This is the accepted version of a paper published in <u>Environmental Science: Water Research</u> and Technology

The published version can be accessed at:

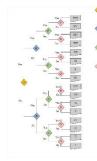
https://pubs.rsc.org/en/content/articlelanding/2019/ew/c8ew00707a/unauth#!divAbstract

The DOI:

DOI 10.1039/C8EW00707A

Assisting global rainwater harvesting practitioners: a decision support tool for tank sizing method selection under uncertainty

D. Vargas¹, I. Dominguez¹, S. Ward^{2*}, E.R. Oviedo-Ocaña¹


Escuela de Ingeniería Civil
 Facultad de Ingenierías Físico-mecánicas
 Universidad Industrial de Santander
 Carrera 27 Calle 9, Bucaramanga, Colombia

2) Centre for Water, Communities and Resilience
Department for Geography and Environmental Management
Faculty of Environment and Technology
University of the West of England, Bristol
Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY

* Corresponding author: sarah10.ward@uwe.ac.uk

Table of contents entry

For the first time, a Decision Support Tool has been produced that assists global rainwater harvesting practitioners in selecting an appropriate tank sizing method

Anote muchanize of the set o

No has detailed be encourses, standing to the outside.
 No has an experimental standing to the course of the section of the section

1 Abstract

2 Rainwater harvesting (RWH) tank sizing can be an onerous task due to the range of available 3 methods. This paper presents a simple, yet robust, end-user and design criteria-focused decision 4 support tool, based on a comparison of 12 well established methods across four types (simplified, 5 mass balance continuous simulation, cost-function and statistical). Each method was applied to 6 two example households located in Bucaramanga, Colombia and considered uncertainty through 7 integrated representation of demand variability, climate change, overflow and financial scenarios. 8 Quantitative and qualitative criteria were used to assess the performance of each method. Based 9 on the summation of these criteria, a diversified approach constituting mass balance simulation, 10 cost-function and probabilistic methods was most suited to RWH tank sizing for houses in 11 Bucaramanga. Global RWH practitioners now have a decision support tool to assist in selecting 12 the best tank sizing approach for their context.

13

14 Keywords: Rainwater harvesting, Storage tank, Tank sizing, Decision Support Tool

15

16 Water Impact Statement

Rainwater harvesting (RWH) tank sizing methods differ in complexity and data requirements,
making selection for a particular context difficult. Over or undersized tanks have financial and
performance implications. We present a decision support tool that simplifies method selection to
assist global practitioners in designing best-fit RWH systems.

21

23 **1. Introduction**

24 Rapid population growth, urbanization and climate change in the world have led to an increase in water demand for potable and non-potable uses ^{1, 2}. This increase creates pressure on centralized 25 26 supply systems and has catalyzed interest in alternative approaches to ensure water provision. 27 Rainwater harvesting systems (RWH) are alternative water sources or decentralized management options ^{1,3}. RWH consists of collecting, storing and treating rainwater from rooftops and terraces 28 29 ¹ and has emerged as a financially feasible alternative, especially for non-potable uses, such as flushing toilets, washing clothes, cleaning and watering gardens ^{1, 2, 4}, leading to a reduction in 30 water consumption from centralized supply systems. Santos and Taveira-Pinto⁵ indicate that RWH 31 32 systems are important to reduce urban water consumption and increase their efficient use.

RWH system configuration depends on several parameters such as climatic conditions, design objectives, catchment area, rainfall patterns, rainwater tank capacity, capture efficiencies and size of first-flow diverters ^{2, 6, 7}. A critical point in designing domestic RWH systems is the size of the storage tank. According to Campisano, et al. ¹, it is necessary to reconcile objectives that are often in conflict (i.e. maximize water savings, maximize rainwater tank emptying to control drainage, minimize costs). Therefore, analysing the sizing of rainwater tanks is essential to optimize their operation and increase benefits and effectiveness ⁵.

In the last twenty years, different methods have been suggested for sizing RWH tanks¹,
whose approaches vary in complexity, precision and context, which has generated criteria
disparity. Sizing methodologies can be grouped into four categories: i) Simplified methods, ii)
Methods of continuous simulation of mass balance, iii) Cost-function methods, and iv) Statistical
methods (probabilistic) with parametric and nonparametric approaches.

The simplified methods are a set of basic procedures, which allow a preliminary sizing of a storage tank. These methods are recommended for small-scale systems with uniform water demand ⁸, and are used when financial considerations are not a priority ⁹. These simplified methods are commonly found in handbooks, standards or technical specifications ^{8, 10-14}.

Sizing methods based on continuous simulations of mass balance track the system inputs and outputs, allowing to define the water volume to be stored according to supply and demand flows. For Campisano, et al. ¹, these models depend basically on: a) a behavioural model to represent rainwater demand pattern, b) a rainwater inflow model to represent water provision, and c) a calculation module to simulate tank mass balance. The continuous simulation models assess system's performance by calculating efficiency, which is defined as the ratio between the amount of rainwater used and the non-potable water demand ¹⁵. This type of procedure incorporates the possibility of simulating under different time intervals, which is an advantage, since it allows monitoring different variables and integrating seasonality inputs and outputs. Two fundamental methods have been identified: Yield After Spillage (YAS) and Yield Before Spillage (YBS) ¹⁶. Furthermore, additional balance equations have been proposed, such as the Rippl method and the method suggested by Ghisi and Marcel ¹⁷.

The models found in the literature are diverse, some use the YAS balance algorithm ¹⁸⁻²²,
the YBS algorithm ²³⁻³⁰, intermediate models between YAS and YBS ^{7, 19, 31, 32}, and other authors
use different mass balance equations ^{5, 33-43}.

64 Rainwater tank sizing can also be addressed considering aspects of costs and financial feasibility. López-Patiño, et al.⁹ proposed a method based on return maximization of potable water 65 savings by sizing from water balance equations. Likewise, Liaw and Tsai⁴⁴ developed a model 66 67 based on a cost optimization function for pre-stablished values of reliability, catchment area and 68 tank volume. Chiu, et al.⁴⁵ generated a model for the city of Taipei, in which they studied system's 69 optimization through the financial feasibility of potable water savings and energy. Other authors have calculated size optimization by the minimization of functions, for instance: Campisano and 70 Modica⁴⁶ minimized the Present Value of system costs using regressions that included a 71 dimensionless parameter and the simulation under the YAS equation; Pelak and Porporato ⁴⁷ 72 73 minimized total costs by using a model that describes rainfall as a *Poisson* parametric process and incorporates fixed and distributed costs, and Okoye, et al. ⁴⁸ proposed a model based on linear 74 75 programming to minimize the Net Present Value of the total construction costs of rainwater tanks 76 and water purchases.

77 On the other hand, methods for sizing rainwater tanks supported on probabilistic, stochastic 78 and regressive procedures have been increasingly used. These methods incorporate climate change variables, considering extreme events of rainfall and drought ⁴⁹. In these methods the probability 79 80 of rainfall occurrence is analysed, and becomes the input variable to continuous simulation models 81 of mass balances. There are several studies that consider this probabilistic approach in rainwater tank sizing ^{6, 50-55}. Other authors have applied correlation models, such as Hanson and Vogel ⁵⁶, 82 83 who used a multivariate ordinary least squares (OLS) regression to generalize the storagereliability-yield (SRY) relations. Andrade, et al. ⁵⁷ studied the relevance of hydrological variables 84

in water savings efficiency, through a multivariate statistical study that included a canonicalcorrelation analysis.

87 Although there are different methods for sizing rainwater storage tanks, there is no consensus on the most effective method required in a particular context of water availability and 88 demand. Santos and Taveira-Pinto⁵ in Portugal, contribute to the analysis of sizing rainwater 89 90 storage tanks by using six methods that included simplified procedures and continuous simulation 91 models of mass balances. In this paper, 12 methods from the four categories (i.e. simplified, 92 continuous simulation models of mass balances, cost-function and probabilistic) were assessed 93 using quantitative and qualitative criteria in order to develop a tank sizing method selection 94 decision support tool (DST) based on end-user and design criteria. To develop the DST, two 95 residential houses with low (sector A) and high (sector B) water consumption from a developing 96 country context (Colombia) were used as a case study.

97

98 2. Materials and methods

99 To develop the Decision Support Tool, example houses and established methods required100 identification, in order to compare sizing technique results.

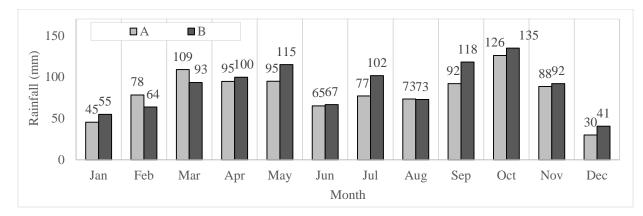
101 **2.1 Study cases**

102 The sizing methods for the rainwater storage tank were applied to two houses located in 103 Bucaramanga (Colombia). The houses are defined by low (130 litres per capita per day -lpcd) and 104 high (203 lpcd) water consumption, named A and B, respectively. Table 1 presents the general 105 information of the two houses.

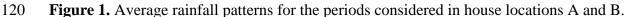
107 **Table 1.** Characteristics and design parameters for house types A and B.

Characteristic/Design perameter	Units	А	В
Characteristic/ Design parameter	Units	A	D
Socioeconomic stratum ¹	-	1	6
Number of floors	-	2	2 + Attic
Inhabitants per household (U)	(inhabitants/ household)	5	4
Total built area	(m ²)	48	216
Roof area (A)	(m ²)	30.5	101
Roof material	-	Asbestos-cement	Spanish clay
Runoff coefficient (C)	-	0.9	0.9
Filter efficiency (IJ)	-	0.9	0.9
Maximum number of storage days (N)	(days)	25	25
Initial storage volume	(L)	0	0

Average annual rainfall (P)	(mm/year)	974	1053
Rainfall data resolution	-	Daily	Daily
Analysis period	(years)	25	15
Mean temperature	(°C)	25	25
Potable water consumption	(lpcd)	130 ±61	203 ±84
Percentage of water consumption for non-potable uses	(percentage of potable water consumption)	Watering plants: 2.6% House cleaning: 4.8% Laundry: 12%	External tap: 3.4% Internal tap: 5.5% Laundry: 27%
Average non-potable water demand (C_{AE})	(lpcd)	9212	26617

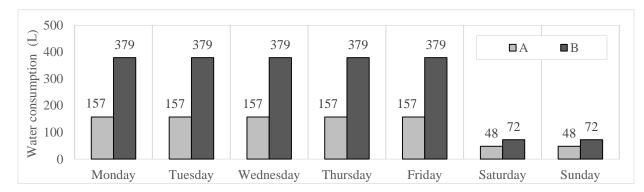

108 Notes: ¹Stratum 1 and 6 represent the households with the lowest and highest income, respectively.

109 Sources: House A ⁵⁸; House B ⁵⁹


110

Rainfall records were taken from the meteorological network of stations from the Institute of Hydrology, Meteorology and Environmental Studies of Colombia (IDEAM), selecting the stations closest to each study site (500 meters for A and 2000 meters for B). The information has a daily temporal resolution with 25 years of records for A and 15 years for B. The rainfall regime in both cases was bimodal, with two rainy and two dry periods during the year (Figure 1). The driest months are December, January and February, and to a lesser extent, June, July and August, while the rainiest months extend from March to May and September to November ⁶⁰.

119



Regarding end-uses, people expressed their willingness to use rainwater for irrigation, house cleaning and laundry in the case of A 58 , and laundry (washing machine and sink), external tap and internal tap in the case of B 59 . In this study, toilet flushing was not considered as rainwater use,

because the formerly designed systems used treated greywater for this purpose. In the existing design, a 500-liters storage tank was proposed for A 58 , and a 2000-liters for B 59 .

127 To apply the different sizing methods, demand patterns were considered on a daily scale 128 (Figure 2). These patterns were proposed based on consumption percentages obtained from 129 national regulations ⁶¹ and from previous studies ^{58, 59, 62}. To obtain a weekly water consumption 130 pattern for each house, a percentage of the total demand was estimated for each use and assigned, 131 taking into account the frequency of the associated uses during the week.

132

135

136 **2.2 Application of methods for sizing rainwater storage tanks**

Twelve methods of sizing rainwater storage tanks were applied, according to four proposed categories i) Simplified methods, ii) Methods of continuous simulation of mass balance, iii) Methods with cost functions, and iv) Statistical (probabilistic) methods. The supplementary information provided with this paper expands the explanation of the different methodologies applied according to category. Similarly, criteria used for the calculations is included in the supplementary information.

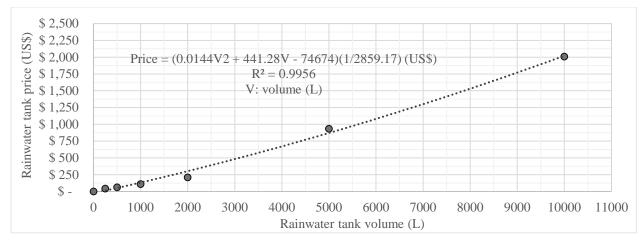
143

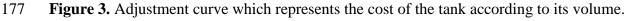
144 **2.2.1 Simplified methods**

In this category, four methods suggested by institutions were applied: a) Portuguese Association
for Quality and Efficiency in Building Services (ANQIP)⁸, b) German Institute for Standardization
(DNI)¹¹, c) Environmental Agency (EA)¹⁰ and d) International Water and Sanitation Centre (IRC)
¹³. These methods are defined by relationships between easily measured variables that were
collected for each case study, and substituted in the corresponding equations. These variables were:

mean multi-annual rainfall, catchment area, inhabitants per household, annual per capita demandand a runoff coefficient.

152


153 **2.2.2 Continuous simulation of mass balance methods**


In this category, five methods were tested: YAS ¹⁶, YBS ¹⁶, theta (θ) ¹⁶, Neptune ¹⁷, and Rippl ³⁹, ⁴⁰. In these methods, changes in water storage in a previously fixed tank volume were selected through mass balance equations ⁴⁴. Except for the Rippl method, for all continuous simulations, system performance was assessed through efficiency for different tank sizes. All the models addressed correspond to continuous simulations performed on a daily scale, differing in the mass balance equation that describes the behaviour of the amount of water stored.

160

161 **2.2.3 Cost functions methods**

162 One method that includes information on system costs was applied. The method is based on 163 maximizing the return on investment on an annual scale from savings obtained by stop using 164 potable water from the conventional system ⁹. A ratio of unamortized investment costs was built 165 according to tank size, which was contrasted against a curve associated to financial savings due to 166 not using public mains water. Two functions were prepared to implement the method. The function 167 of amortized costs was formulated considering the investment costs required for building a system 168 for a defined tank size (Figure 3). To describe this function, a regression model that fits the 169 investment-volume behaviour was used. The function of potable water savings costs was generated 170 using the continuous simulation models YAS, YBS, θ and Neptune. The efficiencies found by the 171 continuous simulations were multiplied by the annual demand, according to the proposed uses, to 172 obtain the amount of water supplied by the RWH system per year. Subsequently, using the unit 173 price of drinking water set by the utility, financial savings due to not using mains water from the 174 utility were estimated.

178

176

179 **2.2.4 Statistical methods**

180 This category comprised two methods: a) Nonparametric stochastic rainfall ⁶; and b) Probabilistic 181 model ⁵³. Both methods used the continuous mass balance equations YAS, YBS, θ and Neptune, 182 since they allow assessing the performance for different tank sizes, but the methods provide a 183 rainfall input provided by statistical methods.

The non-parametric stochastic rainfall generator method described an algorithm for the generation of a stochastic rainfall based on nonparametric techniques. This method uses probabilities to describe rainfall occurrence. However, these are derived directly from local observations, which allowed generating a portable model that works for any historical precipitation period. The tool "Estimation of Storage and Reliability" (in its acronyms SARET) ⁶ was used (See Supplementary Material).

190 For the method based on a probabilistic model, probabilistic relationships between tank 191 capacity and supply deficit rates described by Su, et al. ⁵³ were applied. For this, two steps were 192 followed: i) a simulation model of mass balance, using water balance equations YAS, YBS, θ and 193 Neptune; ii) a probabilistic model, adopting the concept of exceedance probability or return period 194 to study the critical events in which the deficit rates are exceeded. For this, the probability 195 distributions were integrated to generate a graph that describes the deficits based on the tank size 196 for a certain return period. The probabilistic behaviour of the random variables was described by 197 using the normal distribution, as proposed by Su, et al. ⁵³.

- 198
- 199

200 **2.3.** Comparison of the results obtained with the sizing methods studied

201 A comparative analysis was carried out to identify methods with the greatest application potential 202 for sizing rainwater storage tanks. Comparison was based on qualitative and quantitative criteria. 203 To identify qualitative criteria for comparison of the methods, an extensive literature review was 204 carried out. However, a limited number of studies comparing qualitative aspects of sizing methods were identified (i.e. ^{5, 22, 42, 63}). Consequently, gualitative criteria for comparison resulted from 205 206 discussions among the group of authors. Six qualitative criteria were selected: conceptual 207 robustness, associated to the theoretical development of the methods; synergy, linked to the 208 potential of methods to join and improve results; predictive ability, based on the inclusion of future 209 challenges and threats; variability in multiple simulations; information level required; and easiness 210 of application. Quantitative comparison was based on the tank volumes obtained using the 211 different sizing methods for all the efficiencies with 5% increments (see Tables 2 and 3). 212 Qualitative comparison also included the results obtained for volumes with 65% of the maximum 213 efficiency, since it is considered, this efficiency avoids tank oversizing. A proposal of the method 214 that best fits the conditions of the study context is suggested, based on the quantitative and 215 qualitative comparison between the methods.

216

217 **2.4.** Proposal of a decision support tool to assist in the selection of sizing methods

A decision support tool to assist in the selection of the tank sizing methodology was proposed. It was developed based on the improved understanding of the methods, as a result of their application in the two case studies. Selection criteria to initiate the DST were design objectives, information requirements and the practitioner's knowledge. The DST comprises a flow diagram where the input data are the design objectives and the available information of the context and the output is a recommended tank sizing method.

224

225 **3. Results and Discussion**

226 **3.1 Application of the methods for sizing the storage tank**

Volumes obtained from the application of each method to A and B are presented in Table 2 and 3,
respectively. A relation between tank capacity and efficiency (i.e. if required by the method) for
the methods is presented.

230 Simplified methods have the advantage of allowing quick and simple sizing using basic, 231 annual and easily accessible information. However, these procedures are limited to small-scale 232 projects where demand is approximately uniform over time (i.e. multifamily housing, offices, 233 commercial and industrial buildings of small or medium size). These methods have disadvantages. 234 For instance, they do not consider patterns of rainfall and demand at a resolution better than annual (i.e. monthly, daily, hourly). Tables 2 and 3 show that ANOIP⁸, DNI¹¹ and EA¹⁰ methods resulted 235 236 in larger volumes compared to continuous simulations of mass balance methods, providing values 237 close to those with efficiencies of 50% and 70% for A and B respectively, while the IRC method 238 ¹³ yielded lower values. The first three methods generated similar tank sizes due to an empirical coefficient (Z_i, see Supplementary Material), which depend on the method, even though their 239 240 values are similar across methods. This coefficient is a percentage applied to the volumes collected and demanded annually. In ANQIP⁸, Z_i is associated to retention days; in IRC¹³, Z_i is linked to 241 climatic zone and design objective. For the two remaining methods $^{10, 11}$, Z_i is empirical. On the 242 243 other hand, unlike the first three methods, the fourth does not choose the minimum value between 244 supply and demand, which could lead to tank oversizing, in situations of significant rainfall and 245 low demand.

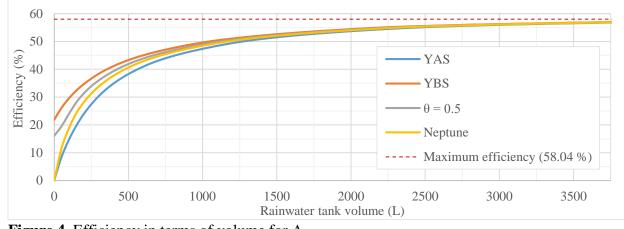
246 The continuous simulation of mass balance methods are detailed procedures that allow 247 monitoring the tank status during a certain period. These methods have ability to include temporal 248 variability to any time interval, as long as rainfall records and demand patterns are available for a 249 desired temporal resolution. These methods, with the exception of Rippl, analyse system behaviour 250 through efficiency for different tank capacities, allowing users to decide on the desired 251 performance. Data from Tables 2 and 3 show that not always an increase in tank volume results in 252 a remarkable increase in efficiency. The behaviour resembles an asymptotic growth limited by 253 maximum efficiency (i.e. defined as the ratio between the volume of rain stored in such a large 254 tank – all the rain is harvested - and the general demand) (Figures 4 and 5). If required, maximum efficiency can be understood as the average of the input ratios (AR/D)⁶⁴, computed for each year, 255 256 where A is the roof area, D annual demand, and R annual rainfall. The maximum efficiency can 257 also be defined as the ratio between the volume of rain stored in such a large tank – all the rain is 258 harvested - and the general demand.

From Tables 2 and 3, it is observed that YAS is more conservative, YBS less conservative, while $\theta = 0.5$ and Neptune provide intermediate values. YBS and $\theta = 0.5$ do not need a tank for 261 small efficiencies, which could be inadequate. The Rippl method only provides a single result, 262 corresponding to the water surplus required to be stored during rainy season to counteract drought. 263 For this reason, Rippl could lead to tank oversizing. The result of Rippl for A was greater than 264 volumes corresponding to the maximum efficiency volumes obtained with the continuous 265 simulation of mass balance methods. Opposite results were obtained in B. Understanding this 266 behaviour facilitates selecting the method when looking to supply the total demand. This is due to 267 the supply-demand relationship measured by the average of the annual input ratios (AR/D) of the 268 system or the maximum efficiency, which is lower for A (0.5804) than for B (0.899). In other 269 words, if AR/D is close to cero, this means that the proposed system allows capturing a small 270 volume of rainfall with respect to what is demanded, Rippl will probably result in greater 271 oversizing compared to the other continuous simulation of mass balance methods. In the opposite 272 situation, when AR/D is close to one, this means the proposed system allows capturing a significant 273 volume of rainfall with respect to what is demanded. Thus, the continuous simulation of mass balance methods will probably result in greater oversizing compared to the Rippl. 274

Monod Network ON 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 57% SR.04% mail DNI (M2) EX F< F	Group		Method							Efficie	ency (%)						Max.
number of the second	Group			0%	5%	10%	15%	20%	25%	30%			45%	50%	55%	57%	58.04%
υσο στο στο στο στο στο στο στο στο στο σ	ed																
υσο στο στο στο στο στο στο στο στο στο σ	lifi		. ,		1444												
υσο στο στο στο στο στο στο στο στο στο σ	imp																
9000000000000000000000000000000000000	Ň]	IRC (M4)								52	7					
Top NA	of se			0	27	61	102	153	214	294	404	563	818	1274	2442	4041	10890
Top NA	on o lanc		YBS (M6)	0	0	0	0	0	36	107	208	356	599	1047	2202	3808	10711
Top NA	lati ba	θ	= 0.5 (M7)	0	0	0	0	56	111	177	276	425	668	1118	2273	3872	10728
Top NA	Con mu tass	Ne	eptune (M8)	0	18	41	72	110	158	229	328	477	721	1171	2326	3911	10748
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N SI	R	Rippl (M9)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19326
Image: Neptune Associated with an annual profitability of 18.62 (USS) and an efficiency of 42.00% Image: Nonparametric method (M11) YAS 0 28 63 109 162 229 321 440 692 979 1600 2866 7974 11018 Nonparametric method (M11) 0=0.5 0 0 0 0 52 126 261 439 695 1506 4781 6978 7917 method (M11) 0=0.5 0 0 0 67 130 203 322 466 793 1412 4557 7712 9545 Neptune 0 19 44 77 116 176 253 368 541 851 1569 4287 5644 7901 YAS Tr = 2 Years 0 35 70 120 175 250 350 500 755 1270 3590 NA NA NA NA YAS Tr = 5 Years 0 0 0	ц		YAS				6.	30			Ass	ociated v			-	17.52 (US	\$) and an
Image: Neptune Associated with an annual profitability of 18.62 (USS) and an efficiency of 42.00% Image: Nonparametric method (M11) YAS 0 28 63 109 162 229 321 440 692 979 1600 2866 7974 11018 Nonparametric method (M11) 0=0.5 0 0 0 0 52 126 261 439 695 1506 4781 6978 7917 method (M11) 0=0.5 0 0 0 67 130 203 322 466 793 1412 4557 7712 9545 Neptune 0 19 44 77 116 176 253 368 541 851 1569 4287 5644 7901 YAS Tr = 2 Years 0 35 70 120 175 250 350 500 755 1270 3590 NA NA NA NA YAS Tr = 5 Years 0 0 0	unctio		YBS				44	40					e	efficiency	of 42.1%		
Image: Neptune Associated with an annual profitability of 18.62 (USS) and an efficiency of 42.00% Image: Nonparametric method (M11) YAS 0 28 63 109 162 229 321 440 692 979 1600 2866 7974 11018 Nonparametric method (M11) 0=0.5 0 0 0 0 52 126 261 439 695 1506 4781 6978 7917 method (M11) 0=0.5 0 0 0 67 130 203 322 466 793 1412 4557 7712 9545 Neptune 0 19 44 77 116 176 253 368 541 851 1569 4287 5644 7901 YAS Tr = 2 Years 0 35 70 120 175 250 350 500 755 1270 3590 NA NA NA NA YAS Tr = 5 Years 0 0 0	Cost-fi		$\theta = 0.5$				5	10					e	efficiency	of 42.1%		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0		Neptune				5	60									\$) and an
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			YAS	0	28	63	109	162	229	321	440	692	979	1600	5866	7974	11018
Probabilistic Neptune 0 19 44 77 116 176 253 368 541 851 1569 4287 5644 7901 YAS Tr = 2 Years 0 30 65 105 155 215 295 405 565 820 1275 2445 4045 10920 YAS Tr = 5 Years 0 35 70 120 175 250 350 500 755 1270 3590 NA NA NA YAS Tr = 10 Years 0 35 75 125 190 270 385 570 950 1915 NA NA NA NA YBS Tr = 2 Years 0 0 0 0 40 110 210 360 600 1050 2205 3810 10715 YBS Tr = 5 Years 0 0 0 0 5 70 160 300 535 1045 3370 NA NA NA <td></td> <td>Nonparametric</td> <td>YBS</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>52</td> <td>126</td> <td>261</td> <td>439</td> <td>695</td> <td>1506</td> <td>4781</td> <td>6978</td> <td>7917</td>		Nonparametric	YBS	0	0	0	0	0	52	126	261	439	695	1506	4781	6978	7917
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		method (M11)	$\theta = 0.5$	0	0	0	0	67	130	203	322	466	793	1412	4557	7712	9545
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Neptune	0	19	44	77	116	176	253	368	541	851	1569	4287	5644	7901
Probabilistic method (M12)YAS Tr = 10 Years YBS Tr = 2 Years035751251902703855709501915NANANANANAYBS Tr = 2 Years YBS Tr = 5 Years000004011021036060010502205381010715YBS Tr = 5 Years method (M12)0000057016030053510453370NANANA $\theta = 0.5$ Tr = 2 Years $\theta = 0.5$ Tr = 5 Years0000020952003657251710NANANANA $\theta = 0.5$ Tr = 5 Years $\theta = 0.5$ Tr = 5 Years0000011518028043067011202275387510735 $\theta = 0.5$ Tr = 5 Years $\theta = 0.5$ Tr = 10 Years $\theta = 0.5$ Tr = 2 Years000208514523036560511203435NANANA $\theta = 0.5$ Tr = 10 Years $\theta = 0.5$ Tr = 10 Years00030951652604307951790NANANANANeptune Tr = 2 Years Neptune Tr = 5 Years020457511516023033048072511752330391510755Neptune Tr = 5 Years025508513019528042065511703435<			YAS $Tr = 2$ Years	0	30	65	105	155	215	295	405	565	820	1275	2445	4045	10920
Probabilistic method (M12)YBS Tr = 2 Years YBS Tr = 10 Years0000004011021036060010502205381010715Probabilistic method (M12)YBS Tr = 5 Years000057016030053510453370NANANANA $\theta = 0.5$ Tr = 10 Years000020952003657251710NANANANA $\theta = 0.5$ Tr = 2 Years00006011518028043067011202275387510735 $\theta = 0.5$ Tr = 5 Years000208514523036560511203435NANANA $\theta = 0.5$ Tr = 10 Years00030951652604307951790NANANA $\theta = 0.5$ Tr = 10 Years00030951652604307951790NANANANeptune Tr = 2 Years020457511516023033048072511752330391510755Neptune Tr = 5 Years025508513019528042065511703435NANANA			YAS $Tr = 5$ Years	0	35	70	120	175	250	350	500	755	1270	3590	NA	NA	NA
Probabilistic method (M12)YBS Ir = 10 Years $\theta = 0.5 Tr = 2 Years$ $\theta = 0.5 Tr = 5 Years$ 000020952003657251710NANANANANA $\theta = 0.5 Tr = 2 Years$ $\theta = 0.5 Tr = 5 Years$ 00006011518028043067011202275387510735 $\theta = 0.5 Tr = 5 Years$ 000208514523036560511203435NANANA $\theta = 0.5 Tr = 10 Years$ 00030951652604307951790NANANANANeptune Tr = 2 Years020457511516023033048072511752330391510755Neptune Tr = 5 Years025508513019528042065511703435NANANA	Г		YAS Tr = 10 Years	0	35	75	125	190	270	385	570	950	1915	NA	NA	NA	NA
Probabilistic method (M12)YBS Ir = 10 Years $\theta = 0.5 Tr = 2 Years$ $\theta = 0.5 Tr = 5 Years$ 000020952003657251710NANANANANA $\theta = 0.5 Tr = 2 Years$ $\theta = 0.5 Tr = 5 Years$ 00006011518028043067011202275387510735 $\theta = 0.5 Tr = 5 Years$ 000208514523036560511203435NANANA $\theta = 0.5 Tr = 10 Years$ 00030951652604307951790NANANANANeptune Tr = 2 Years020457511516023033048072511752330391510755Neptune Tr = 5 Years025508513019528042065511703435NANANA	tica		YBS $Tr = 2$ Years	0	0	0	0	0	40	110	210	360	600	1050	2205	3810	10715
Probabilistic method (M12)YBS Ir = 10 Years $\theta = 0.5 Tr = 2 Years$ $\theta = 0.5 Tr = 5 Years$ 000020952003657251710NANANANANA $\theta = 0.5 Tr = 2 Years$ $\theta = 0.5 Tr = 5 Years$ 00006011518028043067011202275387510735 $\theta = 0.5 Tr = 5 Years$ 000208514523036560511203435NANANA $\theta = 0.5 Tr = 10 Years$ 00030951652604307951790NANANANANeptune Tr = 2 Years020457511516023033048072511752330391510755Neptune Tr = 5 Years025508513019528042065511703435NANANA	tatis		YBS $Tr = 5$ Years	0	0	0	0	5	70	160	300	535	1045	3370	NA	NA	NA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Š	Probabilistic	YBS Tr = 10 Years	0	0	0	0	20	95	200	365	725	1710	NA	NA	NA	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		method (M12)	$\theta = 0.5 \text{ Tr} = 2 \text{ Years}$	0	0	0	0	60	115	180	280	430	670	1120	2275	3875	10735
Neptune Tr = 2 Years020457511516023033048072511752330391510755Neptune Tr = 5 Years025508513019528042065511703435NANANA			$\theta = 0.5 \text{ Tr} = 5 \text{ Years}$	0	0	0	20	85	145	230	365	605	1120	3435	NA	NA	NA
Neptune Tr = 5 Years 0 25 50 85 130 195 280 420 655 1170 3435 NA NA			$\theta = 0.5 \text{ Tr} = 10 \text{ Years}$	0	0	0	30	95	165	260	430	795	1790	NA	NA	NA	NA
Neptune Tr = 5 Years 0 25 50 85 130 195 280 420 655 1170 3435 NA NA			Neptune $Tr = 2$ Years	0	20	45	75	115	160	230	330	480	725	1175	2330	3915	10755
			-	0	25	50	85	130	195	280	420	655	1170	3435	NA	NA	NA
			-	0	25	55	95	145	215	315	485	845	1825		NA	NA	

Table 2. Results from the methods studied for sizing the storage tank - A.

Notes: NA: Not applicable since the method does not allow linking volume and efficiency (i.e. M9) or because the method has particularities that prevent this (i.e. M12). In all


cases, volumes are in litres.

Group		Method										Effic	ciency (%)								Max.
Group			0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%		60%	65%	70%	75%	80%	85%	87%	89.9%
ed		NQIP (M1)											398									
lifi		DNI (M2)											516									
Simplified		EA (M3)											430)7								
S		IRC (M4)											188	38								
s F s		YAS (M5)	0	54	117	191	277	374	488	625	787	995	1270	1652	2200	2962	4241	6384	11932	32377	48347	64232
on o lanc		YBS (M6)	0	0	0	0	0	0	53	173	319	509	759	1126	1657	2409	3691	5786	11359	31704	47674	63725
lati bal	θ	= 0.5 (M7)	0	0	0	0	0	119	231	341	482	669	920	1288	1814	2565	3838	5945	11518	31856	47826	63761
Continuous simulation of mass balance	N	eptune (M8)	0	35	75	127	188	259	343	455	605	792	1047	1415	1934	2697	3964	6082	11662	31962	47932	63861
]	Rippl (M9)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14801
ction	Economic	YAS				1′	710				A	ssociat	ed with	an ann	ual pro	fitabilit	y of 52.	01 (US\$) and an	efficienc	cy of 55.	6%
inct	sizing	YBS				12	285				A	ssociat	ed with	an ann	ual pro	fitabilit	y of 58.	97 (US\$) and an	efficiend	cy of 56.	7%
Cost-fun	method	$\theta = 0.5$				14	435				A	ssociat	ed with	an ann	ual pro	fitabilit	y of 56.	87 (US\$) and an	efficiend	cy of 56.	6%
Cos	(M10)	Neptune				1:	565				A	ssociat	ed with	an ann	ual pro	fitabilit	y of 55.	23 (US\$) and an	efficiend	ey of 56.	6%
		YAS	0	57	126	205	303	406	520	686	892	1130	1381	1779	2358	3269	4620	6885	16383	33823	45954	54770
	Nonparametric	YBS	0	0	0	0	0	0	122	215	371	626	826	1374	1831	2819	4124	6215	12145	29491	46446	46152
	method (M11)	$\theta = 0.5$	0	0	0	0	0	156	265	403	561	773	1019	1478	2055	3271	4082	7117	17297	34466	41986	39616
		Neptune	0	37	80	136	200	281	379	518	676	893	1243	1587	2083	3007	4604	8287	15145	48480	60609	50480
		YAS $Tr = 2$ Years	0	55	120	195	280	375	490	630	790	1000	1275	1655	2205	2965	4245	6385	11935	32380	48350	64235
		YAS $Tr = 5$ Years	0	65	140	230	325	440	575	750	975	1285	1715	2355	3325	5040	8185	21210	NA	NA	NA	NA
		YAS Tr = 10 Years	0	75	155	250	355	480	635	840	1120	1505	2085	2950	4535	7065	18140	NA	NA	NA	NA	NA
ical		YBS $Tr = 2$ Years	0	0	0	0	0	0	55	175	320	510	760	1130	1660	2410	3695	5790	11360	31705	47675	63730
Statistical		YBS $Tr = 5$ Years	0	0	0	0	0	40	165	320	515	795	1210	1825	2785	4485	7580	20865	NA	NA	NA	NA
Sta	Probabilistic	YBS Tr = 10 Years	0	0	0	0	0	95	235	415	660	1020	1575	2435	4005	6490	17815	NA	NA	NA	NA	NA
	method	$\theta = 0.5 \text{ Tr} = 2 \text{ Years}$	0	0	0	0	0	120	235	345	485	670	925	1290	1815	2570	3840	5950	11520	31860	47830	63765
	(M12)	$\theta = 0.5 \text{ Tr} = 5 \text{ Years}$	0	0	0	0	85	210	320	470	670	940	1355	1970	2920	4635	7740	20895	NA	NA	NA	NA
		$\theta = 0.5 \text{ Tr} = 10 \text{ Years}$	0	0	0	0	130	250	380	560	800	1160	1715	2570	4145	6630	17925	NA	NA	NA	NA	NA
		Neptune $Tr = 2$ Years	0	40	80	130	190	260	345	460	610	795	1050	1420	1935	2700	3965	6085	11665	31965	47935	63865
		Neptune $Tr = 5$ Years	0	50	100	165	235	325	435	585	790	1065	1480	2090	3050	4765	7895	20980	NA	NA	NA	NA
		Neptune Tr = 10 Years	0	55	115	185	265	360	495	680	920	1290	1835	2700	4270	6765	18030	NA	NA	NA	NA	NA

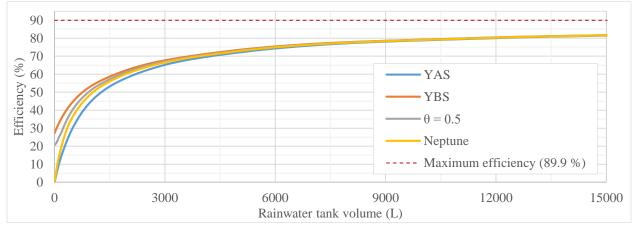
Table 3. Results from the methods studied for sizing the storage tank - B.

Notes: NA: Not applicable since the method does not allow linking volume and efficiency (i.e. M9) or because the method has particularities that prevent this (i.e. M12). In all

cases, volumes are in litres.

350

Figure 4. Efficiency in terms of volume for A.



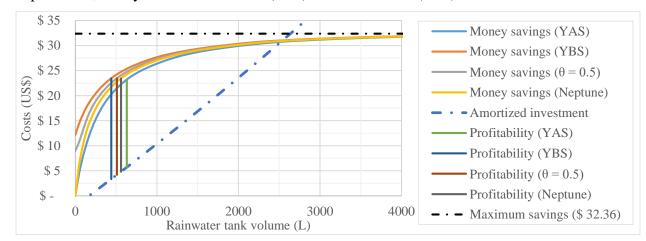
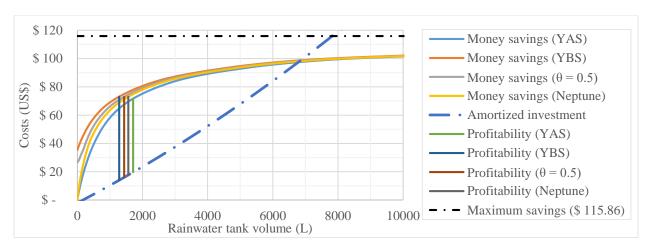


Figure 5. Efficiency in terms of volume for B.

353

354 Cost-based sizing adopts all characteristics from continuous simulation of mass balance methods 355 (YAS, YBS, $\theta = 0.5$ and Neptune). This alternative requires easily accessible data, except for the 356 amortized cost function of the system, which demand a detailed study. The behaviour of financial 357 savings from drinking water as a function of tank capacity (Figures 6 and 7) is similar to that 358 shown by efficiency curves (Figures 4 and 5). Figures 6 and 7 show the method allows assessing 359 several options. However, in this case the most profitable situation corresponds to a single volume 360 associated with a point behind the asymptotic growth, a volume corresponding to efficiency 361 between 60% and 85% of the maximum efficiency approximately. This percentage tends to be 362 85% for cases of low maximum efficiency and similar to 60% for cases of higher maximum 363 efficiency. For instance, B has a maximum efficiency closer to 100% (or an AR/D close to one). 364 Thus, the volume obtained through this method is linked to efficiency close to 60% of the

365 maximum efficiency. For the proposed conditions, cost-based sizing showed that the investment



is profitable, with yields close to 17.49 (US\$) for A and 55.96 (US\$) for B.

368 **Figure 6.** Investment and money savings on an annual scale according to tank size for A.

367

370

Figure 7. Investment and money savings on an annual scale according to tank size for B.

372

373 Regarding statistical methods, the nonparametric method generates stochastic rainfall samples 374 from an algorithm based on random values. This rainfall samples can be input data to any other 375 continuous water balance simulation. Volumes in Tables 2 and 3 indicate that for most efficiencies, 376 results are more conservative compared to the values calculated using the methods of continuous 377 simulations of mass balance. However, this behaviour may not apply for efficiencies near the 378 maximum. The results of this method can vary because the algorithm is based on random numbers; 379 that is, each new simulation generates new rainfall samples that provide different volumes for the same efficiency. Figure 8 shows how the variability in the results tends to decrease for larger 380

efficiencies. Despite the variability, the method has the advantage that it does not require the adoption of a probability density function that fits the data. The probabilistic method is also more conservative than the continuous simulations of mass balance methods. However, for high return periods it is difficult to reach higher efficiencies, this is because for more adverse conditions, the method decreases the maximum efficiency (see Tables 2 and 3 and Figure 9).

386

387

390

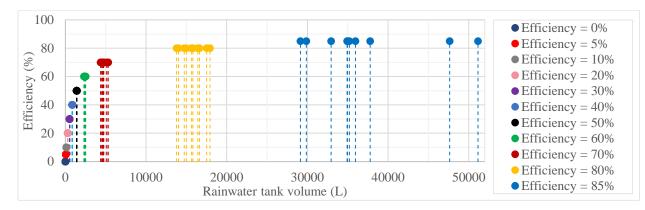
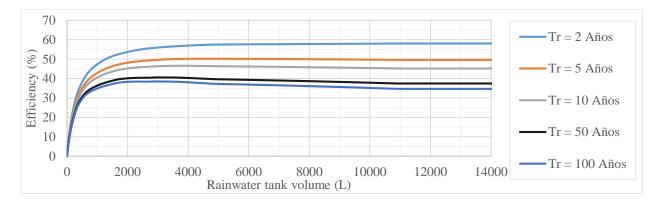
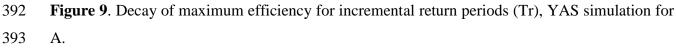
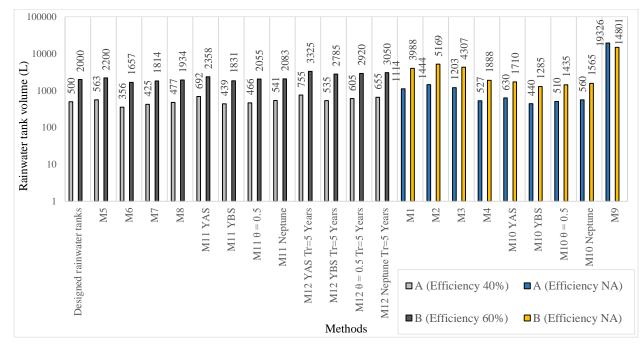
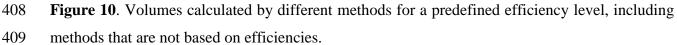




Figure 8. Nonparametric method variability behaviour for ten simulations and different
efficiencies (each colour), example for B using YAS balance equations.


394

391


395 **3.2 Analysis of tanks sizing**

The comparison of the results obtained from the different sizing alternatives demonstrates the quantitative and qualitative differences between the methods. Quantitatively, tank volume varies between the methods according to the suggested efficiency, which presents the asymptotic behaviour described (Figures 4 and 5). To facilitate the analysis and avoid tank oversizing without obtaining greater benefits, it is suggested to design for a volume associated with an efficiency of
approximately 65% of maximum efficiency (Figure 10) (i.e. point prior to asymptotic growth), as
long as the maximum efficiency is less than 100%. Figure 10 shows that although some methods
(i.e. M1, M2, M3, M4, M10 and M9) do not allow designing for different efficiencies, two of these
(i.e. M4 and M10) provide results near to the point behind the asymptotic growth (65% efficiency)
raised, while others (i.e. M1, M2, M3 and M9) tend to oversize the system.

406

407

- 410 Note: NA: Not applicable.
- 411

412 Regarding the designed tanks in the analysed study cases (500-L for A and 2000-L for B), the 413 volumes were similar to those associated with 65% of maximum efficiency (Figure 10). This rules 414 out that the selection of commercial volumes has led to unnecessary system oversizing. 415 Considering that different methods provide different volumes for different efficiencies, problems 416 could arise when choosing commercially available tank volumes, as these could be above or below 417 the ideal volume. The methods analysed allow the choice of the upper or lower commercial limit 418 of the tank volume based on the analysis of the behaviours regarding saving-investment and 419 volume-efficiency.

420 Analysing the measures of dispersion from the methods in Figure 10 (Table 4), it is evident 421 that if only the methods that design for 65% of the maximum efficiency are considered, the 422 coefficient of variation of A is similar to that of B. However, the volume ranges are greater in B 423 because the requirements are higher compared to those in A. This behaviour shows that the greater 424 the demand of the system, a more detailed analysis is required because the choice of method is not 425 limited to small ranges (i.e. 399 litres for A) but considers higher ranges (i.e. 1668 litres for B or 426 even higher) that could unnecessarily affect the volume and costs of the system. On the other hand, 427 considering all the methods (i.e. those that include efficiencies and those that do not), Table 10 428 shows that the coefficient of variation and the range are greater in A than in B, this is because for 429 A, Rippl oversizes the system unnecessarily, which does not happen in B. Therefore, when 430 quantifying the volume, it is important to discriminate the methods that allow choosing any 431 efficiency and those that do not, due to the order of magnitude in the ranges of the results.

432

433 **Table 4**. Dispersion measures for the results in Figure 10.

Method	Arithmetic mean (L)	Range (L)	Mean absolute deviation (L)	Standard deviation (L)	Coefficient of variation (%)
Methods for A (Efficiency: 40%)	542	399	93	118	22
Methods for B (Efficiency: 60%)	2334	1668	461	551	24
All methods for A	1536	18970	1694	4086	266
All methods for B	3055	13516	1554	2877	94

434

435 Qualitatively, it is evident that the conceptual differences represent advantages for some methods 436 compared to others. Table 5 shows that, if possible, the design using simplified methods should be 437 avoided. Thus, provided that the tools and information required are available, the statistical 438 methods and the cost method, which also include mass balances should be the preferred 439 alternatives for tank sizing.

440

441 **Table 5.** Qualitative comparison of the storage tank sizing methods.

Method	Conceptual robustness	Potential for incorporation into other methods	Capacity to adapt to changes (resilience)	Variabilit y	Information required	Difficulty of application
ANQIP (M1)	++	+	++	++++	++	+
DNI (M2)	+	+	+	++++	++	+
EA (M3)	+	+	+	++++	++	+

IRC (M4)	+	+	++	++++	++	+
YAS (M5)	+++	+++++	+++	++++	+++	+++
YBS (M6)	+++	+++++	+++	++++	+++	+++
$\theta = 0.5 (M7)$	+++	+++++	+++	++++	+++	+++
Neptune (M8)	+++	+++++	+++	++++	+++	+++
Rippl (M9)	+++	++	+++	++++	+++	+++
Cost-function (M10)	++++	+++++	++++	++++	++++	++++
Nonparametric (M11)	++++	+++	++++	++	+++	+++++
Probabilistic (M12)	++++	++++	++++	++++	++++	++++

442 Notes: The symbols correspond to very high (+++++), high (++++), medium (+++), low (++) and very low (+).

443

444 **3.3 Development of a Decision Support Tool**

As discussed in the Introduction, a literature review identified limited decision support for practitioners in the selection of the most convenient method, considering relevant criteria. Consequently, based on the previous sections, which have presented a comprehensive comparison of different methods of sizing rainwater storage tanks, a decision support tool is proposed for use in different contexts, catering for the end-user and based on design goals, which may vary according to the project characteristics and priorities. The following aspects were identified as key to the selection of the sizing method:

- 452
- 453 For small-scale rainwater harvesting, and availability of only annual rainfall records, the
 454 most recommended methods are simplified methods, since the lack of information would
- 455 prevent the use of statistical or continuous simulations of mass balance methods.
- 456 For systems that require a level of performance, the methods that allow the selection
 457 considering system performance based on the tank capacity (YAS, YBS, θ and Neptune)
 458 are recommended.
- For systems where rainwater availability broadly meets demand, and the total demand must
 be satisfied, Rippl is the most appropriate method because it calculates volume without
 oversizing, as the other methods that use mass balances would.
- 462 For systems where it is required to incorporate potable water savings into the analysis when
 463 implementing a RWH system, the methods that estimate the tank volume and offer the best
 464 profitability are recommended.
- 465 For systems where water provision relies heavily on RWH, safety factors and future
 466 projected capacities must be considered. Therefore, probabilistic methods are
 467 recommended, since they incorporate the probability of exceeding the deficit for a range of

468 469 capacities and efficiencies. Another alternative is the method based on a nonparametric rainfall generator, which adjusts well to different precipitation patterns, but may have difficulties in the results variability.

471

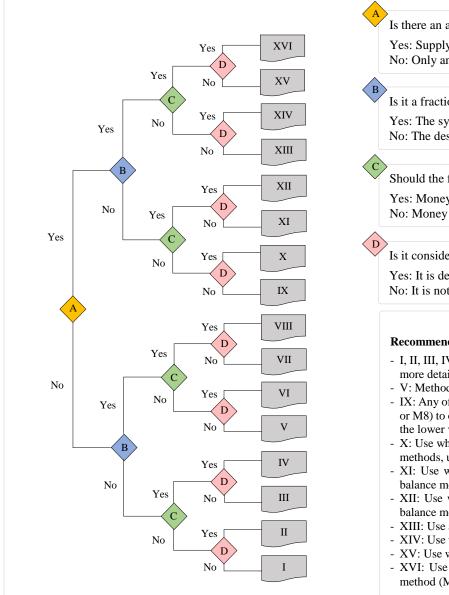
470

472 When the input information is not a limiting factor, the combination of the mass balance, cost-473 function and probabilistic methods is proposed. The probabilistic method (M12) and the cost-474 function method (M10) are compatible with the continuous simulation methods (YAS (M5), YBS 475 (M6), θ (M7) and Neptune (M8)), generating synergies (Table 5). For example: conceptual 476 robustness, by using the three most robust methods; potential for incorporation into other methods 477 (i.e. this combination can easily be incorporated into any method that generates rainfall from 478 climate predictions); resilience, when considering precipitation forecasts and cost analysis. In 479 addition, this approach does not have variability issues since the methods that comprise the 480 proposed combination do not rely on random values to perform their internal processes, therefore, 481 for each new simulation (under the same conditions), the same results are obtained. This 482 combination considers key aspects of the design and study context, which represents a high 483 application potential in places where the required information is easily accessible.

As well as the inclusion of climate change, introduced in the proposed tool through the statistical methods, an improvement in terms of resilience, would be the consideration of stormwater attenuation, as has been suggested in studies in the field ^{7, 12, 51, 54, 65-68}.

487 There are also RWH tank sizing approaches which use pluviograph rainfall data with 6 488 minute time steps, together with daily temperature records, and probabilistic behavioural water 489 demand models to account for variability in rainfall inputs and climate dependent household water demand throughout each day ⁶⁹. According to studies in Australia ⁶⁹, this dimensioning approach 490 491 overcomes under-sizing of RWH tanks (8 - 19%) that are incurred when using the assumption of 492 a daily time step for rainfall inputs and daily average water demand. However, this approach 493 demands both climatic and consumption information that may not be available for system planning 494 in many contexts, which may limit its application. In some of their works, these authors used 495 pluviograph (6 minute) rainfall inputs and household water consumptions monitored at 6 minute intervals using smartmeter data obtained from real households ⁷⁰. 496

497 On the other hand, the economic benefits associated to RWH have been captured in this 498 research taking into account sizing methods which depend on maximizing the return on investment 499 on an annual scale from savings obtained by stop using potable water from the conventional system 500 ⁹. This analysis is limited since it has been recognized that RWH have economic benefits beyond not using public mains water ⁵⁸. An improved economic analysis of RWH should go beyond the 501 502 direct costs and benefits for the homeowner and include broader study of the costs and benefits 503 that the implementation of these systems represents for the society as a whole ⁷¹. For instance, the 504 economic benefits to the community are derived from mains water savings, construction and 505 depreciation savings resulting from a reduced requirement for stormwater infrastructure and 506 interest earned on community savings due to the deferral of new water supply dams ⁷².


As a decision support tool, a four-stage flow chart (Figure 11), which includes the 12 methods studied, was prepared. Each stage is a question that the practitioner must answer to achieve the selection of the method. The first stage (A) filters the possible methods based on the information available for the design. The subsequent stages (B, C and D) consider the design objectives. As an example of application, two hypothetical scenarios were considered:

512 Scenario 1 - A practitioner aims to design a RWH system to obtain a financial benefit by 513 stopping extracting water from the mains system to supply at least a fraction of the total non-514 potable consumption of a household. In addition, the practitioner has detailed input data. Thus, the 515 route followed in the flow chart is: A-Yes, B-Yes, C-Yes and D-No. This leads to option XV, 516 which suggests using any of the mass balance methods, combined with the cost function method.

517 Scenario 2 - A practitioner seeks to design a RWH system with the single objective of 518 achieving 100% reduction in the water required for flushing toilets, but only has annual rainfall 519 information. The route followed in the flow chart is: A-No, B-No, C-No and D-No, which leads 520 to option I, which suggests that with the methods considered, it is not possible to generate the tank 521 size for the purpose desired without having more detailed information. This would suggest to the 522 practitioner that they obtain a greater resolution of rainfall data – perhaps from the nearest rain 523 gauge possible, or that installation of a rain gauge and delayed implementation of RWH might be 524 the most sensible way to proceed.

In this way, the tool would facilitate the selection of the sizing method among the twelve methods considered. However, in the literature there are a number of methods not included in the tool that could be incorporated under future research. Similarly, there are sizing criteria that were not incorporated. For example, in the latter aspect, the criteria related to stormwater attenuation, reduction of pressure on sewerage systems, or facing specific climate variability and change

- 530 scenarios were not included ^{7, 12, 55, 73, 74}. Future research could represent an improvement in terms
- 531 of resilience in the DST, if consideration of stormwater attenuation was included to complement
- 532 the inclusion of climate change, which is already included in the tool through the statistical
- 533 methods.

Is there an availability of hourly, daily or monthly rainfall records and demand patterns? Yes: Supply and demand records are available at hourly, daily or monthly scale. No: Only annual records of supply and demand are available.

Is it a fraction of the total water demand which must be provided?

Yes: The system must satisfy end-uses that are not the total demand. No: The design must satisfy the total demand.

Should the financial implications of the selection be considered?

Yes: Money savings and investments on the system should be assessed. No: Money savings and investments on the system are not a relevant criteria.

Is it considered relevant to include a safety factor?

Yes: It is desirable to be conservative, considering potentially adverse scenarios. No: It is not desirable to be conservative, considering adverse scenarios.

Recommendations:

- I, II, III, IV, VI, VII y VIII: The objectives may be in conflict, it is recommended to look for more detailed information.
- V: Methods M1, M2, M3 or M4 could be used.
- IX: Any of the continuous simulations of mass balance methods could be used (M5, M6, M7 or M8) to obtain maximum supply and then compare the result with the method M9 to select the lower value between the results of the two methods.
- X: Use what is proposed for IX and if the lowest value was obtained from the mass balance methods, use a conservative method (M11 or M12).
- XI: Use what was proposed for IX and if the lowest value was obtained from the mass balance methods, combine with the M10 method.
- XII: Use what was proposed for IX and if the lowest value was obtained from the mass balance methods, combine with the M10 method and a conservative method (M11 or M12).
- XIII: Use any of the methods M5, M6, M7 or M8.
- XIV: Use what is proposed for XIII and combine with a conservative method (M11 or M12).
- XV: Use what is proposed for XIII and combine with the M10 method.
- XVI: Use what is proposed for XIII, combine with the M10 method and a conservative method (M11 or M12).

Figure 11. Synthesis of recommendations for the selection of a rainwater harvesting system storage tank sizing method – a Decision
 Support Tool.

537 **4. Conclusions**

538 Twelve methods for storage tank sizing from four categories (i.e. simplified methods, methods of 539 continuous simulation of mass balance, cost-function method and statistical methods) were applied 540 in low (130 lpcd) and high (203 lpcd) water consumption individual households. Seven methods 541 yielded results depending on tank efficiency. Tank sizes for these methods showed important 542 quantitative differences. In both case studies, the tank sizes in descending order were for the YAS, 543 Neptune, θ and YBS methods. The five methods that provided a single tank size had the following 544 volumes for low and high consumption households respectively: Rippl: 19326 L and 14801 L, 545 DIN: 1444 L and 5169 L, ANQIP: 1114 L and 3988 L, EA: 1203 L and 4307 L and IRC: 527 L 546 and 1888 L.

When the results of the twelve methods were compared (i.e. using for the seven methods that require it, optimal efficiencies of 40% and 60%, for the households with low and high consumption respectively), it was evidenced that the methods that provide a single capacity value tend to overestimate the tank size. The other seven methods yielded values close to the tanks originally designed and around the commercial sizes available. The installation of commercial tanks affects the precision generated by the application of the methods.

The qualitative comparison based on the six variables described complements the qualitative criteria, improving the selection process and is an approach that to the authors' knowledge had not been explicitly addressed in the existing literature on tank sizing methods. The qualitative analysis showed that there are underlying conceptual differences in the approach of the methods. In addition, the methods that are potentially more resilient and adaptable in comparison to other methods are promising alternatives for thoughtful and rigorous sizing strategies.

559 The application of the methods for tank sizing showed that the decision on the most 560 appropriate method is sensitive to criteria such as: contextual information, simulation tool 561 availability, the design objective/s and the maximum efficiency required for the system. Generally, 562 simplified methods should be avoided and for the cases presented a diversified approach 563 combining continuous simulation of mass balance methods, cost-function and statistical methods 564 was most appropriate when considering key contextual and design aspects. This led to the 565 development of a decision support tool to assist international rainwater harvesting practitioners 566 with tank sizing method selection, which should ensure that future system designs better 567 incorporate uncertainty and resilience.

568

569 **Conflicts of Interest**

570 There are no conflicts of interest to declare

571

572 Acknowledgements

- 573 The authors thank Universidad Industrial de Santander for the support received whilst writing
- 574 this paper and the Centre for Water, Communities and Resilience for supporting the
- 575 collaboration.
- 576
- 577

578 **References**

- A. Campisano, D. Butler, S. Ward, M. J. Burns, E. Friedler, K. DeBusk, L. N. Fisher-Jeffes,
 E. Ghisi, A. Rahman, H. Furumai and M. Han, *Water Res.*, 2017, 115, 195-209.
- 581 2. S. Sendanayake, N. P. Miguntanna and M. T. R. Jayasinghe, *Asian J. Wat. Environ. Pollut.*,
 582 2014, **11**, 87-93.
- 583 3. X. Yan, S. Ward, D. Butler and B. Daly, J. Clean. Prod., 2018, 172, 2167-2173.
- 584 4. L. Handia, J. M. Tembo and C. Mwiindwa, *Phys. Chem. Earth*, 2003, **28**, 893-896.
- 585 5. C. Santos and F. Taveira-Pinto, *Resour. Conserv. Recycl.*, 2013, **71**, 1-6.
- 586 6. M. Basinger, F. Montalto and U. Lall, J. Hydrol., 2010, **392**, 105-118.
- 587 7. P. Melville-Shreeve, S. Ward and D. Butler, *Water*, 2016, **8**.
- 588 8. A.-A. n. p. a. q. n. i. predials, Portugal, 2015, vol. ETA 0701
- 589 9. G. López-Patiño, F. J. Martínez-Solano, V. S. Fuertes-Miquel and P. A. López-Jiménez,
 590 *Tecnologia Ciencias Agua*, 2011, 2, 51-64.
- 59110.E. Agency, Harvesting rainwater for domestic uses: an information guide. Bristol:592Environment Agency, Environmental Agency, Almondsbury, Bristol 2010.
- 59311.DNI, Rainwater harvesting systems- Part 1: Planning, installation, operation and594maintenance, Deutsches Institut für Normung, 2002.
- R. Kellagher, *Stormwater management using rainwater harvesting*, HR Wallingford, UK, 2012.
- 597 13. T. Thomas and D. Martinson, *Roofwater Harvesting: A Handbook for Practitioners.*,
 598 Technical Paper Series, Delft, The Netherlands, 2007.
- 599 14. UNEP, Rainwater Catch it While You Can: A Handbook on Rainwater Harvesting in the
 600 Caribbean, ONU, USA, 2009.
- 601 15. A. Fewkes, *Struct. Surv.*, 2012, **30**, 174-194.
- 602 16. A. Fewkes, Urban Water, 2000, 1, 323-333.
- E. Ghisi and M. Marcel, *Neptuno 4 Manual de usuario*, Universidad Federal de Santa
 Catarina UFSC, Florianópolis, Brazil, 2014.
- 605 18. A. Campisano and C. Modica, 2014.
- 606 19. A. Fewkes, Build. Environ., 1999, **34**, 765-772.
- 607 20. C. H. Liaw and Y. C. Chiang, *Water*, 2014, **6**, 3913-3933.
- 608 21. L. Liuzzo, V. Notaro and G. Freni, *Water*, 2016, 8.

609	22.	S. Ward, F. A. Memon and D. Butler, in Water Sci. Technol., IWA Publishing, 2010, vol.
610		61, pp. 85-96.
611	23.	E. Hajani and A. Rahman, Water, 2014, 6, 945-960.
612	24.	M. A. Imteaz, A. Ahsan, J. Naser and A. Rahman, Resour. Conserv. Recycl., 2011, 56, 80-
613		86.
614	25.	M. A. Imteaz, A. Rahman and A. Ahsan, Resour. Conserv. Recycl., 2012, 66, 1-7.
615	26.	M. A. Imteaz, A. Shanableh, A. Rahman and A. Ahsan, Resour. Conserv. Recycl., 2011,
616		55, 1022-1029.
617	27.	M. R. Karim, M. Z. I. Bashar and M. A. Imteaz, Resour. Conserv. Recycl., 2015, 104, 61-
618		67.
619	28.	A. Khastagir and N. Jayasuriya, J. Hydrol., 2010, 381 , 181-188.
620	29.	A. Rahman, J. Keane and M. A. Imteaz, Resour. Conserv. Recycl., 2012, 61, 16-21.
621	30.	E. L. Villarreal and A. Dixon, Build. Environ., 2005, 40, 1174-1184.
622	31.	A. Fewkes and D. Butler, Rainwater Catchment Systems Conference-"Rainwater
623		Catchment: An Answer to the Water Scarcity of the Next Millennium." Petrolina, Brazil,
624		1999.
625	32.	V. G. Mitchell, <i>Hydrological Processes: An International Journal</i> , 2007, 21 , 2850-2861.
626	33.	E. Ghisi, Water Resour. Manage., 2010, 24, 2381-2403.
627	34.	E. Ghisi, D. L. Bressan and M. Martini, <i>Build. Environ.</i> , 2007, 42 , 1654-1666.
628	35.	E. Ghisi and P. N. Schondermark, Water Resour. Manage., 2013, 27, 2555-2576.
629	36.	E. Ghisi, D. d. F. Tavares and V. L. Rocha, Resour. Conserv. Recycl., 2009, 54, 79-85.
630	37.	K. Jung, T. Lee, B. G. Choi and S. Hong, Water Resour. Manage., 2014, 29, 961-972.
631	38.	A. C. Lopes, R. F. Rupp and E. Ghisi, Water Sci. Technol. Water Supply, 2016, 16, 533-
632		541.
633	39.	C. Matos, C. Santos, S. Pereira, I. Bentes and M. Imteaz, Int. J. Sustain. Environ., 2013, 2,
634		109-118.
635	40.	L. F. Sanches Fernandes, D. P. S. Terêncio and F. A. L. Pacheco, Sci. Total Environ., 2015,
636		529 , 91-100.
637	41.	A. S. Silva and E. Ghisi, J. Environ. Manage., 2016, 180, 82-93.
638	42.	A. Soni, R. Aggarwal and N. Khullar, Journal of Research, 2008, 45, 196-199.
639	43.	E. L. Souza and E. Ghisi, Water, 2012, 4, 607-628.
640	44.	C. H. Liaw and Y. L. Tsai, J. Am. Water Resour. Assoc., 2004, 40, 901-912.
641	45.	Y. R. Chiu, Y. L. Tsai and Y. C. Chiang, Water, 2015, 7, 6285-6300.
642	46.	A. Campisano and C. Modica, Resour. Conserv. Recycl., 2012, 63, 9-16.
643	47.	N. Pelak and A. Porporato, J. Hydrol., 2016, 541, 1340-1347.
644	48.	C. O. Okoye, O. Solyali and B. Akintul, Resour. Conserv. Recycl., 2015, 104, 131-140.
645	49.	IPCC, Adaptation needs and options, Intergovernmental Panel on Climate Change, New
646		York, 2014.
647	50.	Y. Guo and B. W. Baetz, J. Hydrol. Eng., 2007, 12, 197-205.
648	51.	D. Lash, S. Ward, T. Kershaw, D. Butler and M. Eames, Journal of Water and Climate
649		<i>Change</i> , 2014, 5 , 526-539.
650	52.	A. Raimondi and G. Becciu, 2014.
651	53.	M. D. Su, C. H. Lin, L. F. Chang, J. L. Kang and M. C. Lin, <i>Resour. Conserv. Recycl.</i> ,
652		2009, 53 , 393-399.
653	54.	C. H. Wang and J. M. Blackmore, Water Resour. Manage., 2012, 26, 4381-4396.

654	55.	S. G. Youn, E. S. Chung, W. G. Kang and J. H. Sung, Resour. Conserv. Recycl., 2012, 65,
655		136-144.
656	56.	L. S. Hanson and R. M. Vogel, Environ. Res. Lett., 2014, 9.
657	57.	L. R. Andrade, A. G. Maia and P. S. Lucio, J. Hydrol., 2017, 545, 163-171.
658	58.	I. Domínguez, S. Ward, J. G. Mendoza, C. I. Rincón and E. R. Oviedo-Ocaña, Water, 2017,
659		9.
660	59.	E. R. Oviedo-Ocaña, I. Dominguez, S. Ward, M. L. Rivera-Sanchez and J. M. Zaraza-Peña,
661		Environ. Sci. Pollut. Res., 2018, 25, 19200-19216.
662	60.	IDEAM, Boletín agroclimático nacional, Instituto de Hidrología, Meteorología y Estudios
663		Ambientales, Colombia, 2017.
664	61.	J. Ángel, J. Rozo, L. Hernández and D. Valderrama, <i>Rev Regul-CRA</i> , 2001, 7, 15-42.
665	62.	E. Ghisi and D. F. Ferreira, Build. Environ., 2007, 42, 2512-2522.
666	63.	P. A. Londra, A. T. Theocharis, E. Baltas and V. A. Tsihrintzis, Water Resour. Manage.,
667		2015, 29 , 4357-4377.
668	64.	A. Fewkes and P. Warm, Build Serv Eng Res Technol, 2000, 21, 257-265.
669	65.	M. Almazroui, M. N. Islam, K. S. Balkhair, Z. Şen and A. Masood, Atmos. Res., 2017, 189,
670		11-23.
671	66.	M. Y. Han and J. S. Mun, Water Sci. Technol., 2011, 63, 2796-2801.
672	67.	M. M. Haque, A. Rahman and B. Samali, J. Clean. Prod., 2016, 137, 60-69.
673	68.	J. Mwenge Kahinda, A. E. Taigbenu and R. J. Boroto, Phys. Chem. Earth, 2010, 35, 742-
674		751.
675	69.	P. J. Coombes and M. E. Barry, in Water Sci. Technol., eds. A. Deletic and T. Fletcher,
676		2007, vol. 55, pp. 125-133.
677	70.	S. A. Lucas, P. J. Coombes and A. K. Sharma, Water Sci. Technol. Water Supply, 2010,
678		10 , 69-80.
679	71.	E. Friedler and M. Hadari, Desalination, 2006, 190, 221-234.
680	72.	P. J. Coombes, G. Kuczera, J. D. Kalma and J. R. Argue, Urban Water, 2002, 4, 307-320.
681	73.	H. Kim, M. Han and J. Y. Lee, Sci. Total Environ., 2012, 424, 213-218.
682	74.	A. Palla, I. Gnecco and P. La Barbera, J. Environ. Manage., 2017, 191, 297-305.
683		