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Individual animals can often move more safely or more efficiently

as members of a group. This can be as simple as safety in

numbers or as sophisticated as aerodynamic or hydrodynamic

cooperation. Here, we show that individual plant–animal

worms (Symsagittifera roscoffensis) can move to safety more

quickly through flocculation. Flocs form in response to

turbulence that might otherwise carry these beach-dwelling

worms out to sea. They allow the worms to descend much

more quickly to the safety of the substrate than single worms

could swim. Descent speed increases with floc size such that

larger flocs can catch up with smaller ones and engulf them to

become even larger and faster. To our knowledge, this is the

first demonstration of social flocculation in a wild, multicellular

organism. It is also remarkable that such effective flocculation

occurs where the components are comparatively large

multicellular organisms organized as entangled ensembles.
1. Introduction
Social behaviour can bring tremendous advantages, including

safety in numbers [1] and the ease and efficiency of coordinated

movement [2,3] when groups of organisms move through a

resistive medium [4]. Examples include chevron formations

adopted by birds in flight [5], queuing of spiny lobsters [6],

swimming of newborn dolphins [7] and alignment in schools of

fish [8]. Moving collectively, even bacteria achieve significantly

greater swimming speeds compared with isolated individuals [9].

Here, we show the hydrodynamic advantages gained by plant–

animal worms from their use of flocculation (figure 1).

The marine acoel flat worm Symsagittifera roscoffensis (Ludwig

Von Graaf 1891) is found in intertidal regions of a number of

sandy beaches in France, the Channel Islands, the UK and

Portugal. One special feature of the adult worm is that it derives

all of its energy from photosynthesis occurring in its symbiotic

algae (Platymonas convolutae). The worms are visible (during the
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(a) (b)

Figure 1. Flocculation in plant – animal worms as seen from above. (a) Immediately after the end of agitation, when the worms are
hooked together into dark flocs. (b) 40 s later, when they have separated and reverted to their usual behaviour. For more details, see
electronic supplementary material, section S1.
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day and when the tide is out) as dark green masses in shallow pools bathed by run-off water. At night

and when invaded by the tide, they burrow into the sand [10,11].

Adult individuals are approximately 1.7 mm long and typically swim, horizontally, at approximately

1.8 mm s– 1 [12]. They exhibit several social behaviours: they interact with each other more frequently

than would occur by chance; they swim in polarized groupings; and at higher concentrations, they

readily form circular mills [12,13]. Here we show a further example of their collective behaviour. If a

container of S. roscoffensis in water is suddenly disturbed, the worms agglomerate and their colour

apparently becomes darker, a result of the opacity of the dense groupings (figure 1; electronic

supplementary material, section S1, video S1, figures S1 and S2). The groups drop rapidly to the

bottom of the container. We hypothesize that this aggregation is an aid to a swift descent and, despite

the worm size being two orders of magnitude higher than the largest particles involved in

flocculation, we have interpreted our results in terms of this process.

A rapid reaction by the worms may be required whenever an unpredictable wave breaks over a

group; without this response, the worms could be washed into deep water. When the worms

encounter the bottom of a sample bottle, they disperse and their green colour becomes apparent once

more (figure 1b); we suggest that the rapid dispersion is necessary to enable individuals to burrow

into the sand.

This provisional interpretation raises several questions—can such groupings of these worms really

descend more quickly than the more straightforward strategy of swimming vertically? How are the

worms organized within flocs? And can we recognize any of the established hydrodynamic relations

between floc size and terminal velocity in their behaviour?

Flocculation is the coagulation of particles in suspension to form masses variously described as

fleecy or clumpy. It may be deliberately induced, such as in water treatment [14,15] or brewing

[16], as a source of microalgae for biofuels [17]—or natural, as in the formation of marine algal

(diatom) flocs [18]. The first study of flocculation as a cooperative behaviour was in yeast [19]. If

the flocculation process involves the trapping of gas bubbles, it can result in buoyancy, but

otherwise, the process aids sedimentation—aggregation enables the particles to descend more

rapidly through the medium.

Our hypotheses are grounded in the physics of flocculation, which we will introduce briefly here. A

worm of length L ¼ 1.7 mm swimming horizontally at v � 1.8 mm s21 has a Reynolds number Re � 3

[20]. So, if large numbers of worms are involved as a floc, and if the descent speed exceeds the

normal horizontal swimming speed, the Reynolds number will exceed the limit (Re � 1) up to which

Stokes’ Law applies. The drag equation for a small sphere moving through a viscous fluid is also

known as Stokes’ drag. For illustrative purposes, however, and on the assumptions (i) that the

clusters may be taken as spherical, (ii) that Stokes’ Law applies, (iii) that the density of settling objects

is small enough that the behaviour of a cluster is unaffected by interactions with other particles, and

(iv) that the presence of container walls may be neglected, the terminal velocity v emerges from the

balance between the gravitational force moderated by buoyancy Fm ¼ (4/3)pa3(rm 2 rf )g and

the hydrodynamic drag force Fh ¼ 6phav, where a is the composite particle radius, rm its density, rf
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the fluid density, g the acceleration due to gravity and h the dynamic viscosity of the fluid. Replacing the

particle radius a by its characteristic dimension L ¼ 2a, we have the familiar relation [21]:

v ¼ L2ðrm � rfÞg
18h

, ð1:1Þ

If we further assume that the floc density is unchanging with size:

v/ L2 ð1:2Þ

On the basis of equation (1.2), and as L increases, falling under gravity should at some stage be more

effective than descending as an individual swimmer. More directly, if worms form a cluster and descend

purely under gravity, it is advantageous to do so as a large cluster. These considerations provide a useful

foundation for further analyses even though experiments with real and inanimate flocs demonstrate that

they do not conform strictly to the above model. Rather than assembling one particle at a time, for

example, larger flocs form from the adhesion of smaller ones. This cluster–cluster flocculation [22]

produces structures which are more open, with densities that decrease with increasing size and with

increasing amounts of interstitial water [23]. This added complexity may help with the problem of

extending hydrodynamic theory of moving flocs into the Re . 1 regime because of fluid flow through

the porous floc interior [24]. Though the Reynolds number is still elevated, the porosity has the effect

of reducing the turbulent wake and allows calculations to proceed using Stokes’ Law, albeit with a

different constant of proportionality.

In a separate approach, flocs are treated as self-similar fractal entities [25] for which the relationship

between the number of particles n, each of size Lp in a three-dimensional floc of size L is taken as:

n ¼ L
Lp

� �D

, ð1:3Þ

and the variation of settling speed with L is:

v/ LD�1, ð1:4Þ

where D is the fractal dimension, capacity dimension or Hausdorff dimension of the assembly. D can

range in value from 3.0, representing perfect packing with no interstitial space, to 1.0, which arises

when all the particles are arranged in a straight line. Recognizing that D may not be the same for

small, compact flocs and larger more diffuse ones [26] produces a more general expression for the

terminal velocity for fractal flocs which is recognizably a refinement of equation (1.1):

v ¼
K L3�D(L)

p

L1�D(L)
, ð1:5Þ

where K ¼ (rm 2 rf )g/18h and D(L) represents the variability of the fractal dimension D. For flocs

assembled from 1.0 mm particles, equation (1.5) is in good agreement with grouped data used in a

meta-analysis [27].

Equation (1.5) is based upon Stokes’ Law and thus strictly only applies for Reynolds number ,�1.

Nevertheless, measurements on waste-activated sludge flocs [24] carried out with floc sizes in the range

150 mm to 10 mm and for Reynolds numbers in the range 0.03–80 demonstrate terminal velocities (SI

units):

v � 1:17 L0:99: ð1:6Þ

Although equations (1.5) and (1.6) arise from the flocculation of particles significantly smaller than our

worms, the empirical power-law form exemplified by equation (1.6) and the more detailed equation (1.5),

based on flocs with a fractal structure and a varying dimensionality D, will be the basis for a comparison

with our results.
2. Material and methods
2.1. Experimental set-up and procedure
The work was undertaken on Guernsey’s northern shore between 10 and 14 June 2017. Worms were

collected daily and held in sunny conditions until required. The apparatus for studying flocculation
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in a column of seawater is shown in electronic supplementary material, figure S3. We used a 500 mm

clear acrylic tube of external diameter 16 mm and internal diameter 12 mm, mounted vertically and

connected to a horizontal axle such that 170 mm of the tube was below the axis of rotation. For each

run, we pipetted worms with a little seawater into a clear glass vial (inner dimensions 75 � 16.8 mm

diameter) which was then fitted to the bottom of the acrylic tube with 15 � 0.5 mm O-rings (internal

and cross-sectional diameter, electronic supplementary material, figure S3b). We then filled the

tube slowly from the top with filtered seawater ( passed through a plastic sieve with square

holes of side 0.85 mm) and capped it in such a way as to trap a substantial air bubble, height of

17.2+ 8.0 mm (mean+ s.d.), n ¼ 16, at the top (electronic supplementary material, section S2 and

figure S4). The total length of the resulting fluid column was 555 mm. After a short period for the

worms to settle, we rotated the acrylic tube quickly through 1808, causing the air bubble to rise

through the tube and deliver a large disturbance to the worms, now at the top, which were

thereby induced to begin their emergency descent. A Canon Sureshot G16 camera recorded a

portion of the tube from a distance of 15 cm to produce a video with a resolution of 1080 � 1920

pixels at 30 fps over 2 min from the moment just before the rotation began. When the tube has

been inverted, the image area extends from 330 to 415 mm below the top of the fluid column.

Other features of the run were captured with a hand-held Canon G7 camera recording video with

768 � 1024 pixels at 15 fps. At the end of the 2 min run, we flushed the tube and vial and

photographed the worms in a shallow tray. By counting the number of worms in a known fraction

of the tray area, the number of worms used was estimated at 3700+ 1100 (mean+ s.d, n ¼ 28).

The tube and vial were cleaned and the procedure repeated with a different sample for the 17

runs (electronic supplementary material, table S1). All worms were returned to the same beach

after the experiment.
2.2. Analysis
For each floc found, the frame numbers of its image entry and exit times were noted and the y-coordinate

of its position determined for each intermediate image. The images were cropped in the x-direction to

feature only the 16 mm acrylic tube and in the y-direction by p pixels above and below the y-value; p
varies with floc size and falls in the range 40–120 pixels. The selected area was then extracted and

converted to a binary image, minor features deleted and an ellipse fitted to the floc with major axis L,

minor axis h, using the dimensions of the tube as calibration. Our measure of the characteristic floc

size is taken as the mean of the values of L. The terminal velocity v was determined directly from the

entry and exit times in the image.
2.3. Composition of smallest flocs
This estimate was derived as follows. The fitted ellipses were interpreted as oblate spheroids with volume

V ¼ pL2h/6. This gave each of the two smallest flocs a volume V � 0.21 mm3 (flocs #16 and 17; electronic

supplementary material, table S1), which was divided by the typical volume for a single worm of

0.04 mm3 and multiplied by an assumed packing fraction of 0.5 with the resulting estimate of 2–3

worms.
2.4. Concentration of single worms
These estimates were obtained at 1 s intervals for the whole of each run. As before, each image was

cropped in the x-direction to include only the water column. After background detection and

conversion to a binary image with a black background, the light pixels, representing worms, were

counted. The procedure is imperfect—overlapping worms will be under-represented, for example—

but the aim was to determine the mean vertical speed of the single worms rather than their absolute

number. For comparison, a Gaussian distribution of speeds was generated and, for each time after the

arrival of the bubble, the maximum and minimum worm speeds which could feature in the image

were calculated. The integral under the Gaussian between these two speeds represents the worms

currently in the image and so can be compared with the observed pixel count. The mean, standard

deviation and peak height of the Gaussian were then varied to obtain the best fit over the whole of

the distribution (electronic supplementary material, section S3 and figure S5).



(a)

(b)

(c)

(d)

Figure 2. Two flocs descending in a column of seawater. (a) Successive images of floc #1 at 0.5 s intervals. The distance covered by
the floc increases linearly with time and the terminal velocity is readily measured. A solitary worm appears ahead of the floc, but
this worm is moving more slowly, as are several identifiable worms following it. Above the floc in the last few frames, the
large following group of single worms is seen entering the field of view. (b) Close-up images of floc #1. The mean floc
diameter L ¼ 2.12 mm. The floc has a relatively open structure and is slightly flattened in its direction of travel. At the top
right of the last frame, it has just shed a pair of worms which initially appeared connected and were later seen to separate.
(c) Successive images of floc #2 at 0.5 s intervals. The floc appears to have a toroidal structure (see also electronic supplementary
material, figure S7). It is descending into clear water and shedding many single worms that follow above it. Such worms may be
seen in successive images and are slower than the floc itself. (d ) Close-up images of floc #2. The mean floc diameter L ¼ 8.97 mm.
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2.5. Curling up following disturbance
To examine the possible mechanism by which flocs might form, we performed the following

experiment. We introduced a small number of worms in �0.5 ml seawater into a 12.5 � 12.5 �
45 mm cuvette (Neolab E-1641) and recorded 50 fps 1080p MP4 video with a Sony RX100 Mk V

camera, beginning just before we rapidly introduced a further 2.5 ml of seawater from a pipette. We

examined the images and identified the image numbers at which the injected water first arrived at

the bottom of the cuvette, the last image in which normal worms were observed and the first image

in which most of the worms were curled up.
3. Results
3.1. Floc formation
We performed a total of 36 runs in which we filmed flocculation in a column of seawater. Seventeen of

these runs yielded a total of 22 flocs that reached the recording area (see Material and methods). The runs

that did not yield filmable flocs may have been associated with smaller bubbles that did not cause

sufficient disturbance (electronic supplementary material, section S2). We observed two predominant

behaviours of flocs: amalgamation, as faster-moving flocs overtook slower ones, and reduction in size

by the evaporation of worms (figure 2).
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Figure 3. Terminal velocity v versus floc size L. L was measured as the mean major axis of the fitted ellipse (see Material and
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3.2. Floc size and composition
The floc characteristic dimension L, as measured by the mean major axis of the fitted ellipse, ranged

between 0.89 and 11.61 mm (electronic supplementary material, table S1). The smallest flocs consisted

of only 2–3 worms (see Material and methods). At the other extreme, the largest flocs probably

contained two orders of magnitude more worms than the smallest (figure 2d ). There was a change in

shape with size; larger flocs were flatter and had better-defined boundaries. The progression was from

a closely knit cluster of very few worms, to an oblate spheroid with rough boundaries (figure 2b), to a

thick pancake and finally a torus (figure 2d ). The floc aspect ratio between the mean minor and mean

major axes of the fitted ellipse, h/L, decays exponentially with floc size (electronic supplementary

material, figure S6).
3.3. Floc terminal velocity
Terminal velocity increases sub-linearly with increasing floc size (figure 3). A power law of the form

v ¼ 9.63 L0.247 (exponent: 99% CI 0.247+ 0.142, t ¼ 4.97, p , 0.001) fits the data well (R2 ¼ 55.25%,

Anderson–Darling test for normality of residuals: AD ¼ 0.426, d.f. ¼ 22, p ¼ 0.287).
3.4. Single worms
All flocs were falling more quickly than both the 1.8 mm s21 mean horizontal speed of a single worm [12]

and the mean vertical speed of single worms within the same run (electronic supplementary material,

table S1, section S3, and figure S5). Most flocs, particularly the larger ones, also exceeded the speeds

of at least 97.5% of the single worms in the same run (figure 4). In fact, individual worms within flocs

achieve an approximately 50% more rapid descent than even the fastest individual worms and with

very little energy expenditure (figure 4).
3.5. Curling up following disturbance
The worms reacted rapidly to the disturbance; in the separate test in which water was squirted into a

cuvette containing worms and initially only very little water, worms curled up within a quarter of a

second of the arrival of the injection (figure 5 and table 1). The mean time over the 10 runs was 0.24 s

(s.d. ¼ 0.05 s).
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Figure 5. Reaction to disturbance. Two out of the 10 replicates showing (a) the arrival of water at the base of the cuvette, (b) the
last image with mainly normal worms and (c) the first image in which most of the worms are curled up. Some worms are already
entangled with others. The water continues to arrive after the time of the third image.
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4. Discussion
The flocs in the present study feature a living organism which can modify its body shape, and to the best

of our knowledge, the larger toroidal structures we report have not been observed in conventional flocs.

In addition, the range of floc sizes covers little more than a single decade. These factors make it difficult



Table 1. Reaction to disturbance. The image numbers, i1, i2 and i3, correspond to the stages shown in figure 5a – c for each of
the 10 replicates. The final column gives the time interval between the arrival of the water and the first image in which most
of the worms are curled up (that is between i3 and i1).

replicate

image number

Dt (s)i1 i2 i3

1 163 169 172 0.18

2 101 110 114 0.26

3 47 53 59 0.24

4 36 47 54 0.36

5 49 56 61 0.24

6 76 83 89 0.26

7 102 107 112 0.20

8 70 76 81 0.22

9 72 76 81 0.18

10 67 76 80 0.26
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to identify any trend in figure 3 other than a straightforward power law such as equation (1.6), though

the slope we have determined is smaller. Potentially, our results could also be accommodated within

equation (1.5), which passes through a peak.

We have followed our flocs through the last 10 cm of a 30 cm descent from the top of the column. This

mimics a significant wave disturbance compared with the 0–3 cm deep pools in which the worms are

normally found. Some replicates did not yield filmable flocs and we think this might be associated

with a lack of sufficient perturbation. This suggests that the tendency to floc in individual worms

might be tuneable by natural selection. The flocs that were successfully filmed maintained their

integrity over large distances. Nevertheless, all the large flocs were observed to shed worms. This is

consistent with the observation, for inanimate flocs, that floc strength decreases with increasing size

[28]. We note also that our observation of hollow flocs is consistent with the pressure on the surface

being greatest at the bottom centre of the descending mass. It is, however, tempting to speculate that

there may be another reason for the stability of the smaller flocs. S. roscoffensis feature a statocyst [10], a

hollow sphere containing a freely moving chalk ball which acts to advise on the direction of gravity. It

is likely to be the disturbance detected in this organ which promotes the emergency response leading to

the worms aggregating and falling. As we have shown, when the disturbance ends, the worms

immediately begin to disengage (figure 1; electronic supplementary material, figures S1 and S2). It

seems possible, therefore, that the calm descent of the larger flocs may provide a signal that the

emergency is over. Smaller flocs, however, are less stable and may tumble [29], depending on their

aspect ratio and Reynolds number. Such tumbling may provide continuous stimulation to the

statocysts of the worms and cause them to prolong their attachment. It is tempting to speculate that

aggregations of few worms need to be tightly bound on purely geometric grounds, and that their

tumbling ensures that this is the case. When greater numbers are involved, worms can appear normal

and still be sufficiently convoluted to remain as a floc. Clearly, further work is needed on the

morphology of flocs, the body shapes and behaviour of the worms within them, and the processes

which take place as flocs merge.

We have shown that flocs descend, typically, approximately 50% more rapidly than single worms. If

worms, exposed on a beach, are overwhelmed by the unpredictable arrival of a large wave as the tide

approaches, this could result in their being borne out, irreversibly, into deep water; their ability to

react to such an event may be crucial for their survival. The 50% speed advantage we find for worms

in flocs is significant; performance differences as small as 5% are claimed [30] to confer a useful

evolutionary advantage.

Our preliminary work on the possible mechanism behind floc formation in these worms shows that

they react to a simulated wave by curling up within a quarter of a second. By curling up, the worms can

coil around one another to form flocs. Hence, flocs are based on a rapid behavioural response on the part

of the worms and as such are an example of social behaviour.



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181626
9
5. Conclusion

We have shown that isolated worms agglomerate into flocs and as a result can reach the comparative

safety of the substrate more quickly than a free-swimming single worm. In nature, the worms are

often not isolated but occur as biofilms [12]. Hence, they would be well placed, in the event of being

overwhelmed by an unexpected wave, to form the entangled ensembles [31] we have observed—so

flocs can be the result of collective behaviour, and as such are a fascinating and novel example of

safety in numbers.
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