their control archi-
tecture has, in recent years, been demonstrated by
a number of researchers. For example Vaughan
and Zuluaga show that self-simulation of both a
robot and its environment can be used to over-
come incomplete self-knowledge and enable nav-
igation task planning [60]. Similarly, Bongard et
al. describe a 4-legged starfish-like robot that self
simulates in order to learn its own morphology
and how to control it, i.e., compensate for lack
of self-knowledge (although without simulating the
environment) [61].

In addition to self and environment simulation,
the simulation of other agents may also be required.
Zagal et al. use simulation in soccer robots to
facilitate the adaptation of behaviours before they
are deployed on the real robots; i.e., using the
simulation to test how possible behaviours might
actually operate in the environment with other
robots [62].

The common methodology underlying the re-
ported works on simulation based anticipation is
the principle of hypothesis generation and testing.
This has been demonstrated to be a powerful ap-
proach to robot control with a variety of appli-
cations. However, these differ from the work we
have presented here in the purpose of hypothesis
evaluation, i.e., previous work has focussed on task
performance which we supplement with evaluating
ethical consequences. Further, the robot simulates
humans in the environment in addition to itself.
Previous works have not simulated environments
with human actors.

B. Ethical Robots

Machine ethics is a nascent field, consisting of
only a few studies implementing ethics on actual
robots. To the best of our knowledge, the efforts
of Anderson and Anderson on the GENETH sys-
tem [63], Bringsjord’s Akratic Robot [64], and our
previous work [10], [49] are the only instances of
real robots equipped with (limited) moral princi-
ples.

GENETH has been developed over a number of
years [2], [65], and uses an approach based on
evaluating planned actions against a set of ethical
constraints, but as there was no simulator only reac-
tive ethical decisions were possible. GENETH uses
inductive logic programming as a machine learning
process with input from domain ethicists in order
to determine its ethical principle. This principle is
then represented in a fashion which allows transpar-
ent explanations to be provided for decisions (as we
have recommended here). Among other things this
approach demonstrates that bottom-up approaches

to defining an ethical system can be adopted with-
out necessarily sacrificing transparency.

Bringsjord et al’s [64] work builds on a program
of developing a logic, the deontic cognitive event
calculus, DCECCL, in which various ethical theo-
ries can be expressed. The Akratic robot, for which
a simple example has been implemented on a NAO
robot, considers a scenario in which a robot charged
with guarding a prisoner of war must choose be-
tween retaliating with violence to an attack (and
satisfying a self-defence goal) or refraining from
retaliation. It is referred to as Akratic from the
Greek akrasia referring to when a person acts in
contradiction to their better judgement. Bringsjord
et al. argue that the underlying robot architecture,
into which modules for self-defence and detainee
management are embedded, must be capable of eth-
ical reasoning in order to detect when such conflicts
may arise and prevent them occuring (either by
preventing the installation of conflicting modules
or by over-riding goal-based reasoning when it
conflicts with deontologically expressed obligations
and prohibitions). This reflects our insistence that
verification is an important aspect of implementing
ethical reasoning though in the case of the Akratic
robot the approach is to embody ethical verification
as a fundamental part of the robot’s operating
system.

In our previous work we used a similar approach
to that presented here using a simulator to evaluate
what-if hypotheses. In contrast to the work pre-
sented here ethical decisions were made through
evaluation of an ethical desirability function. This
resulted in significant challenges in modelling the
system for verification [66], and decisions were
much less transparent with this approach.

In addition to these few implementations there
have been some additional studies examining ma-
chine ethics from either a theoretical (e.g., [12],
[67]) or simulation standpoint (e.g., [8]). All of
these studies have used a similar approach i.e.,
planned actions are assessed against a set of ethical
constraints, with their ethical implications assumed
from known features of the environment.

C. Verification of Ethical Machine Reasoning

Previous work on the verification of ethical ma-
chine reasoning has focused on the use of the
AJPF system that we have used here. Work in [66]
attempts to verify the system proposed in [10] upon
which the work reported here is also based. In
this verification a new version of the system was
produced in the AIL using two bespoke languages,
one for the ethical consequence engine and another
to represent action selection in the robot. The
behaviour of the system was verified in an environ-
ment consisting of a simple 5×5 grid. A number of



20

discrepancies became apparent during this verifica-
tion – for instance the verification on the 5×5 grid
was converted into a model for the Prism model-
checker [68] and gave very different probabilistic
results to those derived by experiments. One lesson
learned from this experience was that it is difficult
to accurately extract models of Ethical Decision
Modules written in Python (and by assumption
in other common procedural languages used for
robotics) which are tightly embedded in larger
programs in the same programming language. One
of our key aims here was to strengthen the link
between the code produced by the programmer of
the Ethical Decision Module and the model that
was used in verification. This is achieved via the
two-fold approach of supplying a BDI library for
Python, encouraging a cleaner separation of the
ethical reasoning from the rest of the system, and
providing an automatic mechanism to extract code
written using that library into a model in AJPF.

Work in [45] also uses AJPF to verify an ethical
module operating as part of a larger system. It
assumes that ethical reasoning is only invoked in
special cases – i.e., that normal operation of the
system is ethical by default. However, when some
unexpected event occurs, AI techniques such as
planning or learning are used to generate a new
course of action. Transparent ethical reasoning can
be used to choose between the options produced
by the AI system based on a number of ethical
principles and a context-dependent priority among
those principles. The general approach is similar to
that described here. However an entirely hypotheti-
cal system written in a bespoke language is verified.
We have verified an Ethical Decision Module for an
existing system written in a widely used language.
Work in [45] does consider a context-dependent
way for an Ethical Decision Module to resolve
conflicts among competing ethical principles, as
opposed to the strict universal ordering we have
considered here.

VII. FURTHER WORK

Here we have demonstrated that plans, selected
according to a set of ethical rules, can be verified.
Pro-active plans are generated by a heuristic de-
signed for the simple case study presented here.
However, the utility of plans generated in this
way are reliant on the design of the heuristic, and
even in our simple demonstration case are unlikely
to represent the best possible solutions. Indeed,
it is relatively easy to imagine scenarios where
heuristics of this form are non-trivial to design.
Hence, we suggest that a better, more generalisable
method for pro-active plan generation would make
the system applicable in a wider range of contexts.
One possible method to overcome this in future
work is to use a machine learning technique such

as Baysian optimisation of Gaussian processes [69]
to better sample the plan space, balancing different
ethical criteria metrics, hence generating plans that
are likely to be ethically desirable. One immedi-
ately apparent challenge for such an approach is
defining how to combine metrics into an overall
score (needed for the optimisation process) reflec-
tive of how the Ethical Decision Module does its
reasoning.

In order to facilitate clear demonstration of the
principles of operation of our ethical layer archi-
tecture (as well as the verifiable and scrutable rea-
soning of the BDI based Ethical Decision Module)
our case study only required a simple simulation,
with limited models of the world and the proxy
human. It is easy to envisage scenarios, closer to
real world usage of an ethical robot, where a more
complex simulation module would be required. One
avenue of future work in this direction is to examine
better modelling of the human decision process. A
key part of such modelling would be some artificial
theory of mind, reducing the dependency on overly
simple assumptions of likely human actions.

JPF, which underpins AJPF, is specifically cre-
ated to provide what is known as program model-
checking capabilities for Java-bytecodes. In pro-
gram model-checking the actual executable code
of a system is verified as opposed to a model of
the system. Program model-checking is, in gen-
eral, more resource intensive than normal model-
checking and can not handle large search spaces.
By using AJPF to check BDIPython models, there-
fore, we are suffering from its inability to ex-
amine a large search space (hence our inability
to prove the system obeys Asimov’s laws in an
unconstrained environment with even three plans)
without gaining the advantage of verifying the
actual executable code of the system. There are a
number of approaches to improving this situation
including implementing a custom model-checker
for Python, or executing BDIPython in Jython [55],
a Java-bytecode based interpreter for Python.

Further development of BDIPython itself is
also useful, in particular to increase support
for predicate logic-like representations in guards
which can pass instantiations of variables/param-
eters from guards to rule bodies (as in the case
of add_pick_best_rule). We anticipate a need for
both a selection of specialised functions (like
add_pick_best_rule), and a more general mecha-
nism to allow arbitrary predicate logic expressions
to instantiate parameters for execution.

VIII. CONCLUSION

We have considered the question of how ethi-
cal reasoning should be implemented in a robot,
assuming the popular architecture (seen in, for
instance [10], [45], [48], [63]) with a dedicated



21

ethical reasoner. In particular we have argued that
such an ethical control layer should aim to be

• proactive,
• transparent,
• and verifiable.

In order to achieve an ethical control layer with
these properties we have devised an architecture
in which behavioural alternatives proposed by the
underlying control system are evaluated using ex-
plicit declarative reasoning, in the form of a rational
agent. If all options are deemed unsatisfactory, the
ethical control layer has the ability to proactively
generate new options and submit these to ethical
reasoning.

The use of a rational agent to reason about the
ethics of options allows the system’s decisions to
be explainable and transparent, by recording the
agent’s beliefs, calculations and rule selections in
an EBB data logger. The logical nature of the ra-
tional agent rules then allows a deductive argument
to be reconstructed.

At the same time the rational agent can be
extracted into a model and we can formally verify
that its choices respect a specified code of ethics by
exhaustive search over the choices it makes given
particular beliefs and calculations.

We have implemented this technology in an
experimental case study and shown that its ethical
reasoning can be verified using a translation from
the Python code into the AJPF model-checking sys-
tem. Thus we have developed and demonstrated12

what is believed to be the first formally verified
ethical robot.

APPENDIX A
OPEN DATA STATEMENT

The program code and experimental data dis-
cussed in this paper are available as follows:

• The source code for BDIPython is available
at https://github.com/VerifiableAutonomy/
BDIPython where it is currently under active
development. The version discussed here is
archived at http://dx.doi.org/10.17638/datacat.
liverpool.ac.uk/667.

• The source code for AJPF is available
from http://mcapl.sourceforge.net where the
work in this paper can be found in the
ethical_engine branch of the git repos-
itory. The version discussed here is archived
at http://dx.doi.org/10.17638/datacat.liverpool.
ac.uk/667.

• The Python code for the Ethical
NAO Robot is available at https:
//github.com/VerifiableAutonomy/EthicalNao
where the work in this paper can be found
in the ethical_engine branch of the

12In a simple laboratory test scenario.

git repository. The version discussed here is
archived at http://dx.doi.org/10.17638/datacat.
liverpool.ac.uk/667.

• Experimental data generated by the case study
is available from the UWE research repository
http://researchdata.uwe.ac.uk/375.

ACKNOWLEDGEMENTS

The work of this paper is funded by EPSRC
grants reference EP/L024845/1 and EP/L024861/1
within the project ‘Verifiable Autonomy’. The au-
thors are very grateful to the anonymous reviewers
for their insightful comments – and the many
improvements that have followed.

REFERENCES

[1] M. M. Waldrop et al., “No drivers required,” Nature, vol.
518, no. 7537, pp. 20–20, 2015.

[2] M. Anderson and S. Anderson, “Machine Ethics: Creating
an Ethical Intelligent Agent,” AI Magazine, vol. 28, no. 4,
pp. 15–26, 2007.

[3] L. Royakkers and R. van Est, “A Literature Review on
New Robotics: Automation from Love to War,” Interna-
tional Journal of Social Robotics, vol. 7, no. 5, pp. 549–
570, 2015.

[4] A. Winfield, Robotics: A very short introduction. OUP
Oxford, 2012.

[5] J. H. Moor, “The Nature, Importance, and Difficulty
of Machine Ethics,” IEEE Intelligent Systems, vol. 21,
no. 4, pp. 18–21, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1109/MIS.2006.80

[6] T. Arnold and M. Scheutz, “Against the Moral Turing
test: Accountable Design and the Moral Reasoning of Au-
tonomous Systems,” Ethics and Information Technology,
vol. 18, no. 2, pp. 103–115, Jun 2016.

[7] M. Fisher, L. A. Dennis, and M. Webster, “Verifying
Autonomous Systems,” ACM Communications, vol. 56,
no. 9, pp. 84–93, 2013.

[8] R. Arkin, P. Ulam, and A. Wagner, “Moral Decision
Making in Autonomous Systems: Enforcement, Moral
Emotions, Dignity, Trust, and Deception,” Proceedings of
the IEEE, vol. 100, no. 3, pp. 571–589, 2012.

[9] I. Asimov, “Runaround,” in Astounding Science Fiction.
Street & Smith, March 1942.

[10] A. F. T. Winfield, C. Blum, and W. Liu, “Towards an
Ethical Robot: Internal Models, Consequences and Ethical
Action Selection,” in Advances in Autonomous Robotics
Systems, ser. Lecture Notes in Computer Science, M. Mis-
try, A. Leonardis, M. Witkowski, and C. Melhuish, Eds.,
vol. 8717. Springer, 2014, pp. 85–96.

[11] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and
S. M. Veres, “Practical verification of decision-making
in agent-based autonomous systems,” Automated Software
Engineering, vol. 23, no. 3, pp. 305–359, 2016. [Online].
Available: http://dx.doi.org/10.1007/s10515-014-0168-9

[12] W. Wallach and C. Allen, Moral machines: Teaching
robots right from wrong. Oxford University Press, 2008.

[13] R. W. Picard and R. Picard, Affective computing. MIT
press Cambridge, 1997, vol. 252.

[14] B. Deng, “The robot’s dilemma,” Nature, vol. 523, no.
7558, p. 24, 2015.

[15] B. F. Malle, M. Scheutz, T. Arnold, J. Voiklis, and
C. Cusimano, “Sacrifice one for the good of many?:
People apply different moral norms to human and robot
agents,” in Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction,
ser. HRI ’15. ACM, 2015, pp. 117–124. [Online].
Available: http://doi.acm.org/10.1145/2696454.2696458

[16] C. Allen, W. Wallach, and I. Smit, “Why machine ethics?”
IEEE Intelligent Systems, vol. 21, no. 4, pp. 12–17, 2006.

https://github.com/VerifiableAutonomy/BDIPython
https://github.com/VerifiableAutonomy/BDIPython
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://mcapl.sourceforge.net
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
https://github.com/VerifiableAutonomy/EthicalNao
https://github.com/VerifiableAutonomy/EthicalNao
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/667
http://researchdata.uwe.ac.uk/375
http://dx.doi.org/10.1109/MIS.2006.80
http://dx.doi.org/10.1007/s10515-014-0168-9
http://doi.acm.org/10.1145/2696454.2696458


22

[17] A. F. Winfield and V. V. Hafner, “Anticipation in robotics,”
in Handbook of Anticipation: Theoretical and Applied
Aspects of the Use of Future in Decision Making, R. Poli,
Ed. Cham: Springer International Publishing, 2018.

[18] R. Rosen, Anticipatory systems: philosophical,
mathematical, and methodological foundations, ser.
IFSR international series on systems science and
engineering. Pergamon Press, 1985. [Online]. Available:
https://books.google.co.uk/books?id=73VQAAAAMAAJ

[19] A. Isidori, D. L. Marconi, and D. A. Serrani, “Funda-
mentals of internal-model-based control theory,” in Robust
Autonomous Guidance. Springer, 2003, pp. 1–58.

[20] O. Holland, Machine consciousness. Imprint Academic,
2003.

[21] J. H. Holland, “Complex adaptive systems,” Daedalus, pp.
17–30, 1992.

[22] A. F. Winfield, “Experiments in artificial theory of mind:
From safety to story-telling,” Front. Robot. AI, vol. 5,
no. 75, 2018.

[23] P. Carruthers and P. K. Smith, Theories of theories of mind.
Cambridge University Press, 1996.

[24] V. Gallese and A. Goldman, “Mirror neurons and the
simulation theory of mind-reading,” Trends in cognitive
sciences, vol. 2, no. 12, pp. 493–501, 1998.

[25] A. Winfield and M. Jirotka, “The case for an ethical black
box,” in Towards Autonomous Robotic Systems. Springer,
2017.

[26] M. Wooldridge, An introduction to MultiAgent Systems.
John Wiley and Sons, LTD, 2002.

[27] M. E. Bratman, Intentions, Plans, and Practical Reason.
Harvard University Press, 1987.

[28] A. S. Rao and M. P. Georgeff, “Modeling Agents within
a BDI-Architecture,” in Proceedings 2nd International
Conference Principles of Knowledge Representation and
Reasoning (KR&R). Morgan Kaufmann, 1991, pp. 473–
484.

[29] ——, “An Abstract Architecture for Rational Agents,” in
Proceedings International Conference Knowledge Repre-
sentation and Reasoning (KR&R). Morgan Kaufmann,
1992, pp. 439–449.

[30] ——, “BDI Agents: From Theory to Practice,” in Proceed-
ings 1st International Conference Multi-Agent Systems
(ICMAS), San Francisco, USA, 1995, pp. 312–319.

[31] A. Rao, “AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language,” in Agents Breaking Away:
Proceedings 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, ser. LNCS, vol.
1038. Springer, 1996, pp. 42–55.

[32] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Program-
ming Multi-agent Systems in AgentSpeak Using Jason.
Wiley, 2007.

[33] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-
J. Meyer, “Agent Programming in 3APL,” Autonomous
Agents and Multi-Agent Systems, vol. 2, no. 4, pp. 357–
401, 1999.

[34] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: A
BDI Reasoning Engine,” R. H. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, Eds. Springer, 2005, pp.
149–174.

[35] M. Sierhuis, “Modeling and Simulating Work Pratice.
BRAHMS: a Multiagent Modeling and Simluation Lan-
guage for Work System Analysis and Design,” Ph.D. dis-
sertation, Social Science and Informatics (SW), University
of Amsterdam, 2001.

[36] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J.
Meyer, “Agent Programming with Declarative Goals,” in
Intelligent Agents VII (Proceedings 6th Workshop on Agent
Theories, Architectures, and Languages), ser. LNAI, vol.
1986. Springer, 2001, pp. 228–243.

[37] L. A. Dennis, “Gwendolen semantics: 2017,” University of
Liverpool, Department of Computer Science, Tech. Rep.
ULCS-17-001, 2017.

[38] N. Lincoln, S. M. Veres, L. A. Dennis, M. Fisher, and
A. Lisitsa, “An Agent Based Framework for Adaptive
Control and Decision Making of Autonomous Vehicles,”
in Proceedings of IFAC Workshop on Adaptation and
Learning in Control and Signal Processing, 2010.

[39] J. H. Fetzer, “Program Verification: The Very Idea,” ACM
Communications, vol. 31, no. 9, pp. 1048–1063, 1988.

[40] R. A. DeMillo, R. J. Lipton, and A. J. Perlis, “Social
Processes and Proofs of Theorems of Programs,” ACM
Communications, vol. 22, no. 5, pp. 271–280, 1979.

[41] R. S. Boyer and J. S. Moore, Eds., The Correctness
Problem in Computer Science. London: Academic Press,
1981.

[42] E. M. Clarke, O. Grumberg, and D. Peled, Model Check-
ing. MIT Press, 1999.

[43] M. Webster, M. Fisher, N. Cameron, and M. Jump,
“Formal Methods and the Certification of Autonomous
Unmanned Aircraft Systems,” in Proceedings of the 30th
International Conference on Computer Safety, Reliability
and Security, ser. Lecture Notes in Computer Science, vol.
6894. Springer, 2011, pp. 228–242.

[44] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and
S. M. Veres, “Formal verification of autonomous vehicle
platooning,” Science of Computer Programming, pp. –,
2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167642317301168

[45] L. Dennis, M. Fisher, M. Slavkovik, and M. Webster,
“Formal verification of ethical choices in autonomous
systems,” Robotics and Autonomous Systems, pp. –,
2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921889015003000

[46] D. Kortenkamp and R. Simmons, “Robotic systems ar-
chitectures and programming,” in Springer Handbook of
Robotics. Springer, 2008, pp. 187–206.

[47] M. M. Botvinick, “Hierarchical models of behavior and
prefrontal function,” Trends in cognitive sciences, vol. 12,
no. 5, pp. 201–208, 2008.

[48] R. C. Arkin, “Governing lethal behavior: embedding ethics
in a hybrid deliberative/reactive robot architecture,” in Pro-
ceedings of the 3rd ACM/IEEE international conference on
Human robot interaction. ACM, 2008, pp. 121–128.

[49] D. Vanderelst and A. Winfield, “An architecture for
ethical robots inspired by the simulation theory of
cognition,” Cognitive Systems Research, vol. 48, pp. 56–
66, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1389041716302005

[50] R. Murphy and D. D. Woods, “Beyond asimov: the three
laws of responsible robotics,” IEEE Intelligent Systems,
vol. 24, no. 4, 2009.

[51] M. Donoso, A. G. Collins, and E. Koechlin, “Foundations
of human reasoning in the prefrontal cortex,” Science, vol.
344, no. 6191, pp. 1481–1486, 2014.

[52] L. A. Dennis, M. Fisher, M. Webster, and R. H. Bordini,
“Model Checking Agent Programming Languages,” Au-
tomated Software Engineering, vol. 19, no. 1, pp. 5–63,
2012.

[53] L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and
M. Wooldridge, “A Common Semantic Basis for BDI
Languages,” in Proceedings 7th International Workshop on
Programming Multiagent Systems (ProMAS), ser. LNAI.
Springer, 2008, vol. 4908, pp. 124–139.

[54] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda,
“Model Checking Programs,” Automated Software Engi-
neering, vol. 10, no. 2, pp. 203–232, 2003.

[55] J. Juneau, J. Baker, V. Ng, L. Soto, and F. Wierzbicki, The
Definitive Guide to Jython: Python for the Java Platform.
Springer, 2010.

[56] J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patter-
son, J. Li, A. Chitipothu, and S. Krishnamurthi, “Python:
The full monty: A tested semantics for the python pro-
gramming language,” 2013.

[57] G. J. Smeding, “An executable operational semantics for
python.” Master’s thesis, 2009.

[58] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher, and
V. Mascardi, “Recognising assumption violations in au-
tonomous systems verification,” 2017, under Review.

[59] D. Ancona, A. Ferrando, and V. Mascardi, Theory and
Practice of Formal Methods: Essays Dedicated to Frank
de Boer on the Occasion of His 60th Birthday. Cham:
Springer International Publishing, 2016, ch. Comparing
Trace Expressions and Linear Temporal Logic for

https://books.google.co.uk/books?id=73VQAAAAMAAJ
http://www.sciencedirect.com/science/article/pii/S0167642317301168
http://www.sciencedirect.com/science/article/pii/S0167642317301168
http://www.sciencedirect.com/science/article/pii/S0921889015003000
http://www.sciencedirect.com/science/article/pii/S0921889015003000
http://www.sciencedirect.com/science/article/pii/S1389041716302005
http://www.sciencedirect.com/science/article/pii/S1389041716302005


23

Runtime Verification, pp. 47–64. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-30734-3_6

[60] R. Vaughan and M. Zuluaga, “Use your illusion: Sensori-
motor self-simulation allows complex agents to plan with
incomplete self-knowledge,” in International Conference
on Simulation of Adaptive Behavior. Springer, 2006, pp.
298–309.

[61] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines
through continuous self-modeling,” Science, vol. 314, no.
5802, pp. 1118–1121, 2006.

[62] J. C. Zagal, J. Delpiano, and J. Ruiz-del Solar, “Self-
modeling in humanoid soccer robots,” Robotics and Au-
tonomous Systems, vol. 57, no. 8, pp. 819–827, 2009.

[63] M. Anderson and S. Anderson, “Robot be good,” Scientific
American Magazine, vol. 303, no. 4, pp. 72–77, 2010.

[64] S. Bringsjord, N. S. G., D. Thero, and M. Si,
“Akratic robots and the computational logic thereof,” in
Proceedings of the IEEE 2014 International Symposium
on Ethics in Engineering, Science, and Technology, ser.
ETHICS ’14. Piscataway, NJ, USA: IEEE Press, 2014,
pp. 7:1–7:8. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2960587.2960596

[65] M. Anderson and S. L. Anderson, “Geneth: A
general ethical dilemma analyzer,” in Proceedings
of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, ser. AAAI’14. AAAI Press, 2014, pp.
253–261. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2893873.2893915

[66] L. A. Dennis, M. Fisher, and A. F. T. Winfield, “Towards
Verifiably Ethical Robot Behaviour,” in AAAI Workshop
on AI and Ethics (1st International Conference on AI and
Ethics), Austin, TX, January 2015.

[67] A. Mackworth, “Architectures and ethics for robots,” in
Machine ethics, M. Anderson and S. L. Anderson, Eds.
Cambridge University Press, 2011, pp. 204–221.

[68] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
Probabilistic Symbolic Model Checker,” in Proceedings
12th International Conference Modelling Techniques and
Tools for Computer Performance Evaluation (TOOLS), ser.
LNCS, vol. 2324. Springer, 2002.

[69] C. E. Rasmussen and C. K. Williams, Gaussian processes
for machine learning. MIT press Cambridge, 2006, vol. 1.

Paul Bremner received a BSc in
Robotic and Electronic Systems En-
gineering from the University of Sal-
ford in 2003. He received an MSc in
Advanced Technologies in Electronics
and a PhD in Human-Robot interac-
tion from the University of the West
of England in 2005 and 2010 respec-
tively.

Since 2010 he has worked at the
University of the West of England on

a number of projects, first as a research associate then as a
research fellow, where he is currently employed on the Verifiable
Autonomy project. His research interests include human-robot
interaction, multi-modal communication, tele-presence, artificial
intelligence and robot ethics.

Louise A. Dennis received a B.A. in
mathematics and philosophy from the
University of Oxford in 1992, and an
MSc in knowledge-based systems and
a PhD in artificial intelligence from the
University of Edinburgh in 1994 and
2001 respectively.

She has worked as a research asso-
ciate at the Universities of Glasgow
and Edinburgh and a lecturer at the
University of Nottingham. Since 2006

she has been a research associate at the University of Liverpool
where she is currently employed on the Verifiable Autonomy
project. Her research interests are autonomous systems, formal
verification, BDI agent programming languages, automated rea-
soning and ethical machine reasoning.

Dr. Dennis is a member of the Embedding Values into
Autonomous Intelligent Systems committee of the IEEE Global
Initiative for Ethical Considerations in Artificial Intelligence and
Autonomous Systems and a member of the working group for
IEEE-P7001 Transparency of Autonomous Systems.

Michael Fisher is Professor of
Computer Science and Director of
the multi-disciplinary Centre for Au-
tonomous Systems Technology at the
University of Liverpool. He is a mem-
ber of the British Standards Institution
AMT/10 committee on “Robotics”,
authored An Introduction to Practical
Formal Methods using Temporal Logic
(Wiley) in 2011, is on the editorial
boards of both Applied Logic and An-

nals of Mathematics and Artificial Intelligence journals and
is a corner editor for the Journal of Logic and Computation.
His research interests mainly involve formal verification for
the certification, safety, ethics, and reliability of autonomous
systems, and he leads the UK Network on the Verification and
Validation of Autonomous Systems (vavas.org).

Prof. Fisher is a member of the Embedding Values into
Autonomous Intelligent Systems committee of the IEEE Global
Initiative for Ethical Considerations in Artificial Intelligence and
Autonomous Systems and a member of the working group for
IEEE-P7009 on Failsafe Mechanisms for Autonomous Systems.

Alan Winfield is Professor of Robot
Ethics at the University of the West
of England (UWE), Bristol, UK, and
Visiting Professor at the University of
York. He received his PhD in Digital
Communications from the University
of Hull in 1984, then co-founded and
led APD Communications Ltd until
taking-up appointment at UWE, Bris-
tol in 1992. Winfield co-founded the
Bristol Robotics Laboratory where his

research is focussed on cognitive robotics.
Winfield is an advocate for robot ethics; he was a member

of the British Standards Institute working group that drafted
BS 8611: Guide to the Ethical Design of Robots and Robotic
Systems, and he is a member of the executive committee of the
IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems.

http://dx.doi.org/10.1007/978-3-319-30734-3_6
http://dl.acm.org/citation.cfm?id=2960587.2960596
http://dl.acm.org/citation.cfm?id=2960587.2960596
http://dl.acm.org/citation.cfm?id=2893873.2893915
http://dl.acm.org/citation.cfm?id=2893873.2893915

	Introduction
	Background
	Ethical Robots
	Anticipation in Robotics (for Proactive Ethics)
	Ethical Black-box Recorder (for Transparency)
	Beliefs-Desires-Intentions Programming (for Transparent Ethics)
	Verification of Agent-based Autonomous Systems (for Verifiable Ethics)

	A Simulation Based Ethical Reasoning Layer for Robot Control Architectures
	Simulation Module
	Planner Module
	Ethical Decision Module
	Ethical Black-box Module

	Verification of the Ethical Decision Module
	Verification of Python-based Ethical Decision Module

	Experimental Validation and Formal Verification
	Experimental Setup
	Experiment Settings and Results
	Self Preservation
	Obedience
	Save Human
	Save Human and Obey
	Save Human with Supplementary Rules

	Verification of Ethical Reasoning in our Asimov-based Proactive Ethical Decision Module

	Related Work
	Anticipation in Robots
	Ethical Robots
	Verification of Ethical Machine Reasoning

	Further Work
	Conclusion
	Appendix A: Open Data Statement
	References
	Biographies
	Paul Bremner
	Louise A. Dennis
	Michael Fisher
	Alan Winfield


