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Abstract: 

Drawing from examples in Germany, California, and Australia, we show that large scale integration 

of renewable energy in existing electricity grids does not necessarily lead to cheaper electricity, the 

strengthening of energy security, or the enhancement of economic equity. Indeed, efforts to integrate 

renewable energy into the grid can thwart efforts to reduce chronic poverty. Planners around the 

world need to be cautious, pragmatic and realistic when attempting to similarly decarbonize their 

energy systems. 

 
 
 
 
 
 
 
 
 
 
 



2 
 

Main Text: 

It may seem perplexing, but despite increasing electricity supply capacity in many 

industrialized nations, and notwithstanding rapidly declining renewable energy costs 

(especially for wind turbines and solar photovoltaic panels), electricity prices and bills are 

increasing in most countries of the world. As a case in point, the energy transition in Germany 

(the much studied Energiewende) has seen non-hydro renewable energy increase from 15% to 

35% of its fuel mix between 2010 and 2017 (1). Over the same period, Germany’s residential 

electricity tariffs have increased by 16% (Fig. 1a), considerably more than in most other 

European countries.  

 

Similarly, California’s non-hydro renewable generation grew from 11% to 26% of total 

generation between 2010 and 2017. Over the same period, average residential electricity prices 

increased by 10% (Fig. 1b), and state residents are paying considerably more than the national 

average for their electricity (2). With surplus electricity exceeding 15% and further predicted 

surpluses of 6% in the next three years (3), the economic principles of demand and supply 

should mean that electricity rates would fall.  

 

Australia’s renewable energy development is also challenged by rising electricity rates. Its non-

hydro renewable energy grew from 4% to 9% of generation between 2010 and 2017, and over 

the same period, the average residential electricity price in Australia increased by 12% (Fig. 

1c). With rising tariffs, there are more energy-poor households (5, 6). A decarbonization 

paradox could be emerging – a situation where apparently beneficial increases in electricity 

supply capacity coupled with a more diversified and renewable energy mix is being achieved 

at the expense of household energy security and affordability.  
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This paradox becomes all the more important when considering that many countries with 

significant poverty also seek to adopt renewables, including those most committed to the Paris 

Accord and those committed to doubling renewable energy capacity under Sustainable 

Development Goal 7 (SDG7). What is more, the scale of this potential decarbonization 

paradox is not trivial: as of the end of 2017, sector-specific targets for renewable power were 

in place in 146 countries, with additional targets for renewable heating and cooling and 

renewable transport in 48 and 42 countries, respectively (7). 

 

Unintended consequences  

To be sure, the decarbonization of the German, Californian, and Australian electricity grids has 

brought significant benefits. Of particular note, renewable energy technologies (RETs) are 

labour intensive and are thus capable of boosting employment.  

 

For instance, Germany posted a gain of 322,000 jobs in the renewables sector in 2016, 

especially from the wind, geothermal and bioenergy sectors (7). Similarly, in the U.S. energy 

workforce in 2017, solar energy firms employed 350,000 individuals, and an additional 

107,000 workers were employed in wind energy firms (8). Benefits in California extend to 

addressing issues of minority representation in the workforce and improving enrolments into 

the apprenticeship programs of the 16 union locals of electricians, ironworkers, and operators 

that have built most of the renewable energy power plants in California (9). Likewise, Australia 

experienced a 33% increase in full-time employment (FTE) in renewable energy between 

2015/16 and 2016/17 (10).  

 

Besides job creation, co-benefits of solar and wind encompass cleaner air and water, improved 

health, the development of new industries, decreasing energy imports, and diversification, 
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amongst others. As indicative examples, the renewable energy roll-out is correcting the 

negative environmental externalities of fossil fuel combustion. About €8.8 billion of primary 

fuel import costs in Germany were avoided in 2015 due to renewable energies (11). Further, 

the continued roll-out of RETs and energy-efficiency programs resulted in significant 6% 

reductions in energy intensity for both Germany and Australia between 2013 and2015 (12). 

 

However, such gains have come at the cost of four largely unintended effects: growing energy 

dependence, increasing renewable energy curtailment and capacity firming (defined as using 

conventional generation sources like coal, natural gas and nuclear to mitigate against the 

variability of wind and solar), limited greenhouse gas (GHG) reductions, and increased 

vulnerability among some “losers.” 

 

Growing energy dependence 

While decarbonization has enhanced some elements of national energy security, it has eroded 

other dimensions. The Energiewende has seen Germany become increasingly dependent on its 

neighbors (the Czech Republic, Poland, the Netherlands, Belgium and France) to balance and 

import occasional excess power generation. In 2016, it was reported that despite being a net 

electricity exporter, Germany imported about 37 TWh from France (13).  

 

The California grid region imports a net daily average of 201 GWh (about 26% of its average 

daily demand) throughout the year from other western regions (14). This has motivated 

California’s Governor to propose the creation of a larger regional power planning system. 

This will help to address the problem that “at certain times of the year, California produces 

more solar and wind energy than it can use, and must pay other states to take it to avoid 

overloading the system and causing blackouts” (15). 
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Similarly in Australia, despite wind and PV contributing over 48% of electricity generation for 

the Southern Australia region, electricity imports increased for the southern region by 40% 

between 2015/16 and 2016/17 (16). 

 

Increasing curtailment and capacity firming  

Aggressive electricity decarbonization is being matched with growing renewable energy 

curtailment or more capacity firming using conventional generation sources. Using the German 

case again, the curtailment rate for wind farms (defined as an involuntary reduction in the 

output of a generator) rose 27-fold between 2000 and 2016 with congestion management costs 

expected to remain high in coming years (17).  

 

Similarly, in California, the ‘Duck Curve’ that highlights the non-correlation between PV 

power production and demand over the course of the day has seen increasing curtailment, 

particularly when solar penetration exceeds 30% of the fuel mix. Between 2015 and 2016, 

curtailment rates for wind and solar rose from 187 GWh to 308 GWh per annum (18).  

 

In Australia, the growing integration of VRE has not led to a decline in reliance on traditional 

generation sources (19). For instance, in South Australia, increasing wind penetration is being 

matched with increasing capacity firming necessitating the Australian Energy Market Operator 

(AEMO) to mandate that a minimum level of synchronous generation capacity be maintained 

online at all times for managing system strength. Furthermore, the mandated minimum level is 

subject to further increase as non-synchronous electricity generation capacity (mostly from 

wind turbines) increases (20).  
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Meager climate change abatement  

In some situations, the rise of renewables has not led to a corresponding reduction in 

greenhouse gas emissions. While renewables in Germany’s electricity grid has increased, so 

have CO2 emissions from its power sector due to the increased burning of lignite to stabilise 

production (21). As a result, Germany is set to miss its 2020 emissions target.  

 

In California, despite a 24%, 14% and 13% decline in GHG emissions from the electricity 

consumed by the commercial, residential, and industrial sectors respectively between 1990 and 

2015, 2015 GHG emissions levels were still 2% higher than 1990 levels due, in part, to 

increased GHG emissions from transport and agriculture (22). In fact, California’s ambitious 

renewable energy program notwithstanding, the state ranked second in CO2 emissions (only 

behind Texas) in the U.S. in 2015 2015 (23).  

 

In Australia, there has been a consistent increase in GHG emissions for three years running due 

to 3.4%, 3.8% and 3.9% annual increases in non-renewable electricity generation in recent 

years (24). 

 

Worsening vulnerability and poverty 

Increases in renewable electricity can enhance some aspects of vulnerability, creating so called 

political economy “losers.” In contrast to the employability positives given above, one source 

is the job losses associated with the displacement of coal, natural gas and oil (due, in part, to 

the non-transferability of skills) (25). While job losses might in theory be offset by job gains 

in the renewables sector, diligent planning may be required to ensure such an outcome. 

Moreover, others have shown that job losses can be quite localized given that fossil fuels and 
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renewables do not typically occupy the same space (26). Additionally, there have been 

increased costs incurred by residential households in the renewable energy market.  

 

In Germany, for instance, the exemption of privileged electricity consumers (industries) in 

2015 from the German Renewable Energy Act EEG surcharge of 4.8 billion euros (107 TWh 

in electricity terms) increased the energy burden of other electricity consumers, particularly 

private households with energy intensive industries in turn, benefiting the most from the merit 

order effect (27).  

 

In California, renewable-energy mandates and its carbon cap-and-trade program have created 

a regressive energy tax resulting in higher household electricity burdens (percent of household 

income spent on electricity bills). One implication of this was that in 2012, 1 million 

households in California faced energy poverty with several counties having household energy 

poverty prevalence rates as high as 15% (28). 

 

In Australia (29), despite being a relatively new and marginal source of electricity, complaints 

have raised concerns about the equity of landowners and contracts for hosting wind farms. 

When contracts are perceived as unfair, social consequences can be severe, both in terms of 

fracturing support for the wind farm within the community as well as dividing the community 

in economic terms. There has also been concerns arising from consumers in Victoria paying as 

high as 21% more on average for energy (19). 

 

Policy implications  

Don’t get us wrong. Expanding renewable electricity in most if not all countries is the right 

choice, especially when one considers the seriousness of climate change and the monumental 
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and mounting costs of fossil fuels. There is also growing, compelling evidence that we can 

accelerate transitions in ways unimaginable a few decades ago, and acknowledgement that 

transitions are non-linear and can produce surprises and manifest unintended consequences 

(30). To this end, we propose three suggestions for future developments.  

 

First, a sequential displacement model for the low-carbon energy transition offers opportunities 

to address justice concerns while acclimatizing to renewables (see Fig. 2). Rather than 

disruptive policies implemented without sensitivity to vulnerable groups, a sequential 

displacement can achieve significant CO2 reductions while reducing electricity bills. For 

instance, it could capitalize on the benefits of natural gas and energy efficiency while moving 

more gradually to renewables while they continue to improve and become more affordable. 

Acknowledging the inherent geopolitical tensions its use creates, natural gas may offer an 

attractive initial displacement for coal (with significant environmental benefits), especially 

when its availability is within reach and methane leakage is controlled (31).  Coupling these 

supply-side transitions with stronger demand-side programs to help retrofit houses and deploy 

more efficient-energy devices can prevent electricity bills from rising (32). Moreover, 

subsidising energy-efficiency initiatives especially for the poor and vulnerable and providing 

ample time for households and businesses to accrue significant savings may be a powerful 

motivator of broad support for subsequent transition initiatives. 

 

Secondly, reconfiguring the existing energy landscape rather than an overhaul can achieve 

decarbonization as well as stability in the electricity sector. Greater hybridization between 

dominant carbon intensive energy systems and emerging innovations in storage and 

digitization (33) can support low-carbon energy transitions. For instance, the careful 

decoupling of coal power stations could begin with the integration of coal with carbon capture 
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and sequestration (CCS) or with closed-loop biomass (see Fig. 3). High initial investment costs 

notwithstanding, the reconfigured energy systems still ensure that (1) any necessary electricity 

cost increment is not detrimental to consumers, (2) job losses (especially associated with non-

transferrable skills) can be effectively minimized and adequately compensated, (3) system 

stability can be maintained, and (4) significant CO2 emissions can still be achieved.  

 

Finally, consumers still offer great potential for significant energy demand reduction in low-

carbon energy transitions. As one tool to engage the consumer as a low-carbon agent, smart 

meters coupled with time-of-use tariffs, solar PV, and mobile (i.e., electric cars) and stationary 

storage – along with the suite of initiatives that support them – can facilitate both reductions in 

household consumption and an expansion of low-carbon supply. Similarly, the effective 

utilization of wind and solar can be enabled by the direct load control (DLC) of heating, 

ventilation, and cooling, and the bidirectional charging of electric vehicles.  

 

Conclusion  

Although critical of renewable energy policies and practices to some degree, we have not 

sought to dismiss the ambition of the low-carbon energy transition. Rather, our criticisms have 

a target in mind: create more equitable, egalitarian, and pro-poor low-carbon transition policies. 

Considering the likely irreversible momentum of variable renewable energy (34), we advise 

caution and a more people-centric approach. In formulating decarbonization pathways, 

policymakers must critically evaluate such policies to ab initio pre-empt likely and potential 

fall-outs and provide commensurate compensation for “losers”.  

 

Admittedly, our paper is the product of an international scan of renewable energy policies and 

data by experts in the field, identifying some common and concerning trends. It is not a 



10 
 

modeling exercise with simulated counterfactuals or matched treatments and controls, but there 

is an underlying literature that the authors draw on and have contributed to, which provides 

robustness to our interpretations 

 

While it may be infeasible to exhaustively determine unintended consequences of low-carbon 

energy transition pathways, fall-outs we contend must not emanate from irrational or short-

sighted decisions. This we conclude is necessary in facilitating a just, result-oriented, and 

sequential low-carbon energy transition, one that does not cut carbon at the cost of the most 

vulnerable members of society.  

 

Acknowledgments  

This work was partially funded by the NRF-TWAS (UID: 105474) and the Brook Byers 

Institute for Sustainable Systems at the Georgia Institute of Technology. 

 

References 

1. Fraunhofer ISE (2018), Net installed electricity generation capacity in Germany. Available 

online at: https://www.energy-charts.de/power_inst.htm  

 

2. EIA (2018) ‘Electric Power Monthly, May 2018’, U.S. Energy Information Administration, 

U.S. Department of Energy, Washington D.C. 20585. Available online at: 

https://www.eia.gov/electricity/monthly/current_month/epm.pdf  

 

3. I. Penn and R. Menezes, Californians are paying billions for power they don’t need (2017), 

The Los Angeles Times, http://www.latimes.com/projects/la-fi-electricity-capacity/ 

 



11 
 

4. Finkel, A. et al (2016), Independent Review into the Future Security of the National 

Electricity Market: Preliminary Report, Commonwealth Government Publication, Canberra. 

 

5. Weber, G. and Cabras, I. (2017), The transition of Germany's energy production, green 

economy, low-carbon economy, socio-environmental conflicts, and equitable society, Journal 

of Cleaner Production, 167, 1222-1231, ISSN 0959-6526. 

 

6. Strielkowski, Wadim, Dalia Štreimikienė, Yuriy Bilan, Network charging and residential 

tariffs: A case of household photovoltaics in the United Kingdom, Renewable and Sustainable 

Energy Reviews, 2017, 77: 461-473. 

 

7. REN21. (2018), Renewables 2018 Global Status Report. 

 

8. NASEO and EFI. 2018. U.S. Energy and Employment Report. www.usenergyjobs.org 

 

9. Luke, N. et al (2017), Diversity in California’s Clean Energy Workforce: Access to Jobs for 

Disadvantaged Workers in Renewable Energy Construction. Berkeley: Center for Labor 

Research and Education, Green Economy Program. 

 

10. Employment in Renewable Energy Activities, Australia, 2016-17, Australian Bureau of 

Statistics. 

 

11. Kreuz, S. & Müsgens, F. (2017), The German Energiewende and its roll-out of renewable 

energies: An economic perspective, Frontiers in Energy, 11(2), 126-134, ISSN 2095-1698. 

 



12 
 

12. The World Bank (2018). Energy intensity level of primary energy (MJ/$2011 PPP GDP). 

 

13. International Energy Agency (IEA) (2017). World Energy Balances. 

 

14. EIA (2017). California imports about a quarter of its electricity on average. 

 

15. Ivan Penn. 2018. “After Fiasco, California Tries to Remake Power Grid Again” New York 

Times, pp. B1, B5, https://www.nytimes.com/2018/07/20/business/energy-

environment/california-energy-grid-jerry-brown-plan.html. 

 

16. AEMO (2017). South Australian Electricity Report. 

 

17. Joos, M. and Staffell, I. (2018), Short-term integration costs of variable renewable energy: 

Wind curtailment and balancing in Britain and Germany, Renewable and Sustainable Energy 

Reviews, 86, 45-65, ISSN 1364-0321 

 

18. CAISO (2017). Impacts of renewable energy on grid operations. 

 

19. Malcolm Abbott, Bruce Cohen, Finding a way forward: Policy reform of the Australian 

national electricity market, The Electricity Journal, Volume 31, Issue 6, 2018, Pages 65-72, 

ISSN 1040-6190 

 

20. AEMO (2017). South Australian System Strength Assessment. 

 



13 
 

21. Morton, T. and Müller, K., (2016), Lusatia and the coal conundrum: The lived experience 

of the German Energiewende, Energy Policy, 99, 277-287, ISSN 0301-4215. 

 

22. EIA (2018). California plans to reduce greenhouse gas emissions 40% by 2030.  

 

23. EIA. Rankings: Total Carbon Dioxide Emissions, 2015 (million metric tons) 

 

24. Department of the Environment and Energy, Australian Energy Statistics, Table O, April 

2018. 

 

25. Sovacool, B. K. (2017), Contestation, contingency, and justice in the Nordic low-carbon 

energy transition, Energy Policy, 102, 569-582, ISSN 0301-4215. 

 

26. Renewable Energy Jobs: Future Growth in Australia by Ernst & Young and the Climate 

Council of Australia (2016). 

 

27. Fraunhofer ISE (2018), Recent facts about photovoltaics in Germany. Available online at: 

https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-germany.html 

 

28. Lesser, J. A. (2015), Less Carbon, Higher Prices: How California's Climate Policies Affect 

Lower-Income Residents. New York: Manhattan Institute for Policy Research. 

 

29. 2016 annual report by the office of the national wind farm commissioner to the Parliament 

of Australia.  

 



14 
 

30. Sovacool, B. K. and Geels, F. W. (2016), Further reflections on the temporality of energy 

transitions: A response to critics, Energy Research & Social Science, 22, 232-237, ISSN 2214-

6296. 

 

31. Gilbert A, and Sovacool, B. K. “US Liquefied Natural Gas (LNG) Exports: Boom or Bust 

for the Global Climate?,” Energy 141 (December, 2017), pp. 1671-1680. 

 

32. Marilyn A. Brown, Gyungwon Kim, Alexander M. Smith, and Katie Southworth. 2017. 

“Exploring the Impact of Energy Efficiency as a Carbon Mitigation Strategy in the U.S.” 

Energy Policy, 109: 249-259.  

 

33. Geels, F. W. (2018), Disruption and low-carbon system transformation: Progress and new 

challenges in socio-technical transitions research and the Multi-Level Perspective, Energy 

Research & Social Science, 37, 224-231, ISSN 2214-6296. 

 

34. Obama, B. (2017), The irreversible momentum of clean energy, Science, 0036-8075. 

 

35. Fraunhofer ISE (2018), Annual electricity generation in Germany. Available online at: 

https://www.energy-charts.de/energy.htm?source=all-sources&period=annual&year=all  

 

36. EIA (2018). Electric Power Industry generation by Primary Energy Source back to 1990, 

California. 

 

37. EIA (2017). Electric Power Annual. 

 



15 
 

38. Electricity prices for households in Germany from 2010 to 2017, semi-annually (in euro 

cents per kilowatt-hour), https://www.statista.com/statistics/418078/electricity-prices-for-

households-in-germany/  

39. IEA (2018). Energy Prices and Taxes, Second Quarter 2018, 

http://www.oecd.org/publications/energy-prices-and-taxes-16096835.htm 

  



16 
 

Figure 1: Non-hydro renewable electricity penetration (blue bars) and residential electricity prices  

(black lines) in 2010-2017.  Sources: (1,23,35,36,37,38,39). 

 

Notes: Price data for Australia are published by fiscal year; these are averaged across calendar years in the table 

for consistency across case studies. 
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Figure 2: Sequential displacement decarbonization strategy (VRE – Variable Renewable Energy) 

 

 

Figure 3: Hybridisation decarbonisation strategy 

 

 

 


