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Abstract: In this paper, a general control scheme is proposed for nonlinear dynamic processes 

with input delay described by different models, including polynomial models, state-space models, 

nonlinear autoregressive moving average with eXogenous inputs (NARMAX) models, 

Hammerstein or Wiener type models. To tackle the input delay and nonlinear dynamics involved 

with the control system design, it integrates the classical Smith predictor and a U-model based 

controller into a U-model based predictive control scheme, which gives a general solution of 

two-degree-of-freedom (2DOF) control for the set-point tracking and disturbance rejection, 

respectively. Both controllers are analytically designed by proposing the desired transfer 

functions for the above objectives in terms of a linear system expression with the U-model, and 

therefor are independent of the process model for implementation. Meanwhile, the control system 

robust stability is analyzed in the presence of process uncertainties. To demonstrate the control 

performance and advantage, three examples from the literature are conducted with a user-friendly 

step by step procedure for the ease of understanding by readers. 
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1. Introduction 

Time delay appears in various industrial operations associated with transmissions of material 

or energy between interconnected systems, data transmission in communication systems and 

networked control systems. The presence of time delay may lead to a sluggish response, limit the 

achievable control performance, or even provoke instability of the closed-loop systems. The main 

challenge for controlling such a process is to avoid overshoot in tracking a desired set-point 

profile and to accommodate stability and robustness against process uncertainties [1]. In 

particular, the input delay is a notorious barrier for the control of industrial processes with 

nonlinear dynamics [2, 3]. 

For a general review of the existing references contributing to nonlinear systems with input 

delay, the research development is divided in terms of continuous-time domain and discrete-time 

domain. In continuous-time domain, backstepping based designs were developed to deal with 

time-invariant input delay for control implementation [4-6]. The backstepping strategy was 

further extended to stabilize nonlinear systems with time-varying input delay [7], by tuning the 

controllers with respect to the output bound. In contrast, the finite spectrum assignment (FSA) 

approach was explored for retarded nonlinear systems by transforming such a nonlinear system 

into a delay-free form for control design [8]. A truncated predictor feedback control design based 

on state estimation or delay-free output estimation were developed for nonlinear processes with 

input delay [9, 10]. By using a high-gain output predictor, a feedback linearization design was 

proposed to maintain asymptotic stability of the closed-loop control system for a nonlinear 

process with time-varying input delay and output delay [11]. By comparison, approximate 

predictors and high-gain observers were adopted for estimating the delay-free state and output for 

control design by means of numerical computation on the ordinary differential equations of 

nonlinear systems [12]. To reduce the high gain of such an observer, a chain of observation 

algorithms was proposed to reconstruct the system state and output at different delayed time 

instants [13]. In contrast, a nonlinear filtered Smith predictor structure [14] was proposed for 

predicting the delay-free output of a nonlinear process, based on the Hammerstein type or 

Volterra model for describing the system dynamics. For sampled control systems implemented in 
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discrete-time domain, the approximated implementation of continuous-time control design may 

affect or even destroy the system stability [1, 15]. Only a few papers, however, presented 

discrete-time control designs for nonlinear systems with input delay. Based on the delay-free 

output prediction, an adaptive neural network control scheme was presented to approximate the 

desired control input for implementation [16]. By representing a nonlinear time-delay system into 

a T–S fuzzy system comprised of linear delay difference inclusions, a nonlinear model predictive 

control (MPC) method [17] was proposed to improve system performance for disturbance 

rejection. A dynamic output feedback linearization control algorithm was developed by using the 

additive nonlinear autoregressive moving average with eXogenous inputs (NARMAX) models 

established by training a neural network with a specific connectivity structure [18]. Note that the 

robust stability under process uncertainties was left open in the above references. To deal with 

input delay uncertainty, a predictor based robust control design was given which could allow the 

input delay to be varying in a range [19]. Another predictor based control design was proposed to 

deal with state-dependent input delay [20]. To improve disturbance rejection performance in the 

presence of input delay uncertainty, a modified active disturbance rejection control (ADRC) 

design based on the extended state observer (ESO) was proposed [21], which could be applied to 

linear or nonlinear systems based on a low-order model description of the fundamental dynamics 

of such a system. This approach was recently extended to systems with longer input delay, by 

using a filtered SP in combination with ESO [22]. 

It should be noted that most of the existing references for nonlinear systems included the 

aforementioned almost gave up the Smith Predictor (SP) based control structure [23] that had 

been successfully used for linear systems with input delay [24]-[30], probably due to the 

difficulty in dealing with the related nonlinear models. It was noted [31] that SP could not be 

directly used for nonlinear control design because nonlinear systems generally could not be 

expressed by linear transfer function models. Besides, it had been recognized that the SP could 

not be directly used in terms of a state-space description of the system under control. 

To deal with the above issues, a universal framework is proposed in this paper for controlling 

nonlinear processes with input delay described by different models like polynomial models, 
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state-space models, NARMAX models, Hammerstein or Wiener type models, by extending the U 

model enabled design for delay-free nonlinear systems [32]. This paper will concentrate on the 

control design in the presence of time-invariant input delay, which is the foundation for solving 

the next step challenge of time-varying input delay. By integrating the SP with the delay-free 

U-model based control structure, a two-degree-of-freedom (2DOF) control scheme with output 

prediction is proposed for application to various nonlinear systems, based on a general U-model 

representation of different plant models for control design. By specifying the desired transfer 

functions for the set-point tracking and disturbance rejection, both controllers are analytically 

derived, respectively. They can be separately tuned for control performance optimization. A 

notable advantage of the proposed control design is that both controllers could be tuned relatively 

independent of the plant model or its variation, therefore facilitating practical applications. 

Moreover, the system performance could be monotonically tuned by the single adjustable 

parameter of each controller. For clarity, the paper is organised as follows. Section 2 presents the 

U-model representations of different classical models of nonlinear processes with input delay, 

which lays a foundation for the general framework of U-model based control design. Section 3 

proposes a general U-model based control system design with a step by step implementation 

procedure. Section 4 presents robust stability analysis of the proposed control scheme. Section 5 

shows three illustrative examples to demonstrate the performance of the proposed control scheme. 

Section 6 draws some conclusions along with potential research topics for study in the future. 

Notations: Throughout the study, a series of conventional notations are used, R , nR , and 

n mR   for sets of real number, n-dimension real factor, and n×m real matrix. Denote by  

1, 2,t  for sampling time instance. 

2. U-model description of nonlinear processes with input delay 

Consider a general single-input single-output (SISO) nonlinear process with input delay 

described by the discrete-time domain state-space model, 

 
( 1) ( ( ), ( ))

( ) ( ( ))

X t F X t u t

y t h X t

  


 (1) 
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where 
nX R  is the state vector, u R  is the control input, 0   is time delay in the control 

input, y R  is the system output. nF R  is a smooth vector function describing the model 

dynamics and h R  is a smooth function relating the system states to the output. Throughout 

the study, assume the system relative degree r  equals to the system order n  and has stable 

zero dynamics (i.e., the system model has a stable inverse), and the state vector X  is available 

by measurement or observer. 

Equivalently, the corresponding input-output polynomial model of (1) is written by 

 ( ) ( ( 1) ,...,  ( ),  ( 1 ) ,...,  ( ))y t f y t y t n u t u t n         (2) 

where ( )y t R  and ( 1)u t R   are the output and input (also known as the controller output 

in  control system design) signals of the plant, respectively, at the discrete-time instance 

1, 2,t . f R is a smooth linear or nonlinear function. 

For delay-free nonlinear systems, it has been explored that the U-model based control 

strategy could establish a universal framework to design a control system based on the plant 

polynomial or state-space model [32, 33]. Figure 1 shows the U-model based control structure, 

where pG  denotes the plant, 1

p (U-model)G  an inverse of the plant model represented by the 

U-model, cG  the closed-loop controller. The U-model is defined as a polynomial of ( )u t  with 

time-varying coefficients. With the control oriented model structure, the U-model transforms a 

smooth (polynomial) nonlinear model of the plant into a class of polynomials, so as to make a 

dynamic inversion of the plant for deriving the control implementation, which is resolved by 

finding one of the roots of the U-model. Given a state-space model of the plant, the classical 

backstepping algorithm could be expanded to recursively resolve the multi-layer roots. In this 

way, the U-model based control scheme is capable of radically relieving the dependence on the 

plant model that has been the foundation of classical control system designs in the literature. The 

role of plant model is therefore reduced as a reference for converting to U-model and determining 

the next step controller output. Note that the U-model based control design takes a hypothesis on 

the feasibility using linear methodologies to directly design nonlinear control systems within a 

universal framework. 

To extend the U-model based control strategy for nonlinear processes with input delay, the 
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first step is to transform the plant model of polynomial, state-space, or else with time delay into 

the U-model, as detailed in the following subsections. 

2.1 Single-layer U-model in polynomial 

2.1.1 Polynomial U-model set 

The general polynomial model in (2) can be alternatively written in terms of a parametric 

form,  

 
( ) ( ( 1) ,...,  ( ),  ( 1 ) ,...,  ( ), )

( ( ), )

y t f y t y t n u t u t n

f p t

        

 
 (3) 

where 1

0[ ] L

L R      is the associated parameter vector, L is the number of regression 

terms, 1Lp R   is a regression term composed of the past inputs and outputs.  

Definition [34]: Assign a triplet ( , , )X f h , X  is an irreducible real affine variety, ( , )f h  

are mapping functions. A discrete-time process model   with delayed input space  

( ) , ,mU t R t      and output ( ) rY t R  is defined as polynomial/rational, while the 

functions  f f U    and : rh X R  both on X  are mappings from input space to state 

space and from state space to output space polynomial/rational, respectively. That is, for 

polynomial systems, ih A  for all 1, ,i r  where A  is the algebra of all polynomials on 

the variety X , and for rational systems, ih Q  for all 1, ,i r  where Q  is the algebra of 

all rational functions on the variety X . 

Assume a mapping 1 1: L MR R   and its inverse 1   exist, that is 

( ,  ) ( ,  )j

i i jf p f u


  , it defines the corresponding U-model structure of (3) as an input 

oriented polynomial, 

 
0

( ) ( ) ( 1 )
M

j

j

j

y t t u t


     (4) 

where M is the degree of model input, the time-varying parameter vector 

  1

0( ) ( ) ( ) M

Mt t t R      is a function of past inputs and outputs, 

       2 ,  , ,  1 ,  ,  u t u t n y t y t n      , and the parameters vector  .  
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Property 1: For the above manifolds ( ,  )p i if p  , ( ,  )j

u jf u  , the differentiable mapping 

( ,  ) ( ,  )j

i i jf p f u


  is diffeomorphism, which is bijection and its inverse 
1

( ,  ) ( ,  )j

j i if u f p





   is differentiable as well [32]. 

For illustration, consider a nonlinear process described by a polynomial model, 

2 3( ) 0.5 ( 1) ( 2) 0.7 ( 3 ) ( 1 ) 0.9 ( 2) ( 1 ) 0.1 ( 1 )y t y t y t u t u t y t u t u t                   (5) 

With the above U mapping, the corresponding U-model is given by  

2 3

0 1 2 3( ) ( ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( 1 )               y t t t u t t u t t u t          (6) 

where 
0( ) 0.5 ( 1) ( 2)t y t y t    , 

1( ) 0.7 ( 3 )   t u t , 
2( ) 0.9 ( 2)t y t   , and 

3( ) 0.1t   .  

Clearly, ( )j t  is a time-varying function, absorbing the past variables and parameters of the 

original polynomial in (5) associated with ( 1 ) ju t . 

Remark 1: Concerning the U-model in (4), an input oriented prototype, there is no change of 

model properties compared with the classical polynomial models in representation of (3). 

Therefore, the U-model and classical polynomial models are equivalent to each other. However, 

the U-model is linear-like with time-varying parameters ( )t  as shown in (4) and therefore, is 

convenient for applying the developed linear control methods based on real-time estimation of 

( )t , compared to the nonlinear polynomial model in (3) used for exploring specific nonlinear 

control designs in the literature (e.g. [4-8, 10-12]). Hence, the U-model can bridge various types 

of polynomial models for nonlinear systems with the developed linear control system designs 

within a universal framework.                                                    ◇ 

2.1.2 Rational U-model set 

This model set is defined as 

 p p( ) ( ) ( )y t D t N t  (7) 

where p ( )D t  and p ( )N t  are two U-polynomials, as expressed in the parametric form of 

 
0 0

( ) ( ) ( 1 ) ( ) ( 1 )
L M

i j

i j

i j

y t t u t t u t
 

          (8) 

This is a representation of the classical rational model set, which is expressed as a ratio of 

the numerator to denominator polynomials. For illustration,  a rational model 

2

1 0.8 ( 1 )
( ) ( 1)

1 0.5 ( 1 )

u t
y t y t

u t

  
 

  




 may be converted into a U-model 
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2

0 2 0 1( )[ ( ) ( 1 )] ( ) ( ) ( 1 )           y t t u t t t u t  where 
0 ( ) 1t  ，

2 ( ) 0.5t  , 

0( ) ( 1)t y t  ，
1( ) 0.8 ( 1)t y t  . 

2.1.3 Extended U-model set 

This model set is defined as 

 ( ) ( ( 1 )) ( ( 1 ))b ay k f u t f u t       (9) 

where ( ( 1 ))bf u t R    and ( ( 1 ))af u t R    are smooth functions that may be generally 

expressed by 

 

( ( 1 )) ( ( 1 ))

( ( 1 )) ( ( 1 ))

b bj

j

a aj

j

f u t f u t

f u t f u t

    

    





 

 
 (10) 

For instance, consider a nonlinear process, 
2

( 1)sin( ( 1 ))
( )

1 0.5cos ( ( 1 ))

y t u t
y t

u t

  


  




, using the 

extended U-model defined by (9), there follows 

1( ( 1 )) ( )sin( ( 1 ))af u t t u t       ,
2

0 1( ( 1 )) ( ) ( )cos ( ( 1 ))bf u t t t u t         , where 

0 ( ) 1t  , 1( ) 0.5t  , 
1( ) ( 1)t y t  . 

2.2 Multi-layer U-model in state space 

With reference to the U model in (4), the state-space model in (1) can be converted into a 

multi-layer U model as 

 

1

1

1 1 2

0

1 1

0

0

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

( ) ( ( ))

n

n

M
j

j

j

M
j

n n j n

j

M
j

n nj

j

y

x t t x t

x t t x t

t h X t

x t t u t





 





 






 






 



  

 












 (11) 

where, for each line, jM  is the degree of next state variable 1( )jx t , the time-varying parameter 

vector 
1

0( ) ( ) ( ) , 1j

j

M

i j jMt t t R i n 
   

 
 is a function of the other state variables. 

In the penultimate line, nM  is the degree of the model input (controller output) ( 1)u t  , the 
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time-varying parameter vector 
1

0( ) ( ) ( ) n

n

M

n n nMt t t R       is a function of all system 

states. 

Remark 2: In the multi-layer U-model shown in (11), the controller output ( )u t   can be 

derived by using a backstepping routine as long as 1( 1)x t   is determined.               ◇ 

2.3 U-model representations for Hammerstein and Wiener models  

Considering that Hammerstein type models, Wiener type models, and NAMAX models have 

also been widely used for describing various nonlinear system dynamics, the corresponding 

U-model representations are given blow for the convenience of control design. 

Hammerstein type models 

The Hammerstein type model is a cascade structure of a nonlinear static input block and a 

linear dynamic block. For describing a nonlinear process with input delay, it is in the form of 

 

H H

H

0 1

( 1) ( ( 1 ))

( ) ( ) ( 1 ) ( ) ( )
m n

i i

i i

X t f u t

y t b t X t i a t y t i
 

   

     



 (12) 

where ( )y t  and ( 1 ) u t  are the output and input of the plant at the discrete-time instant 

1,2,t  , respectively, 
H ( )X t  is the output of the nonlinear input block, and 

H ( )f   is a 

nonlinear function of the input ( 1 ) u t . 

The corresponding equivalent U-model can be expressed as 

 0 1 H 0 1 H( ) ( ) ( ) ( 1) ( ) ( ) ( ( 1 ))y t t t X t t t f u t            (13) 

where 

                   0 H

1 1

( ) ( ) ( 1 ) ( ) ( )
m n

i i

i i

t b t X t i a t y t i
 

      , 1 0( )t b   (14) 

Wiener type models 

The Wiener type model is a cascade structure of a linear dynamic block and a nonlinear static 

output block. For a nonlinear process with input delay, it has the form of 

 
W W

0 1

W W

( ) ( ) ( 1 ) ( ) ( )

( ) ( ( ))

m n

i i

i i

X t b t u t i a t X t i

y t f X t

 

     



 
 (15) 
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where ( )y t  and ( 1 )u t    denote the output and input of the plant at the discrete-time instant 

1,2,t  , respectively, 
W ( )X t  is the output of the linear dynamics, and 

W ( )f   is a nonlinear 

function of 
W ( )X t . 

The corresponding equivalent U-model can be expressed as 

 
W 0 1

W W

( ) ( ) ( 1 )

( ) ( ( ))

X t t u t

y t f X t

   



  
 (16) 

where 

 0 H

1 1

( ) ( ) ( 1 ) ( ) ( )
m n

i i

i i

t b t X t i a t y t i
 

      , 1 0( )t b   (17) 

NAMAX models 

Generally, an NARMAX model has the form, 

 
0

( ) ( )
L

l l

l

y t p t 


  (18) 

where the regression terms ( )lp t  are the products of past inputs and outputs such as 

( 1 ) ( 3)u t y t   , ( 1 ) ( 2 )u t u t     , 2 ( 1)y t  , and l  ( 0,1, , .l L ) are the associated 

parameters. 

The corresponding equivalent U-model can be straightforwardly expressed as 

 
0

( ) ( ) ( 1 ) 


  
M

j

j

j

y t t u t  (19) 

where ( ) j t  can be viewed as a time-varying parameter absorbing ( )lp t  and l  associated 

with ( 1 ) ju t  in (18). 

3. U-model based predictive control design 

3.1 Framework of U-model based control design 

Without loss of generality, consider a single input (u R ) and single output ( y R ) linear 

feedback and delay-free control system structured with a triplet 

  lfbc c1 ipF G G  (20) 

where the linear invariant controller c1 :G y u  and the constant unit 
1

ip P p 1:G G G u y    

are both within a linear feedback control framework, lfbcF . 
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Denote by pĜ  the process model, which is in the form of 

 p

( 1) ( ( ), ( ))ˆ :
( ) ( ( ))

X t F X t u t
G

y t h X t

 


 (21) 

It is generally assumed that pĜ  and its inverse 
1

pĜ
 implemented by u  shown in Figure 1 

are diffeomorphism and globally uniform Lipschitz in 
nR , that is 

 p 1 p 2 1 1 2 1 2
ˆ ˆ( ) ( ) , , nG x G x x x x x R      (22) 

 
1 1

p 1 p 2 2 1 2 1 2
ˆ ˆ( ) ( ) , , nG x G x x x x x R       (23) 

where 1 2,   are Lipschitz coefficients. 

From (20), two separate designs are in parallel: 1) the linear invariant controller c1G  is 

designed with  lfbc c1 1F G , given a linear feedback structure lfbcF ; 2) determine u  to 

realize 
1

ip P p
ˆ 1G G G  . Note that if the process model is modified, re-design of the control 

system can be simply conducted by re-doing the model inverse 
1

pĜ
, with no change on c1G  

(corresponding to cG  in Figure 1).  

Hence, the structured control system in (20) is generally applicable to all the classical linear 

process models by letting 
1

ip P p
ˆ 1G G G  , if the process model inverse 

1

pĜ
 exists. 

Remark 3: The U-model based control design is independent of the process model, owing to the 

above separate designs. Hence, there is no need to change the controller for implementation 

when the process model is modified, compared to the existing nonlinear control methods 

dependent on the process model (e.g. [4, 5, 8, 10, 11, 15, 20]). The U-model based control takes 

effort in dynamic inversion as well as the existing control methodologies such as the internal 

model control (IMC) [35]. This is generally conducted by defining an inverse function   in the 

literature. Note that it is only a function of the process model, i.e., p
ˆ( )G , in the U-model based 

control design, compared to those of many existing control methods which are involved with both 

c1G  and pĜ , i.e., c1 p
ˆ( , )G G . Hence, the computation effort could be significantly reduced for 

the dynamic inversion, in particular for nonlinear control systems. 
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3.2 U-model based predictive control design for input delay systems 

As explained in Section 3.1, the U-model can be integrated with many existing control 

system frameworks. To cope with the input delay, the well-known Smith predictor may be 

adopted in combination with the delay-free U-model control structure shown in Figure 1, which 

is shown in Figure 2. Considering that 
1

P0 p0
ˆ ˆ 1G G  , the combined control structure in Figure 2 is 

further simplified, while a set-point filter is introduced for tuning the set-point tracking 

performance. Hence, the proposed U-model based predictive control scheme is a 

two-degree-of-freedom (2DOF) control structure, as shown in Figure 3, where 1

p0Ĝ  denotes the 

inverse of a delay-free U-model ( p0Ĝ ) of the plant pG  as shown in (4), rG  is a desired transfer 

function from the set-point to the system output, which may be regarded as the set-point tracking 

controller, the desired output without delay is denoted by ry , cG  is a closed-loop controller 

which is used to eliminate the output error arising from process uncertainties and load disturbance 

denoted by d . Hence, the nonlinear dynamics involved in the system can be virtually regarded 

as a linear plant, owing to that the proposed U-model based control could eliminate the effect of 

nonlinearities in the system. Moreover, both rG  and cG  can be designed in terms of the desired 

transfer functions for the set-point tracking and load disturbance rejection, respectively, rather 

than depending on the nonlinear process model.  

    The control objective is, for a desired output trajectory r ( )y t , to find a manipulated variable 

( )u t  to drive the process output ( )y t  to track the delayed trajectory r ( )y t   with an 

acceptable performance (such as transient response and steady-state error), while all the inputs 

and outputs of the control system are bounded in the permitted ranges for system operation. 

There are three steps for the U-model based predictive control design as below. 

Step 1: Design the set-point tracking controller rG  by proposing the desired transfer 

function, and accordingly, determine the desired output trajectory r ( )y t . 

Step 2: Design the closed-loop controller cG  to eliminate the error between the desired 

output and the process output, by proposing the desired closed-loop transfer function for 

disturbance rejection.  

Step 3: Derive the process inversion by 1

p0Ĝ  (assuming the inverse of the delay-free plant 
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model exists) in terms of the U-model, and then resolve a proper root of the U-model expression 

as the manipulated variable ( 1)u t   for implementation.  

For Step 1, to realize fast and smooth set-point tracking without overshoot in the nominal 

case of perfect model match with the plant (i.e., p p p0
ˆ ˆG G G z   , which means there is 

open-loop control for the set-point tracking as can be seen from Figure 3), the desired transfer 

function for the set-point tracking, which is exactly from r  to 
ry  in Figure 3, is therefore 

proposed via the controller 
r ( )G z  for discrete-time implementation as 

 
r r

r

r
r

r

(1 )
( )

( )

n n

n

z
G z

z









 (24) 

where r  is a tuning parameter satisfying 
r 1   in the z-plane, and rn  is a specified order of 

the transfer function that may be chosen with respect to the measurement noise level in 

engineering application [2]. When r 0 , there is r ( ) 1G z  , which means the transfer 

function recovers the ideal form of one for the set-point tracking. 

It can be seen from (24) that tuning a smaller value of r  could obtain a faster set-point 

tracking speed with a larger control effort and vice versa, similar to the internal model control 

(IMC) design for set-point tracking [35]. It is suggested to initially take r [0.5 9],  0.  , and then 

by monotonically increasing or decreasing it, a desirable trade-off between the tracking 

performance and the control effort (along with its robustness against process uncertainties) could 

be achieved. 

For Step 2, consider the closed-loop control structure outlined by the dash-line box in Figure 

3, it can be easily derived in the nominal case that  

 d

c

1
= 1

1

y
T

d G z
 

 
 (25) 

 c
d

c

ˆ
=

1

G zy
T

d G z











 (26) 

Ideally, it is desired that d 1T  , such that the controller cG  could drive the process to yield 

an equivalent output ŷ  to counteract d  when it is detected by the output measurement error 

denoted by e  in Figure 3. Consider practical constraints and time delay for control 
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implementation, the desired transfer function for disturbance rejection is proposed as  

 c
d

c

(1 )
=

z
T z

z








 (27) 

where 
c  is a tuning parameter. Note that when 

c 0 , 
dT  recovers the ideal form of z .  

Correspondingly, the closed-loop controller can be inversely derived from (26) as  

 d c
c 1

d c

(1 )
= =

1 (1 ) ( 1)

T z z
G

T z z z  



   



 




 (28) 

It can be easily verified from Figure 3 that  

 

1

r p0 p11 1
c p0 p

1
1c

r p0 p11
c p0 p

1 ˆlim ( ) lim [ ( ) ( )]
ˆ

(1 ) ( 1) ˆ             = lim [ ( ) ( )]
ˆ(1 )

             =0

z z

z

e z y z G G y z
G G G

z z z
y z G G y z

zG G



 

  




 

  




 


 (29) 

Hence, no steady-state output error could be ensured by the above controller design, in the 

presence of process uncertainties or load disturbance. 

Remark 4: The closed-loop controller design in (28) is generally applicable to deal with load 

disturbance without integral or unstable property, such as a constant, asymptotically stable, or 

sinusoidal type disturbance. For a ramp type or unstable disturbance, the desired form of dT  

need to be specifically designed with constraints according to the transfer function approach 

developed in [2], so that the closed-loop controller could be inversely determined to ensure no 

steady-state output error.                                                        ◇ 

For Step 3, in the nominal case, there stands ( ) 0e z   for (0,1)z . Based on the designed 

rG  and the desired output trajectory r ( )y t , the manipulated variable ( 1)u t   can be determined 

from the delay-free U-model (similar to the input delayed U-model in (4)) by letting 

 
r

0

( ) ( ) ( 1)
M

j

j

j

y t t u t


   (30) 

Then a proper solution of ( 1)u t   could be found from the roots of  

 
r

0

( ) ( ) ( 1) 0
M

j

j

j

y t t u t


    (31) 
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Based on the initial conditions of the nonlinear system under control and a priori knowledge 

of the system operation, a proper solution can be easily determined from possible multiple roots 

of (31). For instance, it may be taken as the root nearest to the control signal in the previous step, 

or alternatively, the one corresponding to the minimal control effort or energy consumption for 

implementation. For numerical computation of the roots of (31), there are some alternative 

algorithms such as the Newton Raphson algorithm, the Matlab function ‘roots’, or other 

computation procedures for real-time application [36]. 

Note that with the process state-space model in (1), a multi-layer U-model in (11) can be 

equivalently established to apply the above procedure to recursively resolve the roots layer by 

layer. A backstepping root solving procedure is given below. 

1) From the first line of (11), assign 1 r( 1) ( )x t y t  . Resolve a proper root of 2 ( )x t  from 

1

r 1 2

0

( ) ( ) ( )
M

j

j

j

y t t x t


 . 

2) Assign 2 2( 1) ( )x t x t  , and similarly determine 3( )x t . 

3) Repeat the above recursion till the last line of (11) to determine the manipulated variable 

( 1)u t  . 

4. Robust stability analysis 

To address the robust stability of the proposed control scheme in the presence of process 

uncertainties, we lump all of these uncertainties into a multiplicative form, 

 
p p

p

ˆ( ) ( )
( )

ˆ ( )

G z G z
z

G z


   (32) 

where p p0
ˆ ˆG G z   is a model of the process pG  as shown in Figure 3. 

According to the M   structure for robust stability analysis, the transfer function from the 

output to the input of ( )z  can be derived from Figure 3 as 

                                     
c

d

c

( ) ( )
1

G z
M z T z

G z




   






                       (33) 

Hence, it follows from the small gain theorem that the closed-loop structure in Figure 3 holds 

robust stability if  
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d( ) ( ) 1T z z


                              (34) 

or expressed as 

     
d

1
( )

( )
T z

z






                          (35) 

Owing to that the U-model based control design specifying the closed-loop transfer function 

without involving the plant model, the corresponding stability condition can be relatively 

simplified, given the upper bound of the multiplicative uncertainty of the overall system as 

specified or estimated in practice. Substituting the desired transfer function in (27) into (35), the 

robust stability condition is therefore obtained as 

 

+1

c

c

(1 ) 1

( )

z

z z



 




 




 (36) 

Since a rational z-transform, sj T
z e


 , is a periodic function with respect to  , by defining 

jz e  , (0 2 )    and substituting it into (36), the robust stability constraint is derived as 

 

2 2

c

2 2

c

(1 ) cos ( 1) +sin ( 1) 1

( )(cos ) sin z




  


 

    

  
 (37) 

which may be simplified as 

 c

2 2

1 2

1 1

( )+ z











 
 (38) 

where 

1 c=cos    , 2 =sin  . 

It is seen that the above robust stability constraint is related to the tuning parameter c  in 

cG , which however could not be analytically solved with respect to a specified bound of ( )z . 

Based on extensive simulations and numerical computations, it is suggested to initially take 

c [0.4 9],  0. , and then by monotonically increasing or decreasing the value of c , a good 

trade-off between the closed-loop control performance and its robust stability can be obtained. 

Note that a smaller value of c  could lead to a faster response in eliminating the output error, 

but in exchange for degraded robustness in the presence of process uncertainties, and vice versa.  
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In practice, the above robust stability condition can be used to check if the tuned value of 
c  

could guarantee the system stability in terms of a prespecified uncertainty bound. 

5. Illustration  

Three examples studied in the literature are used to perform computational experiments, 

along with detailed U-model formulations and controller designs for reference, respectively, in 

order to demonstrate 1) the generality in designing an invariant controller for different examples 

with polynomial and state-space models, and 2) the superiority in control performance. 

Example 1:  Consider a Hammerstein system studied in the recent reference [32], 

 
2 3

( ) 0.5 ( 1) ( 1) 0.1 ( 2)

( ) 1 ( ) ( ) 0.2 ( )

y t y t x t x t

x t u t u t u t  

     

      
  

Converting it into the U-model gives 

 
2 3

0 1 2 3( ) ( ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( 1 )y t t t u t t u t t u t                  

where 0( ) 0.5 ( 1) 1 0.3 ( 2)t y t x t      , 1( ) 1t  , 2( ) 1t   , 3( ) 0.2t  . 

Using the design formulae in (24) and (28) with r 0.5 , 
r 2n   and c 0.9 , the 

controllers in the proposed control scheme are determined as 

2

r 2

0.25
( )

( 0.5)

z
G z

z



, c 1

0.1
=

(1 ) 0.9( 1)

z
G

z z z     
 

Suppose there is an input delay ( 10  ) for the above Hammerstein system. For fair 

comparison with the U-model control reference [32] that used a pole placement design for the 

controller tuning, the similar predictive control structure is applied for the reference [32] where 

the delay-free output obtained by the SP structure is used instead of the real output. The set-point 

tracking test used in [32] is performed, along with a step load disturbance with a magnitude of 0.5 

added to the process output at 225t  (sample period). Note that both methods take the minimum 

of the absolute values of the roots solved from the U-model for control implementation. The 

control results are shown in Figure 4. It is seen that the proposed method obtains evidently 

improved tracking performance with no overshoot. Note that the U-model control scheme given 

in ref.[32] could not eliminate the output error arising from the load disturbance. For illustration, 
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the control results by taking two different parameter settings, i.e., 
r 0.7  and 

c 0.9 ; 

r 0.7  and 
c 0.7 , in the proposed control scheme, are also shown in Figure 4. It is seen that 

a smaller value of r 0.5  in rG  leads to a faster set-point tracking speed compared with the 

choice of 
r 0.7 , while the change of 

c  in 
cG  does not affect the set-point tracking 

performance.  

Assume that the input delay is actually 10% larger and there exists multiplicative uncertainty 

of the process output, ( ) (0.5 0.1) / (2 1)s s s    , corresponding to a discrete-domain form of 

( ) (0.25 0.2475) / ( 0.9753)z z z    , which may be roughly regarded as the output 

measurement increased by up to 25% uncertainty at high frequencies and by almost 10% 

uncertainty in the low-frequency range. Figure 5 shows the perturbed system responses. It is seen 

that the proposed method maintains good robustness against these uncertainties. It is also 

demonstrated that tuning a larger c  (i.e., c 0.9 ) gives less oscillatory output response than 

the choice of c 0.7 , well in accordance with the tuning guideline given in Section 4. 

Then assume that the output measurement is blurred by a Gaussian white noise with zero 

mean and a variance of 0.15, causing the signal-to-noise ratio about 30%. Figure 6 shows the 

control results, which demonstrates good robustness of the proposed method against 

measurement noise. 

Example 2:  Consider a nonlinear system with input delay studied in [5], 

1

2sin ( )

x z

z a x bz u t d

 


    




 

where 1a b   was assumed in [5]. 

By taking a sampling period of =0.01sT (s) and using a zero-order holder for discretization, 

a state-space model is obtained as 

2

( 1) ( ) ( )

z( 1) ( ) ( sin( ( )) ( )) ( )
2

( ) ( )

s

s
s s

x t x t T z t

T b
t z t T a x t bz t T u t

y t z t

  



      





  

Assume that the input delay is 18 (sample period), the corresponding U-model is 

expressed as 
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0 1( 1) ( 1) ( )y t z t u t         

where 

2

0 ( ) ( sin( ( )) ( ))
2

s
s

T b
z t T a x t bz t    ,

1 sT  

The control objective studied in [5] is performed for illustration, i.e., the system should be 

stabilized from any initial condition ( , )x z   satisfying ( ( ), ( )) (1,1)x zm m    for all 

[ ,0]m  . 

To compare with the nonlinear control method given in [5] with the tuned controller 

parameters of 0.8879r   and 0.1121L   therein, the proposed controller design formulae in 

(24) and (28) are applied with r 0.99 , 
r 2n   and 

c 0.986 , obtaining 

2

r 2

0.0001
( )

( 0.99)

z
G z

z



, 

c 1

0.014
=

(1 ) 0.986( 1)

z
G

z z z     
 

which could result in the similar response peak with that of [5] for fair comparison. 

Meanwhile, a load disturbance with pulse width of 5(s) and magnitude of 0.2 is added to the 

process input at 30t  (s). The control results are shown in Figure 7. It is seen that the proposed 

method gives obviously improved control performance compared to the backstepping control 

method given in [5]. 

Then assume that there actually exists multiplicative uncertainty of the process input 

described by ( ) (0.5 0.2) / (2 1)s s s    , corresponding to the discrete-domain form of 

( ) (0.25 0.2451) / ( 0.9753)z z z    , which can be roughly regarded as the input actuator 

contains up to 25% uncertainty at high frequencies and almost 20% uncertainty in the 

low-frequency range. The perturbed system responses are shown in Figure 8. It is once again seen 

that the proposed control scheme well maintains robust stability. 

Example 3:  Consider a nonisothermal CSTR for polymerization reaction with dynamics 

described by [37], 

A
Af A A 0 A

p p f 0 A c

(1 ) exp( )

[ (1 ) ] ( ) exp( ) ( )

dc E
V Fc F c Fc Vk c

dt RT

dT E
VC C F T T T V H k c UA T T

dt RT


      


         
 

 

   
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where 
AC  is the concentration of A  for an exothermic irreversible reaction ( A B ), T  is 

the temperature of the reactor, and 
cT  is the temperature of the coolant stream which is taken as 

the manipulated variable.  

The CSTR exhibits highly nonlinear behavior in the normal operating regime. By defining 

some demensionless variables, 0.072aD  , 20  , 8B  , 0.3  , the corresponding model 

studied in [38] is adopted here,  

2
1 1 1

2

2
2 2 1 2

2

2

(1 )exp( )
1 /

(1 )exp( ) ( )
1 /

a

a

x
x x D x

x

x
x x BD x u x

x

y x







     




      


 



 

where 
1x , 

2x  and u denotes the dimensionless reagent conversion, solution temperature, and 

coolant temperature, respectively, expressed by 

Af A
1

Af

c c
x

c


 , f

2

f f

( )
T T E

x
T RT


 , 0

a
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




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H c E
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T C RT





, 

p

UA

F C
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
, 

f

E

RT
 , 

By taking a sampling period of =0.05sT (s) and using a zero-order holder for discretization, 

a state-space model is obtained as 

2

2
1 1 1 1 1
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3
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Assume that the input delay is 15 (sample period), the corresponding U-model is 

expressed as 
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The control objective studied in [38] is to transfer the system from the initial stable 

equilibrium point 
10 20( , ) (0.0504,0.31)x x   to the desired equilibrium point (0.0064,2.75) . 

To compare with the LADRC method given in [38] with the controller parameters of 

0.35b  , 
c 2.5 , 

0 1.9 , the proposed controller design formulae in (24) and (28) with 

r 0.8 , 
r 2n   and 

c 0.9  give 

2

r 2

0.04
( )

( 0.8)

z
G z

z



, 

c 1

0.1
=

(1 ) 0.9( 1)

z
G

z z z     
 

which could obtain the similar set-point tracking speed with that of LADRC for fair comparison. 

Also, the modified ADRC method given in [21] for time-delay systems is used for comparison, 

where the controller parameters are taken as 0.35b  , c 2.5 , 0 10  according to the 

guidelines given therein.  

A step load disturbance with a magnitude of 0.5 is added to the process output at 

10t  (sample size). The control results are shown in Figure 7. It is seen that the proposed method 

gives obviously improved control performance compared to the LADRC method [38] and the 

modified ADRC method [21]. 

Assume that there actually exists multiplicative uncertainty of the process input described 

by ( ) (0.5 0.2) / (2 1)s s s    , corresponding to the discrete-domain form of 

( ) (0.25 0.2451) / ( 0.9753)z z z    , which can be roughly regarded as the input actuator 

contains up to 25% uncertainty at high frequencies and almost 20% uncertainty in the 

low-frequency range. The perturbed system responses are shown in Figure 8. It is seen that the 

proposed control scheme well maintains robust stability. 

Assume that the output measurement is blurred by a Gaussian white noise with zero mean 

and a variance of 0.002, causing the signal-to-noise ratio about 20%. Figure 9 shows the control 

results, which demonstrates good robustness of the proposed method against measurement noise. 
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6. Conclusions  

A general predictive control scheme has been proposed for controlling nonlinear processes 

with input delay, by using the U-model framework to represent various nonlinear process models 

of polynomial, NARMAX, state-space, Hammerstein or Wiener type. An important merit is that 

the proposed control structure including the controller forms are relatively independent of the 

process model, based on a linear-like system expression by the U-model. Moreover, the set-point 

tracking and load disturbance rejection can be separately tuned in the proposed control scheme. 

Both the set-point tracking controller and the closed-loop controller for disturbance rejection are 

analytically derived by proposing the desired transfer functions for an ideal ‘linear’ plant, based 

on using the U-model inverse. It is convenient to tune a single adjustable parameter of both 

controllers to obtain a good trade-off between the control performance and its robustness against 

process uncertainties. The applications to three illustrative examples from the literature with 

detailed procedures for the control designs have well demonstrated the effectiveness and 

advantage of the proposed method. As this is a model based approach, it could be sensitive to 

different modeling errors and external disturbances. The future work may consider to design 

specific controllers to enhance robust control performance under different types of process 

perturbations or disturbances. 
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Figure 1. A general framework of U-model based control system  

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2. Smith predictor based U-model control structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Proposed U-model based predictive control scheme 
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Figure 4. Control results for Example 1: (a) output response, (b) control signal 
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Figure 5. Perturbed system responses of Example 1: (a) output response, (b) control signal 
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Figure 6. Control results under measurement noise for Example 1: (a) output response, (b) 

control signal 
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Figure 7. Control results for Example 2: (a) output response, (b) control signal 
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Figure 8. Perturbed system responses of Example 2: (a) output response, (b) control signal 
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Figure 9. Control results for Example 3: (a) output response, (b) control signal 
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Figure 10. Perturbed system responses of Example 3: (a) output response, (b) control signal 
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Figure 11. Control results under measurement noise of Example 3: (a) output response, (b) 

control signal 

 

 


