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Abstract 12 

Robust ecological assessments are fundamental for effective wildlife conservation. Owing to 13 

the high legal protection of bats, surveys are frequently required as part of ecological 14 

assessments. Yet there is uncertainty about the amount of survey effort that should be 15 

deployed to facilitate bat protection. Bat activity can be extremely variable, and capturing 16 

periods of high activity can be as important as estimating parameters such as the median 17 

activity level.  However the frequency and intensity of surveys required to capture the 18 

required information is unknown. Here we assessed the probability that acoustic surveys of 19 

differing durations would detect periods of high activity within a focal site and the 20 

importance of a site relative to others in a regional or national context. We randomly 21 

subsampled from 660 nights of activity data collected from 33 wind farm sites across Britain. 22 

The minimum surveying effort required to classify bat activity accurately varied between 23 

species and was dependent on weather conditions. We found that the survey periods 24 

required to give reasonable certainty in assessing risk exceeded those currently 25 

recommended in Europe. The approach of using bat activity accumulation curves, as 26 

described here, is transferrable to other situations where determining surveying effort and 27 

risk is necessary to ensure that ecological assessments provide a robust evidence base, 28 

whilst minimising the time and expense of surveys.  29 

Keywords: accumulation curves; bat activity; chiroptera; ecological assessment; risk 30 

assessment; survey design; survey period 31 

 32 

 33 

 34 

 35 

mailto:F.Mathews@exeter.ac.uk


2 
 

 36 

 37 

 38 

 39 

 40 

 41 

1. Introduction 42 

Reliable ecological surveys to assess animal abundance and diversity are fundamental to 43 

wildlife management (Spellerberg 1994). Frequency of occurrence or relative abundance 44 

estimates are often primary outcome measures, being of critical importance for prioritising 45 

areas for conservation status or highlighting those at greatest risk from development 46 

(Araujo and Williams 2000). Given the pressure on ecological consultants to balance the 47 

need for efficient surveying which minimises the expense to their clients whilst ensuring 48 

that effective surveying is conducted, there is a growing reliance on survey guidelines to 49 

impose minimum standards. The need for an evidence-based approach when developing 50 

survey guidelines has been well acknowledged (e.g. Sutherland et al. 2004), yet for many 51 

taxa there is a scarcity of knowledge. 52 

Surveys for bats as part of ecological assessments are frequently conducted, due to their 53 

high legal protection (e.g. Europe, Eurobats 2014; North America, Endangered Species Act 54 

1973) and their importance in providing ecosystem services (Boyles et al. 2011). However, it 55 

is not known if current recommendations about survey duration are adequate, and there is 56 

no established methodology for determining the extent of surveying effort required.  57 

Acoustic surveys to measure bat activity are widely used by commercial ecological 58 

consultants to determine species presence and to quantify the level of bat activity within a 59 

site (e.g. Roche et al. 2011). However, bat activity can show considerable inter-night 60 

variability, being strongly dependent on multiple factors including insect availability, 61 

seasonality, temperature, and wind (Fischer et al. 2009). The statistical power of the survey 62 

to capture, with reasonable precision, periods of high activity (critical when assessing the 63 

risks from developments such as roads or wind turbines), or to allow a robust assessment of 64 

whether activity at a site is significant in a regional or national context, is rarely considered. 65 

The rapid global increase in wind farms has led to extensive pre-construction ecological 66 

assessments in efforts to assess risk to wildlife, yet they are relatively ineffective at 67 

identifying collision threat to bats (Lintott et al. 2016a). It may be that pre-construction 68 

acoustic surveys are not of sufficient duration to capture inter-night variability in bat 69 

activity, and therefore miss periods of high bat activity. Peak numbers of bat fatalities are 70 
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strongly associated with periods of low wind speeds (e.g. Arnett et al. 2008), highlighting the 71 

importance of surveying for a sufficient length of time to account for such variance. Behr et 72 

al. (2017) and Slack and Tinsley (2015) found that bat activity at wind farms varies greatly 73 

depending on wind speed, temperature, and precipitation. Although minimum surveying 74 

standards are adhered to (e.g., in Britain, conducting surveys at sunset temperatures of 10˚C 75 

or above, no rain or strong wind; Collins 2016), it does not necessarily follow that surveys 76 

are conducted during optimal conditions. In addition, bat activity varies spatially.  For 77 

example, in a study of 42 windfarm sites, Mathews et al. (2016) found relatively low levels 78 

of bat activity at certain sites, and high levels at others, regardless of weather conditions. 79 

Establishing survey protocols that permit relative activity to be compared across sites, 80 

correctly categorising those with high and low activity indices, is therefore important.  Given 81 

that field surveys are costly and time-consuming, establishing the minimum effort required 82 

to provide a robust assessment is a pragmatic approach. 83 

The aim of pre-construction surveys at proposed wind farms is to collect robust data to 84 

allow an assessment of the potential impact of the development on bat species using the 85 

area (Hundt 2012). Acoustic monitoring is used to determine i) the species assemblage, and 86 

ii) relative frequency of use by different species (Hundt 2012). This information is used to 87 

assess if permission should be granted to install the development and/or what level of 88 

mitigation is required. The extent and type of mitigation required is species-specific and is 89 

based on vulnerability to mortality and its conservation status. For example, the presence of 90 

a rare and threatened species within a site may be sufficient to require mitigation whereas 91 

for a common species (e.g. Pipistrellus pipistrellus) high bat activity (see Lintott et al. 2018) 92 

is required to trigger any action (Hundt 2012). A sufficient level of acoustic monitoring is 93 

therefore required to detect the presence of rarer species and to quantify the level of 94 

activity of commoner species.  95 

Data from acoustic bat detectors have been used to create species accumulation curves for 96 

an area (e.g. Milne et al. 2004; Skalak et al. 2012). Here, we demonstrate that a similar 97 

method can be used to determine survey effort levels required for robust  ecological 98 

assessments. Using bat activity recorded at wind farm sites across Britain, we outline how 99 

accumulation curves can be used to determine the minimum surveying effort required that 100 

can contribute to assessing risk at a site. We demonstrate how to i) capture with reasonable 101 

certainty periods of high activity within a site, and ii) establish whether bat activity at a site 102 

is significant in a regional or national context.  103 

 2. Methods 104 

2.1 Acoustic monitoring 105 

Acoustic monitoring was conducted at 48 wind farm sites across Britain (23 in England, 16 in 106 

Scotland, and 9 in Wales). The mean numbers of turbines at the study sites was 13 (SD-7; 107 

range 6-45). Surveys were conducted in 2011 (14 sites), 2012 (14 sites) and 2013 (20 sites) 108 
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between July and October each year to coincide with periods of peak bat activity (e.g. Swift 109 

1980; Mathews et al. 2016; Rydell et al. 2010). Acoustic surveys were conducted for a mean 110 

of 29 consecutive nights (SD 6) per site. Bat detectors (SM2BAT and SM2BAT+, Wildlife 111 

Acoustics, Massachusetts, USA), in combination with omni-directional SMX-II microphones 112 

were placed at ground level (~2 m) at the base of three randomly selected turbines at each 113 

site.  In the UK, all wind turbines are placed such that there is a minimum distance of 50 m 114 

between the rotor-swept area and the nearest part of a hedgerow or tree.  Given that the 115 

effective range of the microphone was approximately 30 m (less for some species), this 116 

means that activity at these features would not be recorded, ensuring that valid 117 

comparisons could be made between turbines within and across sites. Bat detectors were 118 

programmed to record from 30 minutes before sunset until 30 minutes after sunrise.  119 

2.2. Bat identification 120 

Bat calls were manually assessed using Kaleidoscope Pro (v.1.1.20, Wildlife Acoustics, 121 

Massachusetts, USA) and classified to species, genus or unknown (as detailed in Mathews et 122 

al. 2016).  The call parameters used to identify species were based on Russ (2012).  A bat 123 

pass was defined as a continuous run of pulses not separated by a time gap of more than 124 

one second (Fenton, Jacobson & Stone 1973). 125 

2.3. Environmental indicators 126 

At each site, weather data [rainfall (mm), wind speed (ms-1), temperature (°C)] were 127 

sampled using an automated weather monitor (Wireless Weather Station N25FR, Maplins, 128 

UK), located central to the site in an open location at ~2 m high. Recordings were taken 129 

every 10 minutes and average, minimum and maximum values were calculated for the same 130 

period that acoustic monitoring occurred (30 before sunset until 30 minutes after sunrise).  131 

2.4 Statistical analysis 132 

Statistical analyses were undertaken in R Studio using R version 2.14.1 (R Core Team 2012) 133 

and the ggplot2 (Wickham 2009) package for graphics. Analysis was conducted at the 134 

species level for three species (Pipistrellus pipistrellus, P. pygmaeus, and Nyctalus noctula) 135 

as these species were recorded in sufficient quantity to support robust analysis. The analysis 136 

included only wind farm sites that contained a minimum of 20 nights of static detector 137 

recordings and where at least one pass was recorded for each species. Only nights where 138 

static detector recording occurred at all three turbines were selected; this eliminated nights 139 

where at least one detector failed due to technical issues. Surveying effort was assessed for 140 

i) all nights of static detector deployment, and ii) those which were classified as meeting 141 

minimal weather conditions as specified in best practice guidelines (Collins et al. 2016; 142 

sunset temperature ≥ 10°C, ground level wind speed ≤ 8m s-1 and average rainfall ≤ 2.5mm 143 

hr-1). 144 

2.4.1 Surveying effort required to capture peaks of high activity within a focal site 145 
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For each wind farm site and species, the nightly activity was ordered and the value at the 146 

70th percentile was taken to represent the threshold between moderate and high activity 147 

(i.e. top 30% of activity; following Lintott et al. (2018). The choice of cut-off point is, to some 148 

extent, arbitrary and another value such as 25% may be appropriate in other cases.  Here it 149 

was based on discussions with practitioners and policy-makers about values they considered 150 

suitable to define ‘high’, ‘medium’ and ‘low’ activity). The maximum activity recorded at any 151 

one of the three turbines was taken to represent the highest level of normal activity at the 152 

site. For each site, one night was randomly selected and assessed to determine whether it 153 

was classified as having ‘high’ activity or not, depending on whether it crossed the 70th 154 

percentile threshold.  A 2nd night was then selected from the remaining dataset. Both the 1st 155 

and 2nd nights of activity were then assessed to determine if at least one night of activity 156 

would be classified as containing high activity. This sequence was continued for 20 nights of 157 

sampling. This sequence of sampling (1 to 20 nights) was run for 100 iterations to ensure 158 

that stochastic variability was accounted for. For each night and site, the number of 159 

occasions where high activity was detected out of the 100 iterations was calculated. We 160 

based our recommendations for surveying effort on a minimum of 80% of occasions where 161 

high activity was detected (a common threshold used in power analyses, Cohen 1992).   162 

2.4.2 Surveying effort required to determine the importance of a site relative to others in a 163 

regional or national context  164 

In this analysis we ordered the nightly activity for all wind farm sites together and calculated 165 

the bat activity level at the 70th percentile, in order to define ‘high’ activity in the context of 166 

all locations. We then excluded any sites which did not have at least one night of high 167 

activity where high activity was defined as the top 30% of activity across all sites (i.e. >70th 168 

percentile). We then assessed the level of surveying effort required at each individual site 169 

for it to have been correctly classified as containing high activity following the same method 170 

as described in 2.4.1. 171 

3. Results 172 

A total of nine bat species were recorded across the 48 sites, with P. pipistrellus, P. 173 

pygmaeus and Myotis spp. being present at most sites within their range (Table 1).  174 

3.1. Surveying effort required to capture periods of high activity within a focal site 175 

The surveying effort required to provide a reasonable probability of detecting nights of high 176 

activity varied by species. There were 33 wind farms that contained a minimum of 20 nights 177 

of activity data for P. pipistrellus (660 nights of activity data in total) and 10 sites which had 178 

at least 20 nights of ‘good’ weather. A minimum of five nights of surveying was required to 179 

reach a 0.80 probability of correctly detecting nights of high activity within a site; and this 180 

decreased to four nights for sites which had good weather (Figure 1A).  181 
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For P. pygmaeus there were 31 wind farm sites which contained a minimum of 20 nights of 182 

bat activity data, and 10 sites where sufficient acoustic monitoring could be conducting 183 

during periods of suitable weather. A minimum of seven nights of surveying was required to 184 

reach a 0.80 probability of correctly detecting nights of high activity within a site, this 185 

decreased to five nights for sites which had good weather (Figure 2A).  186 

For N. noctula there were 22 wind farm sites which contained a minimum of 20 nights of bat 187 

activity data, and eight sites where sufficient acoustic monitoring could be conducted during 188 

periods of suitable weather. A minimum of 12 nights of surveying was required to reach a 189 

0.80 probability of correctly identifying nights of high activity across all sites and for sites 190 

which had a sufficient number of nights of good weather (Figure 3A).    191 

3.2 Surveying effort required to determine the importance of a site relative to others in a 192 

regional or national context 193 

For P. pipistrellus, eight nights of data were required to classify a site as containing ‘high 194 

activity’ correctly, this decreased to four nights for sites which had good weather (Figure 195 

1B). For P. pygmaeus, eight nights of surveying were necessary decreasing to six nights 196 

during surveying periods containing sufficient good weather (Figure 2B). For N. noctula, 12 197 

nights were required.  For this species, the results were very similar (although much larger 198 

confidence intervals) when only assessing nights of good weather (Figure 3B).  199 

4. Discussion 200 

Evidence-based approaches to develop survey guidelines are required to ensure that 201 

ecological practitioners can survey both efficiently and effectively. Acoustic monitoring is 202 

widely used as the evidence base for determining whether a development poses a risk to 203 

bat populations (Hundt et al. 2012). Although the extent of survey effort to determine 204 

species composition has previously been investigated (e.g. Skalak et al. 2012), here we 205 

demonstrate that accumulation curves can be used to determine the minimum surveying 206 

effort required to classify bat activity in a meaningful way.  207 

Current British guidance for undertaking bat surveys recommends that data should be 208 

collected on five consecutive nights per season in appropriate weather conditions (Collins et 209 

al. 2016). However, we found it may take up to 12 nights of surveying to estimate N. noctula 210 

activity reliably. Given that N. noctula is perceived to be at high collision risk at wind farms 211 

(Mathews et al. 2016), present recommended surveying effort is probably insufficient to 212 

capture periods of peaks of activity.  213 

The surveying effort to classify a site correctly was generally reduced when surveying under 214 

good weather conditions. Higher bat activity occurs during warmer, dry nights, with low 215 

wind speed (e.g. Wolbert et al. 2014) meaning that accurate impressions of maximum 216 

foraging activity are likely to be derived more quickly. Additionally, for N. noctule the 217 

surveying effort to capture periods of high activity did not vary with weather conditions. 218 
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This may be explained by its foraging activity: during warm nights foraging activity is spread 219 

out throughout the night whereas at low temperatures foraging activity is intensified shortly 220 

after sunset (Rachwald 1992). In both these scenarios, similar levels of bat activity would 221 

have been recorded but over different time frames.  222 

Bat activity at a study site can be contextualised against other records of nightly bat activity 223 

detected in the surrounding landscape to provide a quantitative assessment of whether a 224 

site contains ‘high’ levels of bat activity. We show that the surveying effort required to 225 

correctly classify sites containing high activity is greater than that for capturing periods of 226 

high activity within a site, particularly for P. pipistrellus with an additional three nights of 227 

surveying required to accurately classify a site as containing ‘high activity’ (relative to 228 

comparable sites). Given that P. pipistrellus appears to be a habitat generalist (Davidson-229 

Watts et al. 2006), is influenced at both local and landscape scales by anthropogenic 230 

pressure (Lintott et al. 2016b), and is responsive to environmental variables (e.g. 231 

temperature; Maier 1992) it is very difficult to predict their activity levels at a site 232 

accurately. Our results illustrate that a precautionary approach to the extent of surveying 233 

effort required. Given that up to five nights of surveying effort are needed to detect the 234 

presence of ‘common’ species (Skalak et al. 2012), it is unsurprising that additional 235 

surveying effort is necessary to capture the temporal variation in bat activity.  236 

In this study we only analysed the three most frequently recorded bat species as there were 237 

insufficient records available for other taxa. For these under recorded species additional 238 

survey effort would be required, for example, Mathews et al. (2016) found that it took ten 239 

nights to confirm Barbastella barbastellus presence at wind farm sites. Therefore assessing 240 

risk to bat populations using bat activity is only practically possible with common species 241 

where sufficient passes are recorded between sites to allow for accumulation curves to be 242 

constructed. When assessing risk to bats from proposed wind farm sites it is important that 243 

seasonality is accounted for to ensure that surveys are conducted at periods of peak bat 244 

activity (generally July to September in Europe; Mathews et al. 2016). If surveying is 245 

conducted outside of peak periods than potential risk can not be fully determined, 246 

regardless of surveying effort. It is also worth noting that a variety of methods, including 247 

walked transects and vantage point surveys, can be used to complement the information 248 

gained from static detectors to assess risk.  249 

Nonetheless, bat activity accumulation curves can be used to provide evidence for 250 

determining minimum surveying effort within guidance document for common bat species. 251 

We based our recommendations for surveying effort on a minimum of 80% occasions where 252 

high activity was detected as this is a threshold commonly used in power analyses (Cohen 253 

1992). However, altering this threshold will adjust minimum survey effort levels. We 254 

therefore welcome the input of practitioners in suggesting an appropriate cut-off level to 255 

form accumulation curves. There is a delicate balance between recommending sufficient 256 

surveying effort to assess risk with sufficient accuracy, and the time and expense of 257 
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undertaking additional nights of surveying. Bat activity accumulation curves can inform 258 

where this threshold is placed for common bat species, and therefore eliminate the 259 

subjective nature of recommending minimum levels of surveying effort. The approach 260 

described here is transferrable to other situations where determining surveying effort to 261 

assess risk is necessary, for example road (Abbott et al. 2015) and housing developments. 262 

The usefulness of accumulation curves, however, is dependent on there being a suitable 263 

database of bat activity available from which accumulation plots can be compiled. Data is 264 

more likely to be readily available for common bat species rather than rarer species which 265 

are recorded infrequently. The creation of centralised data repositories in some areas (e.g. 266 

Adams et al. 2015, North America; Lintott et al. 2018 www.ecobat.org.uk UK; 267 

www.vleermuiskasten.nl, Europe) might provide sufficient information to allow this to occur 268 

for a wider range of bat species. The useful of accumulation curves is therefore dependent 269 

on ecological practitioners and policymakers supporting the progression to an open data 270 

society where shared data can be used to make effective conservation decisions whilst 271 

minimising the risk to wildlife.   272 
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 363 

 364 

Table 1. The number of sites surveyed within each species’ range and a summary of the number of 
bat passes recorded.  Turbine nights is the sum of all nights of survey effort at each site.  
 

Species No. sites in 
range (% 
sites spp. 
detected 
within range) 

Total 
Passes 

Count of 
turbine 
nights 

Max 
passes 
per 
night 

Mean 
number 
of passes 
per night 

Barbastella barbastellus 25 (36) 95 2,156 6 0.06 

Myotis spp. 48 (88) 3,527 3,897 88 0.93 

Nyctalus noctula 37 (89) 6,783 3,073 272 2.30 

Pipistrellus nathusii 42 (88) 1,156 3,453 91 0.36 

Pipistrellus pipistrellus 48 (98) 138,033 3,897 3,324 36.60 

Pipistrellus pygmaeus 46 (96) 28,515 3,771 813 7.86 

Plecotus spp. 48 (79) 736 3,897 27 0.20 

Rhinolophus ferrumequinum 11 (55) 6 966 2 0.01 

Rhinolophus hipposideros 13   (8) 11 1,140 2 0.01 

 365 
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 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 
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  376 

Figure 1. Surveying effort required to A) capture periods of high activity within a site, and B) 377 

correctly classify whether a site contains at least one night of high activity relative to 378 

comparable sites for P. pipistrellus. Datapoints have been offset for clarity.  379 

 380 

Figure 2.  Surveying effort required to A) detect periods of high activity within a site, and B) 381 

correctly classify whether a site contains at least one night of high activity relative to 382 

comparable sites for P. pygmaeus. Datapoints have been offset for clarity. 383 

 384 

 385 



13 
 

 386 

Figure 3.  Surveying effort required to A) detect periods of high activity within a site, and B) 387 

correctly classify whether a site contains at least one night of high activity relative to 388 

comparable sites for N. noctula. Datapoints have been offset for clarity. 389 

 390 


