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Abstract 

Troublesome voiding lower urinary tract symptoms (LUTS) are a common problem in 

men, particularly with ageing. Management of voiding LUTS can be guided by accurate 

determination of underlying mechanisms, distinguishing men with voiding symptoms 

caused by outlet obstruction from those with reduced bladder contractility. The aim of 

this study is by analysing measured data to establish proper characteristic vector and 

model sets to provide quantitative interpretation of the male urine flow rate (UFR) in 

order to assist medical diagnosis and prediction non-invasively. The methods we 

propose have not been described before, so this work is clearly novel. 

This study initially demonstrates a critical review of urine flow shape and current non-

invasive urodynamic methods on diagnosing Bladder outlet obstruction (BOO) and 

Detrusor underactivity (DU), along with diagnosing accuracy and limitations of each 

method. Furthermore, a urodynamic model using first order discrete transfer function 

has been designed initially to lay down a fundamental assessment of whole urine flow 

shape. However, in follow up research this model shows limited diagnosing power for 

differentiation. To view the possible frequency difference between two groups, a simple 

Butterworth filter with two different cut-off values is designed and adapted to separate 

the frequency components caused by abdominal straining and detrusor contraction. 

Continuously to quantify the difference of frequency range in BOO and DU flow curve, 

an elliptic filter has been developed and adapted for UFR curve and fast Fourier 

transform is employed to derive median power frequency. Additionally, the diagnosing 

utility of flow template is assessed and mathematical criteria of intermittent shape is 

proposed. 

This thesis employs three statistical models, multivariate analysis of variance 

(MANOVA), classification and regression tree, and artificial neural network to 

optimise the diagnosing accuracy. The MANOVA model is consider as the most robust 

statistical model and achieve 79.5% discrimination accuracy. 
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Chapter 1 Introduction 

1.1 Overview 

With worldwide population growing, the proportion of ageing population is rising 

continuously. There is an increased number of patients with lower urinary tract 

symptoms (LUTS), especially in older males. Urodynamic tests have been 

predominantly used to check the function of the bladder and help to investigate the 

cause of urinary dysfunctions or incontinence. 

In the older man it is generally accepted that the outcome of outlet tract surgery is 

improved if patients with bladder outlet obstruction (BOO) are selected by urodynamic 

studies (Abrams, 1999). Some urodynamic investigations are non-invasive, such as 

urine flow studies, while the majority used in the diagnosis of urinary symptoms are 

invasive, involving urethral catheterisation and placement of an abdominal pressure 

catheter. 

The standard for diagnosing BOO is pressure-flow studies (PFS) that offer information 

regarding the degree of BOO through measuring the BOO index (BOOI). A report 

produced at the request of International Continence Society by Griffiths et al. (1997) 

has derived a provisional diagnostic classification as: 

• If (𝑃𝑑𝑒𝑡.𝑄𝑚𝑎𝑥 − 2 ∗ 𝑄𝑚𝑎𝑥)>40, the patient is obstructed; 

• If (𝑃𝑑𝑒𝑡.𝑄𝑚𝑎𝑥 − 2 ∗ 𝑄𝑚𝑎𝑥)<20, the patient is unobstructed; 

• Otherwise, the study is equivocal. 

where 𝑃𝑑𝑒𝑡.𝑄𝑚𝑎𝑥 stands for detrusor pressure at maximum flow and Qmax stands for 

maximum flow rate. Although the PFS remain the gold standard for diagnosing BOO, 

this invasive diagnostic method may not only lead patients to feel stress and 

uncomfortable and have a risk of infection, but there is also a 38% mean reduction of 

the Qmax when men using standard measuring catheters are compared with free 

uroflowmetry. Specifically, the Qmax reductions for normal, BOO and detrusor 

underactivity (DU) patients are 47%, 30% and 37% respectively (Harding et al., 2012). 
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Meanwhile, non-invasive diagnosing methods for BOO cannot challenge the gold 

standard of PFS studies, but they are a reliable adjunct for physicians in planning the 

management of patients with LUTS. However almost all non-invasive diagnosing 

methods will need extra urodynamic equipment, such as ultrasound or penile cuff 

equipment, and also have a less reliable result. More detailed review on different non-

invasive methods is included in chapter 2. 

Compare to other LUTS such as detrusor overactivity (DO), DU is still largely under 

researched and there is no consensus regarding which of the available formulae should 

be used for quantification. Abrams et al. (2002) has defined DU as ‘contraction of 

reduced strength and/or duration, resulting in prolonged bladder emptying and/or a 

failure to achieve complete bladder emptying’. A research conducted in Korean on male 

patients aged over 65 to identify the prevalence of DU, and found out as much as 40.2% 

of patients gone through evaluation for LUTS come with evidence of DU (Jeong, 2012). 

However, there is still a lack of agreed terminology and detailed definition, and it is 

widely accepted that it cannot be differentiated from BOO without PFS studies 

(Chancellor et al., 1991). There is, moreover, no simple effective treatment. 

The urine flow rate shape analysis has been carried out a few decades ago but has only 

been qualitatively proposed. Abrams (2006) proposed four archetypes for urine flow 

shape as presented in the figure 1.1 to 1.4, in which y-axis is flow rate. 

 
Figure 1.1 Bladder outlet obstruction (Abrams, 2006) [Used with permission of the publisher] 

In which he defines a disease-free urine flow rate curve should present a bell curve and 

the maximum of flow rate of approximately 30ml/s appearing around 10 seconds from 

flow commencing, while a classical BOO curve shape has a large reduced maximum 

flow rate of less than 10ml/s (Figure 1.1). 
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Figure 1.2 BOO with terminal dribble (Abrams, 2006) [Used with permission of the publisher] 

However, when maximum flow rate is more than 15ml/s there is still one-third chance 

of BOO if a terminal dribble appears (Figure 1.2). 

 
Figure 1.3 Plateau (Abrams, 2006) [Used with permission of the publisher] 

The plateau can be defined as when the maximum flow rate is almost the same as the 

mean flow rate, with maximum flow rate less than 10ml/s (Figure 1.3) and is suggestive 

of a urethral stricture. 

 
Figure 1.4 Detrusor underactivity (Abrams, 2006) [Used with permission of the publisher] 

Often with detrusor underactivity, a plateau shows in the first half of the flow rate curve 

and the relatively lower maximum flow rate appears in the second half (Figure 1.4). 

Nevertheless, in the real urodynamic test procedure, the flow curve could take many 

forms and the shape is affected by multiple muscle activities. Moreover, the flow curve 

contains a large number of fluctuations which occur during the whole micturition, and 
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results in it being impossible to diagnose LUTS by qualitative analysis of flow shape. 

Therefore, a simple and effective diagnostic method to quantitatively analyse the urine 

flow rate shape for non-invasively differentiating or diagnosing LUTS has been 

suggested in research and clinical practice. 

 

1.2 Research Motivation 

There have already been some sophisticated methods for possible non-invasive 

diagnosis proposed, such as VBN model (Valentini et al., 2014). However, the 

reliability and robustness of these models has not been validated yet and the diagnosing 

accuracy cannot challenge the PFS. There are many reasons to explain the importance 

and necessity of non-invasively diagnosing LUTS, which have three essential aspects: 

the potential benefit for patients and health care system, the simplicity of the diagnosing 

procedures and strong robustness of the diagnosis result. 

For diagnosing urinary dysfunction, the pressure flow studies are the only gold standard. 

However, patients undergoing this invasive test may experience unpleasant sensation 

and anxiety during the filling and voiding phase, and have a potential risk of urinary 

bleeding or infection. Therefore a simple and effective non-invasive diagnosing method 

has been in high demand over the last half century (Gammie et al., 2017). However, 

most of these non-invasive methods either require additional urodynamic equipment 

apart from flowmetry, or have poor diagnosing accuracy especially when tested with 

data from a larger cohort. Some non-invasive diagnostic methods, for instance the 

penile cuff test (Harding et al., 2004), may cause an extra burden for national health 

service (NHS) for training the clinician to operate and for purchasing the penile cuff 

equipment. 

The PFS involves urethral catheterisation and placement of an abdominal pressure 

catheter, which are not only a physical and mental burden for patients, but also requires 

urologists and nurses to be well trained to perform the whole urodynamic test precisely. 

Additionally, a number of artefacts in the flow rate curve and pressure curve need to be 

identified and removed if possible. The International Continence Society (ICS) good 

urodynamic practice (GUP) also recommends the urine flow curve should be smoothed 

either visually by an experienced urologist or by a two seconds window filter. However 
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the majority of urodynamic equipment currently in use does not support the filter, thus 

the smoothing of curve is mostly processed visually by urologists, which could incur 

inaccurate Qmax reading and potentially further misdiagnosis. A simple, low cost and 

non-invasive diagnostic method of urinary dysfunction is desired, with high robustness 

of the diagnostic accuracy. A number of non-invasive diagnosing methods have been 

proposed, for instance the flow index for diagnosing overactive bladder in female 

(Futyma et al., 2015), which has been discussed on its limitations (Schaefer, 2015) and 

the accuracy varies when trialled in different database. 

Overall, Researchers are continuously attempting mechanical, geometric, statistical or 

engineering approaches to non-invasively diagnose LUT dysfunctions with promising 

accuracy. Therefore, a synthesised analytical method combining geometric, statistical 

and engineering approaches can be established to provide non-invasive diagnosis with 

simplified operational procedure and robust diagnostic result. 

1.3 Research Questions 

From the above information, research questions of this project can be listed as 

followings: 

1.3.1 Urodynamic model: would shape analysis have promising diagnostic 

utility? 

A simple model of urine flow rate with low cost is in high demand to diagnose 

urodynamic dysfunction. However the complexity of the biological mechanism in the 

whole micturition procedure and the non-reproducibility of flow curve limit the 

possibility of developing a UFR global model to differentiate possible dysfunctions. 

Therefore, to date the only gold standard for diagnosing urodynamic dysfunction is PFS, 

although it is relatively expensive and may cause urinary tract infection. This study 

initially proposes a urodynamic model using discrete transfer function to represent the 

global shape, but it shows limited utility when applied on large number of patient data. 

To overcome this limitation, an alternative simple method of peak counting is 

developed to explore the frequency difference between BOO and DU groups urine flow 

curves. 
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1.3.2 Would frequency analysis be suitable for urodynamic diagnosis? 

The peak counting method could only indicate the potential difference of frequency 

between BOO and DU groups, and due to its global counting, intermittency and artefact 

in the UFR curve may limit its utility. Therefore a quantitative method is required to 

investigate on the detail of frequency content. According to the hypothesis proposed by 

Gammie et al. (2014), the frequencies of detrusor muscle activity and abdominal 

straining may have ten times of difference, which could be used as an indicator for 

differentiating DU from BOO group. This study uses peak counting method and median 

power frequency (MPF) to verify the hypothesis and further develops diagnosing utility 

based on verification results. 

1.3.3 Would mathematical and statistical models improve overall 

diagnostic accuracy? 

Apart from the most researched non-invasive parameter Qmax, there are also a number 

of non-invasive parameters proposed in this study by analysing UFR in both time 

domain and frequency domain, with similar diagnosing accuracy to differentiate DU 

from BOO. However, including Qmax, the diagnosing accuracy of proposed parameters 

is individually limited for diagnosing DU patients from a mixed symptomatic group. 

Therefore the research question arises – would it be possible to develop mathematical 

and/or statistical models for maximising the diagnostic utility by combining the 

proposed non-invasive indicators? 

1.4 The Aims and Objectives of the Project 

The aim of this PhD research is to non-invasively differentiate DU from BOO in male 

by analysing urine flow rate curve shape. This requires a number of non-invasive 

parameters derived that have statistical difference between two groups, and explores 

possible methods to combine the derived parameters for optimising the diagnostic 

power. 

To achieve this aim the following major objectives have been outlined: 

• To analyse the urine flow rate in time domain and investigate the possibility of 

potential frequency difference between two groups. 
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• To design suitable low-pass and band-pass filters for precisely analysing UFR in 

frequency domain. 

• To optimise the diagnostic power by combining proposed non-invasive parameters. 

• To establish prototypes of UFR shape in two groups to assess the diagnostic utility 

of flow shape alone. 

1.5 Structure of Thesis 

This thesis is divided into seven chapters. It starts with an overview and introduction to 

the research in Chapter 1, and ends with conclusions drawn from this research in chapter 

7. Chapter 2 provides the background, methodology and literature review for the 

research. Chapters 3 and 4 present the analysis of the UFR curve in time domain and 

frequency domain respectively. Chapter 5 addresses the mathematical and statistical 

approach for optimising the diagnostic power. Chapter 6 interprets the analytical result 

and diagnostic utility of each parameter derived and validates the robustness of 

mathematical/statistical models. 

The outline of the thesis is as follows: 

Chapter 1 Introduction to the research background, motivation, project aims and 

objectives, as well as the outline of the thesis. 

Chapter 2 The literature review covers a survey of UFR shape and a summary of other 

non-invasive methods, including diagnosing BOO and DU, or differentiating one from 

others. 

Chapter 3 Analysing UFR curve in time domain is presented with a discrete transfer 

function for modelling the curve, and a Butterworth filter is designed for peak counting 

analysis. 

Chapter 4 To further explore the frequency content in two groups, a bandpass filter is 

designed and applied, median power frequency and sum of amplitude changes is 

derived. 

Chapter 5 Introducing three mathematical and statistical models for optimising 

diagnostic power, which are multivariate analysis, neural network application and 

classification and regression tree analysis. 
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Chapter 6 Interpretation of the analytical result, with diagnostic power of each derived 

parameters and all models, validation tests are conducted for testing the robustness of 

multivariate analysis and CART analysis. 

Chapter 7 Conclusions are drawn to summarise the study and propose future research 

to follow up this study. 



Chapter 2. Research Background and Literature Review                                                                                                    9 

9 
 

Chapter 2 Research Background and Literature Review 

2.1 Urodynamics and lower urinary tract dysfunctions 

2.1.1 Urodynamics 

Urodynamics provides assessment of patients possible lower urinary tract (LUT) 

function by measuring physiological status, which allows urologists to assess patient 

LUT functionality by comparing normal and pathological function. For a full 

urodynamics study recommended by ICS standardisation community, a questionnaire 

containing physical and clinical history is initially surveyed, then the non-invasive free 

flowmetry measurement including post void residual volume is conducted to provide 

objective information prior to invasive urodynamics such as pressure flow studies 

(Schaefer et al., 2002). 

The quality of life (QoL) questionnaire normally includes bladder dairy and symptoms 

such as urgency, pain, day/night voiding frequency, nocturia and incontinence 

frequency. This information verifies the patient’s symptoms and provides a baseline for 

the following urodynamic tests. 

The non-invasive and inexpensive features make uroflowmetry an easy preliminary 

screening test prior to the invasive pressure flow studies. The urine flow rate data is 

recorded and post void residual (PVR) volume is measured by ultrasound equipment. 

Urine flow rate and PVR help the physician to understand storage and voiding 

symptoms, the maximum flow rate (Qmax) is also reported to serve as an indicator to 

select symptomatic men with a high likelihood of BOO. However, the LUT dysfunction 

cannot be accurately predicted if the pressure-flow data is not provided. 

Following the uroflowmetry test, the invasive pressure flow studies (PFS) measures 

intravesical pressure by inserting a narrow catheter into the bladder, while the 

abdominal pressure is simultaneously monitored by inserting a similar catheter with a 

balloon attached into the rectum. Combined with flow rate data, the PFS provides 

information on the bladder’s functionality and gives the urologist enough evidence to 

diagnose the cause of the LUTS. 
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2.1.2 Two Lower urinary tract dysfunctions: Detrusor underactivity and 

bladder outlet obstruction 

ICS standardisation report (Abrams et al., 2002) defines LUTS as ‘the subjective 

indicator of a disease or change in condition as perceived by the patient, caregiver or 

partner and may lead him/her to seek help from health care professions. It can be 

divided into storage, voiding or post-micturition symptoms when they appear during 

the filling phase, voiding phase or after voiding. LUTS, especially storage symptoms, 

could be troublesome for male patients and decrease their quality of life. However, it is 

suggested that LUTS are insufficient to definitively diagnose (Abrams et al., 2002). 

Bladder outlet obstruction is a pressure-flow studies observation which has been 

defined by the ICS as obstruction during voiding and is characterised by increased 

detrusor pressure and decreased urinary flow rate, which is normally diagnosed by 

studying the synchronous values of flowrate and detrusor pressure (Abrams et al., 2002). 

It is suggestive of BOO in male when patient complain of voiding symptoms, while in 

females voiding symptoms reported are rather more often suggestive of DU instead of 

BOO. The obstruction between the bladder and the tip of the urethra, such as urethral 

stricture and bladder neck stenosis, can be a cause of BOO, but in men it is normally a 

result of benign prostatic hyperplasia (Patel and Parsons, 2014). 

Compare to BOO, DU is still relatively under researched, with a lack of unified 

terminologies and of diagnostic criteria. It is defined by ICS (Abrams et al., 2002) as ‘a 

contraction of reduced strength and/or duration, resulting in prolonged bladder 

emptying and/or a failure to achieve complete bladder empty within a normal time 

spam’. Gammie et al. (2016) investigate possible signs and symptoms associated with 

DU and a number of signs and symptoms are reported having statistical difference 

between DU and BOO-DU-free groups, including urinary stream decreased/interrupted, 

hesitancy, feeling of incomplete bladder emptying, palpable bladder, absent or 

decreased sensation, always straining to void, any retention, surgery with possible 

denervation, chronic retention, antibiotics in use and antidepressants in use. Though it 

is well reported that the of signs and symptoms have statistical difference between DU 

and BOO patients, it is widely accepted that DU cannot be differentiated from BOO 

non-invasively. 
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2.2  Urine flow rate shape and its descriptors 

Uroflowmetry serves as a preliminary urodynamic test for physicians to indicate the 

possible cause of LUTS. Alongside the most researched parameter maximum flow rate 

(Qmax), the shape of urine flow rate curve is also suggested to associate with one or 

more voiding abnormalities (Abrams, 2006).  

To review the descriptor and definitions of urine flow rate curve shape, a literature 

search has been made in Pubmed and ICS standardisation documents dated to 5 January 

2018, in which 22 articles were included in the survey. The detailed summary of shape 

definition is presented as in table 2.1. 

Table 2.1 Summary table of flow shape descriptors (Li et al., 2018) [Used with permission of the 

publisher] 

 Normal Constrictive Compressive Fluctuating Intermittent Tower-shaped 

ICS 

(Schaefer et 

al., 2002; 

Abrams et 

al., 2002; 

Haylen et al., 

2010) 

 
smooth arc-shaped, 

high amplitude, no 

rapid amplitude 

changes 

 
smooth flat, plateau-

like, lower flow rate 

 
flattened asymmetric 

low curve with a 

slowly declining end 

part 

 
multiple peaks 

during a period of 

continuous urine 

flow 

 
 

flow stops and starts 

during single void 

 

ICCS 

(Austin et 

al., 2014) 

’'bell-shaped': 

regardless of volume 

voided 

'plateau': Flattened, 

prolonged pattern 

with low amplitude 

 'staccato': irregular, 

fluctuating curve 

without reaching 

zero. Fluctuations > 

square root of Qmax 

'interrupted': 

segments with 

cessation, discrete 

peaks 

sudden, high-

amplitude flow with 

short duration 

Fantl, 1983 
fast crescendo and 
relatively slow 
diminuendo, minimal 
fluctuations 

  'multiple peak': 2nd 
peak >= 20% of 
Qmax 

'interrupted'; flow 
rate < 2 ml/s 
between repetitive 
peaks 

 

 

Jensen et al., 

1983 

 

'adult' 
'plateau': flow rate 

variation<1ml/s for 

at least 4 seconds 

 'intermittent': wavy 
curve not reaching 

the baseline with a 

duration of at least 

15 seconds 

'fractionated': wavy 
curve reaching 

baseline several 

times, for at least 15 

seconds 

 

van der VIS-

MELSEN et 

al., 1989 

 

'single sharp peak' 

 'low flat': flat pattern 
with low average 

and 

maximum 

Index of 

Urine 

Transport 

value 

'sawtooth': low 

average, and normal 

maximum, Index of 

Urine Transport 

  

Boothroyd et 

al., 1990 

bell-shaped and 
approximately 

symmetrical 

'plateau': prolonged 
voiding time and 

reduced Qmax 

  
'sawtooth' 

 

 
Jorgensen et 

al., 1990 

unbroken, bell-

shaped with slight to 

moderate asymmetry 

'plateau': unbroken, 

flattened, large part 

of voided volume is 

voided by a 

constant Qmax 

'prostatic': unbroken, 

pronounced 

asymmetry, 

elongated and 

flattened 

curve from Qmax to 

zero 

unbroken, greater 

fluctuations without 

reaching baseline 

'fractioned': 

discontinuous, flow 

reaches baseline one 

or several times 

 

 
Kinahan et 

al., 1992 

  

'prolonged': low, 

steady Qmax 

'approximately 
normal': normal 

initiation and Qmax, 

end void 
prolongation 

  

'intermittent' 

 

Mattsson et 

al., 1994 

bell-shaped 
  'intermittent': 

variations in flow 
rate of 
at least 5 ml/s 

'fractionated': at least 
one total 
interruption 

 

 
Gutierrez 

 
'bell shape' 

'plateau-shaped': 

constant flow with 

   high Qmax achieved 
rapidly, followed 

by a slight plateau 
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1997 variations<1ml/s and sudden 

decreased flow 

 
Jorgensen et 

al., 1998 

bell-shaped, 

unbroken, steep rise 

to Qmax and steep fall 

'plateau': flattened 
with a steep 

acceleration toward 

Qmax, relatively 

large volume under a 

constant Qmax 

'low flow': unbroken, 

bell-shaped flattened 

with a low Qmax 

unbroken flow, less 

steep rise and fall, 

without reaching 

baseline 

'fractionated': 

discontinuous flow 

reaches baseline one 

or several times 

'high flow': very 

high Qmax with 

short voiding time 

Wyndaele, 

1999 

symmetrical, 
uninterrupted, 
Qmax>15ml/s 

'long flow+low max 

flow' 

'slow start': slow 

rises to Qmax 

'undulating': flow 

moving up and down 

'void 2x': voiding 2 
times with 
complete stopping of 
flow between 

 

 
Chou et al., 

2000 

bell-shaped and rapid 

rise to Qmax and rapid 

fall. 

'plateau': flattened 
with a steep 

acceleration toward 

Qmax, relatively 

large volume under a 

constant Qmax 

 

'flattened‘: flattened 

with a low Qmax 

flow fluctuates but 

does not reach 

baseline 

'intermittent': flow 

reaches baseline at 

least once 

 
'tall and peaked' 

Ghobish, 

2000 

'bell-shaped': Qr 
25%-75% and Tr 25- 

60% 

'box-shaped': 

Qr>80% and Tr<10% 

'long-tail': 
30%<Qr<60% and 

10%<Tr<25% 

 'interrupted': 

subdivided with 
interruption duration 
threhold of 2s 

 

Babu et al., 

2004 

'bell-shaped': bell 
shape, smooth 
pattern 

'plateau-shaped': 
constant flow with 
variations<1ml/s 

    

Pauwels, 

2005 

continuous, bell-

shaped, steep slope 

and short flow time 

'long and low Qmax': 

long flow time, 

relatively constant 
low flow rate 

 'undulating': 

asymmetric, steep 

slope, long and 

flattened foothill 

'fractionated': 

discontinuous, 

repetitive flow peaks 

reaching zero in 

between 

 

 
Abrams, 

2006 

'bell shape': Qmax in 

first 30% of curve 

and within 5 seconds 

from start 

 

'plateau': Qave almost 

same as Qmax 

  
flow stops and starts 

on one or more 

occasions 

'supranormal': 
sharply increased 
flow 

to a very high Qmax 

in 1-3 second, 

followed by a sudden 
reduction 

 
Mostafavi et 

al.13 2012 

'bell': symmetric, 
continuous curve 

between 5% and 

90% of Iranian 

nomogram 

 

'plateau': Qmax/flow 

time<0.5 

 
'staccato': 

fluctuations > square 

root of Qmax 

 

'interrupted': curve 

reaches baseline 

'tower': Qmax>95% 

on Iranian 

nomogram 

 

The table 1 provides an overview of flow shape descriptors and their definitions, which 

are not consistent, and it is much more difficult to uncover pathophysiology when terms 

are not consistently used. It is suggested that only ‘normal’, ‘fluctuating’, ‘intermittent’ 

and ‘plateau’ descriptions, with additional comment on symmetry and Qmax, be used to describe 

urine flow rate curve shape, but this has not become standard (Li et al., 2018). 

2.3  Non-invasive diagnosing methods for BOO 

Although the PFS are the standard for diagnosing BOO, due to its invasive nature and 

side effect include haematuria and urinary tract infection, there are variety of non-

invasive method and techniques that have been used to evaluate LUTS and hold great 

promise. 

2.3.1 Ultrasound and Ultrasonography 

Several novel ultrasound methods were developed to address the need for a reliable 

non-invasive method for diagnosing BOO. Researches indicate intravesical prostatic 
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protrusion (IPP), velocity ratio (VR), post void residual (PVR), detrusor wall thickness 

(DWT) and bladder wall thickness (BWT) have promising diagnosing power and good 

correlation with BOO, which is summarised in following section. Moreover, bladder 

weight can be also measured by ultrasound but there are still arguments on its weak 

correlation and diagnosing power for BOO. Prostate volume and post void residual 

(PVR), two predictors that can be also measured by ultrasound method, are found have 

weak correlations with BOO and cannot be used in isolation as a diagnostic test. 

Post Void Residual (PVR) is defined as the volume of urine left in the bladder at the 

end of micturition (Abrams, 2002), which is another screening test for assessing voiding 

dysfunction and could be measured by ultrasonography non-invasively. Measuring 

PVR is widely performed during or after the initial uroflowmetry test due to its non-

invasive features, and it provides evidences for physicians to identify if further 

evaluation or treatment is needed. Although it is agreed a larger PVR could be 

associated with LUT dysfunction and a threshold used in defining an abnormal residual 

volume, there is lack of quantitative definition of normal and abnormal PVR volume. 

Kolman et al. (1999) measure PVR in 477 random men and described the distribution 

of PVR volume with a median of 9.5 ml, with 2.5 ml to 35.4 ml in 25% to 75% interval. 

PVR volume is significantly increased in elder male patients. An analysis based on 

1763 male participants aged 50 to 80 reveals that a significant rise of mean PVR volume 

of 52 ml in 75 or older males comparing with mean PVR volume of 23.5 ml in 50 to 54 

year old men (Berges and Oelke, 2011). It is demonstrated in a study that only 24% of 

male BOO patients have PVR less than 50ml (Griffiths and Castro, 1970), though 

another study finds 30% of men who have PVR greater than 50ml do not suffer from 

BOO (Leblanc et al., 1995). The PVR volume considerably varies by age and time of 

voiding, therefore it could not serve as an effective indicator for BOO. Furthermore, 

poor detrusor contractility could also result a high PVR volume and could not be 

distinguished from outlet obstruction by PVR volume. 

Intravesical Prostatic Protrusion (IPP) measures the vertical distance from the tip of 

the prostatic protrusion to the circumference of the bladder at the base of the prostate 

gland in the mid-sagittal line. There are three grades of IPP: grade I less than 5mm, 

grade II from 5mm to 10mm and grade III more than 10mm. Abdel-Aal et al. (2011) 

demonstrate in total of 135 patients undertook PFS and IPP analysis, IPP shows best 
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diagnostic accuracy 80% better than combined DWT and IPP 77.6%. The sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV) are 

80%, 80%, 73.7% and 85.1% respectively. In 2006, in research (Lim et al., 2006) 

containing as database of 95 patient data, IPP was compared with prostate specific 

antigen (PSA) and prostate volume (PV). The result shows IPP has the best correlation 

with BOO and diagnosing power of these three predictors, in which sensitivity, 

specificity, PPV and NPV are 46%, 65%, 72% and 46% respectively. Another research 

(Chia et al., 2006) on the relationship between IPP and BOO has conducted in an earlier 

research work in 2003, in which the result shows the third grade IPP has the best 

correlation with BOO with a 94% sensitivity, 70% specificity, 94% PPV and 79% NPV. 

In conclusion, this measure requires further validation and it is not significantly better 

than PVR alone for diagnosing BOO, and there are multiple of thresholds of IPP values 

proposed in several analytical methods which make diagnosing results difficult to 

interpret. 

Detrusor Wall Thickness (DWT) can be visualised with ultrasound technology very 

clearly, and measurements of DWT have been used lately to diagnose BOO in male 

patients. The diagnostic accuracy of DWT measurement has been evaluated (Oelke et 

al., 2007), comparing with free uroflowmetry and postvoid residual urine in one group 

of patients defined as having BOO by PFS analysis. The result shows DWT is the most 

accurate test to determine BOO with an 83% sensitivity, 95% specificity, 94% PPV and 

86% NPV. Another recent research (Elsaied et al., 2013) compares the diagnostic 

accuracy of DWT to other non-invasive diagnosing method for BOO, with database of 

50 patients with PFS used as reference. Compare to PVR, Qmax and prostate volume, 

DWT shows the most reliable diagnosing accuracy with 90.5% PPV, 86.2 NPV, 82.7% 

sensitivity and 92.6% specificity. Although DWT has been recognised wildly as a 

reliable ultrasound measured diagnostic method for BOO, the measurements and 

techniques still need to be standardised and a larger study need to be designed. 

Velocity Ratio (VR) is equal to the maximum flow velocity in the distal prostatic 

urethra just proximal to the external urethral sphincter divided by the maximum flow 

velocity in the membranous urethra, which represents the change in velocity from distal 

prostatic urethra to the membranous urethra, and is found to be the a good parameter 

for diagnosing BOO.  Ozawa et al. (2000) indicate by using combined VR and AG 
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number (PdetQmax-2*Qmax) can achieve 100% sensitivity and 97.5% specificity in a 

database of 22 patient data (unobstructed or equivocal). Although the result shows 

promising diagnosing accuracy, this method still needs to be verified in further clinical 

trials. 

Bladder wall thickness (BWT) is measured by transabdominal ultrasound, and could 

be a potential diagnostic tool for BOO. Compared to DWT, these two methods use the 

same urodynamic equipment to measure the bladder status, but have different 

diagnosing power and diagnostic threshold values since the bladder wall is thicker than 

the detrusor wall. In recent research (Guzel et al., 2015) of 236 male patients, the 

relationship between BWT and uroflowmetric parameters is investigated. The result 

shows BWT combined with specified urodynamic parameters (IPSS, Qmax and PVR) 

has the accuracy in diagnosing BOO of 78.9% sensitivity, 68.1% specificity, 57.6% 

PPV and 85.5% NPV. Although overall diagnosing accuracy of 71.9% shows promise 

to diagnose BOO, this method still needs to be validated and shows relatively poor 

diagnosing accuracy compare to other methods. 

2.3.2 Free Uroflowmetry and Flow Shape Analysis 

It is widely accepted that the flow curve in men with BOO has a lower Qmax than 

normal flow curve. However, uroflowmetry cannot distinguish BOO from DU, since 

reduced flow occurs in both. Furthermore, some patients with BOO and high detrusor 

pressures can still retain normal flow rates. 

Qmax indicates the maximum flow rate and it is a widely used parameter for physicians 

to assess BOO. Abrams (2006) concludes in his book that 90% patients with BOO have 

Qmax<10ml/s and 48% with Qmax>15ml/s. Another research (Guzel et al., 2015) 

shows when Qmax<15ml/s, this single predictor holds the highest NPV of 97%, with 

59% PPV, 99% sensitivity and 39% specificity.  When using predictor Qmax<10ml/s, 

PPV and specificity raise to 69% and 73%, however NPV and sensitivity drop to 72% 

and 68% respectively.  

Flow curve analysis of voiding symptoms often find poor correlations with BOO. 

Furthermore, a research (Reynard, Lim and Abrams, 1996) on intermittence and 

terminal dribble indicated these two predictors were not observed to be associated with 

BOO. Despite the high specificity and PPV, the weak sensitivity and NPV suggest these 
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two predictors cannot be widely used in non-invasively diagnosing BOO. Kuo (1999) 

analyses 324 male data and concludes a constrictive flow curve shape could serve as an 

indicator for BOO with 87.2% sensitivity, though this terminology is poorly defined by 

ICS without a quantitative definition. Rollema (1981) analysed urine flow rate curve 

and derived three novel parameters for serving as non-invasive indicator of BOO, T90 

(voiding time for central 90% of volume voided), Tdesc (time of descending leg) and 

QM90 (mean flow rate for the central 90% of volume voided), for which sensitivity 

range from 90% to 95%. 

Urine flow acceleration (UFA) is proposed by Wen et al. (2013) and defined as the 

increased uroflow rate in a period of time from start the micturition to the Qmax, which 

is reported could has better diagnosing accuracy than Qmax with 88% sensitivity and 75% 

specificity. 

Uroflowmetry could be the easiest and economical way to analyse urinary symptoms, 

however wide thresholds across studies make diagnosing accuracy uncertain. The 

sensitivity raises up when the cut-off value of Qmax increased, with lowering the 

specificity, and vice versa. Furthermore, the relatively poor diagnosing power for BOO 

and its undifferentiability from low detrusor contractility limit further clinical 

application of this method.  

2.3.3 Other Non-invasive Methods 

Abdominal straining is included in various symptom scores which are used for 

assessment of patients with BOO. The objective evidence of straining is assessed by 

rectal pressure measurement. In a clinical study (Reynard et al., 1995), 56 patients with 

BOO underwent the abdominal straining test four times and specificity for patients who 

strain on 4 flows is 87%, along with 36% specificity, 80% PPV and 51% NPV. 

Although abdominal strain does not have a great effect on flow rate in men, it is still an 

unreliable and insufficient predictor for diagnosing BOO. 

Penile cuff test is a choice of non-invasive test method for assessing BOO. In the test, 

a cuff is placed around the penis before voiding, and automatically inflated and deflated 

for several times during the voiding process to stop urine flow (Griffiths et al., 2002). 

Recent research (Finazzi Agrò et al., 2012) investigated penile cuff test in diagnosing 

with a database of 48 patients, which shows a remarkable result of 100% sensitivity, 
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63% specificity, 66.7% PPV and 100% NPV. An earlier research conducted by Harding 

et al. (2014) show penile urethral compression release (PCR) index, which relies on 

penile cuff test, provides 78% sensitivity, 84% specificity and a PPV of 69%. In 

conclusion, a penile cuff test has some ability to diagnose BOO, but the extra equipment 

requirement may result in high charge for diagnosis and treatment. Furthermore, the 

limited research with varied threshold values make this method not yet unreliable for 

clinical use. 

Condom Catheter method is used to measure isovolumetric bladder pressure by 

replacing an external catheter connected with penis (Pel and Mastrigt, 1999), and aims 

at assessing BOO non-invasively by combining this with Qmax. The minimum of 

discomfort and leakage occurred is confirmed in a follow up research, and a 

mathematical equation is derived to estimate isovolumetric pressure with measured data 

and Qmax (Pel and Van mastrigt, 2001). This method also been tested to confirm the 

reproducibility and reliability of isovolumetric bladder pressure measurement (Rikken 

et al., 1999; Huang Foen Chung et al., 2004). Its diagnostic utility has been tested, in 

which 12 out of 13 non-obstructed and 30 out of 33 obstructed patients are tested 

correctly according to their pressure flow test result (Pel et al., 2002). The promising 

diagnostic accuracy is also confirmed in an another follow up research with larger 

number of patients involved, with 94% successful measurement in 618 participants and 

84% of two successful measurement in 555 subjects (Huang Foen Chung et al., 2003).  

2.3.4 Combined Parameters 

The drawback of individual parameters for non-invasively diagnosing BOO have led 

researchers to investigate the diagnostic potential of different parameters combined. 

IPP and DWT, Prando (2010) has investigated baseline parameters including 

International Prostate Symptom Score, prostate volume, urinary flow rate, intravesical 

prostatic protrusion, detrusor wall thickness, Schaefer obstruction class, minimal 

urethral opening pressure and the urethral resistance algorithm bladder outlet 

obstruction index. He indicates the association of IPP and DWT produced the best 

diagnostic accuracy for BOO (87%) when the 2 tests were done consecutively. 

IPP grade and Doppler ultrasound, Shin et al. (2013) assessed the accuracy of two 

noninvasive, ultrasound method and combined method of diagnosing bladder outlet 
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obstruction with 57 male outpatients. The sensitivity and specificity of the intravesical 

prostatic protrusion (IPP) grading system are 90% (grade 3) and 60% (grade 1 and 2). 

The sensitivity of the ultrasound Doppler system for a BOOI more than 40 is 100%, 

and the specificity is 68%. When these two methods were combined, the sensitivity for 

grade 3 patients is 100% and specificity for grade 1 and 2 patients is 91% . 

Causal Bayesian Networks have emerged as an advanced alternative to conventional 

statistical models in the medical field. Kim et al. (2014) investigate multiple non-

invasive clinical parameters and selected total prostate volume, Qmax and post-void 

residual volume as predictors in causal Bayesian networks model. The sensitivity, 

specificity and diagnosing accuracy are 51.4%, 85.2% and 73.5% respectively. 

However, there remains a majority of patients presenting with LUTS who are not 

assigned to a diagnostic group with any certainty. To date there is little evidence show 

these combining parameters methods decrease the number of men who require PFS. 

2.3.5  Non-invasive Diagnosing Methods for DU 

As DU is still largely under researched and as there is a lack of quantitative definition, 

the non-invasive diagnosing methods are still small in number. Furthermore, each 

method is still in need of larger clinical trial to make the diagnosing power reliable. 

Hand grip strength (HSG) has been researched (Paick et al., 2014) as a predictor of 

DU in male patients with LUTS. 64 men are included in this study, in which 36 patients 

had DU. All patients were asked to preform hand grip test before urodynamic study, 

and HGS was compared between DU group and non-DU group. The results show DU 

patients had lower HGS than non-DU patients. By using cut off HGS of 25kg, the 

sensitivity, specificity, PPV and NPV are 30.6%, 89.3%, 78.6% and 50% respectively. 

When cut off HGS increases to 35kg, this single predictor has 83.3% sensitivity, 39.3% 

specificity, 63.8% PPV and 64.7% NPV. 

HGS method may be an economical and easy way to diagnose DU, however two 

thresholds result in either poor sensitivity or specificity, which makes the diagnosing 

accuracy appears to be relatively limited compare to current invasive PFS. 

DWT and bladder capacity are analysed by classification and regression tree (CART) 
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for diagnosing DU with non-invasive clinical tests in the recent research (Rademakers, 

van Koeveringe and Oeleke, 2016). This study consists of 143 consecutive men with 

33 patients with DU. The result shows that all men with DWT<1.23mm plus bladder 

capacity >445ml have DU. The classification and regression tree model shows a 

sensitivity of 42%, specificity of 100%, PPV of 100% and NPV of 85%. 

DeltaQ is defined as Qmax minus Qave, which is reported could serve as a predictor to 

differentiate DU from BOO non-invasively (Lee et al., 2016). In an analysis of 240 

male free flow data, DeltaQ and PVR are reported having significantly statistical 

difference between two diagnostic groups, in which DeltaQ is reported of 71.3% 

sensitivity and 70.3% specificity, and PVR is reported of 70.3% sensitivity and 75.2% 

specificity. 

There are a large variety of non-invasive techniques and methods has been proposed 

for diagnosing BOO, and a combination of non-invasive urodynamic measures and 

ultrasound measures holds promise for decent diagnosing accuracy. However, each 

type is currently insufficient to challenge the gold standard of PFS. Furthermore, DU 

was largely under researched till lately, but as a bladder condition it shows an important 

cause of LUTS in men, and it can only be diagnosed and differentiated from BOO by 

PFS. 

2.4  Summary 

In this chapter, the up to date literature review on non-invasively diagnosing BOO and 

DU has been summarised and presented. Various methods hold the promise to non-

invasively diagnose BOO, with or without extra urodynamic equipment. However, DU 

is still largely under researched and only a few researchers propose non-invasive 

diagnostic method, though with limited accuracy. The similarity of relatively lower 

Qmax and flow curve shape make PFS the only effective method to differentiate DU 

from BOO. 

Though the shape of urine flow is reported to associate with one or more voiding 

abnormalities, it has not been done quantitatively apart from Qmax and Qave. Therefore, 

this study starts by analysing urine flow shape in the time domain. 



Chapter 3. Analysing Urine Flow Rate Data in Time Domain                                                                                                         20 

20 
 

Chapter 3 Analysing Urine Flow Rate Data in Time Domain 

3.1 Overview 

Urine flow rate is one of the most significant parameters for assisting physicians to 

assess urinary system status/symptoms, such as normal, underactive and obstructive. In 

this research all the urine free flow rate data were measured by uroflowmetry equipment 

in Bristol Urological Institute and anonymously sent to researcher. The diagnostic 

results were determined by PFS and totally blind to researcher in model design stage. 

According to Gammie’s suggestion, the start and end micturition points are reselected 

by the threshold value of 0.5ml/s to avoid erroneous classification of urine flow shape 

(Gammie et al., 2016). 

The hypothesis of peak counting analysis is based on the hypothesis that DU patients 

may perform more abdominal straining than BOO patients due to their underactive 

detrusor muscle, which would be reflected in the shape of their urine flow rate curve. 

Rollema (1981) compares peak number in BOO and disease-free data, and finds this 

parameter has statistical difference between two groups. The latest symptomatic 

definition of DU proposed by a working group set up by ICS is ‘Underactive bladder is 

characterised by a slow urinary stream, hesitancy and straining to void, with or without 

a feeling of incomplete bladder emptying and dribbling, often with storage symptoms’ 

(Wein and Chapple, 2017), and straining in DU and BOO groups with significant 

statistical difference has been verified in a large database analysis (Gammie et al., 2016). 

Therefore it might be possible to analyse DU with peak counting method and compare 

with BOO group to assess if the straining difference could be reflected by this parameter. 

The hypothesis of UFR modelling analysis is based on UFR curve shape may vary in 

different diagnostic groups, in which BOO curve is relatively lower in Qmax with plateau 

or asymmetry shape while DU curve may have its Qmax in the second half of the flow 

time and a prolonged falling descent (Abrams, 2002). Hence, a non-invasive parameter 

based on curve shape could serve as an indicator for differentiating DU from BOO if it 

could reflect the shape difference between two groups. 
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To understand this, consider a measured typical normal male urine flow rate curve in 

figure 3.1. It can be observed the shape is like a bell shape with slight added fluctuations. 

Deviation from this normal shape could suggest some problems in urine flow process. 

 

Figure 3.1 Measured normal urine flow rate curve 

These observations give guidance in determining a model structure with the following 

characteristics 1) it is a dynamic that could be represented by first order dynamic 

principle, 2) it is piecewise linear, meaning it could be separated into upward rate flow 

session and downward rate flow session from the peak value (that is the top of the bell 

shape), in which the time of the peak value is defined as the ‘ridge point’ in the 

following descriptions. 

To analyse urine flow rate data in time domain, two analytical methods have been 

proposed: peak counting analysis and time constant analysis. These two methods would 

be the easiest to implement in future and use the existing qualitative information 

available (Abrams, 2002). They are therefore a valid starting point for this quantitative 

study. 

All analyses have been developed in MATLAB version 2018b and earlier version with 

pre-code script. 158 BOO and 135 DU free flow data from male patients who underwent 

PFS, studied in a single specialist centre between 2012 and 2018 were randomly 
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selected for analysis in this study. Free flowmetry was performed before each PFS 

which was carried out according to ICS guidelines current at the time of testing, with a 

sampling rate of 10Hz by Laborie weight transducer type uroflowmeters. The 

diagnostic criteria for DU is bladder contractility index (BCI) less than 100 and bladder 

outlet obstruction index (BOOI) less than 20, and for BOO is BCI greater or equal to 

100 and BOOI greater or equal to 40. The urine flow rate data was transferred to an 

Excel file and pre-processed with a threshold value of 0.5ml/s for defining the starting 

and end point. 

For a clearer view on the urine flow rate shape, DU and BOO UFR 2 seconds window 

filtered curve plots are presented in the appendix VII and VIII respectively, in which 

each plot contains maximum of 20 UFR curves. 

3.2  Filter Design and Peak Counting Analysis 

3.2.1 Introduction of peak counting analysis 

In the uroflowmetry test, during micturition process there are normally a number of 

fluctuations, caused by abdominal straining and involuntary bladder contraction. It is 

reported that straining is an uncommon complaint in men with BOO (Reynard et al., 

1995), while it happens more frequent in DU patients (Wein and Chapple, 2017). 

Abdominal straining might last a short period compared with involuntary or voluntary 

bladder contraction, and peaks generated by abdominal straining is hypothesised to 

have statistical difference between DU and BOO groups, which is our goal to count in 

this analysis. However there are a large amount of fluctuations caused by coughs, 

changing voiding position, accidentally knocking or kicking the uroflowmetry which 

may affect UFR’s estimated characteristics, and consequently produce incorrect result 

of peak counting analysis. These fluctuations are normally called artefacts and need to 

be removed from UFR curve. ICS GUP suggests manually removing artefacts by an 

experienced urologist or automatically removing by a two seconds window filter for a 

clearer observation of Qmax and flow shape (Schaefer et al., 2002). However, the two 

seconds window filter could smooth the curve in the time domain which indeed 

provides better observation on Qmax and curve shape, but with a relatively slow roll off 

between passband to the stopband, it may result in missing some meaningful high 

frequency components, such as a part of peaks caused by straining. 
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In the ICS guideline on urodynamic equipment performance, it states the clinical 

requirements for a standard urodynamic system lead to technical recommendations, 

which also specified the minimum equipment frequency to measure abdominal and 

detrusor muscle activities (Gammie et al., 2014). As a matter of fact, the specified 

frequencies provide guidance on selection of cut-off frequency in filter design to reduce 

noise effect. According to this, we make a proposal for the peak counting analysis, that 

three frequency bands and components are defined: 

• Fluctuations frequency less than or equal to 0.1Hz – major involuntary detrusor 

contractions 

• Fluctuations frequency between 0.1Hz to 1Hz – relatively small detrusor 

contractions, abdominal straining, some artefacts 

• Fluctuations frequency equal or greater than 1Hz – pure artefacts 

It should be noted, that some artefact fluctuations are ranged between 0.5Hz to 1Hz, 

which are not filtered out in peak counting analysis as the fluctuations caused by 

abdominal straining may perform fast and in this range as well. 

3.2.2 Filter design and verification 

There are several types of digital filters that can be used to reduce signal noise. For an 

easier start, only Finite Impulse Response (FIR) filters are considered in the initial stage 

of this project. Compared to the other digital filters, the Butterworth filter rolls off 

slower around the cut-off frequency than Chebyshev filter or the Elliptic filter, but 

without ripple on both passband and stopband. As the artefact peaks generated by the 

filter have to be avoided for the accuracy of analytical result, the Butterworth filter can 

effectively reduce the artificial noise but does not add peaks to the original peak 

characteristics in the raw data. The frequency responses and group delay response of 

four filters are shown in figure 3.2 and figure 3.3 respectively. 
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Figure 3.2 Butterworth comparison with other FIR filters 

 

Figure 3.3 Frequency delay response 
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Therefore, Butterworth filter can be considered as a suitable candidate for reducing the 

artefacts, which shows that a low pass filter could be designed whose cut-off frequency 

is normalised to 1 radian per second and whose frequency response (gain) is 

𝐺(𝜔) = √
1

1+𝜔2𝑛                                                                                                                   (3.1) 

Where 𝜔 is the angular frequency in radians per second and n is the number of poles in 

the filter — equals to the number of reactive elements in a passive filter. 

When used in forms of digital filter, a Z transfer function of an n-order Butterworth low 

pass filter can be expressed as 

𝐻(𝑧) =
𝐵(𝑧)

𝐴(𝑧)
=

𝑏1+𝑏2𝑧−1+⋯+𝑏𝑛+1𝑧−1

𝑎1+𝑎2𝑧−1+⋯+𝑎𝑛+1𝑧−𝑛                                                                                 (3.2) 

where n is the order of the filter (Williams, 2006). 

The FIR filters have non-constant group delay response, so the filtered data could not 

be shifted back according to the group delay. Therefore the order of designed filter 

needs to be considered carefully, as greater group delay response value may result in a 

risk of loss of a part of information in the very end of falling part. The group delay 

response for Butterworth order 1, 3, 5 and 10 with stopband of 0.2 sample rate are 

presented as in figure 3.4. 
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Figure 3.4 Group delay response for Butterworth filter 

Though the group delay response is small in value and almost constant in order 1 

Butterworth filter, the performance on frequency response is poor. Figure 3.5 presents 

the frequency response for Butterworth filter with order 1, 3, 5, 10 and stopband of 0.2 

sampling rate. It can be witnessed that the start of roll off in order 1 is much earlier 

than other three, which will reduce the amplitude of fluctuations generated by 

detrusor contraction. To optimise the filter performance and group delay value, 

Butterworth third order filter is chosen for the peak counting analysis. 



Chapter 3. Analysing Urine Flow Rate Data in Time Domain                                                                                                         27 

27 
 

 

Figure 3.5 Frequency response of Butterworth filter in different orders 

In MATLAB code design, the cut-off frequency 𝜔𝑛 must be 0.0 < 𝜔𝑛< 1.0, with 1.0 

corresponding to half the sampling rate. The sampling rate of the uroflowmetry is 10Hz, 

thus the coefficients in MATLAB filter design have inputted as 0.2 for 1Hz filter to 

reduce fluctuations caused by artefacts and 0.02 for 0.1Hz filter to reduce fluctuations 

caused abdominal straining. The digital filter transfer functions for two sessions have 

been identified below. 

𝐻(𝑧)1𝐻𝑧 =
0.2452+0.2452𝑧−1

1−0.5095𝑧−1
                                                                                              (3.3) 

𝐻(𝑧)0.1𝐻𝑧 =
0.0305+0.0305𝑧−1

1−0.9391𝑧−1
                                                                                              (3.4) 

The frequency and phase response plots for 1Hz and 0.1Hz designed filters are shown 

in figure 3.6 and figure 3.7 respectively. 
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Figure 3.6  Frequency and phase response plots for 1Hz filter 

 
Figure 3.7 Frequency and phase response plots for 0.1Hz filter 

In the peak counting analysis, 1 Hz and 0.1 Hz third order filters act on the raw flow 

curve to maximum reduce peaks caused by abdominal squeezing and bladder squeezing 

respectively. The selection of cut-off frequency is referred by ICS guideline (Gammie 

et al., 2014). The peak is defined as a data sequence point is greater than its before and 

after points, and have minimum amplitude of 1 for the flow data with Qmax greater or 

equal to 5ml/s or minimum amplitude of 0.5 for the flow data with Qmax less than 5ml/s. 

An example plot for filter applied on raw flow curve shows in figure 3.8. It can be 

counted automatically in MATLAB that there are 104 peaks in raw curve, 48 peaks in 
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1 Hz filtered curve and 5 peaks in 0.1 Hz filtered curve. The peak number may have a 

linear correlation with volume voided, therefore the peak numbers per 100 ml in both 

raw flow and 0.1 Hz filtered curve are counted separately for peak counting analysis. 

The derived parameters include peak numbers in raw curve, 1Hz filtered curve and 

0.1Hz filtered data. Ratios of peak number in raw curve against 1Hz filtered curve and 

raw curve against 0.1Hz filtered curve are also included for statistical analysis. 

 
Figure 3.8 Raw flow curve and third order filtered flow curves 

 

3.2.3 Filter cut off frequency verification 

In the peak counting analysis, the cut-off frequency adopted is 0.1Hz and 1Hz which 

are assumed to indicate detrusor contraction and abdominal straining respectively, 

which is a hypothesis inspired from the ICS urodynamic equipment guideline paper 

(Gammie et al., 2014). However, there are no such precise definition for detrusor 

contraction and abdominal straining frequencies in ICS guideline or terminology 

documents. Therefore, a robust analytical result for these two frequencies is needed for 

laying down a reliable foundation of further research. 

Cut-off frequencies were selected for 1Hz, 0.8Hz, 0.6Hz, 0.5Hz, 0.3Hz, 0.1Hz and 

0.08Hz, with third order Butterworth filter. Each filter with different cut-off frequencies 

was applied on raw UFR curve, then peak numbers was counted in each filtered curve 

and raw curve as well. Furthermore, ratios of peak number comparing in pairwise 
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filtered curve and original curve were calculated, and summarised in an excel file for 

further statistical analysis. 

All statistical analysis was performed using SPSS version 23, Mann-Whitney U test 

and T-student test were performed as appropriate depending on normality. The results 

of statistical analysis are as presented in Table 3.1 with only significantly statistical 

difference are shown. Statistically significant was considered as a P<0.05. 

Table 3.1 Statistical analysis result on ratio of peak numbers in different filtered curves 

Ratio R/0.5 R/0.1 R/0.08 1/0.6 1/0.5 1/0.3 1/0.1 1/0.08 0.8/0.5 0.8/0.1 

P 0.024 0.002 0.001 0.032 0.019 0.033 0.002 0.001 0.019 0.002 
Abbreviations: R=peak numbers in raw curve; 0.5=peak numbers in  0.5Hz filtered curve; 0.1=peak 

numbers in 0.1Hz filtered curve; 0.08=peak numbers in 0.08Hz filtered curve; 0.6=peak numbers in 

0.6Hz filtered curve; 0.5=peak numbers in 0.5Hz filtered curve; 0.3=peak numbers in 0.3Hz filtered 

curve. 

 

Further area under curve (AUC) analysis was performed for those having greater 

significantly statistical difference (P<0.01), with best sensitivity/specificity and cut-off 

ratio are presented in Table 3.2. 

 

Table 3.2 AUC analysis results on median power analysis 

Ratio R/0.1Hz R/0.08Hz 1Hz/0.1Hz 1Hz/0.08Hz 0.8Hz/0.1Hz 

Area under curve 0.671 0.59 0.608 0.597 0.617 

Sensitivity 59.1% 50% 68.2% 65.9% 59.1% 

Specificity 58.7% 69.6% 60.9% 54.3% 67.4% 

Cut-off value 16.1 15.3 8.4 7.1 8.6 
Abbreviations: R=peak numbers in raw curve; 0.1Hz=peak numbers in 0.1Hz filtered curve; 

0.08Hz=peak numbers in 0.08Hz filtered curve; 0.8=peak numbers in 0.8Hz filtered curve. 
 

From table 3, the optimised sensitivity and specificity for differentiating DU with BOO 

is comparing peak numbers in 1Hz filtered curve with 0.1Hz filtered curve. This result 

also verifies the hypothesis that the average frequency for detrusor contractions is 0.1Hz 

and 1Hz filter have reduce the artefacts successfully. 

3.3 Urine Flow Rate Model for Time Constant Analysis 

The modelling analysis of urine flow rate aims at to quantify the flow shape and to 

assess if the shape of the UFR curve could serve as a indicator for differentiate DU 

from BOO. In this analysis, the UFR curve is separated into rising and falling parts by 

the Qmax point and each part is estimated as a first order transfer function. The Least 
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Squares method is adopted for the curve approximation and the time constant value in 

each part is calculated to assess its diagnostic utility. 

3.3.1 Urine Flow Rate Model 

The urine flow rate model is proposed as 

𝑄(𝑡) = {
𝑄1(𝑡) = 𝑎1𝑄1(𝑡 − 1) + 𝑏1𝑃1(𝑡) 𝑡 ≤ 𝑛𝑟 𝑢𝑝𝑤𝑎𝑟𝑑

𝑄2(𝑡) = 𝑎2𝑄2(𝑡 − 1) + 𝑏2𝑃2(𝑡) 𝑡 ≻ 𝑛𝑟 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑
                          (3.5) 

where t (1, 2, …) is the discrete time index, model output𝑄𝑖(𝑖 = 1,2) and model input 

𝑃𝑖(𝑖 = 1,2)  are the observed urine flow rate value and the virtual input value 

respectively, parameter𝑎𝑖(𝑖 = 1,2) are linked to the corresponding time constants of 

the associated dynamic models and parameters 𝑏𝑖(𝑖 = 1,2) are the gain associated with 

the inputs, the coordinate (𝑛𝑟 , 𝑄𝑟) is the ridge point time index and the value. It should 

be explained that the model parameters have physical meanings and can be estimated 

from measured data. In dynamic principle, the time constant value determines how 

quickly a urine process moves toward to steady state, the greater of time constant value, 

the lower speed urine flow rate can be observed. It has been observed that even when 

two patients have different urine flow rate curves and the maximum values, the time 

constant value still can be the same. Also, the time constant value can be related with 

the pressure of the detrusor, and possibly links with the pressure in the bladder. 

3.3.2 Model Parameter Estimation 

The work of model parameter estimation is to obtain the parameters 𝑎𝑖(𝑖 = 1,2) and 

𝑏𝑖(𝑖 = 1,2) in model of (3.5) by using a statistical algorithm with measured data. For 

this research, a classical Least Squares (LS) algorithm (Soderstrom and Stoica, 1989) 

is tailored to implement the data driven computations. 

Consider a general linear in parameters regression model 

𝑦(𝑡) = 𝜑𝑇(𝑡)𝜃 + 𝑒(𝑡)    𝑡 = 1,2, … , 𝑁                                                                                           (3.6) 

where t is a discrete time index, N is the length of measured data sequence, dependent 

variable 𝑦(𝑡)  is a measurable quantity, regression variable 𝜑𝑇(𝑡) =
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[𝜑1(𝑡) 𝜑2(𝑡) ⋯ 𝜑𝐿(𝑡)]is a measurable L-vector, and error variable𝑒(𝑡)  is an 

unmeasurable quantity to represent modelling error caused from various factors such 

as measurement noise and external disturbance, and parameter vector 𝜃 =

[𝜃1 𝜃2 ⋯ 𝜃𝐿]𝑇  is a L-vector to be estimated from measured 𝑦(𝑡)  and 𝜑(𝑡)  in 

terms of the least squares errors, the difference between measured dependent variable 

𝑦(𝑡) and model output variable 𝜃. 

In the computation algorithm, to find an estimate 𝜃 of the parameter vector 𝜃 from 

measurements𝑦(1) 𝜑(1) ⋯ 𝑦(𝑁) 𝜑(𝑁), a set of linear equations are formed, 

namely, 

𝑦(1) = 𝜑𝑇(1)𝜃 

𝑦(2) = 𝜑𝑇(2)𝜃 

           ⋮ 

𝑦(𝑁) = 𝜑𝑇(𝑁)𝜃                                                                                                                   (3.7) 

This can be written in matrix notation as 

𝑌(𝑁) = 𝛷(𝑁)𝜃                                                                                                                    (3.8) 

Where 

𝑌 = [
𝑦(1)

⋮
𝑦(𝑁)

] 𝛷 = [
𝜑𝑇(1)

⋮
𝜑𝑇(𝑁)

]                                                                                                       (3.9) 

The normal equations take the form 

[𝛷𝑇𝛷]𝜃 = 𝛷𝑇𝑌                                                                                                                  (3.10) 

Therefore, the estimation for the parameters can be determined by 

𝜃 = [𝛷𝑇𝛷]−1𝛷𝑇𝑌                                                                                                                  (3.11) 

In this research, the parameter estimation work includes 1) by inspecting measured 

urine flow rate data sequence, identify the ridge point coordinate (𝑛𝑟 , 𝑄𝑟), which split 

the sequence into upward and downward sub-sequences, 2) with reference to (𝑛𝑟 , 𝑄𝑟), 

setup virtual stimulate inputs for each sub-sequence, 3) form the associated matrices 
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and vectors from each of the sub-sequences, 4) use equation (3.9) to calculate the 

parameter vectors. The step by step procedure is illustrated below. 

1) Let N be the measured data sequence, determine ridge point coordinate (𝑛𝑟 , 𝑄𝑟) 

2) Setup virtual step stimulate inputs 

For rising part (𝑡 = 1 ⋯ 𝑛𝑟), setup 𝑃1(𝑡) as a step input 𝑛𝑟*1 vector with amplitude of 

𝑄𝑟 and zero initial, which represents a urine flow process driven by an internal force 

from the bladder. Accordingly, the sub-data sequence is formed as 

𝑃1(𝑡)𝑇 = [1 ⋯ 1]                                                                                                            (3.12) 

3) Form normal matrices 𝛷𝑖(𝑖 = 1,2) and output vectors 𝑌𝑖(𝑖 = 1,2) 

1 2

(1) (2) ( 1) ( )

( 1) ( ) ( 1) ( )

r r

r r

q p q n p n

q n p n q N p N

−   
    =  =
   
   − −                                                                           (3.13) 

and 

1 2

(1) ( )

( 1) ( )

r

r

q q n

Y Y

q n q N

   
   

= =   
   −                                                                                                    (3.14) 

Let the parameter vectors be expressed as 

1 2

1 2

1 2

a a

b b
 

   
= =   
                                                                                                              (3.15) 

4) Then substitute the formed matrices and vectors into equation (3.9) to obtain the 

parameter estimates. 

3.3.3 Calculation of Time Constant Values 

Time constant is defined by a first order Laplace transfer function (Soderstrom and 

stoica, 1989), as represented by a first order linear differential equation which is 

presented as in equation 3.16. 



Chapter 3. Analysing Urine Flow Rate Data in Time Domain                                                                                                         34 

34 
 

𝑄𝑖(𝑠)

𝑃𝑖(𝑠)
=

𝑘𝑖

𝑇𝑖𝑠+1
𝑖 = 1,2                                                                                                         (3.16) 

where 𝑠  is the Laplace operator, 𝑄𝑖(𝑠) and 𝑃𝑖(𝑠) are the Laplace transforms of the 

observed urine flow rate value and the virtual input value in terms of continuous time, 

respectively. 𝑇𝑖 is defined as time constant. 

The proposed model (3.5) is in form of discrete time description and it corresponding 

Z transform (a representative to a first order linear difference equation) can be 

expressed as 

𝑄𝑖(𝑧)

𝑃𝑖(𝑧)
=

𝑏𝑖

1+𝑎𝑖𝑧−1
𝑖 = 1,2                                                                                                      (3.17) 

With reference to residue theorem to convert to continuous transfer function 𝐹(𝑠) from 

discrete time transfer function 𝐹(𝑧) 

𝐹(𝑠) = ∑ 𝑅𝑒 𝑠 [𝐹(𝑧)
𝑧−1

𝑠 −
1
𝑇𝑠

𝑙𝑛 𝑧
] 

= ∑ {
1

(𝑚−1)!

𝑑𝑚−1

𝑑𝑧𝑚−1 [(𝑧 − 𝑧𝑖)
𝑚𝐹(𝑧)

𝑧−1

𝑠−
1

𝑇𝑠
𝑙𝑛 𝑧

]}
𝑧=𝑧𝑖

                                                             (3.18) 

where normalised sampling period 𝑇𝑠 = 1. For the proposed discrete time first order 

urine flow rate model, ∑ = 1, 𝑚 = 1, 𝑧𝑖 = 𝑎𝑖(𝑖 = 1,2) and then the time constant 

values of the continuous time model can be obtained by 

𝑇𝑖 = −
1

𝑙𝑛 𝑎𝑖
𝑖 = 1,2                                                                                                           (3.19) 

Therefore, from the above analysis, the procedure to obtain the time constants of model 

(3.5) is consist of two steps 1) estimate 𝑎𝑖(𝑖 = 1,2) of model (3.5) from measured data 

and 2) calculate 𝑇𝑖 from the relationship of (3.19). 

The plot for an example of 0.1Hz first order filtered data and urine flow rate model is 

presented in figure 3.9. 
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Figure 3.9 0.1 Hz filtered data and urine flow rate model 

In the analytical procedure, the time constant value could be negative, as the flow curve 

is manually separated which potentially results in raising part showing an infinite trend. 

Also it should be noted, the time constant analysis may not work properly on analysing 

intermittent traces as the first order transfer function is not sufficient for describing a 

multi-peak curve. 

3.4  Urine Flow Rate Curve Normalization and shape archetype 

The shape of urine flow rate curve is suggested to associate with one or more voiding 

abnormalities (Abrams, 2017). In this UFR shape normalization analysis, two shape 

archetypes, BOO and DU, are generated from each diagnostic group data and it is 

proposed to assess their capacity to non-invasively differentiate DU from BOO. The 

time constant value analysis is re-conducted on normalised flow rate curve to isolate 

shape from time and flow rate, for assessing the diagnostic utility on modelling UFR 

pure shape. 

3.4.1 Quantitative detection of intermittent shape 

To generate the shape template for each diagnostic group, intermittency shape data need 

to be excluded. However the intermittency terminology from ICS is not a quantitative 

definition, and describes a flow stopping and starting during a single void (Abrams et 

al., 2002). The early dribble (figure 3.10) and terminal tribble (figure 3.11) are normally 

included in the urine flow rate curve as they are produced as a part of micturition, but 

dribbles will critically influence the accuracy of shape template generated from each 
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diagnostic group. Especially terminal dribble is reported as happening in 39% of DU 

male patients (Uren et al., 2017). Early dribble could happen in less urine flow volumes, 

but either early or terminal dribble should be avoided when detecting intermittency 

from a UFR data input. A quantitative definition of the early and terminal dribble which 

could be used in intermittency detection is needed for the urine flow curve 

normalisation and template analysis. 

 

Figure 3.10 A UFR curve plot shows a ‘hump’ at the very beginning of curve. The data is filtered by 2 

seconds window filter to remove artefacts. 

 

Figure 3.11 A UFR curve plot shows a ‘hump’ at the very end of curve. The data is filtered by 2 seconds 

window filter to remove artefacts. 
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In the literature, Fantl (1983) gives the additional definition of flow rate falling below 

2ml/s, instead of ICS terminology of completely stopping for intermittency shape, 

which could increase the risk of mis-classifying a curve with large fluctuations 

appearing in the micturition as a intermittency shape. This would especially be the case 

for those with lower maximum flow rate, for instance a patient with Qmax of less than 

5ml/s possibly has a major part of the flow rate in the curve under 2ml/s. Another 

research defines intermittent flow as lasting for at least 15 seconds of flow time with 

one or more interruptions (Jensen et al., 1983). In conclusion, none of these two 

additional definition will help to quantitatively exclude early or end terminal dribble 

when detecting intermittency shape. 

After observation of all urine flow rate data and discussing with the supervisory team, 

intermittency curve will only be detected in the 0.5% to 98% of volume voided part 

under a baseline of 0.5ml/s flow rate. The early dribble followed by a non-intermittent 

curve only happens very rarely and with a short duration, while a non-intermittent curve 

with terminal dribble happens more often, especially in DU group, and could have a 

relatively longer duration. Therefore the excluded volume voided part for intermittent 

detection is asymmetric, with smaller area in the starting and larger area in the ending. 

3.4.2 Study design of flow normalisation analysis 

Free-flow data of 293 adult male patients who had also undergone PFS were analysed 

in this research. Based on their PFS record, these patients are divided into two groups: 

158 DU and 135 BOO. For each flow data, the starting and ending point has been 

selected by the threshold value of 0.5ml/s, then 2 seconds averaging window filter has 

been applied as suggested by ICS good urodynamic practice. Intermittency detection, 

filtered application and template generation are automatically calculated with pre-code 

programme in MATLAB 2018b. Flow shape template are normalised on non-

intermittency data in the same area following the steps listed below: 

1. Port in the DU and BOO data to MATLAB separately and apply 2 seconds 

window filter on each data.  

2. Locate volume voided 0.5% and 98% point, and detect intermittency in this area 

with criteria of flow rate under 0.5ml/s. 

3. normalise each non-intermittent flow data in VV 0.5% to 98% area into 
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amplitude of 1 and samples of 1000 by dividing whole flow curve by Qmax and 

resampling of 1000 samples. 

4. Calculate the mean value on each sample point of normalised curve in both 

diagnostic groups. 

5. Divide the whole generated data sequence by the maximum value in both 

diagnostic groups. 

Then the derived data sequences are the shape template for BOO and DU. In database 

of 293 free flow data, 90 flow curves are detected as intermittent, and 107 BOO and 76 

DU non-intermittent data are employed to generate the flow template in each diagnostic 

group. The generated flow curve templates are presented as in figure 3.12. 

 

Figure 3.12 BOO and DU template 

The maximum point located in BOO is at 30% of normalised time, with a flat roof 

ranged from 20% to 32% of normalised time. The BOO template shows an asymmetric 

shape that most of non-intermittent BOO data have Qmax appear around 25% voiding 

time. While DU template is a relatively symmetric shape, with the maximum point 

located at 40% of normalised time.  
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To assess the diagnostic usage of the template, all BOO and DU non-intermittent flow 

data in 0.5%-98% volume voided area are normalised and calculated the ratio of sum 

square errors (RES) on each re-sample point comparing with DU template and 

comparing with BOO template. The smaller RES value indicates the curve is more like 

a DU shape rather than a BOO shape, and vice versa. 

From the figure 3.12, it can be witnessed that the rising slopes in two templates do not 

have much difference, but in the falling slope BOO template shows an almost linear 

fall to the baseline and DU template falls much slower. The shape difference in these 

normalised curves suggests we may be able to assess diagnostic utility of the modelling 

analysis of normalised urine flow data. Therefore, the raw UFR curve is normalised in 

three methods as following: 

1. Normalise raw UFR curve into max value of 1 and 1000 samples 

2. Normalise 2 seconds window filtered UFR curve into max value of 1 and 1000 

samples 

3. Normalise 2 seconds window filtered UFR curve with 0.5% to 98% volume 

voided part into value of 1 and 1000 samples 

Then each normalised method data in BOO and DU group is assessed for their 

diagnostic utility by calculating the RES value, and this test is run again by excluding 

intermittency data in each group. In addition, a bell shape is generated by sine function 

which presented as in figure 3.13 and is employed to test the RES value with bell shape 

in 2 second window filtered curve. The statistically analytical results are addressed in 

the chapter 6. 
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Figure 3.13 Generated bell shape by sine function 

3.5  Summary 

This chapter starts with introduction of the rationales for the peak counting analysis and 

time constant analysis, and the step by step design of each analytical methods. However 

there are some limitations discussed for the time constant analysis which could limit its 

diagnostic application. The peak counting analysis result shows promising frequency 

difference between two groups and prompts a quantitative analysis of UFR curve in its 

frequency domain. 

The flow template is proposed to assess if the normalised shape of the urine flow rate 

curve could serve as an indicator to differentiate DU from BOO, and a quantitative 

method of detecting intermittent curve is developed. The modelling method is re-

conducted and test on its diagnostic ability with normalised UFR curve.
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Chapter 4 Analysing Urine Flow Rate Data in Frequency 

Domain 

4.1  Overview 

In chapter 3, urodynamic model and peak counting analysis have presented some 

mathematical analysis of urine flow curve, counting multiple peaks within filtered 

curves and considering the frequency content of the curve shape, but this has only 

limited diagnosing accuracy and the specificity does not yet exceed that of Qmax < 10 

ml/s for detecting male bladder outlet obstruction (Gratzke et al., 2015). However a 

significant statistical difference is found on peak numbers between patients with DU 

and BOO, thus it is worthwhile to further quantitatively investigate the frequency 

difference between the two diagnostic groups. Therefore, in this chapter, two analytical 

methods are designed and developed for analysing UFR data in the frequency domain, 

which are median power frequency analysis and amplitude changes in rising slope 

analysis. 

The hypothesis for these two studies is that the frequency difference may vary in DU 

and BOO groups, as underactive patients are reported to perform more abdominal 

straining for successfully passing of urine out of the bladder (Gammie et al., 2016). 

Specifically, DU patients may have higher average frequency and vary the fluctuations 

with higher sum of amplitude than BOO patients in their UFR curve (with fluctuations 

caused by detrusor contractions excluded), since abdominal straining normally lasts for 

a shorter time period than detrusor contractions. It may also be that since DU is linked 

to a poorly sustained contraction, the median frequency of these contractions may 

decrease over time (Uren and Drake, 2017). 

All analytical procedures are conducted in the MALTAB version 2018b, reselection on 

the start and end point of urine flow rate curve by the threshold value of 0.5ml/s is pre-

processed prior to frequency analysis in the Microsoft Excel 2016. 
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4.2  UFR Frequency Domain Analysis 

To verify the hypothesis that there is the potential frequency difference between two 

diagnostic groups, a parameter is needed for representing the average frequency in the 

urine flow rate data excluding fluctuations generated by involuntary detrusor 

contraction. Therefore, the median power frequency (MPF) is introduced to serve as a 

parameter to assess the frequency difference.  

MPF is defined as the frequency at which the power spectrum is divided into two 

regions with equal value, which is widely applied in EMG signals to assess the muscle 

fatigue (Angkoon et al., 2012). Compare to Mean power frequency, the MPF is less 

affected by artefacts (Stulen and De Luca, 1989). The mathematical definition of MPF 

is given by 

∑ 𝑃𝑖
𝑖𝑀𝑃𝐹
𝑖=1 =

1

2
∑ 𝑃𝑖

𝑖=𝑛
𝑖=1                                                                                                               (4.1) 

where 𝑃𝑖 is the power spectrum at the frequency bin i, and n is the length of frequency 

bin. 

In the frequency domain analysis, the component of urine flow curve is defined into 

three frequency ranges: 

1. Frequency range less than 0.1Hz: fluctuations definitely generated by detrusor 

contractions which last longer than 10 seconds. 

2. Frequency range greater than 1Hz: fluctuations most likely generated by 

artefacts which last shorter than 1 seconds. 

3. Frequency range between 0.1Hz to 1Hz: containing a small amount of detrusor 

contraction which last short than 10 seconds, most likely all fluctuations caused 

by abdominal straining, and a small number of artefacts which last longer than 

1 seconds. 

The urine flow curve component in the frequency range 3 is the target to analyse in the 

frequency domain. To ensure a reliable result could be derived, the Butterworth filter 

is not suitable for the frequency analysis as it rolls off relatively slowly and its group 

delay response is not a constant value. Thus a new filter is needed to design for a precise 

cut off in the desired frequency band. 
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4.2.1 Filter design 

As discussed, the new filter should be designed with additional requirements to the 

filter applied in the peak counting analysis. To start with, the baseline would be the 

same, which is that the filter stopband must be flat without any ripple to avoid 

artefactually adding any frequency component. Furthermore, the roll-off of the 

designed filter should be sharp to avoid components in the frequency range 1 or 2 being 

involved when generating the frequency spectrum. A 10% tolerance is accepted 

between passband and stopband for the frequency domain analysis, which is 0.1Hz to 

1Hz for the passband then less to 0.09Hz and greater than 1.1Hz for the stopband. 

However, such high filter performance would result in a higher value of group delay, 

for instance the group delay response could be a few hundred samples and vary 

according to the frequency. Thus the group delay response must be a constant value for 

shifting the filtered curve back to the original position, otherwise the filtered flow curve 

will be stretched and delayed for an uncertain number of samples. The FIR filters do 

not deliver a constant value of group delay response, hence the designed filter needs to 

be considered in the infinite impulse response (IIR) filter family. 

The attenuation on each stopband of designed filter is also needed to be specified. In 

this analysis, the maximum artefact amplitude and fluctuations caused by detrusor 

contraction are considered to possibly reach as high as 50ml/s, which is needed to be 

filtered down to 0.5ml/s as the baseline threshold. The attenuation equation is presented 

as in equation 4.2. 

𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛(𝑑𝐵) = 20 𝑙𝑜𝑔10 (
𝑎𝑜𝑢𝑡

𝑎𝑖𝑛
) (𝑑𝐵)                                                               (4.2) 

where aout is the amplitude after filter and ain is the original amplitude in the urine flow 

curve. Then the attenuation could be derived as -40dB for filtering a fluctuation with 

amplitude of 50ml/s down to 0.5ml/s. 

In summary, the desired filter should be designed to fulfil the following requirements: 

1. The passband must be flat without any ripple. 

2. The group delay response must be a constant value. 

3. The passband is 0.1Hz to 1Hz with 10% tolerance of sharp roll off to stopband. 

4. The attenuation of designed filter is set to -40dB. 
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With such specifications, the Kaiser window filter in the IIR filter family is chosen to 

be employed for the frequency analysis. The magnitude response of designed Kaiser 

window filter is presented as in figure 4.1. 

 

Figure 4.1 Magnitude response plot for designed Kaiser window filter 

where the sampling rate is 10Hz thus 0.02 normalized frequency represents the start of 

passband of 0.1Hz and 0.2 normalized frequency represents the end of passband of 1Hz. 

The group delay response for designed Kaiser window filter is presented as in figure 

4.2. 
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Figure 4.2 Group delay response plot for designed Kaiser window filter 

From the frequency response and group delay plots, it can be seen that the Kaiser 

window filter is designed successfully according to the filter specifications. Therefore 

the designed Kaiser window filter is applied on the UFR curve for analysing in the 

frequency domain.  

4.2.2 Fourier transforms and parameters derived from power frequency 

spectrum 

It is hypothesised that DU patients may have larger amount of fluctuations at relatively 

higher frequencies than BOO patients, as they have a higher possibility of not being 

able to empty the bladder by detrusor contractions thus partially void out urine by 

abdominal straining. Potentially in the second half of the whole flow, the DU patient 

may experience detrusor muscle fatigue (Smith et al., 2015). Therefore, the median 

power frequency analysis is introduced to assess the frequency component difference 

in UFR curve of each diagnostic group. 

To assess UFR curve in the frequency domain, the frequency spectrum is needed to 

derive the proposed parameter MPF, so the Fast Fourier Transform (FFT) is employed 

to generate the frequency spectrum. The FFT theory is widely applied in video 

applications, signal processing and noise reduction. 

In general, the Fourier transform decomposes a function of time (a signal or a data 

sequence) into the frequencies that make it up. The Fourier transform of a function of 

time itself is a complex-valued function of frequency, whose real value represents the 

amount of that frequency present in the original function, and whose complex argument 



Chapter 4. Analysing Urine Flow Rate Data in Frequency Domain                                                                                                         46 

46 
 

is the phase offset of the basic sinusoid in that frequency. It is called the frequency 

domain representation of the original signal, which refers to both the frequency domain 

representation and the mathematical operation that associates the frequency domain 

representation to a function of time. The algorithm is presented as in equation 4.3, 

where xn is the input data sequence with total length N and Xk is the output data sequence. 

𝑋𝑘 = ∑ 𝑥𝑛 ∗ 𝑒−
2𝜋𝑖

𝑁
𝑘𝑛𝑁−1

𝑛=0      𝑘 = 0, 1, … , 𝑁 − 1.                                                                           (4.3) 

The Fourier transform is not limited to functions of time, but in order to have a unified 

language, the domain of the original function is commonly referred to as the time 

domain. FFT is an efficient implementation of the discrete Fourier transform and could 

be traced to Gauss’s unpublished work in 1805. In MATLAB the FFT functions are 

based on a library called FFTW which algorithm could be found in Frigo and Johnson 

paper (1998). 

All UFR data is employed for the frequency domain analysis, by using FFT to generate 

the frequency spectrum and then calculating the power spectrum. The analytic 

procedures of median power frequency are listed as follows: 

1. Pre-process on the starting and end point of the UFR data in Microsoft Excel 

according to the threshold value of 0.5ml/s 

2. Import all data in each diagnostic group into MATLAB and apply designed 

Kaiser window filter on each data 

3. Generate the frequency spectrum by FFT function. 

4. Calculate the square of each frequency bin to generate the power spectrum 

5. Do an integral of the power spectrum and locate the median point of integral 

power spectrum 

Then the certral point in the power spectrum of is the parameter of median power 

frequency. The whole flow curve is also divided into two parts in three ways, by half 

of voiding time, location where half of volume is voided and the Qmax point, and median 

power frequency is calculated in each part as well. An example of the plot output on 

MPF analysis is presented as in figure 4.3. 
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Figure 4.3 Median power frequency analysis on UFR data 

The raw flow curve and the Kaiser window filtered flow curve are presented as in the 

top left sub-plot, in blue and red respectively. The power spectrum is presented in the 

top right sub-plot in blue and the green line is the integral of the power spectrum, the 

red line shows the location of median of integral power spectrum. The two sub plots in 

the bottom present the MPF calculation in two parts of flow divided by the half of 

voiding time. 

The filtered data in the top-left plot of figure 4.3 has a part of negative values since the 

filtered curve is generating from the raw curve by subtracting the detrusor contraction 

which last longer than 10 seconds, while the filtered curve contains all fluctuations 

which are last shorter than 10 seconds. For instance, in the figure 4.3 top-left plot, the 

fluctuation starting from 0s to approximate 17s is considered as the detrusor contraction 

and is filtered off, and the smaller fluctuations, such as the small humps and falls, are 

considered as ‘detrusor contractions last shorter than 10s’ and ‘abdominal straining’ 

which are presented in the filtered curve in red. 

The frequency ranges of detrusor contraction and abdominal straining are not a constant 

value, and they could vary in different patients and different situations. Thus the 

bandpass range of the designed Kaiser window filter is selected differently apart from 

0.1Hz to 1Hz, to verify if any other range could increase the diagnostic power on non-

invasively differentiate DU from BOO. The other bandpass ranges are considered as 

following: 0.1Hz to 0.9Hz, 0.1Hz to 0.8Hz, 0.1Hz to 0.7Hz, 0.2Hz to 1Hz, 0.2Hz to 
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0.8Hz and 0.2Hz to 0.7Hz. The filtered flow data according to these additional bandpass 

range are also divided into two parts and assess their diagnostic utility. 

The result of the median power frequency analysis holds promise for non-invasively 

differentiating DU from BOO. However, whereas the original hypothesis was that a 

DU patient may have higher median power frequency value, on the contrary it appears 

that the DU patient has a lower median frequency value in the mid-range. The 

interpretation of result and discussion will be addressed in chapter 6. 

4.3  Sum of amplitude changes in the rising slope analysis 

The sum of amplitude changes (SAC) in rising slope analysis aims on verify the 

hypothesis that DU patients may vary their fluctuations greater than BOO patients, 

since they perform abdominal straining more frequently which are in the frequency 

range of 0.1Hz to 1Hz (Gammie et al., 2016). To calculate the sum of amplitude in 

rising slope in desired frequency range, the designed Kaiser window filter is employed. 

The analytical procedure is conducted as follows: 

1. Pre-process on the starting and end point of the UFR data in Microsoft Excel 

according to the threshold value of 0.5ml/s 

2. Import all data in each diagnostic group into MATLAB and apply designed 

Kaiser window filter on each data 

3. Count the amplitude changes of each rising slope in the filtered curve and sum 

the result to generate the parameter 

The figure 4.4 presents an example of SAC analysis on a UFR curve, in which blue line 

is the raw flow curve, the green and red lines are the Kaiser window filtered curve, and 

each of green line is the amplitude change in rising slope. The parameter is calculated 

by taking the sum of amplitude differences in each green line. 
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Figure 4.4 Sum of amplitude changes in rising slope analysis 

The parameter generated from SAC analysis shows statistical difference between two 

groups. However it is reported that Qmax has significantly statistical difference between 

DU and BOO patients (Lee et al., 2016), and the statistical difference shown in SAC 

analysis could be caused by Qmax or volume voided differences. Therefore a correlation 

test has been further conducted to verify if the SAC has significant correlation with 

Qmax in raw curve, Qmax in 2 second window filtered curve and volume voided. The 

result will be further addressed in the chapter 6. 

4.4  Wavelet Theory 

At the start of frequency domain analysis, the wavelet theory was considered as a 

possibility to be employed on the UFR curve to assess the time-frequency applicability. 

Furthermore, it could be an alternative way for reducing spikes by employing wavelet 

transform decomposition. A figure for wavelet packet tree is presented as in figure 4.5. 
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Figure 4.5 Wavelet packet tree in 3 levels 

in which at each level, the details and approximations is divided into two parts based 

on approximated half of prior level frequency. In UFR signals, the sampling frequency 

is 10Hz, so in level two decomposition we can get approximate frequencies of 0 to 

1.25Hz, 1.25Hz to 2.5Hz, 2.5Hz to 3.75Hz and 3.75Hz to 5Hz. It should be easier to 

perform specified frequency band analysis. For instance, UFR can be analysed on the 

detail parts in 1.25Hz to 2.5Hz band, or count peak values in approximation part of 0Hz 

to 1.25Hz band. However the designed bandpass filters provide precise cut-off 

frequencies thus the Wavelet transform decomposition is not further employed. 

Wavelet transforms are divided into continuous wavelet transform (CWT), discrete 

wavelet transform (DWT) and wavelet packet transform (WPT). The difference 

between DWT and WPT is that both detail and approximation are decomposed into 

further level in WPT but in DWT only approximation is decomposed into a higher level. 

CWT is mainly used on visual inspection as it can be operated at every scale and have 

the best resolution (Ricker, 1953). 

However, the main challenge in using wavelet transform is to select the most optimum 

mother wavelet. There are at least 20 of different types of mother wavelet families, and 

almost every mother wavelet has further order specification. To overcome this, 

similarity between signal and mother wavelet are considered in selecting a mother 
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wavelet. There are various methods to determine the similarity, but it should be noted 

there is no standard or general method. 

An initial trial of adapting wavelet transform on UFR data has been conducted with db2 

mother wavelet which is considered to be one of the most similar mother wavelet to the 

EMG signal. Additionally, the shape of db2 has the similarity of a flow curve, as 

presented in the figure 4.6, which shows an asymmetric bell in the beginning and a 

prolonged falling slope. 

 

Figure 4.6 db2 mother wavelet 

However when adapted on the UFR curve, though the input parameters are set for the 

best resolution, the output of the time-frequency spectrum could not be used to provide 

any additional information on time-frequency in UFR curve. The plot is presented as in 

figure 4.7.  

 

Figure 4.7 Time-frequency plot generated by continues Wavelet transform using db2 mother wavelet 
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The resolution is poor as there is not much frequency difference between involuntary 

detrusor contraction and abdominal straining in UFR data. Therefore the Wavelet 

transform is considered as not suitable for analysing flow curve in the frequency domain. 

4.5  Summary 

In this chapter, analysing UFR in frequency domain is proposed to assess if there is 

potential frequency difference between two diagnostic groups. The bandpass filter is 

designed according to detailed specifications and applied on the UFR data to select 

desired components in specified frequency range for frequency analysis. 

Two frequency analytical methods have been proposed, the median power frequency 

analysis and the sum of amplitude changes in rising slope analysis, to verify the 

hypothesis that DU patients may have statistical difference with BOO patients on the 

frequency domain and on their fluctuation amplitudes. The wavelet theory is also 

researched but considered it is not suitable for the frequency analysis of UFR data. 

With a number of parameters derived from UFR data with statistical difference between 

two groups proposed, non-invasively differentiation DU from BOO might hold some 

promise. However each of proposed parameter have limited diagnostic power and is 

insufficient to serve as a indicator individually. 

In the next chapter, three mathematical and statistical methods are considered to be 

employed on the parameters proposed, for maximising the diagnostic usefulness. 
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Chapter 5  Statistical Approaches for Optimising Diagnostic 

Power 

5.1  Overview 

The UFR curve has been analysed in both time and frequency domain with a number 

of non-invasive parameters proposed. These parameters need to be tested to verify if 

they have significantly statistical difference between two groups. However, each of 

these parameters alone has limited diagnostic usefulness and could not be able to 

individually differentiate DU from BOO non-invasively. Thus, we now consider 

developing mathematical and/or statistical models which can combine all proposed 

parameters to optimise the diagnosing power. 

There are numbers of articles using statistical approaches for managing parameters in 

the urological and nephrology field, mostly by logistic regression, univariate analysis 

or multivariate analysis (Chung et al., 2013; Groen et al., 1998; Al-Ghazo et al., 2011; 

Chen et al., 2017). The logistic regression analysis works similar to linear regression 

but with different output which is a binary variable, for instance 1 stands for DU and 0 

stands for BOO. It provides and odds ratio (OR) which indicates the probability of 

outcome base on the reference group, for instance the intermittency curve may appear 

in DU group with 2 times probability than appears in BOO group. Its algorithm is given 

by: 

log (
𝑂𝑅

1−𝑂𝑅
) = 𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯ ⋯ + 𝛼𝑛𝑥𝑛                                                         (5.1) 

where OR is the odds ratio of an event, 𝛼𝑖 are the regression coefficients related with 

the reference group and 𝑥𝑖 input variables (Sperandei, 2014). 

While univariate and multivariate analysis serve a similar function to the odds ratio 

with one independent variable or with multiple factors that influence the variable of 

interest, the odds ratio has limited diagnostic ability to differentiate DU from BOO. 

The statistical analysis in this study is carried out by the following steps: 
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1. Analyse each proposed non-invasive parameter on its ability to differentiate DU 

form BOO by calculating the p value of each parameter. 

2. If the parameter has significantly statistical difference between two groups, the 

area under curve (AUC) value is then calculated, and derive optimised 

sensitivity and specificity. 

3. Combine the parameters with significantly statistical difference and develop 

statistical or engineering model to combine parameters for optimising 

diagnosing utility. 

5.2  Statistical analysis on proposed parameters 

The t test, also called as Student t-test, is the most commonly used statistical method to 

investigate the difference of variables in means between two groups, which could be 

adopted in this study to assess the statistical difference of proposed parameters between 

two diagnostic groups. However some assumptions should be met prior to adopting the 

t-test (Pandey, 2015): 

1. Parameters in two test groups should follow a normal distribution, otherwise the 

Mann Whitney U test should be used. 

2. Parameters in two test groups should have equal variance. 

3. The parameters should be independent variables. 

It is accepted that t test could be used even assumption 1 is not fulfilled when the sample 

size is large enough: normally under 30 samples the assumption is needed to be strictly 

followed (Hogg and Tanis, 2010). In this study the sample size is 293 which could skip 

testing normality and use t test directly. In SPSS version 23, input parameters are 

automatically calculated for variance prior to the t test, if the parameters in two groups 

do not meet equal variance then the one-way analysis of variance (ANOVA) is 

conducted to derive the p value. Assumption 3 is also fulfilled in this study as all 

parameters are derived from the independent UFR test. In summary, the p value 

reported in this study is generated from the t test result in SPSS. The t test algorithm is 

given by 

t =
𝑥1̅̅̅̅ −𝑥2̅̅̅̅

𝑆𝑝√
1

𝑛1
+

1

𝑛2

                                                                                                                (5.2) 
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where 𝑥1̅̅̅ is the mean value of the parameter in the first group and 𝑥2 is the mean value 

of tested parameter in the second group, 𝑛1 and 𝑛2 is the sample size for two groups, 

𝑆𝑝 is pooled standard deviation, which algorithm is given by 

𝑆𝑝 =
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2
                                                                                                                (5.3) 

where 𝑠1 and 𝑠2 are the standard deviation of tested parameter in each group. 

In this study, a p value of less than 0.05 is considered as a significantly statistical 

difference, an example table of the t test is presented as in table 5.1. 

 
Table 5.1 t test on Qmax 

 

Levene's Test for 

Equality of Variances t-test for Equality of Means 

F Sig. 

Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence Interval 

of the Difference 

Lower Upper 

Qmax Equal variances 

assumed 

28.179 .000 .000 4.006 2.484 5.528 

Equal variances 

not assumed 
  

.000 4.006 2.421 5.591 

 

It can be seen in the table that the variance of Qmax is not equal in two groups, with a p 

value of less than 0.001 to reject the null hypothesis of equal variances assumed in 

Levene’s test for equality of variances. Therefore the p value of Qmax between two 

groups is taken the value from ‘Sig. (2-tailed)’ in the second row which is less than 

0.001, and this is considered as Qmax has significantly statistical difference between DU 

and BOO group. 

Followed by the t test, parameters which have significantly statistical difference are 

entered to the receiver operating characteristic (ROC) analysis to calculate the area 

under curve (AUC) value and to find optimised sensitivity and specificity. The 

sensitivity, also called the true positive value, in this study measures the proportion of 

predicted DU data which are actually diagnosed as DU. The specificity, also called as 

true negative value, measure the proportion of predicted BOO data which are actually 
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diagnosed as BOO. A table demonstrates the sensitivity and specificity as in table 5.2. 

Table 5.2 confusion table 

 Diagnosed DU Diagnosed BOO  

Predicted DU True positive (TP) False positive (FP) Positive predictive value 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Predicted BOO False negative (FN) True negative (TN) Negative predictive value 

𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

 Sensitivity: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity: 

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

 

 

The ROC curve is plotted by the sensitivity against 1-specificity value, an instance is 

presented as in figure 5.1. 

 
Figure 5.1 ROC curve on Qmax 

The area under curve value is equal to the probability that a classifier will rank a 

randomly chosen positive instance higher than a randomly chosen negative one, which 

algorithm is given by 
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A =  ∫ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑡)
1

0
∗ (1 − specificity)′(t)dt                                                    (5.4) 

In SPSS, the ROC analysis also generates a table of sensitivity and (1-specificity) at 

each cut-off point, then the cut-off value which provides optimised sensitivity and 

specificity could be calculated as 

C = max (Sensitivity𝑖 − (1 − Specificity)𝑖)                                                            (5.5) 

where i is the ith number of sensitivity or (1-specificity) generated in the AUC table, 

the optimised specificity is simply calculated by 1 minus (1-specificity) value. 

5.3  Statistical and engineering models on proposed parameters 

Each proposed non-invasive parameter could serve as an additional indicator for 

differentiating DU from BOO, however they have limited diagnosing accuracy 

individually. To optimise the diagnosing accuracy, statistical and engineering models 

are now considered to combine the parameters. 

In this study, three models are considered for all parameters which have significantly 

statistical difference between two groups, the multivariance analysis of variance, the 

classification and regression tree analysis and the neural network theory. 

5.3.1 Multivariance analysis of variance 

MANOVA is one of the most common multivariate statistical analysis in the 

biomedical science (Bangert and Baumberger, 2005), which is a member of the General 

Linear Model family. It is an extension of ANOVA to apply to a situation where 

analysis of two or more dependent variables are needed to analyse. The experimental 

design model can be expressed as (Sthle and Wold, 1990): 

Y = W ∗ β + E                                                                                                              (5.6) 

Where Y (N × p) is the observed matrix, W (N × m) is the designed matrix, β (m × p) 

is the matrix of parameters, E (N × p) is the matrix of random errors, N is the total 

number of observations, p is the number of dependent variables and m is the number of 

parameters. Since the rows of W will be identical for all observations in the same cell, 

the model in terms of cell means can be expressed as 
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Y. = A.∗ β + E.                                                                                                                (5.7) 

where A. is g × m matrix, Y. (g × p) and E. (g × p) denote matrices of means, and g is 

the number of cells. The reparameterization of the model 5.7 is done by factoring A. 

into (Bock, 1975; Finn, 1977) 

A. = K ∗ L                                                                                                                    (5.8) 

where K (g × r) forms a column basis for the model, which rank is r. L (r × m) is the 

constant matrix which contains the coefficients of parameters linearly combined, which 

can be specified via input value, then K can be derived by 𝐴𝐿′(𝐿𝐿′)−1 . After this 

reparameterization procedure the model can be simplified as 

Y = Aβ + E = K(Lβ) + E = Kq + E                                                                          (5.9) 

where q (r × p)  is computed by L (r × n)  times β (m × p) . Then the parameter 

estimation is performed by an orthogonal decomposition on K (Golub, 1969) 

K = QR                                                                                                                        (5.10) 

where Q is an orthonormal matrix that Q′DQ = I, D is the diagonal matrix of cell 

frequencies and R is an upper-triangular matrix. Then the normal equation of the model 

is 

(K′DK) 𝜃̂ = 𝐾′𝐷𝑌                                                                                                     (5.11) 

also as 

R𝜃 = 𝑄′𝐷𝑌 = 𝑈                                                                                                        (5.12) 

Therefore, this triangular set can be solved by forming the cross-product matrix. 

In SPSS version 23, MANOVA is only available in syntax and not in the graphical 

interface, the input variables are all the parameters derived from UFR data which have 

significantly statistical difference between two groups and the group variable is input 

as 1 and 0 where 1 stands for DU and 0 stands for BOO. The syntax script could be 

found in appendix IV. 

An example of MANOVA by employing Qmax and Qave is presented as in figure 5.2 
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Figure 5.2 Image of MANOVA result of input values 

in which shows the 293 cases are all accepted for the MANOVA analysis, and the 

coefficients estimation result is presented as in figure 5.3 

 

Figure 5.3 Image of Coefficients estimation result 

where the coefficients for Qmax and Qave are 0.15891 and -0.02552 respectively, then 

the new parameter is given by 𝑃𝑚𝑎𝑛𝑜𝑣𝑎 = 0.15891 ∗ 𝑄𝑚𝑎𝑥 − 0.02552 ∗ 𝑄𝑎𝑣𝑒 . The 

generated parameter is calculated in Excel and then we use the t test to verify the 

significant statistical difference between the two groups, and generate optimised 

sensitivity and specificity by ROC analysis. 

5.3.2 Classification and regression tree analysis 

The Cart analysis is based on classification and regression trees proposed by Breiman 
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et al. (1984), which is a binary decision tree that is constructed by dividing a parent 

node into two child nodes repeatedly. The root node contains the whole DU and BOO 

samples, and the decision is made based on estimating which proposed parameter could 

provide the best differentiation result between two groups. The tree growing procedure 

is based on following steps. 

1. Assess each parameter’s best differentiation utility. Each of parameters is 

examined to find the best split point to differentiate DU from BOO most 

precisely. 

2. Then choose the best parameter which could serve the best to split the parent 

node into child nodes. 

3. Consider each child node as parent node and repeat step 1 and 2 until stopping 

rules is fulfilled. 

The stopping rules control the tree growing process on every node to stop or to continue, 

if any following stopping rules are fulfilled then the growing in the node is stopped. 

• If a node becomes pure, in which a node has successfully split parent node into 

pure DU and BOO. 

• If the current tree depth reaches the maximum depth growing value which is 

specified by user. 

• If the size of a parent node is less than the minimum node size value which is 

specified by user. 

• If the split of a node results any child node size less than the minimum child 

node size value which is specified by user. 

The node size value and tree depth value affect the accuracy of the CART analysis 

result, however there is no rule of thumb to quantify the optimised values of node size 

and depth. In SPSS a validation is provided by separating data into two groups, the 

testing group and validation group, and to test the robustness of generated CART. In 

this study, the testing group is set to 70% of randomised total data and validation group 

set to the rest of 30% of data. Then the node size and depth are tested to find the 

optimised results, where a 10% difference is accepted between the testing result and 

validation result. 
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An example for the CART analysis is presented in figure 5.4, in which Qmax and Qave 

by voiding time are employed, parent and child nodes are limited to 20 and 5 

respectively, and depth is limited to 2 levels. 

 

Figure 5.4 Image of CART analysis on Qmax and Qave 

and the classification result is presented as in table 5.3 

Table 5.3 CART classification result 

Classification 

Observed 

Predicted 

0 1 
Percent 
Correct 

0 145 13 91.8% 

1 86 49 36.3% 

Overall Percentage 78.8% 21.2% 66.2% 
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Growing Method: CRT 
Dependent Variable: DU 

 

where 1 stands for DU and 0 stands for BOO. The sensitivity and specificity for the 

generated CART model are 91.8% and 36.3%, with a 66.2% overall diagnosing 

accuracy. It should be noted that in node 4 and 6, a total of 20 DU patient is diagnosed, 

which hold the promise to discriminate a partial of DU or BOO patients reliably. 

5.3.3 Artificial neural network theory 

The artificial neural network (ANN) is a framework for various machine learning 

algorithms to process complex inputs, which contains layers of computing nodes with 

information processing characteristics. The advantage of ANN is the feature of 

nonlinearity which makes it capable of learning and adaptability. Sonke et al. (2000) 

have evaluated the performance of an ANN model in non-invasive predistortion of 

BOO in 1903 male data, including Qmax, PVR, VV and prostate volume, and yield 

sensitivity of 71% and specificity of 69%. Djavan et al. (2004) developed an ANN 

model on International Prostate Symptom Score (IPSS), prostate volume and urinary 

flow rates to predict BOO in male, and report 82% sensitivity and 77% specificity. In 

this study, the ANN model is employed to differentiate DU from BOO, with all derived 

parameters and with flow curve shape as separate inputs. 

The ANN is built up with multiple layers and each layer can be expressed as 

y = a(W ∗ x) + b                                                                                                             (5.13) 

where x is the input vector, y is the output vector, b is the offset vector, W is the weight 

matrix and a() is the activation function. In each layer, the input vector x is calculated 

by this simple function to generate the output vector y. In general, each layer in neural 

network performs a linear transformation followed by a non-linear transformation, and 

training a suitable weight matrix W is the main challenge for building up a functional 

neural network (Schmidhuber, 2015). 

In this study, the output of designed neural network is expected to be maximal 

calculated as the desired diagnostic group, in which 0 is for bladder outlet obstruction 

and 1 is for detrusor underactivity. Therefore, the training procedure in the designed 
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neural network is to train the weight matrix in each layer according to the difference of 

output and the actual diagnosis, where the loss function is employed for measuring the 

difference. The output, loss, in the loss function represents the difference between 

neural network output and actual diagnosis, and the aim of the training procedure in 

designing neural network is to reduce the value of loss. the gradient descent is employed 

for training, which moves the location of loss value to its backward direction to reduce 

loss value (Rumelhart and McClelland, 1996). The movement interval is controlled by 

learning rate. 

When calculating the gradient and updating the weight matrix, the time required would 

be an issue, as the analysis by machine learning usually deal with a large database. In 

general, the backpropagation method is adapted for gradient calculation. The learning 

and recognition procedures are presented in figure 5.5 and 5.6 respectively. There are 

a number of rules of thumb to determine the hidden layer size, for instance it should be 

between the input size and output layer size (Heaton, 2008). In figure 5.5 and 5.6one 

hidden layer neural network is presented as an example for demonstrating the training 

and testing procedure in the ANN model. 

 

Figure 5.5 Training procedure in ANN model 
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Figure 5.6 Recognition procedure in ANN model 

The ANN analysis is conducted in MATLAB version 2018b, with Neural network 

toolbox. An initial ANN model is set to differentiate DU from BOO, by employing all 

proposed parameters which have statistical difference between two groups. Then 

another ANN model is set to assess if urine flow rate shape could discriminate DU and 

BOO by employing normalised UFR shape data. 

5.4  Summary 

In this chapter, statistical analysis methods have been proposed to assess if the proposed 

parameters have statistical difference between two groups by t test. Three statistical 

approaches for maximising the diagnosing accuracy have been developed, including 

MANOVA test, CART analysis and ANN model. In next chapter, statistical analysis 

result will be interpreted.
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Chapter 6 Interpretation of Results 

6.1 Overview 

In this chapter, the statistical analysis results of derived parameters and proposed 

statistical models are presented. All derived parameters are categorised in the following 

two groups according to their difficulties to compute. 

• Parameters obtained or derived from raw curve and filtered curve: this group 

includes the parameters which could be obtained from the uroflowmetry, for 

instance Qmax, VV, Qmax2sec, voiding time and flow time, and parameters which 

could be derived from UFR raw data or 2 seconds window filtered data with 

minimum calculation, for instance Qave by Tv, Qave by Tf, mean flow rate in rising 

and falling part, ratio of Tv against Tf. 

• Parameters derived by complex mathematical calculation of raw UFR data: 

this group includes parameters derived from raw data by filtering technique and 

frequency analysis, for instance MPF variables, ratio of peak numbers in different 

filtered curve, time constant value in raw and filtered curve, SAC variables and 

parameters derived in shape template analysis. 

All parameters are tested for their statistical difference between two diagnostic groups, 

and those which have significantly statistical difference are employed in the MANOVA, 

CART and neural network analysis. The results of statistical models are then presented 

as well. 

6.2 Statistical analysis results for derived parameters 

The analytical methods of derived parameters have been presented in chapter 3 and 4, 

and the statistical analysis method is explained in chapter 5 section 2. All statistical 

analysis is performed in SPSS version 23. 

The power analysis is conducted in the G*Power version 3.1.9.4, with selected t test, 

Mann-Whitney test and inputted effect size of 0.5 and sample size for two groups, the 

power of Mann-Whitney test is 0.966 out of 1, which demonstrates the reliability and 
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robustness of the analytical results. 

6.2.1 Parameters derived from raw curve and filtered curve 

Raw curve parameters are most easily obtained from uroflowmetry outputs, however it 

is reported the artefacts are needed to be removed prior to report the values of 

uroflowmetry parameters, either by a two seconds window filter applied on the UFR 

curve or manually by an experienced urologist (Schaefer et al., 2002). The two seconds 

window filter could smooth the curve in time domain but may lose valuable information 

in frequency domain. Therefore, in this study a 0.5Hz low pass filter is also applied on 

the UFR data to derive parameters, which have the same roll-off point as the two 

seconds window filter but could keep the information in frequency domain. 

The definitions of derived parameters in the first group is presented as in table 6.1. 

Table 6.1 Variables in the first group and their definition 

Variables Definition 
Qmax Maximum flow rate in raw curve 
Qave Average flow rate by flow time in raw curve 
Volume voided Integral of flow data sequence 
Up time/Down time Ratio of rising time against falling time 
Flow time Void time - (sample number of value less than 0.5)/10 
Void time Data length / sampling rate of 10 
Flow time/Void time Ratio of flow time against void time 
Flow index (Qave/Qmax) Ratio of Qave against Qmax in raw curve 
Mean rate in raising part Mean flow rate in rising slope 
Mean rate in falling part Mean flow rate in falling slope 
Ratio of mean up/down Ratio of mean flow rate in rising against in falling slope 
DeltaQ Qmax - Qave in raw curve 
Qmax 0.5Hz Qmax in 0.5Hz filtered curve 
Qave 0.5Hz Qave in 0.5Hz filtered curve 
Ut/Dt 0.5Hz Ratio of rising time against falling time in 0.5Hz filtered curve 
Qave/Qmax 0.5Hz Ratio of Qave against Qmax in 0.5Hz filtered curve 
meanUFRupward 0.5Hz Mean flow rate in rising slope in 0.5Hz filtered curve 
meanUFRdownward 0.5Hz Mean flow rate in falling slope in 0.5Hz filtered curve 
FI0.5Hz  Ratio of Qave against Qmax in 0.5Hz filtered curve  
DeltaQ0.5Hz  Qmax -Qave in 0.5Hz filtered curve  
Qmax2sec  Qmax in 2 seconds window filtered curve  
QaveTv2sec  Qave by void time in 2 seconds window filtered curve  
QaveTf2sec  Qave by flow time in 2 seconds window filtered curve  
FI2sec  Ratio of Qave against Qmax in 2 seconds window filtered curve  
Ut/Dt2sec Ratio of rising time against falling time in 2sec filtered curve 
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DeltaQ2sec  Qmax -Qave in 2 seconds window filtered curve  
MUP2sec Mean flow rate in rising slope in 2 seconds filtered curve 
MDOWN2sec Mean flow rate in falling slope in 2 seconds filtered curve 
RMU/D2sec  Ratio of two variables above  
TQmax  Time to Qmax in raw curve  
TQmax2sec  Time to Qmax in 2 seconds window filtered curve  
TQmax/Tv  Ratio of time to Qmax against void time in raw curve  
TQmax2sec/Tv  Ratio of time to Qmax against void time in 2sec filtered curve  

 

in which flow index (FI) and DeltaQ are proposed to serve as indicator for overactive 

bladder and BOO respectively (Futyma et al., 2015; Lee et al., 2016), and in this study 

these two non-invasive parameters are tested to see if they have statistical difference 

between DU and BOO groups. The descriptive statistical analysis result of derived 

parameters is presented as in table 6.2. Column DU is the group variable in which 1 

stands for DU and 0 stands for BOO. 

Table 6.2 Group statistics 

 DU N Mean Std. Deviation 

Qmax 1 135 13.65 8.23 

0 158 9.64 4.79 

Qave 1 135 4.95 3.16 

0 158 3.81 1.95 

Volume voided 1 135 180.12 136.23 

0 158 149.96 102.81 

Up time/Down time 1 135 1.08 2.28 

0 158 .72 1.31 

Flow time 1 135 31.84 18.93 

0 158 35.63 24.71 

Void time 1 135 41.33 25.38 

0 158 42.48 31.53 

Flow time/Void time 1 135 .80 .17 

0 158 .85 .13 

Flow index (Qave/Qmax) 1 135 .37 .14 

0 158 .41 .13 

Mean rate in raising part 1 135 6.59 4.35 

0 158 5.27 2.63 

Mean rate in falling part 1 135 4.16 2.77 

0 158 3.28 1.85 

Ratio of mean up/down 1 135 1.90 1.23 

0 158 1.80 1.20 
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DeltaQ 1 135 8.70 6.21 

0 158 5.83 3.56 

Qmax 0.5Hz 1 135 12.20 7.08 

0 158 8.41 4.07 

Qave 0.5Hz 1 135 4.95 3.16 

0 158 3.81 1.95 

Ut/Dt 0.5Hz 1 135 .72 .88 

0 158 .67 1.26 

Qave/Qmax 0.5Hz 1 135 .41 .14 

0 158 .46 .12 

meanUFRupward 0.5Hz 1 135 6.74 4.37 

0 158 5.31 2.57 

meanUFRdownward 0.5Hz 1 135 4.17 2.79 

0 158 3.32 1.82 

FI0.5Hz 1 135 2.21 1.64 

0 158 1.96 1.22 

DeltaQ0.5Hz 1 135 7.25 4.96 

0 158 4.60 2.66 

Qmax2sec 1 135 11.51 6.44 

0 158 8.23 3.54 

QaveTv2sec 1 135 2.81 2.45 

0 158 2.21 1.54 

QaveTf2sec 1 135 3.46 2.73 

0 158 2.59 1.66 

FI2sec 1 135 5.53 3.54 

0 158 4.83 2.80 

Ut/Dt2sec 1 135 .37 1.03 

0 158 .28 .59 

DeltaQ2sec 1 135 8.39 6.09 

0 158 5.34 3.97 

MUP2sec 1 135 6.67 4.47 

0 158 5.19 2.64 

MDOWN2sec 1 135 2.40 2.14 

0 158 1.90 1.39 

RMU/D2sec 1 135 3.79 2.94 

0 158 3.42 2.16 

TQmax 1 135 13.30 12.86 

0 158 11.65 15.27 

TQmax2sec 1 135 12.69 10.63 

0 158 12.11 15.14 

TQmax/Tv 1 135 .35 .23 



Chapter 6. Interpretation of Result                                                                                                                                        69 

69 
 

0 158 .28 .20 

TQmax2sec/Tv 1 135 .34 .20 

0 158 .28 .17 

 

The t test result for group 1 parameters is presented as in table 6.3. Levene’s Test for 

equality of variances determines the p value to be used in t test: if the Levene’s test has 

a significant statistical result of less than 0.05 then the p value is taken the second row 

in the ‘sig. (2-tailed)’ column. The parameters which have statistically significant 

difference of p value less than 0.05 are highlighted by *, p value less than 0.01 by ** 

and p value less than 0.001 by ***. 

Table 6.3 t test result for group 1 parameters 

 

Levene's Test for Equality of 

Variances 

t-test for Equality 

of Means 

F Sig. Sig. (2-tailed) 

Qmax*** Equal variances assumed 28.179 .000 .000000 

Equal variances not assumed   .000001 

Qave*** Equal variances assumed 21.360 .000 .000214 

Equal variances not assumed   .000369 

Volume voided* Equal variances assumed 4.772 .030 .031891 

Equal variances not assumed   .035861 

Up time/Down time Equal variances assumed 3.176 .076 .094469 

Equal variances not assumed   .108492 

Flow time Equal variances assumed 3.956 .048 .147165 

Equal variances not assumed   .139004 

Void time Equal variances assumed .526 .469 .732268 

Equal variances not assumed   .727908 

Flow time/Void time** Equal variances assumed 7.318 .007 .007536 

Equal variances not assumed   .008848 

Flow index 

(Qave/Qmax)* 

Equal variances assumed 2.876 .091 .013164 

Equal variances not assumed   .013951 

Mean rate in raising 

part** 

Equal variances assumed 29.212 .000 .001533 

Equal variances not assumed   .002316 

Mean rate in falling 

part** 

Equal variances assumed 15.867 .000 .001284 

Equal variances not assumed   .001824 

Ratio of mean 

up/down 

Equal variances assumed 3.153 .077 .506409 

Equal variances not assumed   .507293 

DeltaQ*** Equal variances assumed 25.049 .000 .000001 
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Equal variances not assumed   .000004 

Qmax 0.5Hz*** Equal variances assumed 36.418 .000 .000000 

Equal variances not assumed   .000000 

Qave 0.5Hz*** Equal variances assumed 21.379 .000 .000214 

Equal variances not assumed   .000368 

Ut/Dt 0.5Hz Equal variances assumed .193 .661 .691543 

Equal variances not assumed   .683390 

Qave/Qmax 0.5Hz** Equal variances assumed 4.126 .043 .001658 

Equal variances not assumed   .001887 

meanUFRupward 

0.5Hz** 

Equal variances assumed 33.967 .000 .000606 

Equal variances not assumed   .001003 

meanUFRdownward 

0.5Hz** 

Equal variances assumed 18.069 .000 .001935 

Equal variances not assumed   .002728 

FI0.5Hz Equal variances assumed 9.368 .002 .138930 

Equal variances not assumed   .148217 

DeltaQ0.5Hz*** Equal variances assumed 34.242 .000 .000000 

Equal variances not assumed   .000000 

Qmax2sec*** Equal variances assumed 37.834 .000 .000000 

Equal variances not assumed   .000000 

QaveTv2sec* Equal variances assumed 13.783 .000 .010744 

Equal variances not assumed   .013874 

QaveTf2sec** Equal variances assumed 15.413 .000 .000994 

Equal variances not assumed   .001543 

FI2sec Equal variances assumed 4.627 .032 .060261 

Equal variances not assumed   .065149 

Ut/Dt2sec Equal variances assumed 2.125 .146 .320015 

Equal variances not assumed   .339513 

DeltaQ2sec*** Equal variances assumed 19.147 .000 .000001 

Equal variances not assumed   .000001 

MUP2sec*** Equal variances assumed 33.502 .000 .000545 

Equal variances not assumed   .000905 

MDOWN2sec* Equal variances assumed 14.437 .000 .017895 

Equal variances not assumed   .022054 

RMU/D2sec Equal variances assumed 6.087 .014 .220159 

Equal variances not assumed   .231284 

TQmax Equal variances assumed .025 .874 .330627 

Equal variances not assumed   .324261 

TQmax2sec Equal variances assumed 11.489 .352 .708233 

Equal variances not assumed   .700704 

TQmax/Tv** Equal variances assumed 3.674 .056 .005938 

Equal variances not assumed   .006338 
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TQmax2sec/Tv** Equal variances assumed 2.792 .025 .008484 

Equal variances not assumed   .009228 

 

From table 6.2 and 6.3, the variables Qmax, Qave, DeltaQ have a p value less than 

0.001 in raw curve and filtered curves, mean flow rate in rising slope and falling slope 

also have a p value less than 0.01 in raw and filtered curves. The p value for Qmax and 

DeltaQ are similar with Lee et al.’s findings (2016), though mean value and standard 

deviation (SD) of Qmax in each diagnostic group is significantly different comparing 

with their findings. In this study’s database, BOO and DU have 2 seconds window 

filtered Qmax with mean value ± SD of 8.23 ± 3.54 and11.51 ± 6.44 respectively, on the 

contrary, in Lee’s data, the mean value of Qmax in BOO group is higher than in DU 

group in their database. 

The volume voided shows significantly statistical difference between two groups, 

which not surprisingly has statistically significant linear relationships with Qmax 

(p<0.001), mean flow rate in rising part (p<0.001) and mean flow rate in the falling part 

(p<0.001). The ratio of Tf against Tv is lower in DU group compared to the BOO group 

and has statistically significant difference, which indicates that DU patients may have 

a higher chance of performing an intermittent flow shape than BOO patients. 

Qave has limited reports in the literature that it could discriminate DU from BOO, and 

indeed in this study the Qave in raw curve and 2 seconds window filtered curve have 

statisticaly significant difference between two groups. Moreover, in two seconds 

filtered curve Qave by flow time has better statistical difference than Qave by voiding 

time, which may be worth further research in different cohorts. 

The ratio of time to Qmax against voiding time in 2 seconds window filtered curve 

variable has significantly statistical difference between two groups with a p value of 

less than 0.01, for which mean value in DU group is higher than in BOO group 

(0.34±0.20 vs 0.28±0.17). This result indicates that the shape of DU flow curve may 

show a different pattern than BOO flow curve, as reported by Abrams and others, which 

is verified in the flow shape template analysis. 

There are a number of parameters showing statistically significant differences between 

DU and BOO groups, which thus hold promise to differentiate DU from BOO non-
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invasively and will be employed for developing statistical models, combined with 

parameters having significant statistically difference in group 2. 

6.2.2 Parameters derived by complex mathematical calculation of raw UFR 

data 

The parameters derived by complex mathematical calculation may not be as easy to 

generate compared to uroflowmetry parameters, but these parameters could further 

improve the diagnosing accuracy if they have significantly statistical difference to 

discriminate DU from BOO. 

The parameters in this group are defined as in table 6.4. 

Table 6.4 parameters in group 2 and their definitions 

Parameters Definitions 
T1 Time constant value on rising part in raw curve 
T2 time constant value on falling part in raw curve 
T1/T2 Ratio of T1 against T2 in raw curve 
TC1 0.5Hz Time constant value on rising part in 0.5Hz filtered curve 
TC2 0.5Hz Time constant value on falling part in 0.5Hz filtered curve 
ratio of TC1/2 
0.5Hz Ratio of time constant value in 0.5Hz filtered curve 
TC1 0.1Hz Time constant value on rising part in 0.1Hz filtered curve 
TC2 0.1Hz Time constant value on falling part in 0.1Hz filtered curve 
ratio TC1/2 0.1Hz Ratio of time constant value in 0.1Hz filtered curve 
TC12sec Time constant value on rising part in 2sec window filtered curve 
TC22sec Time constant value on falling part in 2sec window filtered curve 
RTC1/22sec Ratio of time constant value in 2sec window filtered curve 
Normalised TC2 Time constant value on falling part in normalised 2sec filtered flow curve 
Peak counting 
ratio 1Hz/0.1Hz Ratio of peak numbers in 0.1Hz against 1Hz filtered curve 
Peak counting 
ratio raw/0.1Hz Ratio of peak numbers in raw against 1Hz filtered curve 
0.1-1 MPF whole 
flow MPF in 0.1Hz-1Hz filtered curve 
0.1-1 MPF first 
half volume MPF in 0.1Hz-1Hz first half VV part of raw curve 
0.1-1 MPF 1st/2nd 
Qmax Ratio of MPF in 0.1Hz-1Hz 1st against 2nd half part divided by Qmax 
0.1-1 MPF first 
half T MPF in 0.1Hz-1Hz first half Tv part 
0.1-1 MPF 
whole/2nd Qmax Ratio of MPF in 0.1Hz-1Hz whole against 2nd Qmax half part 
0.2-0.9 MPF 
whole flow MPF in 0.2Hz-0.9Hz in whole curve 
0.2-0.9 MF first 
half Volumes MPF in 0.2Hz-0.9Hz in first half VV part 
0.1-0.7 MPF 
whole flow MPF in 0.1Hz-0.7Hz filtered curve 
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0.1-0.8 MPF 
whole flow MPF in 0.1Hz-0.8Hz filtered curve 
0.1-0.9 MPF 
whole flow MPF in 0.1Hz-0.9Hz filtered curve 
0.1-0.9 MPF 
1st/2nd Qmax Ratio of MPF in 0.1Hz-0.9Hz 1st against 2nd half part divided by Qmax 
0.2-0.7 MPF first 
half volume MPF in 0.2Hz-0.7Hz in first half VV part 
0.2-0.8 MPF 
whole flow MPF in 0.2Hz-0.8Hz in whole curve 
0.2-0.8 MPF first 
half volume MPF in 0.2Hz-0.8Hz in first half VV part 
0.2-1 MPF whole 
flow MPF in 0.2Hz-1Hz in whole curve 
0.2-1 MPF first 
half volume MPF in 0.2Hz-1Hz in first half VV part 
Peak2sec peak numbers in 2sec filtered curve 
Peakraw peak numbers in raw curve 
peak0.5Hz peak numbers in 0.5Hz filtered curve 
peak1Hz peak numbers in 1Hz filtered curve 
peak0.1Hz peak numbers in 0.1Hz filtered curve 
2sec/0.1 Ratio of peak numbers in 2sec against in 0.1Hz filtered curve 
0.5/0.1 Ratio of peak numbers in 0.5Hz against in 0.1Hz filtered curve 
Amplitude change 
in raising slope SAC value in 0.1Hz-1Hz filtered curve 
Amp 
change/Qmax SAC against Qmax in raw curve 
Amp change/VV SAC against VV 

 

The descriptive statistical analysis result of derived parameters in group 2 is presented 

in table 6.5. Column DU is the group variable in which 1 stands for DU and 0 stands 

for BOO. 

Table 6.5 Statistics of parameters in group 2 

 DU N Mean Std. Deviation 

T1 1 135 600.50 8183.16 

0 158 255.54 5515.51 

T2 1 135 145.27 122.79 

0 158 171.61 145.70 

T1/T2 1 135 4.64 63.25 

0 158 3.32 68.64 

TC1 0.5Hz 1 135 -71.70 1023.93 

0 158 -10.58 745.67 

TC2 0.5Hz 1 135 102.68 98.78 

0 158 133.27 122.52 

ratio of TC1/2 0.5Hz 1 135 -1.89 20.40 

0 158 .70 6.16 
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TC1 0.1Hz 1 135 47.59 369.55 

0 158 76.59 342.43 

TC2 0.1Hz 1 135 155.08 130.88 

0 158 181.40 153.82 

ratio TC1/2 0.1Hz 1 135 .09 4.26 

0 158 .47 2.64 

TC12sec 1 135 15.35 746.57 

0 158 166.38 2222.06 

TC22sec 1 135 157.40 111.51 

0 158 183.84 118.40 

RTC1/22sec 1 135 -.21 8.17 

0 158 3.45 45.60 

Normalised TC2 1 135 327.86 199.20 

0 158 396.16 174.14 

Peak counting ratio 

1Hz/0.1Hz 

1 135 8.63 3.73 

0 158 11.08 5.42 

Peak counting ratio 

raw/0.1Hz 

1 135 16.22 8.14 

0 158 20.87 10.33 

0.1-1 MPF whole flow 1 135 .43 .10 

0 158 .49 .10 

0.1-1 MPF first half volume 1 135 .39 .16 

0 158 .46 .19 

0.1-1 MPF 1st/2nd Qmax 1 135 1.35 .56 

0 158 1.61 .69 

0.1-1 MPF first half T 1 135 .47 .14 

0 158 .53 .14 

0.1-1 MPF whole/2nd Qmax 1 135 .83 .26 

0 158 .97 .30 

0.2-0.9 MPF whole flow 1 135 .50 .08 

0 158 .55 .07 

0.2-0.9 MF first half Volumes 1 135 .46 .12 

0 158 .53 .14 

0.1-0.7 MPF whole flow 1 135 .34 .07 

0 158 .39 .08 

0.1-0.8 MPF whole flow 1 135 .37 .08 

0 158 .42 .09 

0.1-0.9 MPF whole flow 1 135 .40 .09 

0 158 .47 .10 

0.1-0.9 MPF 1st/2nd Qmax 1 135 1.06 .54 

0 158 1.26 .60 

0.2-0.7 MF first half Volumes 1 135 .37 .08 
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0 158 .40 .08 

0.2-0.7 MPF first half volume 1 135 .47 .09 

0 158 .53 .10 

0.2-0.8 MPF whole flow 1 135 .47 .07 

0 158 .52 .07 

0.2-0.8 MPF first half volume 1 135 .51 .10 

0 158 .58 .12 

0.2-1 MPF whole flow 1 135 .53 .09 

0 158 .59 .08 

0.2-1 MPF first half volume 1 135 .57 .12 

0 158 .66 .14 

Peak2sec 1 135 11.72 9.52 

0 158 15.86 15.60 

Peakraw 1 135 37.84 24.52 

0 158 46.46 37.22 

peak0.5Hz 1 135 10.81 7.26 

0 158 11.86 9.55 

peak1Hz 1 135 20.18 12.30 

0 158 24.03 18.79 

peak0.1Hz 1 135 2.47 1.73 

0 158 2.37 2.15 

2sec/0.1 1 135 5.13 3.76 

0 158 7.32 4.75 

0.5/0.1 1 135 4.84 2.62 

0 158 5.76 2.89 

Amplitude change in raising 

slope 

1 135 25.72 18.77 

0 158 18.35 15.70 

Amp change/Qmax 1 135 2.13 1.55 

0 158 1.96 1.40 

Amp change/VV 1 135 .17 .11 

0 158 .15 .16 

 

The t test result for group 2 parameters is presented as in table 6.6. The parameters 

which have statistically significant difference with p value less than 0.05 are highlighted 

by *, p value less than 0.01 by ** and p value less than 0.001 by ***. 

Table 6.6 t test result for group 2 parameters 

 

Levene's Test for Equality 

of Variances 

t-test for Equality 

of Means 
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F Sig. Sig. (2-tailed) 

T1 Equal variances assumed .799 .372 .668826 

Equal variances not assumed   .678006 

T2 Equal variances assumed 2.126 .146 .098631 

Equal variances not assumed   .094207 

T1/T2 Equal variances assumed .091 .764 .864902 

Equal variances not assumed   .864040 

TC1 0.5Hz Equal variances assumed .809 .369 .556034 

Equal variances not assumed   .565597 

TC2 0.5Hz* Equal variances assumed 2.064 .152 .020707 

Equal variances not assumed   .018680 

ratio of TC1/2 0.5Hz Equal variances assumed 4.487 .035 .129688 

Equal variances not assumed   .156751 

TC1 0.1Hz Equal variances assumed .394 .531 .486630 

Equal variances not assumed   .489265 

TC2 0.1Hz Equal variances assumed 1.781 .183 .119311 

Equal variances not assumed   .114714 

ratio TC1/2 0.1Hz Equal variances assumed 3.044 .082 .348962 

Equal variances not assumed   .366034 

TC12sec Equal variances assumed .650 .421 .451443 

Equal variances not assumed   .422973 

TC22sec Equal variances assumed .765 .382 .051323 

Equal variances not assumed   .050248 

RTC1/22sec Equal variances assumed 1.525 .218 .359005 

Equal variances not assumed   .323952 

Normalised TC2** Equal variances assumed 1.843 .176 .001915 

Equal variances not assumed   .002149 

Peak counting ratio 

1Hz/0.1Hz*** 

Equal variances assumed 17.976 .000 .000013 

Equal variances not assumed   .000007 

Peak counting ratio 

raw/0.1Hz*** 

Equal variances assumed 7.154 .008 .000031 

Equal variances not assumed   .000023 

0.1-1 MPF whole 

flow*** 

Equal variances assumed .218 .641 .000000 

Equal variances not assumed   .000000 

0.1-1 MPF first half 

volume** 

Equal variances assumed 4.003 .046 .002402 

Equal variances not assumed   .002117 

0.1-1 MPF 1st/2nd 

Qmax*** 

Equal variances assumed 3.541 .061 .000481 

Equal variances not assumed   .000386 

0.1-1 MPF first half 

T*** 

Equal variances assumed .066 .797 .000035 

Equal variances not assumed   .000036 

0.1-1 MPF whole/2nd Equal variances assumed 2.975 .086 .000024 
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Qmax*** Equal variances not assumed   .000019 

0.2-0.9 MPF whole 

flow*** 

Equal variances assumed .295 .587 .000001 

Equal variances not assumed   .000001 

0.2-0.9 MF first half 

Volumes*** 

Equal variances assumed 2.931 .088 .000010 

Equal variances not assumed   .000008 

0.1-0.7 MPF whole 

flow*** 

Equal variances assumed .526 .469 .000003 

Equal variances not assumed   .000002 

0.1-0.8 MPF whole 

flow*** 

Equal variances assumed .823 .365 .000000 

Equal variances not assumed   .000000 

0.1-0.9 MPF whole 

flow*** 

Equal variances assumed .397 .529 .000000 

Equal variances not assumed   .000000 

0.1-0.9 MPF 1st/2nd 

Qmax** 

Equal variances assumed 1.316 .252 .004052 

Equal variances not assumed   .003792 

0.2-0.7 MF first half 

Volumes** 

Equal variances assumed .001 .979 .003938 

Equal variances not assumed   .004034 

0.2-0.7 MPF first half 

volume*** 

Equal variances assumed .708 .401 .000001 

Equal variances not assumed   .000001 

0.2-0.8 MPF whole 

flow*** 

Equal variances assumed .346 .557 .000001 

Equal variances not assumed   .000001 

0.2-0.8 MPF first half 

volume*** 

Equal variances assumed 2.185 .140 .000000 

Equal variances not assumed   .000000 

0.2-1 MPF whole 

flow*** 

Equal variances assumed .442 .507 .000000 

Equal variances not assumed   .000000 

0.2-1 MPF first half 

volume*** 

Equal variances assumed 1.801 .181 .000000 

Equal variances not assumed   .000000 

Peak2sec** Equal variances assumed 11.409 .001 .007640 

Equal variances not assumed   .005742 

Peakraw* Equal variances assumed 7.741 .006 .022294 

Equal variances not assumed   .018472 

peak0.5Hz Equal variances assumed 2.331 .128 .295267 

Equal variances not assumed   .285137 

peak1Hz* Equal variances assumed 6.459 .012 .042375 

Equal variances not assumed   .036291 

peak0.1Hz Equal variances assumed 1.389 .240 .685978 

Equal variances not assumed   .680992 

2sec/0.1*** Equal variances assumed 10.627 .001 .000021 

Equal variances not assumed   .000015 

0.5/0.1** Equal variances assumed 5.651 .018 .004842 

Equal variances not assumed   .004524 

Amplitude change in 

raising slope*** 

Equal variances assumed 6.325 .012 .000303 

Equal variances not assumed   .000371 



Chapter 6. Interpretation of Result                                                                                                                                        78 

78 
 

Amp change/Qmax Equal variances assumed .689 .407 .328993 

Equal variances not assumed   .332802 

Amp change/VV Equal variances assumed .021 .885 .166333 

Equal variances not assumed   .153331 

 

From tables 6.5 and 6.6, the results of time constant value analysis only show 

statistically significant difference between two groups in the falling part of raw curve 

with a p value of 0.018. The normalised TC2 variable derived in falling part of 

normalised flow curves, which has statistically significantly difference between two 

groups with a p value of 0.002. This result verifies the finding in the flow template 

analysis that the major difference in shape between DU and BOO happens in the falling 

part, and it provides improvement of accuracy to discriminate between DU and BOO. 

For a graphical inspection, one parameter from each analytical method with highest 

statistical difference is presented as boxplots in appendix VI. The parameters included 

are Qmax2sec, mean rate in falling part, DeltaQ2sec, MUP2sec, TQmax/Tv, Peak 

counting ratio 1Hz/0.1Hz, 0.1-1 MPF whole flow and amplitude change in raising slope. 

The MPF variables hold promise to differentiate DU form BOO non-invasively, 

however the result is contrary to the hypothesis, which show the mean value of median 

power frequency in 0.1Hz to 1Hz filtered curve in BOO group is higher than in DU 

group, with mean value ± SD of 0.43±0.1 and 0.49±0.1 for DU and BOO groups 

respectively. 

The peak numbers in raw, 1Hz, 2sec window, 0.5Hz and 0.1Hz filtered curve 

individually have limited statistical difference between two groups, however the ratio 

of peak numbers in raw/0.1Hz, 2sec/0.1Hz and 1Hz/0.1Hz have much stronger 

statistical difference. It can be seen in the table 6.5 that the mean values of peak numbers 

in DU group in raw, 1Hz filtered and 2 seconds window filtered curves are greater than 

in BOO group, but are lower in 0.1Hz filtered curve. This could be because DU patients 

could not sustain a reasonable detrusor contraction and therefore perform multiple 

contractions of relatively short duration each and/or abdominal straining. Considering 

the MPF analysis result that DU has lower mean value of MPF than BOO, we 

hypothesise that DU patient may contract the detrusor more often than BOO patient. 

However, this is only in hypothesis and needs to be verified with PFS. 
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Sum of amplitude changes in rising slope shows statistically significant difference 

between two groups, and not surprisingly this variable has a linear correlation with Qmax 

and volume voided with p values less than 0.001. 

The parameters which have statistically significant difference are employed in 

generating statistical models, with the parameters mentioned in the group 1. 

6.2.3 Parameter derived by flow template analysis 

The flow template analysis shows that the shape difference could be a potential 

indicator for differentiating DU from BOO, but its usefulness needs further validation. 

The parameters derived from flow template analysis is defined as in table 6.7. 

Table 6.7 Parameters derived from flow template analysis and definitions 

Parameters Definition 
RES with DU in 
0.5-98 

Sum square errors comparing with DU template in normalised 0.5%-
98% VV part 

RES with BOO in 
0.5-98 

Sum square errors comparing with BOO template in normalised 0.5%-
98% VV part 

RES in 0.5-98 Ratio of two parameters above, DU/BOO 
RES with DU in 
RAW 

Sum square errors comparing with DU template in normalised raw 
curve 

RES with BOO in 
RAW 

Sum square errors comparing with BOO template in normalised raw 
curve 

Ratio RES in raw Ratio of two parameters above, DU/BOO 
RES with DU in 
2sec 

Sum square errors comparing with DU template in 2sec filtered raw 
curve 

RES with BOO in 
2sec 

Sum square errors comparing with BOO template in 2sec filtered raw 
curve 

Ratio RES in 2sec Ratio of two parameters above, DU/BOO 
EUS with bell 
shape Sum square errors comparing with bell shape in 2sec filtered raw curve 

 

The intermittency detection result by the criteria stated in the chapter 3 section 4 is 

presented as in the table 6.8, in which 0 stands for non-intermittent curve and 1 stands 

for intermittent curve in the row below ‘intermittency’. It can be observed that 

intermittency prevalence of intermittency in DU group is 43.7% and in BOO group is 

33.3%. This result verifies the hypothesis made in the peak counting analysis that DU 

patients have lower mean peak numbers in 0.1Hz filtered curve than BOO patients, due 

to more higher frequency strain peaks being filtered out. 
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Table 6.8 DU * Intermittency Crosstabulation 

Count   

 

Intermittency 

Total 0 1 

DU 0 107 51 158 

1 76 59 135 

Total 183 110 293 

 

The statistics result of proposed parameters in the non-intermittent curves are presented 

in the table 6.9, in which 1 stands for DU and 0 stands for BOO in column ‘DU’ 

respectively. 

Table 6.9 Parameters derived in non-intermittency curve by shape template analysis 

 DU N Mean Std. Deviation 

RES with DU in 0.5-98 1 76 80.22 57.64 

0 107 71.11 52.27 

RES with BOO in 0.5-98 1 76 71.88 53.73 

0 107 42.69 37.31 

Ratio RES in 0.5-98 1 76 1.50 1.15 

0 107 2.15 1.54 

RES with DU in RAW 1 76 181.55 112.15 

0 107 168.41 98.94 

RES with BOO in RAW 1 76 135.14 89.71 

0 107 110.68 79.59 

Ratio RES in raw 1 76 1.40 .36 

0 107 1.65 .31 

RES with DU in 2sec 1 76 136.15 99.39 

0 107 118.70 84.22 

RES with BOO in 2sec 1 76 96.91 77.82 

0 107 68.25 58.90 

Ratio RES in 2sec 1 76 1.51 .56 

0 107 1.97 .62 

EUS with bell shape 1 76 112.38 87.57 

0 107 122.74 85.00 

 

It can be witnessed that DU data have higher mean value of sum of square errors 

comparing with DU template than BOO data, which is because DU flow shape varies 
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and Qmax could appear anywhere from the very beginning of the flow curve to very end 

of the flow curve. However when comparing DU and BOO data with BOO template, 

the mean value of square errors is much smaller in BOO group in normalised raw curve, 

2 seconds filtered curve and 0.5% to 98% volume voided part in 2 seconds filtered 

curve. The t test result for these parameters in non-intermittent curve is presented as in 

table 6.10. The parameters having statistically significant difference with p value less 

than 0.05 is marked a *, p value less than 0.01 is marked a ** and p value less than 

0.001 is marked a ***. 

Table 6.10 t test result for shape template analysis in non-intermittent curve 

 

Levene's Test for Equality of 

Variances 

t-test for Equality 

of Means 

F Sig. Sig. (2-tailed) 

RES with DU in 

0.5-98 

Equal variances assumed .556 .457 .267585 

Equal variances not 

assumed 
  

.275796 

RES with BOO in 

0.5-98*** 

Equal variances assumed 8.741 .004 .000024 

Equal variances not 

assumed 
  

.000077 

Ratio RES in 0.5-

98** 

Equal variances assumed .943 .333 .002090 

Equal variances not 

assumed 
  

.001264 

RES with DU in 

RAW 

Equal variances assumed 1.234 .268 .403505 

Equal variances not 

assumed 
  

.413673 

RES with BOO in 

RAW 

Equal variances assumed 1.400 .238 .053606 

Equal variances not 

assumed 
  

.058880 

Ratio RES in raw*** Equal variances assumed .181 .671 .000002 

Equal variances not 

assumed 
  

.000004 

RES with DU in 

2sec 

Equal variances assumed 1.155 .284 .202009 

Equal variances not 

assumed 
  

.215084 

RES with BOO in 

2sec** 

Equal variances assumed 3.590 .060 .005090 

Equal variances not 

assumed 
  

.007669 

Ratio RES in Equal variances assumed .017 .897 .000001 
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2sec*** Equal variances not 

assumed 
  

.000001 

EUS with bell 

shape 

Equal variances assumed .014 .905 .423194 

Equal variances not 

assumed 
  

.425687 

 

in which the mean values of sum of square errors in three groups do not have significant 

statistical difference when comparing non-intermittent data with DU template. 

However when compared with the BOO template, sum of square errors have statistical 

difference in 0.5% to 98% volume voided part and in 2 second filtered curve with p 

value of 0.01. The most significant statistically difference is found in the ratio of sum 

square errors in two seconds filtered data with a p value of 0.000001. The AUC value 

in the ROC test is 0.719 with optimised sensitivity and specificity of 70% and 60% 

respectively. 

The analytical results show that the flow shape template hold promise to differentiate 

DU from BOO, but it only works on the non-intermittent curves. Therefore the 

parameters derived by shape template analysis are not included in the statistical models 

generating, though they still could serve as an additional indicator for discriminating 

DU from BOO non-invasively. 

6.2.4 Area under curve analysis and optimised sensitivity/specificity for 

parameters proposed in group 1 and 2 

The t test result presented in 6.2.1 and 6.2.2 verifies that a number of derived parameters 

hold promise to differentiate DU from BOO, and their individual usefulness is analysed 

in the ROC analysis in this section. One parameter from each analytical method with 

highest statistical difference is presented in ROC curve, showing the AUC value and 

optimised sensitivity/specificity. The parameters included are Qmax2sec, mean rate in 

falling part, DeltaQ2sec, MUP2sec, TQmax/Tv, Peak counting ratio 1Hz/0.1Hz, 

Normalised TC2, 0.1-1 MPF whole flow and amplitude change in raising slope. The 

ROC curve for these selected parameters are presented as in figure 6.1 and 6.2. 
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Figure 6.1 ROC curve for 7 proposed parameters which greater value indicates positive classification 

 

 
Figure 6.2 ROC curve for 3 proposed parameters which smaller value indicates positive classification 

Their AUC values and optimised sensitivity and specificity are presented as in table 

6.11. 

Table 6.11 Area under curve value and sensitivity and specificity 

Test Result Variable(s) 
AUC 
value Sensitivity Specificity 

TQmax2sec 0.583 86% 31% 

Mean rate in falling part 0.581 47% 70% 
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DeltaQ2sec 0.644 34% 89% 

MUP2sec 0.571 33% 81% 

TQmax/Tv 0.594 36% 82% 

Amplitude change in raising slope 0.645 68% 60% 

Peak counting ratio 1Hz/0.1Hz 0.634 51% 72% 

0.1-1 MPF whole flow 0.690 42% 87% 

NormalisedTC2 0.629 62% 63% 

 

The largest AUC value is provided by the parameter of 0.1-1 MPF whole flow with 42% 

sensitivity and 87% specificity, followed by amplitude change in raising slope and 

DeltaQ2sec. Though each of parameters has statistically significant difference between 

the two groups, they individually still cannot differentiate DU from BOO. Therefore 

the statistical models are developed in next section to test if the combined parameters 

could serve as a more powerful indicator for discriminating DU with BOO. 

6.3 Statistical models and their diagnostic utility 

Based on the statistical analysis result in last section, 49 parameters which have 

significant statistical difference between two groups are employed in the CART and 

neural network analysis. 3 variables, DeltaQ in raw curve and 0.5Hz/2sec filtered curve, 

have linear relationship with Qmax and Qave, are excluded in MANOVA analysis. A total 

of 46 parameters are employed in MANOVA analysis to generate a linear combination 

‘super’ parameter which could maximise diagnosing accuracy. 

6.3.1 Statistical model of MANOVA 

The statistics for generated MANOVA variable are presented as in table 6.12, and t test 

result is presented in table 6.13. 

Table 6.12 MANOVA variable statistics 

 DU N Mean Std. Deviation 

MANOVA variable 1 135 6.26 1.08 

0 158 8.01 .92 

 

Table 6.13 t test result of MANOVA variable 
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Levene's Test for Equality of 

Variances 

t-test for Equality 

of Means 

F Sig. Sig. (2-tailed) 

MANOVA 

variable 

Equal variances assumed 3.004 .084 .000 

Equal variances not 

assumed 
  

.000 

 

 

where the p value of MANOVA variable between two groups is 1.2*10-37. This results 

shows promise to differentiate DU from BOO non-invasively, but its diagnostic utility 

need to be further investigated. The ROC curve is presented as in figure 6.3. 

 

Figure 6.3 ROC curve of MANOVA variable 

 

The AUC value of MANOVA variable is 0.89, with optimised sensitivity of 89% and 

specificity of 74% at the cut-off value of 7.37. However the MANOVA does not 

support cross validation. Therefore the robustness of MANOVA method is tested by 

discriminant analysis, which performs a similar algorithm that linearly combines 

parameters into a new variable with an binary output of 1 and 0. The cross validation 
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result is presented in the table 6.14. 

Table 6.14 Cross validation using discriminant analysis 

  
DU 

Predicted Group Membership 

Total 0 1 

Original Count 0 130 28 158 

1 26 109 135 

% 0 82.3 17.7 100.0 

1 19.3 80.7 100.0 

Cross-validatedb Count 0 117 41 158 

1 36 99 135 

% 0 74.1 25.9 100.0 

1 26.7 73.3 100.0 

 

a. 81.6% of original grouped cases correctly classified. 

b. Cross validation is done only for those cases in the analysis. In cross validation, each 

case is classified by the functions derived from all cases other than that case. 

c. 73.7% of cross-validated grouped cases correctly classified. 

 

The cross validation results in a 73.7% of accuracy comparing to testing result of 81.6% 

classified accuracy. A less than 10% classification difference shows the MANOVA 

result is robust. 

The MANOVA variable could additionally serve as a preliminary test for screening out 

a part of DU patients who are definitely not diagnosed as BOO. For instance, a cut-off 

value of 5.78 provides 33% sensitivity and 100% specificity, which means 33 out of 

100 DU patients could be securely predicted and do not need to go through 

uncomfortable PFS. On the contrary, a cut-off value of 8.79 provides 100% sensitivity 

and 21% specificity, that 21 out of 100 BOO patients could be accurately predicted and 

need to further investigate if they need an immediate surgery with PFS. 

The MANOVA variable could be potentially used as a score test to evaluate the 

likelihood of DU/BOO. The higher score in MANOVA, the higher chance of suffering 

BOO, and vice versa. The patients with middle scores may need to go through PFS for 

an accurate diagnosis. However the MANOVA variable needs a large database to 

secure a higher robustness, and the coefficients need to be updated accordingly when a 

new UFR data analysed with confirmed diagnosis. 
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6.3.2 Statistical model of CART 

With 49 parameters inputted to generate the classification and regression tree, the data 

was split into 70% of training and 30% of testing. Considering that there are 207 data 

in the training start node, the tree maximum tree depth is set to 3, minimum cases in 

parent nodes set to 20 and in child node set to 7. The training CART model is presented 

as in figure 6.4 and testing in figure 6.5. 
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Figure 6.4 Training CART model with 70% of data 
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Figure 6.5 Testing CART model with 30% of data 

The classification and verification table is presented as in table 6.15. 

Table 6.15 Classification and verification table 

Sample Observed 

Predicted 

0 1 Percent Correct 

Training 0 91 11 89.2% 

1 36 56 60.9% 

Overall Percentage 65.5% 34.5% 75.8% 

Test 0 48 8 85.7% 

1 19 24 55.8% 

Overall Percentage 67.7% 32.3% 72.7% 

    Growing Method: CRT 
Dependent Variable: DU 
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The difference of percent correct between training and testing is 3% which shows the 

robustness of the built-up CART model. The most promising finding is in training level 

2 node 4 there are 20 DU patients has been classified in a pure group, with 0 of BOO, 

but in testing the same node has 8 DU patients mixed with 1 BOO patient. 

The CART could indicate a higher chance of either BOO or DU when the data is 

classified into a child node, but it could not make a clear suggestion for differentiating 

DU from BOO, since the child node normally contains data from both diagnostic groups. 

However the 74% overall diagnosing accuracy is an improvement compared to use 

individual parameter to discriminate DU with BOO. 

It should be noted that CART model has lower robustness than MANOVA model, as 

at each node decision only one parameter is employed, though the algorithm guarantees 

the most accuracy decisions are made in every growing node. The robustness of 

MANOVA model is based on its multiple parameters, the final predicted result will not 

be much affected when a few parameters failed to discriminate DU with BOO in some 

special cases. However if a larger scale of database applied, CART model has potential 

to be further grown into a greater number of layers, and may have a much improved 

diagnosing accuracy, though the training and testing procedures are even more time 

consuming. 

6.3.3 Artificial Neural network model 

In the artificial neural network (ANN) model, all proposed parameters have been 

employed for generating a robust model. 293 data are divided into three group: 70% for 

training, 15% for validation and 15% for testing the model. To avoid over fitting, a 

simple feed forward neural network with 1 hidden layer is designed. The choice of 

hidden neurons numbers is by using five-fold cross validation on overall accuracy. 

The number of hidden neurons is normally between input number and output number, 

but could go up to twice as input number. In this study the input parameters are 49 and 

output number is 1, therefore the hidden neurons number test starts from 25 and end at 

55. For this, the highest accuracy in five-fold cross validation is employed. The five-

fold cross validation result is presented as in table 6.16. 
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Table 6.16 five-fold cross validation result 

Neurons First Second Third Fourth Fifth Overall 

25 75.1% 74.7% 77.8% 73.7% 72.4% 74.7% 

26 71.7% 73.4% 77.8% 74.4% 77.1% 74.9% 

27 75.4% 77.5% 74.1% 74.7% 71.7% 74.7% 

28 76.5% 74.4% 75.1% 79.5% 76.5% 76.4% 

29 80.5% 76.1% 73.4% 74.4% 80.2% 76.9% 

30 77.8% 73.0% 75.8% 69.3% 74.7% 74.1% 

31 73.7% 72.4% 77.1% 70.3% 75.8% 73.9% 

32 74.4% 74.1% 75.4% 76.8% 75.8% 75.3% 

33 78.5% 78.5% 73.0% 74.4% 70.0% 74.9% 

34 73.7% 76.1% 74.7% 70.0% 69.6% 72.8% 

35 75.8% 79.5% 74.1% 77.5% 76.5% 76.7% 

36 74.1% 79.2% 77.8% 74.1% 70.6% 75.2% 

37 73.7% 76.5% 75.1% 81.6% 69.6% 75.3% 

38 81.6% 79.2% 75.4% 73.4% 75.4% 77.0% 

39 71.0% 75.1% 67.2% 68.9% 71.3% 70.7% 

40 79.2% 74.1% 79.9% 75.1% 69.3% 75.5% 

41 78.5% 75.8% 71.3% 79.2% 73.7% 75.7% 

42 76.5% 74.1% 68.3% 74.7% 69.3% 72.6% 

43 75.4% 75.1% 73.4% 80.2% 75.8% 76.0% 

44 77.5% 75.1% 70.3% 73.0% 76.5% 74.5% 

45 75.4% 71.0% 77.1% 71.3% 72.7% 73.5% 

46 77.5% 78.2% 80.2% 76.8% 75.4% 77.6% 

47 77.8% 75.8% 72.4% 74.7% 77.5% 75.6% 

48 73.0% 72.4% 75.4% 75.1% 78.5% 74.9% 

49 78.2% 72.0% 73.7% 81.9% 76.8% 76.5% 

50 68.9% 76.5% 74.4% 81.9% 80.5% 76.4% 

51 77.1% 73.0% 75.8% 65.9% 76.1% 73.6% 

52 72.0% 79.2% 70.3% 77.8% 79.5% 75.8% 

53 75.1% 80.5% 78.2% 76.5% 79.5% 78.0% 

54 69.6% 72.7% 77.1% 71.0% 75.1% 73.1% 

55 77.5% 74.1% 72.4% 77.8% 73.4% 75.0% 

 

It can be seen from table 6.16, in 30 times five-fold cross validation the overall accuracy 

does not vary a lot, in which the average accuracy is around 75%. The best accuracy in 

five-fold cross verification is in 53 neurons, therefore the neural network is designed 

with 1 hidden layer with 53 hidden neurons. The plots of ROC curve and confusion box 

are presented as in figure 6.6 and 6.7 respectively. 
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Figure 6.6 ROC curve of designed neural network 

 

Figure 6.7 Confusion box of designed neural network 
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Designed neural network has overall sensitivity of 75.6%, and specificity of 82.9% with 

discrimination accuracy of 79.5%. This result shows a more robust model than 

MANOVA and CART model. 

Another neural network model is built up to assess if the shape of flow could be a 

discriminator of DU with BOO by employing normalised UFR data in which each data 

is normalised with 1000 resample points and the maximum amplitude of 1 to represent 

the pure flow shape. In this analysis all UFR data are input in three groups in percentage 

of 70, 15, 15 for training, validation, testing respectively. Due to input number of 1000 

variables, the five-fold cross validation is not presented. The final model has 1 hidden 

layer with 815 neurons, and its ROC curve and confusion box are presented as in figure 

6.8 and 6.9 respectively. 
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Figure 6.8 ROC curve of designed neural network for flow shape 
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Figure 6.9 confusion box of designed neural network for flow shape 

The designed neural network has 54.3% sensitivity and 82.7% specificity to 

discriminate DU with BOO, with an overall accuracy of 70.6%. Though it is still poor 

accuracy compared with CART or MANOVA models, it has better accuracy than any 

non-invasive parameters alone and hold the promise to differentiate DU from BOO if a 

larger group of data is employed. 

It should be noted that in this study neural network application is an initial exploration 

on its applicability to differentiate DU from BOO, in which the basic artificial neural 

network is designed and tested. There are other type of neural networks, such as 

convolutional neural network and recurrent neural network, and a number of different 

active functions available for a possible further research. 
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6.4 Summary 

In this chapter, the proposed parameters have been statistically analysed and presented 

their diagnostic utility to differentiate DU from BOO. The novel indicators which 

proposed in this study, time constant variables, MPF variables, peak counting variables 

and flow template variables have statistically significant difference between two groups 

and hold the promise to serve as predictors to differentiate DU from BOO. 

Three statistical models, MANOVA, CART and artificial neural network have been 

designed and tested to combine proposed parameters for maximising the diagnosing 

accuracy. All three models show an average of around 80% accuracy in discrimination 

DU with BOO, and are possible for a clinical trial. 
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Chapter 7  Conclusions and Future Research 

7.1  Conclusions 

The overall aim of this PhD research is to non-invasively differentiate DU from BOO, 

by using existing non-invasive parameters and combining them with derived 

parameters which have statistical difference between two groups. Moreover, we aim to 

establish a possible model which can combine the parameters for maximising 

discriminating accuracy. 

In this study, the non-invasive diagnostic methods for diagnosing BOO/DU and 

differentiation DU from BOO are surveyed. The flow shape definition and their 

descriptors in literature are summarised and we make suggestions for a consistent use. 

The UFR data are initially analysed in the time domain. To reduce the artefact a low-

pass filter is designed and tested, then applied on the UFR data to derive peak numbers 

in different filtered curves. The modelling methods of flow curve is proposed, and we 

use Least Squares method to approximate the model, in which time constant value is 

derived and found to have significantly statistical difference in two groups. A novel 

study on the flow template is conducted, with shape template generated for each 

diagnostic group. It is also found that he normalised flow curve could improve the 

diagnostic usefulness of time constant variables, especially in the falling part. 

With a hypothesis that DU patient may have relatively higher value of mean mid-range 

frequency, UFR data are further analysed in the frequency domain, where a newly 

designed bandpass filter provides precise cut-offs. The bandpass filtered curve is 

analysed by Fast Fourier transform to generate the frequency spectrum, and to derive 

median power frequency variables and sum of amplitude changes variable which have 

statistically significant difference in two groups. However the MPF result reveals the 

mid-range frequency is lower in DU group than BOO group. A trial analysis of Wavelet 

is presented, but unfortunately it may not be suitable for applying to the UFR data. 

All proposed parameters are assessed for their statistical significance for DU against 

BOO. In this study we proposed 49 non-invasively parameters which have significant 
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statistical difference between two groups, and which could serve as additional 

indicators for non-invasively differentiating DU from BOO. Each parameter is 

examined in SPSS to assess their mean value in each diagnostic group and p value of 

statistical significance. Then three statistical/mathematical models are established to 

combine proposed parameters for maximising discriminant utility, with an average of 

75% to 80% accuracy. 

7.2 In three generated and tested statistical models, MANOVA result could 

serve as a score indicator for differentiating DU with BOO and further 

contributes to 27% of patients being accurately predicted on their 

diagnosis, which is considered as the most robust model in three. CART 

model is relatively easier to be affected by the type I error when making 

decisions on splitting the parent nodes into child nodes, and it is 

considered to have the lowest robustness. The ANN model is fairly 

robust due to the current number of data analysed, and its robustness 

could be improved by employing a larger scale of data or further 

analysing on recurrent neural network models.  Contributions 

The contributions of this thesis are mainly 

• The first study of analysing UFR curve in frequency domain to explore the 

frequency content and difference between two LUT dysfunction groups, with a 

number of parameters proposed which have significant statistical difference. 

• The parameter generated by multivariance analysis, classification and regression 

tree and neural network methods on all proposed parameters hold the promise to 

differentiate DU with BOO non-invasively, and it is close to a potential clinical 

trial. 

• The data employed in this study are free-flow UFR data, which is simpler to collect 

and is relatively economical as no additional equipment is required, is more 

convenient and less risky for the patient and the parameter derivation procedure 

could be automatically processed in MATLAB with code provided in appendix. 

• The shape of flow is also reported to associate with one or more voiding 
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abnormalities, but some of the terms to describe abnormally shaped flow rate 

curves are confusing. This study also includes a survey on flow shape and their 

descriptors in relevant published articles and makes suggestions on standardisation 

of shape descriptors. 

• This study introduces the archetype of DU and BOO flow shapes, and recommends 

quantitative definition of ‘intermittency’ to avoid early and end dribbles counted 

as a part of flow. 

• The proposed non-invasive analytical methods may also be suitable for other LUT 

dysfunctions, such as DO, or in female population, for serving as additional 

diagnostic indicators. 

 

7.3  Further research 

Though a number of articles proposed non-invasive methods to diagnose DU or 

differentiate with BOO, there is no effective non-invasive diagnostic method and PFS 

is the only gold standard for assessing LUT dysfunctions. To continue this study for 

overcoming this situation, some potential expansion of the present study can be 

summarised as follows and could be further researched in post doctorate study. 

• To investigate the frequency range of detrusor contraction and abdominal 

straining, which could provide a precise cut-off frequency value in frequency 

domain analysis. 

• To test the proposed parameters in a different database, to verify the robustness 

of their diagnostic utility. 

• Analysing UFR in a larger database, which could be managed by a multicentre 

trial, to possibly further increase the discriminant accuracy, and to improve the 

reliability of statistical models. 

• Conduct a comprehensive analysis on application of neural network in UFR 

data, possibly using recurrent neural network for flow shape and convolutional 

neural network for combining parameters. 

• Test the possibility of applying proposed parameters in other diagnostic groups, 

and in females. 
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Appendix 

I) Matlab code for urodynamic model and peak counting 

% started: 12/11/2013 
% updated: 03/10/2015 

  
% This program, using least squares approach,estimate the parameters 

from 
% measured urine data, which is a 2*N matrix, the first column is 

input 
% vectors and the second column is measured vectors 

  
% Data processing, using butterworth filter with first order, 1Hz and 

0.1Hz 
folder='C:\Users\rui li\Desktop\project\Out files\out files 

2017.6.30\excel' 
d=dir(folder); 
aa={d.name}; 
bb=aa(~cellfun(@isempty,regexp(aa,'.+(?=\.xlsx)','match'))); 
for i=1:numel(bb) 
  Q1=xlsread(bb{i}); 

  
[b,a]=butter(1,0.2); % design the 1Hz filter parameters 
Q2=filter(b,a,Q1);  % filter the data and save to Q2  
[c,d]=butter(1,0.02);  % design the 0.1Hz filter parameters 
Q3=filter(c,d,Q1);  % filter the data and save to Q3 
[e,f]=butter(3,0.2); 
Q4=filter(e,f,Q1); 
[g,h]=butter(3,0.02); 
Q5=filter(g,h,Q1); 

  
% Assume the model structure is given as 
% Q(t)=a*Q(t-1)+b*P(t) 
% par is the martix for the parameters 
% par=[-a,b] 
% By Z transform, the descrete transfer function is 
% Q(z)=b1*z/(z-a) 

  

  
%(I)data processing for raw data 
% Using least square to estimate the value of a,b and then calculate 

the 
% time constant 
[n2 m2]=size(Q1);  %measure the data sequence length 
[Q_max k]=max(Q1); %find the pick value and its position 
                   %to section upward and downward data 
Q=Q1;              %for symbolic short 
V=sum(Q1)/10        
% 1) For upward model parameter estimation from raw data 
P=Q_max*ones(k,1); %set up input/stinulate sequence as step 
PHI=[Q(1:k-1,1),P(2:k,1)];  
par=inv(PHI'*PHI)*(PHI'*Q(2:k,1)); %estimate parameters 
Traw1=-1/log(par(1,1)) %calculate time constant value for upward part 
%{ 
%plot model output response for raw data 
Q_Mopt(2,1)=Q(2,1); %setup initial values 
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for t=3:k 
Q_Mopt(t,1)=par(1,1)*Q_Mopt(t-1,1)+abs(par(2,1))*P(t,1); 
end 
plot(Q_Mopt) 
%} 
% 2) For downward model parameter estimation from raw data 
P=zeros(n2,1); %set up input/stinulate sequence as impulse 
P(k,1)=Q_max; 
PHI=[Q(k-1:n2-1,1),P(k:n2,1)]; % Build up PHI, and estimate the value 

of par 
par=inv(PHI'*PHI)*(PHI'*Q(k:n2,1)); %estimate parameters 
Traw2=-1/log(par(1,1)) %calculate time constant value for downward 

part 
%{ 
%plot model output response for raw data 
for t=k:n2 
Q_Mopt(t,1)=par(1,1)*Q_Mopt(t-1,1)+par(2,1)*P(t,1); 
end 
t=1:n2; 
figure(1) 
plot(t',Q_Mopt, t', Q,'linewidth',2) 
xlabel('time(0.1s)') 
ylabel('flow rate(ml/s)') 
legend('estimated model curve','raw data curve') 
title('original data curve fitting') 

  

  
%(II)data processing for 1Hz filtered data 
%plot the 1Hz filtered data 
figure(2) 
plot(Q2) 
xlabel('time(0.1s)') 
ylabel('flow rate(ml/s)') 
legend('1Hz filtered data curve') 
title('1Hz filtered data') 
%} 

  
%(III)data processing for 0.1Hz filtered data 
[n2 m2]=size(Q3); %measure the data sequence length 
[Q_max3 k]=max(Q3); %find the pick value and its position 
                   %to section upward and downward data 
Q=Q3; %for symbolic short 

  
% 1) For upward model parameter estimation from filtered data 
P=Q_max3*ones(k,1); %set up input/stinulate sequence as step 
PHI=[Q(2:k-1,1),P(3:k,1)];  
par=inv(PHI'*PHI)*(PHI'*Q(3:k,1)); %estimate parameters 
Tfilter1=-1/log(par(1,1)) %calculate time constant value for upward 

part 
%{ 
%plot model output response for 0.1Hz filtered data 
Q_Mopt(2,1)=Q(2,1); %setup initial values 
for t=3:k 
Q_Mopt(t,1)=par(1,1)*Q_Mopt(t-1,1)+par(2,1)*P(t,1); 
end 
%plot(Q_Mopt) 
%}  
% 2) For downward model parameter estimation from filtered data 
P=zeros(n2,1); %set up input/stinulate sequence as impulse 
P(k,1)=Q_max3; 
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PHI=[Q(k-1:n2-1,1),P(k:n2,1)]; % Build up PHI, and estimate the value 

of par 
par=inv(PHI'*PHI)*(PHI'*Q(k:n2,1)); %estimate parameters 
Tfilter2=-1/log(par(1,1))%calculate time constant value for downward 

part 
%{ 
%plot model output response for 0.1Hz filtered data 
for t=k:n2 
Q_Mopt(t,1)=par(1,1)*Q_Mopt(t-1,1)+par(2,1)*P(t,1); 
end 
t=1:n2; 
figure(3) 
plot(t',Q_Mopt, t', Q,'linewidth',2) 
xlabel('time(0.1s)') 
ylabel('flow rate(ml/s)') 
legend('estimated model curve','0.1 Hz filtered data curve') 
title('0.1Hz filtered data and curve fitting') 
%} 
meanUFRupward=sum(Q1(1:k))/k %the mean UFR for the upward part 
meanUFRdownward=sum(Q1((k+1):n2))/(n2-k-1) % the mean URF for the 

downward part 
UtDt=k/(n2-k) % the ratio of upward time and downward time 
if Q_max<5 
    peak1=findpeaks(Q1,'MINPEAKHEIGHT',0.5); 
    peak1=length(peak1);%count the number of peaks in raw data 
    peak2=findpeaks(Q4,'MINPEAKHEIGHT',0.5); 
    peak2=length(peak2);%count the number of peaks in 1Hz filtered 

data 
    peak3=findpeaks(Q5,'MINPEAKHEIGHT',0.5); 
    peak3=length(peak3);%count the number of peaks in 0.1Hz filtered 

data 
else 
    peak1=findpeaks(Q1,'MINPEAKHEIGHT',1); 
    peak1=length(peak1);%count the number of peaks in raw data 
    peak2=findpeaks(Q4,'MINPEAKHEIGHT',1); 
    peak2=length(peak2);%count the number of peaks in 1Hz filtered 

data 
    peak3=findpeaks(Q5,'MINPEAKHEIGHT',1); 
    peak3=length(peak3);%count the number of peaks in 0.1Hz filtered 

data 
end 

  
Ft=length(find(Q1>0.5))/10; 
Vt=n2/10; 
Q_ave=V/Vt; 

  
if k<11 
    QmaxW=Qmax; 
else 
    QmaxW=0.05*sum(Q1((k-10):(k+9))); 
end 
Excel=[Q_max Q_ave V 0 0 Tfilter1 Tfilter2 Tfilter1/Tfilter2 UtDt 

peak1 peak2 peak3 0 0 0 peak2/peak3 peak1/peak3 Ft Vt Ft/Vt 

Q_ave/Q_max meanUFRupward meanUFRdownward 

meanUFRupward/meanUFRdownward QmaxW]; 

  
Excelall(i,:)=Excel; 
end 
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II) Matlab code for verification of filter order in peak counting analysis 

 
[g,h]=butter(3,0.2);  % design the 1Hz filter parameters 
Q2=filter(g,h,Q1);    % filter the data and save to Q2 
[g,h]=butter(3,0.16); % design the 0.8Hz filter parameters 
Q3=filter(g,h,Q1);    % filter the data and save to Q3 
[g,h]=butter(3,0.12); % design the 0.6Hz filter parameters 
Q4=filter(g,h,Q1);    % filter the data and save to Q4 
[g,h]=butter(3,0.1);  % design the 0.5Hz filter parameters 
Q5=filter(g,h,Q1);    % filter the data and save to Q5 
[g,h]=butter(3,0.06); % design the 0.3Hz filter parameters 
Q6=filter(g,h,Q1);    % filter the data and save to Q6 
[g,h]=butter(3,0.02); % design the 0.1Hz filter parameters 
Q7=filter(g,h,Q1);    % filter the data and save to Q7 
[g,h]=butter(3,0.016); % design the 0.05Hz filter parameters 
Q8=filter(g,h,Q1);    % filter the data and save to Q8 
[g,h]=butter(3,0.012);% design the 0.01Hz filter parameters 
Q9=filter(g,h,Q1);    % filter the data and save to Q9 

  
if max(Q1)>5 
    peak1=findpeaks(Q1,'MINPEAKHEIGHT',1); 
    peak1=length(peak1);%count the number of peaks in raw data 
    peak2=findpeaks(Q2,'MINPEAKHEIGHT',1); 
    peak2=length(peak2);%count the number of peaks in 1Hz filtered 

data 
    peak3=findpeaks(Q3,'MINPEAKHEIGHT',1); 
    peak3=length(peak3);%count the number of peaks in 0.1Hz filtered 

data 
    peak4=findpeaks(Q4,'MINPEAKHEIGHT',1); 
    peak4=length(peak4);%count the number of peaks in raw data 
    peak5=findpeaks(Q5,'MINPEAKHEIGHT',1); 
    peak5=length(peak5);%count the number of peaks in 1Hz filtered 

data 
    peak6=findpeaks(Q6,'MINPEAKHEIGHT',1); 
    peak6=length(peak6);%count the number of peaks in 0.1Hz filtered 

data 
    peak7=findpeaks(Q7,'MINPEAKHEIGHT',1); 
    peak7=length(peak7);%count the number of peaks in raw data 
    peak8=findpeaks(Q8,'MINPEAKHEIGHT',1); 
    peak8=length(peak8);%count the number of peaks in 1Hz filtered 

data 
    peak9=findpeaks(Q9,'MINPEAKHEIGHT',1); 
    peak9=length(peak9);%count the number of peaks in 0.1Hz filtered 

data 
else 
    peak1=findpeaks(Q1,'MINPEAKHEIGHT',0.5); 
    peak1=length(peak1);%count the number of peaks in raw data 
    peak2=findpeaks(Q2,'MINPEAKHEIGHT',0.5); 
    peak2=length(peak2);%count the number of peaks in 1Hz filtered 

data 
    peak3=findpeaks(Q3,'MINPEAKHEIGHT',0.5); 
    peak3=length(peak3);%count the number of peaks in 0.1Hz filtered 

data 
    peak4=findpeaks(Q4,'MINPEAKHEIGHT',0.5); 
    peak4=length(peak4);%count the number of peaks in raw data 
    peak5=findpeaks(Q5,'MINPEAKHEIGHT',0.5); 
    peak5=length(peak5);%count the number of peaks in 1Hz filtered 

data 
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    peak6=findpeaks(Q6,'MINPEAKHEIGHT',0.5); 
    peak6=length(peak6);%count the number of peaks in 0.1Hz filtered 

data 
    peak7=findpeaks(Q7,'MINPEAKHEIGHT',0.5); 
    peak7=length(peak7);%count the number of peaks in raw data 
    peak8=findpeaks(Q8,'MINPEAKHEIGHT',0.5); 
    peak8=length(peak8);%count the number of peaks in 1Hz filtered 

data 
    peak9=findpeaks(Q9,'MINPEAKHEIGHT',0.5); 
    peak9=length(peak9);%count the number of peaks in 0.1Hz filtered 

data 
end 
Peak=[peak1 peak2 peak3 peak4 peak5 peak6 peak7 peak8 peak9]; 
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III) Matlab code for MPF analysis 

folder= C:\Users\Rui2L\Desktop\project\Out files\Male\UFR data\BOO 
and DU' 
d=dir(folder); 
a={d.name}; 
b=a(~cellfun(@isempty,regexp(a,'.+(?=\.xlsx)','match'))); 
for k=1:numel(b) 
  Q1=xlsread(b{k}); 
  Fs = 10;                                                 % Sampling 

Frequency 
Fn = Fs/2;                                               % Nyquist 

Frequency 
L1=length(Q1); 
[e,f] = ellip(3,2,50,[0.06 0.2],'bandpass');             % Design 

bandpass filter vector 
Q2=filter(e,f,Q1);                                       % Filtered 

whole curve 
Q3=Q2(1:fix(L1/2));                                      % First half 

curve 
L3=length(Q3); 
Q4=Q2(fix(L1/2):L1);                                     % Second 

half curve 
L4=length(Q4); 

  
% Find median power frequency in the whole filtered flow 
FTs = fft(Q2)/L1; 
Fv = linspace(0, 1, fix(L1/2)+1)*Fn;                     % Frequency 

Vector 
Iv = 1:length(Fv);                                       % Index 

Vector 
absFTs=abs(FTs(Iv));                                     % Absolute 

value of FFT 
PabsFTs=absFTs.^2;                                       % Power 

spectrum 
CumAmp = cumtrapz(Fv, PabsFTs);                          % Integrate 

power spectrum amplitude 
MedPFreq = interp1(CumAmp, Fv, CumAmp(end)/2);           % Use 

'interp1' To Find ¡®MPF¡¯ 
CumAmpS = cumtrapz(Fv, abs(FTs(Iv)));                    % Integrate 

FFT Amplitude 
MedFreq = interp1(CumAmpS, Fv, CumAmpS(end)/2);          % Use 

¡®interp1¡¯ To Find ¡®MF¡¯ 

  
% Find median power frequency in the first and second half of 

filtered flow 
FTs3 = fft(Q3)/L3; 
Fv3 = linspace(0, 1, fix(L3/2)+1)*Fn;                    % Frequency 

Vector 
Iv3 = 1:length(Fv3);                                     % Index 

Vector 
absFTs3=abs(FTs3(Iv3));                                  % Absolute 

value of FFT 
PabsFTs3=absFTs3.^2;                                     % Power 

spectrum 
CumAmp3 = cumtrapz(Fv3, PabsFTs3);                       % Integrate 

FFT Amplitude 
MedPFreq1 = interp1(CumAmp3, Fv3, CumAmp3(end)/2);        % MPF in 

1st half 
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CumAmpS3 = cumtrapz(Fv3, abs(FTs3(Iv3)));                     % 

Integrate FFT Amplitude 
MedFreq1 = interp1(CumAmpS3, Fv3, CumAmpS3(end)/2);             % Use 

¡®interp1¡¯ To Find ¡®MF¡¯ 

  
FTs4 = fft(Q4)/L4; 
Fv4 = linspace(0, 1, fix(L4/2)+1)*Fn;                    % Frequency 

Vector 
Iv4 = 1:length(Fv4);                                     % Index 

Vector 
absFTs4=abs(FTs4(Iv4));                                  % Absolute 

value of FFT 
PabsFTs4=absFTs4.^2;                                     % Power 

spectrum 
CumAmp4 = cumtrapz(Fv4, PabsFTs4);                       % Integrate 

FFT Amplitude 
MedPFreq2 = interp1(CumAmp4, Fv4, CumAmp4(end)/2);        % MPF in 

2nd half 
CumAmpS4 = cumtrapz(Fv4, abs(FTs4(Iv4)));                     % 

Integrate FFT Amplitude 
MedFreq2 = interp1(CumAmpS4, Fv4, CumAmpS4(end)/2);   

  
MPF=[MedPFreq MedPFreq1 MedPFreq2 MedFreq MedFreq1 MedFreq2]; 

  
% MF and MPF calculation on two part of flow, splited by Qmax point 
[m,n]=max(Q1); 
Q3=Q2(1:n);                                              % First half 

curve 
L3=length(Q3); 
Q4=Q2((n+1):L1);                                         % Second 

half curve 
L4=length(Q4); 

  
% Find median power frequency in the first and second half of 

filtered flow 
FTs3 = fft(Q3)/L3; 
Fv3 = linspace(0, 1, fix(L3/2)+1)*Fn;                    % Frequency 

Vector 
Iv3 = 1:length(Fv3);                                     % Index 

Vector 
absFTs3=abs(FTs3(Iv3));                                  % Absolute 

value of FFT 
PabsFTs3=absFTs3.^2;                                     % Power 

spectrum 
CumAmp3 = cumtrapz(Fv3, PabsFTs3);                       % Integrate 

FFT Amplitude 
MedPFreq1 = interp1(CumAmp3, Fv3, CumAmp3(end)/2);        % MPF in 

1st half 
CumAmpS3 = cumtrapz(Fv3, abs(FTs3(Iv3)));                     % 

Integrate FFT Amplitude 
MedFreq1 = interp1(CumAmpS3, Fv3, CumAmpS3(end)/2);             % Use 

¡®interp1¡¯ To Find ¡®MF¡¯ 

  
FTs4 = fft(Q4)/L4; 
Fv4 = linspace(0, 1, fix(L4/2)+1)*Fn;                    % Frequency 

Vector 
Iv4 = 1:length(Fv4);                                     % Index 

Vector 
absFTs4=abs(FTs4(Iv4));                                  % Absolute 

value of FFT 
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PabsFTs4=absFTs4.^2;                                     % Power 

spectrum 
CumAmp4 = cumtrapz(Fv4, PabsFTs4);                       % Integrate 

FFT Amplitude 
MedPFreq2 = interp1(CumAmp4, Fv4, CumAmp4(end)/2);        % MPF in 

2nd half 
CumAmpS4 = cumtrapz(Fv4, abs(FTs4(Iv4)));                     % 

Integrate FFT Amplitude 
MedFreq2 = interp1(CumAmpS4, Fv4, CumAmpS4(end)/2);   

  
MPF(7:10)=[MedPFreq1 MedPFreq2 MedFreq1 MedFreq2]; 

  
% MF and MPF calculation on two part of flow, splited by the half of 

volume voided point 
CumAmpW = cumtrapz(1:length(Q1), Q1);                    % Integrate 

FFT Amplitude 
[~, n]=min(abs(CumAmpW(:)-CumAmpW(end)/2));              % MPF in 2nd 

half 

  
Q3=Q2(1:n);                                              % First half 

curve 
L3=length(Q3); 
Q4=Q2((n+1):L1);                                         % Second 

half curve 
L4=length(Q4); 

  
% Find median power frequency in the first and second half of 

filtered flow 
FTs3 = fft(Q3)/L3; 
Fv3 = linspace(0, 1, fix(L3/2)+1)*Fn;                    % Frequency 

Vector 
Iv3 = 1:length(Fv3);                                     % Index 

Vector 
absFTs3=abs(FTs3(Iv3));                                  % Absolute 

value of FFT 
PabsFTs3=absFTs3.^2;                                     % Power 

spectrum 
CumAmp3 = cumtrapz(Fv3, PabsFTs3);                       % Integrate 

FFT Amplitude 
MedPFreq1 = interp1(CumAmp3, Fv3, CumAmp3(end)/2);       % MPF in 1st 

half 
CumAmpS3 = cumtrapz(Fv3, abs(FTs3(Iv3)));                % Integrate 

FFT Amplitude 
MedFreq1 = interp1(CumAmpS3, Fv3, CumAmpS3(end)/2);      % Use 

¡®interp1¡¯ To Find ¡®MF¡¯ 

  
FTs4 = fft(Q4)/L4; 
Fv4 = linspace(0, 1, fix(L4/2)+1)*Fn;                    % Frequency 

Vector 
Iv4 = 1:length(Fv4);                                     % Index 

Vector 
absFTs4=abs(FTs4(Iv4));                                  % Absolute 

value of FFT 
PabsFTs4=absFTs4.^2;                                     % Power 

spectrum 
CumAmp4 = cumtrapz(Fv4, PabsFTs4);                       % Integrate 

FFT Amplitude 
MedPFreq2 = interp1(CumAmp4, Fv4, CumAmp4(end)/2);       % MPF in 2nd 

half 
CumAmpS4 = cumtrapz(Fv4, abs(FTs4(Iv4)));                % Integrate 
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FFT Amplitude 
MedFreq2 = interp1(CumAmpS4, Fv4, CumAmpS4(end)/2);   
MPF(11:14)=[MedPFreq1 MedPFreq2 MedFreq1 MedFreq2]; 
MPFall(k,1:14)=MPF; 
end 
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IV) SPSS syntax script for MANOVA 

 

 

MANOVA Qmax Qave Volumevoided FlowtimeVoidtime FlowindexQaveQmax 

Meanrateinraisingpart Meanrateinfallingpart  

    Peakcountingratio1Hz0.1Hz Peakcountingratioraw0.1Hz @0.11MPFwholeflow 

    @0.11MPFfirsthalfvolume @0.11MPF1st2ndQmax @0.11MPFfirsthalfT 

@0.11MPFwhole2ndQmax 

    @0.20.9MPFwholeflow @0.20.9MFfirsthalfVolumes @0.10.7MPFwholeflow 

@0.10.8MPFwholeflow 

    @0.10.9MPFwholeflow @0.10.9MPF1st2ndQmax @0.20.7MFfirsthalfVolumes 

@0.20.7MPFfirsthalfvolume 

    @0.20.8MPFwholeflow @0.20.8MPFfirsthalfvolume @0.21MPFwholeflow 

@0.21MPFfirsthalfvolume Qmax0.5Hz 

    TC20.5Hz QaveQmax0.5Hz meanUFRupward0.5Hz meanUFRdownward0.5Hz 

    Qmax2sec QaveTv2sec QaveTf2sec DeltaQ2sec MUP2sec 

    MDOWN2sec Peak2sec Peakraw peak1Hz @2sec0.1 @0.50.1 

    Amplitudechangeinraisingslope TQmaxTv TQmax2secTv NormalisedTC2 

    BY DU (0,1)    % performing MANOVA analysis on all input parameters 
which have significant statistically difference between two groups 

  /DISCRIM=STAN RAW CORR  % generating discriminant parameters 

  /PRINT=SIGNIF(MULTIV,UNIV,EIGEN,DIMENR) % present if 
Multivariate F tests, Eigenvalues matrix, dimension-reduction 

analysis or univariate F tests have statistical difference between 

two groups 

  /DESIGN. 
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V) MATLAB code for flow normalisation analysis 

folder='C:\Users\Rui2L\Desktop\project\Out files\Male\UFR data\BOO 

and DU' 

d=dir(folder); 

aa={d.name}; 

bb=aa(~cellfun(@isempty,regexp(aa,'.+(?=\.xlsx)','match'))); 

  

for i=1:numel(bb) 

    Q1=xlsread(bb{i}); 

    Q11=Q1; 

    Q11(11:(length(Q1)+10))=Q11; 

    Q11(1:10)=zeros(1,10); 

    Q11((length(Q1)+11):(length(Q1)+20))=zeros(1,10); 

    for j=1:length(Q1) 

        Q1f(j,1)=(sum(Q11(j:(j+20))))/21; 

    end 

    VV = cumtrapz(1:length(Q1f),Q1f);  

    ST= find(VV>VV(end)*0.005, 1, 'first'); %locate 0.5% VV point 

    ET= find(VV>VV(end)*0.98, 1, 'first'); %locate 98% VV point 

    xq=1:((length(Q1f(ST:ET))-1)/999):length(Q1f(ST:ET)); 

    vq = interp1(Q1f(ST:ET),xq); 

    vqn=vq/max(vq); 

     

    xq1=1:((length(Q1)-1)/999):length(Q1); 

    vq1 = interp1(Q1,xq1); 

    vqn1=vq1/max(vq1); 

     

    xq2=1:((length(Q1f)-1)/999):length(Q1f); 

    vq2 = interp1(Q1f,xq2); 

    vqn2=vq2/max(vq2); 

     

    loc1=find(Q1f(ST:ET)<0.5);  

    if isempty(loc1) 

        inte(i,1)=0; 

        %Excel(i,:)=vqn; 

        %eUs1=sum((vqn-TU).^2); 

        %eOs1=sum((vqn-TO).^2); 

        %TD(i,2:3)=[eUs1,eOs1];         

    else 

        inte(i,1)=1; 

        %Excel(i,:)=0; 

    end 

     

    eUs1=sum((vqn-TD).^2); 

    eOs1=sum((vqn-TB).^2); 

    inte(i,2:3)=[eUs1,eOs1]; 

     

    eUs2=sum((vqn1-TD).^2); 

    eOs2=sum((vqn1-TB).^2); 

    inte(i,4:5)=[eUs2,eOs2];     

     

    eUs3=sum((vqn2-TD).^2); 

    eOs3=sum((vqn2-TB).^2); 

    inte(i,6:7)=[eUs3,eOs3]; 

     

    clear Q1f Q11 

end 
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VI) Boxplot for selected parameters 

Following figures, from figure 40 to figure 47, are boxplots generated by SPSS, which 

are summary plots of 8 parameters, graphically depicting the median, quartiles, and 

extreme values. The box represents the interquartile (IQ) range which contains the 

middle 50% of the records. The whiskers are lines that extend from the upper and lower 

edge of the box to the highest and lowest values which are no greater than 1.5 times the 

IQ range. A line across the box indicates the median. Outliers are cases with values 

between 1.5 and 3 times the IQ range, i.e., beyond the whiskers. Extremes are cases 

with values more than 3 times the IQ range. 

 
Figure 10 Qmax2sec boxplot 

 
Figure 11 Mean rate in falling part box plot 
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Figure 12 DeltaQ2sec boxplot 

 
Figure 13 Mup2sec boxplot 
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Figure 14 TQmax/Tv boxplot 

 
Figure 15 Peak counting ratio 1Hz/0.1Hz boxplot 
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Figure 16 0.1-1 MPF whole flow boxplot 

 
Figure 17 amplitude change in raising slope boxplot  
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VII) DU urine flow rate curve plots 
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VIII) BOO urine flow rate curve plots 
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IX) Journal publications 

How can we maximise the diagnostic utility of uroflow? : ICI-RS 2017 

Andrew Gammie, Peter Rosier, Rui Li, Chris Harding  
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Neurourology and Urodynamics. 37 (supplement 4), pp. 20-24. 

 

Introduction 

The assessment of urine flow rate dates back to the 1950’s and uroflowmetry is to date the most 

widely-used urodynamic assessment. This is in part due to its non-invasive nature, practical 

simplicity and low cost. The test is recommended as an initial objective evaluation for patients 

with signs and symptoms of lower urinary tract dysfunction by the UK National Institute for 

Health and Care Excellence (NICE)1, European Association of Urology (EAU)2, International 

Consultation on Incontinence (ICI)3 and American Urological Association (AUA)4. Although 

the recommendation for uroflowmetry is relatively undisputed, the evidence with regard to the 

predictive value of the test is not very well established.  Moreover, much of the potential 

information that a flowrate measurement contains is not very well studied and the evidence 

about the most studied parameter, maximum flowrate (Qmax), is not unambiguous.  There is for 

example discrepancy in practice guidelines regarding recommendations for the use of specific 

cut-off values for  Qmax in the assessment of men with lower urinary tract symptoms (LUTS). 

In a systematic review published recently only 30 studies could be  included from a literature 

search dating back to 1970, confirming a dearth of high-level evidence regarding the diagnostic 

value of uroflowmetry5.  The specific aim of this 2017 International Consultation on 

Incontinence Research Society (ICI-RS) think tank was to explore the question “How can we 

maximise the diagnostic utility of uroflow?”.  The areas of current knowledge are discussed 

with summaries of gaps in that knowledge.  Recommendations are then made for studies to 

address those gaps. 

 

Maximum flow rates 

One of the main problems with uroflowmetry is lack of diagnostic specificity associated with 

the test. The majority of existing work has centred on the ability of urine flow tests to provide 

an estimation of the likelihood of bladder outflow obstruction (BOO) in male patients. Outflow 

diameter (flow controlling zone) is directly related to flow rate, but also depends on intravesical 

pressure, and the parameter that has been most researched is maximum urine flowrate (Qmax). 

The EAU LUTS guidelines comment that “The diagnostic accuracy of uroflowmetry for 

detecting BOO varies considerably, and is substantially influenced by threshold values”2. The 

evidence for this statement comes from large scale studies such as the ICS BPH study6. The 

study comprised 1271 men aged between 45 and 88 years recruited from 12 centres in Europe, 

Australia, Canada, Taiwan and Japan. They reported that a threshold Qmax of 10 mL/s has a 

specificity of 70%, a PPV of 70% and a sensitivity of 47% for BOO as defined by invasive 

urodynamics. Using a higher threshold for Qmax of 15 mL/s, the specificity was reduced to 38%, 

the PPV to 67% and the sensitivity increased to 82%. Thus, as in all diagnostic tests, there is a 

trade-off between sensitivity and specificity as different (flow rate in this case) thresholds are 

considered. Lower Qmax thresholds are more specific to diagnose BOO but less sensitive and as 

the threshold is raised the sensitivity increases but specificity decreases.  

 

In women the relevance of maximum flowrate as a cut off is .even more difficult to establish. 

The prevalence of  female BOO is much lower than in males, but may nowadays be increasing, 

perhaps because of more interventions that can cause outflow obstruction7,8.  Though for most 

women, flow rates are high (above 15 – 20 mL/s)9, the specificity of a low maximum flow rate 

towards the cause of dysfunction is not fully reported in the literature.  Another group not 

extensively studied is healthy young men, who void with generally lower maximum flow rates 

than their female counterparts, which was observed especially when the voided volume is 

relatively low10. For women and for younger men, and to a lesser extent elderly men, therefore, 

very little conclusion can be drawn from uroflowmetry alone.  As a starting point, volume 

correction for interpretation of the maximum flow rate is recently published.11 

 

It is well known that maximum flow rate alone is insufficient for a specific diagnosis of LUT 

function, but there is not yet much evidence that other signs and symptoms, apart from age and 

gender , can be combined with this measurement to enhance diagnostic power. 
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Multiple uroflow measurements 

Uroflowmetry is a clinical test that is performed by the patient. Inevitably, within-patient 

variability of the measurements made plays a role in the result. The AUA have noted in their 

recent guideline that “Clinicians should be aware that uroflow studies can be affected by the 

volume voided and the circumstances of the test” and advise that “Serial uroflowmetry 

measurements which are consistent, similar and comparable provide the most valuable 

information for the clinician.”4  This has led to a general recommendation that uroflowmetry 

parameters should preferably be evaluated with voided volume >150 mL and that serial 

measurements are most informative. This is supported by a study from Reynard et al. who 

concluded that the maximum Qmax of three clinic flow measurements provides a valuable 

improvement in diagnostic power over a single measurement to estimate the likelihood of BOO 

in elderly males with prostate enlargement12. 

 

A logical follow-on from these data has been the development of home uroflowmetry devices 

which can capture multiple voids under “usual” circumstances and thus theoretically reduce 

single observation inaccuracy. In a systematic review on the subject of home uroflowmetry 

recently published it was concluded that “the statistical benefit of averaging multiple 

measurements of Qmax, made feasible by home uroflowmetry, should translate to improved 

diagnostic accuracy and assessment of treatment outcome”13. However at the moment further 

studies are necessary to confirm this benefit, particularly to examine both the diagnostic and 

predictive value of flow variables derived from multiple recordings. 

 

Flow-volume nomograms  

Nomograms that allow for correction of flow rate for either the volume voided or the volume 

in the bladder are frequently presented and are produced from all urodynamic equipment.  

However, the utility of these for diagnosis varies greatly and is never strong. These 

nomograms are unable to provide a urodynamic diagnosis but can indicate the probability of 

normality of maximum flow rate.  The premise that inter-patient volume correction with these 

nomograms helps to establish better evaluation of treatment effect (on Qmax) has not been 

confirmed. 

Siroky14 produced a flow-volume nomogram from 80 male patients of unreported age, with 

bladder volume (not voided volume) on the vertical axis. Later, Kadow15 selected 123 older 

(between 50 and 80 years) male patients, and formed a nomogram with slower flow rates than 

Siroky, but using voided volume alone.  The most comprehensive set of nomograms came 

from Haylen’s Liverpool study16, which produced nomograms from 331 male and 249 female 

patients of a wide age range. The Liverpool nomograms include, as did Siroky, graphs for 

both maximum and average flow rates, but also included a factor for age in the male 

equations and used voided volume. More recently, male17 (bladder volume) and female18 

(voided volume) ‘PGIMER’ nomograms have been proposed for Indian populations, with 

factoring for the age of female patients. Additional proposals for male assessment have been 

made for individualised nomograms based on multiple flows19 and the D index from within 

the VBN modelling system20. 

The clinical perspective is that flow rate is a screening test and that normal flow rate can be 

used to exclude voiding abnormalities. Since the nomograms are all proposed for indicative, 

rather than diagnostic, use, they are limited in application to initial screening and indication of 

treatment outcome. Nevertheless the sensitivity, specificity, type of volume measured and 

influence of age and population type for each nomogram could be more clearly described and 

understood, otherwise unmerited diagnostic capacity may be assumed. 

Flow rate curve shape 

The terms used to describe the shape of the urine flow rate curve over time vary considerably.  

In paediatric urology the analysis of uroflow pattern is standardized to a certain extent21, 

although anomalies exist, and shape can serve as a guide to the existence of a specific 



Reference List                                                                                                                                                                             133 

133 
 

condition3,21, 22.  Since patient inhibition can occur during uroflowmetry, good technical 

performance of the test is critical, or dysfunction may be erroneously diagnosed on the basis 

of procedure faults or technical artefacts. 

Some of the terms to describe abnormally shaped flow curves may be regarded as confusing. 

For instance ‘staccato-shaped’ is used to describe an irregular, fluctuating curve and 

‘interrupted-shaped’ to describe a curve with segments with zero flow21, yet ‘staccato’ truly 

means ‘separated, detached’.  Standard descriptions of uroflow curve in adults have other 

difficulties, for instance the descriptions ‘constrictive’ and ‘compressive’ are used for 

different uroflow shapes23,.  Those labels are, however, describing the cause of the shape 

rather than the shapes themselves.  Consistency and clarity in description is therefore 

required, in order that a full analysis of the diagnostic utility of uroflow shape can be 

undertaken. 

Two research teams have used Qmax and Qave to diagnose urodynamic abnormality, and 

suggest relevance and applicability.24, 25 However the accuracy varies when trialled on 

different databases and the limitations have been discussed26.  A recent study27 has presented 

some mathematical analysis of uroflow curve shape, counting multiple peaks within filtered 

curves and considering the frequency content of the curve shape, but this has so far analysed 

only small numbers of patients and the specificity does not yet exceed that of the simple Qmax 

cut-off of 10 ml/s to select symptomatic men with a high likelihood of BOO. 

The current definition of dysfunctional voiding22 is confusing, referring as it does to irregular 

flowrate caused by inability to void and or by underactivity of the detrusor and / or by outlet 

smooth or striated muscle activity.  A container term as this is not helpful to ensure either 

optimum management or research to improve treatment for voiding difficulties. 

Uroflow time measurements 

ICS GUP defines flow time as “the time over which measurable flow actually occurs”23.  

However, the threshold above which flow is considered “measurable” is not defined, and the 

equipment sensitivity will therefore affect the time value recorded.  The end of micturition is 

presumably considered to be at the end of measurable flow, but most urodynamic pressure 

flow studies will end with the patient giving a final cough, possibly resulting in measurable 

leakage which should not be regarded as part of the normal void.  A recent study proposed 

that 0.5 ml/s be used as the standard threshold for registering flow and that post-void leaks be 

ignored for the purpose of time recording28.  Rollema29 reported that diagnosis of bladder 

outflow obstruction in men could be improved by considering the time from Qmax to the point 

where 95% of voided volume had been voided, but this parameter has never been confirmed 

and has not become standard. 

Other measurements alongside uroflow 

Flow lag time, defined as the time between pelvic muscle EMG decrease and urine flow 

beginning has been reported either to increase or to decrease as an effect of management of a 

variety of dysfunctional voiding types in children.30  However, standardisation of meatus to 

flowmeter distance (or of intravesical or voided volume) has not been carried out in these 

studies. Pelvic floor dysfunction as a cause for irregular voiding can be expected to be present 

in adults, although the evidence, e.g. from studies that report pelvic muscle EMG, is lacking3. 

Given that abdominal straining has variable effects on flow rate, it is reasonable to suggest 

that non-invasive synchronous recording of abdominal pressure be investigated in different 

groups of patients.  One study found that patients with detrusor underactivity are more likely 

to strain on voiding31, while another found that men with bladder outlet obstruction strained 

less32 which is understandable since a prostate receives just as much pressure increment as the 

bladder, as a consequence of its intraabdominal position, during abdominal pressure rises. 

Areas for research 
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In view of the gaps in current knowledge detailed above, we recommend that studies be 

carried out to address the following research questions: 

• Can maximum flow rate be improved as a diagnostic criterion for adult women and 

young adult men? 

• Which definition of voiding dysfunction would be best applicable in clinical practice? 

• What signs and symptoms can be combined with uroflowmetry to enhance its 

diagnostic power? 

• Should an adult EMG – uroflowmetry test be designed? 

• Should an abdominal pressure – uroflowmetry test be designed? 

• How can the normalisation of flow rate to volume be improved, and nomograms 

consequently standardised? 

• How can urine flow curve shape analysis be standardized and quantified? 

• How can multiple flows and home uroflowmetry be applied to increase diagnostic 

accuracy?  

• How can thresholds and protocols for measuring urine flow time be more clearly 

defined? 

 

Conclusions 

The ICI-RS 2017 meeting has proposed a number of research questions that should be 

addressed to increase the diagnostic utility of non-invasive uroflowmetry.  There is scope for 

combining uroflowmetry with other non-invasive indicators, and for better standardisation of 

the test technique, flow-volume nomograms, uroflow shape descriptions and time 

measurements.  Given the ubiquity of the test, and its vulnerability to misunderstanding, there 

is a need for a consensus document on Good Practice for Uroflowmetry.  
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Urine flow rate curve shapes and their descriptors 
Rui Li, Andrew Gammie, Quan Zhu, Mokhtar Nibouche 

Neurourology and Urodynamics. 37(8), pp. 2289-2989 

 

Abstract 

Aims: To review the descriptors and definitions of urine flow rate curve shape with a view to 

promoting greater clarity and to propose standard terms 

Methods: A search was made in the PubMed and ICS standardization documents on urine flow 

rate curve shape. 

Results: The flow shape descriptors and their definitions are summarised and presented. 

‘Normal’ was widely used for describing a bell-shaped flow curve, and ‘plateau’ was mostly 

used where the ICS describe ‘constrictive’ flow shape. The use of shape descriptors 

‘fluctuating’, ‘compressive’, ‘tower-shaped’ and ‘intermittent’ varied in the literature. 

Conclusion: This survey provides an overview of flow shape descriptors and their definitions. 

We suggest it is clearer to use only descriptors that describe shape alone, i.e. normal, fluctuating, 

intermittent and plateau, with comments on symmetry and Qmax. 

 

Introduction 

Uroflowmetry serves as a preliminary urodynamic test for physicians to indicate the possible 

cause of lower urinary tract symptoms (LUTS). Alongside the most researched parameter 

maximum flow rate (Qmax), the shape of urine flow rate curve is also reported to associate with 

one or more voiding abnormalities.1  

The International Continence Society (ICS) defines a normal flow shape as ‘arc-shaped with 

high maximum flowrate’.2 However, the definition did not quantitatively specify the parameter 

range for normal shape. More quantitative definitions have therefore been proposed. For 

example, Nishimoto et al.3 use three parameters, the ratio of maximum flow rate (Qmax) and the 

voiding time (Tv), the ratio of time to peak flow (TQmax) and Tv, and the ratio of the average 

flow rate (Qave) and Qmax, to differentiate normal and abnormal shape, but this has not become 

standard. 

As suggested by Gammie et al.4 from the ICI-RS 2017 meeting, the present study investigates 

the shape of urine flow curve described in the literature and highlights the problems with these 

descriptors. Proposals for standardised use are suggested. 

 

Methods 

A literature search was made in PubMed and ICS standardisation documents, for titles and 

abstracts of papers including ‘shape’ or ‘pattern’, and additionally including ‘urodynamic’ or 

‘uroflow’ or ‘urine flow’ or ‘uroflowmetry’ or ‘urinary flow’ dated to 5 January 2018. The 

search resulted in a total of 680 articles. After the selection procedure (Figure 1), 22 articles 
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were included in this survey.2,3,5-24 

 

Results 

The flow shape descriptors in the literature were summarised first under the shape name that 

the ICS has defined,5,6 namely ‘normal’, ‘constrictive’, ‘compressive’, ‘fluctuating’ and 

‘intermittent’. Further definitions, such as ‘tower’ used by the International Children's 

Continence Society (ICCS), were included and where possible listed under the relevant ICS 

definition. A detailed summary of shape definitions is presented as in table 1. 

 

1. Normal 

The definitions of normal flow curve are similar in most articles, which are bell-shaped or arc-

shaped, approximately symmetrical, uninterrupted and with no rapid amplitude changes.3-18,20-

23 ICCS specifies in children the bell-shaped curve should be regardless of volume voided.5 

Nishimoto et al. suggest quantitative definition using values for the parameters noted above3 

(Qmax/Tv  ≥ 0.78, 0.32 ≤ TQmax/Tv ≤ 0.54, Qave/Qmax < l.59).  Four other articles specifically 

define normal flow shape: Wyndaele suggests Qmax > 15ml/s,8 Abrams indicates Qmax appears 

in first 30% of curve and within 5 seconds from start,9 Mostafavi et al. use flow within 5% to 

90% range of the Iranian nomogram and Qmax
2 > volume voided for normal shape,13 and 

Ghobish uses time ratio (Tr= TQmax/flow time) of 25%-60% and flow ratio (Qr =Qave/Qmax) of 

25%-75% to define normal shape.18 

2. Constrictive 

Schaefer et al. in the ICS Good Urodynamic Practices document define constrictive shape as a 

smooth, flat and plateau-like curve with lower flow rate.2 It is named as plateau in 10 

articles,5,7,12-17,20,21 and in other articles as ‘long flow + low max flow’,8 long and low Qmax,11 

box-shaped,18 and prolonged.19 It is agreed in most articles that constrictive flow shape has a 

relatively longer flow time, flattened shape with a constant Qmax almost the same as Qave. In 

addition, five articles have given a more specific definition: variations less than 1ml/s,12,14 

variation<1ml/s for at least 4 seconds,20 Qmax/flow time<0.5,13 Qr>80% and Tr<10%.18 

3. Compressive 

ICS defines the compressive flow shape as a flattened asymmetric low curve with a slowly 

declining end part.2 Additionally Ghobish defines it by 30%-60% Qr and 10-25% Tr
18, and van 

der Vis-Melsen et al. name it ‘low flat’ with definition of flat flow with low average and 

maximum index of urine transport (IUT, the ratio of flow rate and square root of bladder 

volume).23 Other researchers have mostly the same definition as ICS, but use different terms: 

slow start,8 flattened,16 low flow,17 long-tail,18 approximately normal,19 and prostatic.21  

4. Fluctuating 
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Fluctuating flow shape is described by the ICS as a continuous urine flow having multiple 

peaks.5. The ICCS7, and also Mostafavi et al.13 call it staccato, and define it as an irregular 

fluctuating curve without flow reaching zero, where fluctuations are greater than root of Qmax.  

The shape is named as fluctuating in five other articles with the same definition as in 

ICS.8,13,16,17,21 Two articles name this flow pattern as intermittent, defined as a wavy curve not 

reaching the baseline with a duration of at least 15 seconds,20 and variations in flow rate of at 

least 5ml/s.22 Fantl calls it multiple peak, and specifies that the 2nd peak amplitude should be 

higher or equal to 20% of Qmax
10. Pauwels names this flow shape undulating, and defines it as 

asymmetric curve with steep slope, with a long and flattened foothill.10 van der Vis-Melsen et 

al. call this shape sawtooth and define with low average IUT and normal maximum IUT.23 

5. Intermittent 

The intermittent flow shape is defined as flow stopping and starting during a single void in an 

ICS standardisation document.6 Other defined names are: interrupted,7,10,13,18 fractioned, 21 void 

2x,8 fractionated11,17,20,22 and sawtooth.15 Even though the name of this shape varies, the 

definition is generally the same as the ICS standardisation. Three articles give additional 

definitions for this shape. Fantl considers intermittent as flow less than 2ml/s instead of 

completely stopping,10 Ghobish further subdivided intermittency into two patterns by 

interruption duration threshold of ≤ 2 second, named type A, and repeated interruptions due to 

abdominal straining as type B,18 and Jensen et al. define intermittent flow as lasting for at least 

15 seconds of flow time with one or more interruptions.20 

6. Tower-shaped 

This shape has not been defined in any ICS document, but ICCS defines it as sudden, high-

amplitude flow with short duration.6 Abrams calls it supranormal and gives the more specific 

definition of a sharply increase flow to a very high Qmax in the first 1-3 seconds, and followed 

by a sudden reduction.9 Chou et al.16 and Jorgensen et al.17 call this shape ‘tall and peaked’ and 

‘high flow’ respectively, but the definition is similar to ICCS. Using Qmax>95% on the Iranian 

nomogram, Mostafavi et al. also call this pattern ‘tower’.13 

7. Other shape definitions 

Ghobish defines two extra shapes: ’high start’ as 20%-60% Qr and 0-10% Tr to describe a 

sudden rise to Qmax then steep steady fall shape, and ‘inverted long-tail’ as 30%-60% Qr with 

Tr>60% to describe a steady rise then sudden fall down shape.18  

Shih investigates flow shape by using a geometric approach and divides flow patterns into three 

groups by quantitative classification rules. An almost normal to mildly obstructive shape is 

defined as Qmax≥15ml/s when volume voided ≥200ml or Qmax ≥10ml/s when volume voided 

<200ml, and time to Qmax is in the range of 5 seconds to 5/12 flow time, and Qmax/Qave >4/3. A 

moderately to severely obstructive pattern is defined as Qave ≤4ml/s or flow time ≥90 seconds 
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when volume voided is less than 400ml. The remaining patterns are recognised as mildly to 

moderately obstructive.24 

 

Discussion 

The urine flow curve shape contains relevant and interpretable information on a patient’s 

urinary conditions, and it is suggested it could serve as a guide to identify LUT dysfunction.2,5,7 

However, the definitions found in the literature are not consistent and it is not possible to 

uncover pathophysiology when terms are not consistently used. In ICS Good Urodynamic 

Practices, the shape definitions of constrictive and compressive are describing the presumed 

cause of the shape, not the shape itself.2,4 Since the musical definition of staccato follows the 

Italian meaning ‘detached’, the use of this phrase for fluctuating yet continuous flow is 

misleading. 

The start and end point for a flow curve is not properly defined. For instance, an early or end 

dribble is normally included in the flow curve, as it is a part of voiding, but the shape could 

therefore be classified as intermittent even the rest of flow is bell-shaped. Jensen et al. exclude 

‘bubbles’, i.e. small separate flows, less than 2ml/s at the start and end of micturition for pre-

processing of the flow data.20 A recent study proposed that 0.5ml/s could be used as the 

threshold point for the starting and ending point of micturition,25 which may help avoid 

erroneous classification of urine flow shape, but this has not become standard. 

The present survey summarises the descriptors used for flow shape and their definitions, 

compared with current ICS/ICCS standardization. We found that the descriptor and definition 

for normal flow shape was consistently used, while plateau was mostly used for describing 

ICS’s ‘constrictive’ shape. The descriptors of compressive, fluctuating, intermittent and tower-

shaped varied in the literature, with some researchers giving more quantitative definitions for 

these shapes. 

There is no strong correlation between any shape to specified symptoms or diagnosis reported 

in these articles. Furthermore, Pauwels et al. demonstrates that a bell-shaped curve could not 

be an exclusion criterion of voiding dysfunction in women,11 and Chou et al. noted that the flow 

pattern could not be used as a screening test for urinary dysfunctions.16 

We therefore propose that only shape descriptors that refer to actual shape, easily defined, are 

the ones considered for standard use. We suggest using normal, fluctuating, intermittent as 

defined by the ICS, and plateau instead of the ICS’s ‘constrictive’, for describing flow shape, 

with additional comment on symmetry and Qmax. This removes from use descriptors that are 

misleading, e.g. ‘staccato’ and ‘biphasic’. A complex flow shape could be described as a 

combination of descriptors or with specified Qmax detail. For example, ‘compressive’ could be 

expressed as an asymmetric shape with low Qmax in the first half, and ‘tower’ described as a 

normal shape with a very high Qmax. 
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Any definitions that refer to possible cause are not recommended, such as prostatic, constrictive 

and compressive, as it may be taken by inexpert observers to imply diagnosis. Other definitions 

requiring detailed mathematical analysis are not readily usable, and could therefore only be 

recommended if diagnostic specificity could be proven. As yet, no shape definition fulfils these 

criteria. 

 

Conclusion 

The varying descriptors of urine flow curve shape cause confusion and may result in inaccurate 

clinical screening. Consistency and clarity in description are required, and development of 

standardisation of shape descriptors is recommended. We suggest that only ‘normal’, 

‘fluctuating’, ‘intermittent’ and ‘plateau’ descriptions, with additional comment on symmetry 

and Qmax, be used to describe urine flow rate curve shape, and the definitions for these 

descriptors should follow the terms in the ICS standardization documents 
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Mathematical analysis on Urine Flow Traces for Non-invasive Diagnosis of Detrusor 
Underactivity in Men 

Rui Li, Andrew Gammie, Quan Zhu, Mokhtar Nibouche 

Neurourology and Urodynamics. 36 (supplement 3), pp. 87-88. 

 
Hypothesis / aims of study 

Detrusor underactivity (DU) is still largely under researched and can only be diagnosed by 
invasive pressure flow studies (PFS). Theoretically, the flow shape of DU is different from 
bladder outlet obstruction (BOO), but in practice PFS is the only gold standard for diagnosing 
DU. It is suggested that detrusor muscle contraction and abdominal squeezing act in total 
different frequencies, 0.1Hz and 1Hz respectively, which could be an indicator for differentiating 
DU and BOO [1]. However, this hypothesis has not been quantitatively validated. Therefore, 
continuing last year’s research [2], we have conducted a novel study on validating frequencies 
of abdominal and detrusor muscle activity as reflected in urine flow, and propose a potential 
indicator for diagnosing DU. 
 
Study design, materials and methods 

Urine flow data of 114 adult male patients who had undergone PFS were analysed. Based on 
their PFS record, these patients were divided into three groups: 46 BOO, 44 DU, and 24 normal 
(DU and BOO disease free). A free urine flow rate was performed before each PFS, and the 
shape of those flows analysed.  The starting and ending voiding point was selected by the 
threshold value of 0.5ml/s. Then a third order Butterworth filter was applied on the urine flow 
rate curve with different cut-off frequencies (1Hz, 0.8Hz, 0.6Hz, 0.5Hz, 0.3Hz and 0.1Hz), to 
count the peak numbers in each raw curve and filtered curve. The ratio of the number of peaks 
in the raw curve and the filtered curves was calculated for statistical analysis to find the best 
sensitivity/specificity for diagnosing DU. An example plot of raw curve and 1Hz filtered curve is 
presented in figure 1. 

 
Figure 1 Raw urine flow rate curve and 1Hz filtered curve 

 
All statistical analysis was performed in SPSS version 23, Mann-Whitney U test and T-student 
test were performed as appropriate. A statistically significant difference was considered as P 
value<0.05. 
 
Results 

We found the best statistically significant difference (P<0.002) on DU/BOO in ratio of peak 
numbers of 1Hz filtered curve against 0.1Hz filtered curve, followed by raw curve against 0.1Hz 
filtered curve with P value of 0.002 and 0.8Hz against 0.1Hz with P value of 0.002. Further 
receiver operating characteristic (ROC) analysis was performed on these three peak ratios in 
DU against with BOO and disease free group. The plot of ROC is presented as in figure 2. 
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Figure 2 ROC analysis on ratio of peak numbers in raw curve/0.1Hz filtered curve, 

0.8Hz/0.1Hz filtered curve and 1Hz/0.1Hz filtered curve 
 
The ratio of peak numbers in 1Hz filtered curve against 0.1Hz filtered curve has the largest area 
under the curve of 0.691. With cut-off value of 8.37, the best sensitivity and specificity for 
diagnosing DU are 73% and 61% respectively. 
 
Interpretation of results 

It is suggested in urine flow rate data, an averaging should be taken in a 2 second window for 
reducing drops and artefacts [3], which equates to a 1Hz filter for a 10Hz sampling rate 
urodynamic equipment. In this research, we found the best diagnosing power for DU is the ratio 
of peak numbers in 1Hz filtered against 0.1Hz filtered curve. As DU patients have relativity 
lower detrusor contractility than BOO patients, they may have more abdominal straining for 
voiding out the urine. Therefore, we found the ratio of peak numbers in before and after filtering 
abdominal squeezing curve has significant statistical difference between DU group and BOO 
group. This result also verifies the hypothesis of frequencies for abdominal and detrusor 
squeezing are around 1Hz and 0.1Hz respectively. 
 
Concluding message 

This study shows promising non-invasive indicator for diagnosing DU in men by comparing the 
number of peaks in 1Hz filtered curve against the 0.1Hz filtered curve. It has also made 
suggestions on possible frequencies of abdominal squeezing and detrusor straining. Further 
research will follow on more frequency analytical methods, such as Fourier analysis and 
wavelet theory, to achieve a decent diagnosing power on non-invasively diagnosing DU and by 
combining multiple clinical parameters. 
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Median frequency and sum of amplitude changes in rising slope: two potential 

non-invasive indicators for differentiating DU from BOO in males 
Rui Li, Andrew Gammie, Quan Zhu, Mokhtar Nibouche 

Neurourology and Urodynamics. 37 (supplement 5), pp. 248-249 

 
Hypothesis / aims of study 

It remains a challenge to non-invasively differentiate detrusor underactivity (DU) from bladder 
outlet obstruction (BOO) in males, and the gold standard is pressure flow studies, which is 
invasive, relatively expensive and may cause bleeding and infection. This novel study aims to 
non-invasively differentiate DU from BOO in males by analysing urine flow rate curves in the 
frequency domain. The hypothesis is that underactive patients may perform more abdominal 
straining than obstructed patients during micturition due to their underactive detrusor. Thus, it 
is possible to analyse the urine flow rate in frequency domain and derive non-invasive 
parameters for differentiating these two groups, as abdominal muscle strains in a different 
frequency range comparing with detrusor contraction [1]. 
 
Study design, materials and methods 

Free-flow data of 273 adult male patients who had also undergone PFS were analysed in this 
research. Based on their PFS record, these patients are divided into three groups: 104 BOO, 
93 DU, and 76 normal (DU and BOO disease free) for reference. All free flow data has pre-
processed by threshold value of 0.5ml/s for the start and end micturition point [2]. 
To leave only the fluctuations in the flow curve for analysis in frequency domain, a bandpass 
Kaiser window filter has been designed and applied on the pre-processed flow data. The 
selection criteria and specifications for the filter are listed as below: 
⚫ The passband of filter should be flat and ideally without ripples, for the accuracy frequency 

analysis result. 
⚫ The roll-off should be sharp, for a better filter performance. 
⚫ The group delay response should be a constant value, for shifting back filtered curve with 

same data sequence length as raw curve. 
⚫ The bandpass range is set to 0.1-1Hz, for maximise reducing fluctuation by detrusor 

contraction with frequency under 0.1Hz and artefact noise such as coughing. 
⚫ The attenuation is set to -40dB, for reducing artefact fluctuations up to 50ml/s to 0.5ml/s. 
Then the sum of amplitude changes is calculated in the filtered flow curve, which is presented 
as in figure 1. Meanwhile, the frequency spectra of filtered flow curves are generated by fast 
Fourier transform, and median frequency values are calculated as the frequency value dividing 
power spectrum into two regions with equal amplitude, which are as presented in figure 2. The 
filtered flow curve is also divided into two parts by maximum flow rate (Qmax), half of voiding 
time (Tv), and the location where half of volume is voided, to calculate median frequency in 
each part. 

 
Figure 18 Raw and filtered curve for sum of amplitude changes in rising slope 
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Figure 19 Median frequency in whole, 1st and 2nd half Tv filtered curve 

All statistical analysis was performed in SPSS version 24, Mann-Whitney U test and T-student 
test were performed as appropriate. A statistically significant difference was considered as P 
value<0.05. 
 
Results 

We found the significantly statistical difference in sum of amplitude changes in rising slope with 
P value<0.001, between DU group (mean±SD, 27.4±20.2) and BOO group (mean±SD, 
18.3±14.2). Area under the curve (AUC) value is 0.651 in receiver operating characteristic 
(ROC) analysis, with 63.4% sensitivity and 65.4% specificity. However, no statistical difference 
is found for differentiating DU from BOO when this parameter takes a ratio to Qmax or volume 
voided. 
In median frequency analysis, the significantly statistical difference for differentiating DU with 
BOO appear in the filtered whole flow curve (DU vs BOO=0.42±0.10 vs 0.48±0.10) with P value 
of 0.0001, followed by in the first half volume voided part (P<0.001), ratio of median frequency 
in 1st to 2nd half part divided by Qmax, (P=0.002), ratio of median frequency in whole filtered 
curve to 2nd half part divided by Qmax (P=0.003) and median frequency in 1st half part divided 
by Tv (P=0.004). The AUC value is 0.665 for median frequency in filtered whole flow curve, 
with 43% sensitivity and 86.5% specificity. 
 
Interpretation of results 

In this study, we found the flow rate curve fluctuations during micturition in DU patients group 
have higher amplitude changes than BOO group, and the frequency difference in the whole 
filtered flow curve. Currently the sensitivity and specificity of these two indicators could not yet 
exceed those of the simple Qmax cut-off of 10ml/s to select symptomatic men with a high 
likelihood of BOO, but it still shows promise that these may serve as additional indicator for 
preliminary screening of DU before invasive pressure flow studies. Furthermore, these 
indicators could be combined with other non-invasive parameters to enhance current 
diagnosing accuracy. 
 
Concluding message 

This study shows promising non-invasive indicators for diagnosing DU in men by analysing 
urine flow curves in the frequency domain. Further research will explore other possible non-
invasive parameters, and mathematically combined with existing indicators for achieving more 
promising diagnostic accuracy of DU in male. 
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Multivariate analysis of variance for maximising the diagnosing accuracy in 

differentiating DU from BOO in males 
Rui Li, Andrew Gammie, Quan Zhu, Mokhtar Nibouche 

Neurourology and Urodynamics. 37 (supplement 5), pp. 327-328. 

 
Hypothesis / aims of study 

Detrusor underactivity (DU) and bladder outlet obstruction (BOO) bother almost half of elder 
men. Although the treatment is different for these two lower urinary tract symptoms, invasive 
pressure flow studies remains the only gold standard for diagnosing both. To non-invasively 
differentiate DU from BOO, a few studies have mathematically analysed urine flow rate curve 
and proposed promising parameters [1,2], but each proposed parameter is not strong enough 
for diagnostic usage. Therefore, in this study we aim to use multivariate analysis of variance on 
parameters derived from free flow data to assess the possibility of non-invasive differentiating 
DU from BOO in males. 
 
Study design, materials and methods 

Free-flow data of 273 adult male patients who had also undergone PFS were analysed in this 
research. Based on their PFS record, these patients are divided into three groups: 104 BOO, 
93 DU, and 76 normal (DU and BOO disease free) for reference. All free flow data has pre-
processed by threshold value of 0.5ml/s for the start and end micturition point [3]. 
The multivariate analysis is performed by bundling multiple dependent variables into a weighted 
linear combination variable to achieve the best statistically significant between two groups. The 
following non-invasive variables which have significant statistical difference between two 
groups, are employed for multivariate analysis: 
⚫ Parameters obtained from 2 seconds averaging window filtered urine flow rate data, 

including Qmax (P<0.0001), Qave by voiding time (P<0.01), Qave by flow time (P<0.0001) and 
ratio of Qmax time to voiding time (P=0.05). 

⚫ Parameters mathematically derived from 2 seconds averaging window filtered urine flow 
rate data, including mean flow rate in rising part and falling part (P<0.01 and P=0.01 
respectively), and ratio of flow time to voiding time. 

⚫ Parameters required complex mathematically calculation of raw flow data, including 
median frequency values in different bandpass filtered curve (statistical difference varies 
from P=0.0001 to P<0.05), ratio values of peak numbers in different lowpass filtered curve 
(P<0.0001), time constant value in falling part of 2 seconds averaging window filtered curve 
(P=0.01), and sum of amplitude changes in rising slope in 0.1Hz to 1Hz filtered flow curve 
(P<0.001). 

Then the inputted parameters are assigned with coefficients each and summed to create a 
variable which has the best diagnosing accuracy on differentiating DU with BOO. 
Non-invasive parameters were derived in Matlab 2017a. All statistical analysis was performed 
in SPSS version 24, Mann-Whitney U test and T-student test were performed as appropriate. 
A statistically significant difference was considered as P value<0.05. 
 
Results 

The variable calculated in multivariate analysis has significantly statistical difference between 
DU with BOO groups, with P value less than 10-22. The area under the curve in receiver 
operation characteristic analysis is 0.872, which is presented as in figure 1, the most balanced 
sensitivity and specificity for the new variable are 73.1% and 84.6% respectively on 
differentiating DU from BOO. 
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Figure 20 Area under curve for new variable on differentiating DU with BOO 

 
Interpretation of results 

The result shows that multivariate analysis could improve the diagnosing accuracy, by 
mathematical linear combining the inputted parameters. While the single variable could have 
limited diagnosing power, such as Qmax with P<0.0001 only having area under curve value of 
0.634, the combination of these non-invasive parameters shows promise on differentiating DU 
from BOO. Moreover, the diagnosing accuracy could possibly be further improved if any other 
non-invasive parameter is employed. However, it should be noted that the current result is only 
valid in training procedure, and a larger data number is needed for validation before diagnostic 
use. 
 
Concluding message 

In this study, we found the multivariate analysis could improve the diagnosing accuracy by 
combining parameters which have statistical difference between DU and BOO groups, and 
presented the possibility to non-invasively differentiate DU with BOO only by analysing the flow 
rate data alone. Further research will focus on explore other parameters which could serve as 
additional indicators for differentiating two symptoms, and other classification methods such as 
neural network and classification/regression tree analysis. 
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Urine flow rate shape template and intermittent flow in males 
Rui Li, Andrew Gammie, Quan Zhu, Mokhtar Nibouche 

Neurourology and Urodynamics. 37 (supplement 5), pp. 128-129 

 

Hypothesis / aims of study 

Uroflowmetry serves as a preliminary urodynamic test for physicians to indicate the possible 
cause of lower urinary tract symptoms. Alongside the most researched parameter maximum 
flow rate (Qmax), the shape of urine flow rate curve is also reported to associate with one or 
more voiding abnormalities [1]. Therefore, this novel study aims at by mathematically 
generating free-flow shape template in specified diagnostic groups, bladder outlet obstruction 
(BOO) and detrusor underactivity (DU), to assess its possibility for non-invasive diagnostic use. 
 
Study design, materials and methods 

Free-flow data of 273 adult male patients who had also undergone PFS were analysed in this 
research. Based on their PFS record, these patients are divided into three groups: 104 BOO, 
93 DU, and 76 normal (DU and BOO disease free) for reference. For each flow data, the starting 
and ending point has been selected by the threshold value of 0.5ml/s, then 2 seconds averaging 
window filter has been applied as suggested by ICS good urodynamic practice [2]. 
For the accuracy of the shape template, the intermittent flow data is not considered in template 
generating. ICS defines intermittent flow shape as flow stopping and starting during a single 
void [3]. However, an early or end dribble is normally included in the flow curve, as it is a part 
of voiding, the shape could therefore be classified as intermittent even the rest of flow is bell-
shaped. We therefore detect intermittent flow on criteria of flow rate<0.5ml/s in the 0.5% to 98% 
volume void part, and generate flow shape template on non-intermittency data in the same area 
following the steps listed below: 
1. Normalise flow curve into amplitude of 1 and samples of 1000, by dividing whole flow curve 

by Qmax and resampling of 1000 samples. 
2. Calculate the mean values on each sample point in normalised flow curves in both 

diagnostic groups 
3. Divide the whole generated data sequence by the maximum value in both diagnostic 

groups 
Then the calculated data sequences are the shape template for BOO and DU. To assess the 
diagnostic usage of the template, all BOO and DU non-intermittent flow data in 0.5%-98% 
volume voided area are normalised and calculated the ratio of sum square errors (Res) on each 
re-sample point comparing with BOO template and comparing with DU template. 
Intermittency detection and template generation were calculated in Matlab 2017a. Statistical 
analysis was performed in SPSS version 24, Mann-Whitney U test and T-student test were 
performed as appropriate. A statistically significant difference was considered as P value<0.05. 
 

Results 

In total of 197 DU and BOO data, 75 data has been detected as intermittent, the rest 71 BOO 
and 51 DU non-intermittent data are employed for the template generating. The templates for 
each diagnostic group are presented as in figure 1. 
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Figure 21 BOO and DU flow shape template 

The Res value is found having significant statistical difference between DU and BOO groups, 
with P=0.005. In receiver operating characteristic (ROC) analysis, area under curve (AUC) is 
0.676 with 71% sensitivity and 63% specificity. 
 
Interpretation of results 

In this study, we found the flow shape template, generated by normalised flow curves, has a 
shape difference between two diagnostic groups. As presented in figure 1, the BOO template 
shows an asymmetric shape with maximum amplitude value appears in the first half and 
prolonged falling slope, while the DU template is almost a bell shape with maximum amplitude 
value located nearly at centre. The main differences between two templates are the maximum 
value location and the descending speed in falling slope. 
The ICS definition on intermittency did not specify the starting and ending point to count 
stopping flow, and this could result in categorising flow curve with very small volume of starting 
or ending dibbles as an intermittent curve. In our study, we found it would be more accurate to 
only count in 0.5% to 98% volume voided area for intermittency detection. 
The parameter Res generated in our study could serve as an additional non-invasive indicator 
for differentiating non-intermittency DU and BOO flow in male. Although the diagnosing power 
could not be compared with simple Qmax<10ml/s for selecting male with BOO, the diagnosing 
accuracy for this new proposed parameter could be enhanced with other non-invasive 
indicators. It also shows the promise to explore the shape difference in other symptomatic 
groups, and its further application on diagnostic usage. 
 
Concluding message 

This study finds the shape difference between DU and BOO in males and proposes a novel 
non-invasive indicator for differentiating DU from BOO if the flow is non-intermittent. Further 
research will analyse the shape template difference in other diagnostic groups, and explore the 
possibility of non-invasively diagnosing DU by combining other non-invasive parameters. 

 


