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Integrating construction supply chains within a circular 1 

economy: An ANFIS-based waste analytics system (A-WAS) 2 

Abstract 3 

The circular economy agenda makes it paramount for construction supply chains to reduce 4 

material waste. Although a collaborative platform called Building Information Modelling 5 

(BIM) offers a means of supply chains integration, it has not been efficiently upscaled for 6 

delivering waste efficient building designs. This study, therefore, develops a BIM-based 7 

computational tool for building waste analytics and reporting in the construction supply chains. 8 

A Construction Waste (CW) prediction model using Adaptive Neuro-Fuzzy Inference System 9 

(ANFIS) was developed and integrated into Autodesk Revit BIM platform. The model 10 

development process reveals that “Gross Floor Area” and “Construction type” are the two key 11 

predictors for CW. The results of the study show that the tool offers useful insights into CW 12 

minimisation opportunities. The study makes a huge contribution to CW management practices 13 

by developing a computational approach to CW measurement. The contribution of the study is 14 

fundamental because achieving accurate waste prediction is crucial to waste prevention 15 

through adequate design principles and BIM. 16 

Keywords: Construction supply chains, circular economy, construction waste analytics, 17 

Building Information Modelling (BIM), predictive modelling. 18 

1 Introduction 19 

Several definitions of supply chains exist in the literature; however, a widely acknowledged 20 

definition is given by Christopher (1998) as “the network of organisations that are involved, 21 

through upstream and downstream linkages, in the different processes and activities that 22 
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produce value in the form of products and services in the hands of the ultimate customer”. This 23 

definition rightly captures the necessary integration between the upstream and downstream for 24 

enhanced value delivery that is required in the Architecture, Engineering, and Construction 25 

(AEC) industries through supply chains improvement. The AEC supply chains are: (i) 26 

upstream (suppliers, subcontractors and specialist contractors) and downstream (contractors 27 

and material manufacturer) (Akintoye et al., 2000). The rethinking construction report (Egan, 28 

1998) reveals that the inefficient linkage among stakeholders in the two supply chains streams 29 

contributes to the failure of the fragmented construction industry to meet client demand and 30 

the expected efficiency. The report emphasises reduced cost and enhanced value delivery 31 

through supply chains improvement. Thunberg (2017) argues that the major challenges of 32 

supply chains management are: (i) achieving efficiency in material flow, (ii) achieving 33 

efficiency in communication, and (iii) project complexity. However, reducing waste in the 34 

supply chains material flow is expedient considering the increasing stringency of waste 35 

legislation and regulations (Hicks et al., 2004) and the global circular economy agenda (Pan et 36 

al., 2015). 37 

The circular economy agenda is a sustainable development model that offers an alternative to 38 

the traditional “take-make-waste” model (Despeisse et al., 2017). Ghisellini et al. (2016) point 39 

out that the concept of circular economy is to eliminate waste by adopting appropriate resource-40 

efficient methods from a sustainability viewpoint. Waste is a global problem facing different 41 

industries, which include construction (Ajayi et al., 2015), Wastewater (Sepehri and 42 

Sarrafzadeh, 2018), transportation (Villarreal et al., 2009), manufacturing (Mirabella et al., 43 

2014), agriculture (Sud et al., 2008), electronics (Cui and Zhang, 2008), biomedical (Hegde et 44 

al., 2007), etc. Waste in the construction supply chains is a major concern because of the huge 45 

amount of Construction Waste (CW) generated annually across the globe (Anderson and 46 
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Thornback, 2012; Oyedele et al., 2013). This challenge seems insurmountable despite the 47 

various research and development in CW management strategies (Ajayi et al., 2016; Oyedele 48 

et al., 2014). The construction industry still generates about 30% of the total waste stream and 49 

over 33% of the global CO2 (Baek et al., 2013; Solís-Guzmán et al., 2009). This level of waste 50 

generation has an adverse effect on the environment and it puts a pressure on the depleting 51 

landfills. As such, effective CW management practices are imperative to reduce the wider 52 

impacts of CW disposal. Also, stakeholders in the construction supply chains must work in an 53 

integrated way to tackle waste and project inefficiencies. These requirements reveal that early 54 

supply chains involvement and the adoption of component reuse and material recycling are 55 

needed to divert waste from landfills (Ajayi et al., 2017; Bilal et al., 2017). Evidence also 56 

suggests that any promising innovation on CW prediction and reduction in the construction 57 

supply chains requires BIM compliance (Ajayi et al., 2015; Akinade et al., 2016). 58 

The recent wide adoption of BIM has revolutionised the way building projects are designed, 59 

constructed, delivered and operated across the world (Eastman et al., 2011). There is no doubt 60 

that the upshot in BIM adoption across the AEC industries (Azhar, 2011) has improved system 61 

interoperability (Steel et al., 2012), collaboration among project stakeholders (Grilo and 62 

Jardim-Goncalves, 2010), visualisation and simulation of building models, and decision-63 

making processes (Eastman et al., 2011). Accordingly, the expectations of stakeholders on BIM 64 

cut across various fields (architecture, engineering, construction, project management, 65 

information technology, sustainability, knowledge management, and policies.) (Singh et al., 66 

2011), and the needs of all the stakeholders in these fields must be met. Although BIM adoption 67 

offers several benefits, using BIM for CW management is not a common practice in the 68 

construction supply chains (Akinade et al., 2015). Evidence from several studies highlight BIM 69 

potentials for CW management (Liu et al., 2011; Won et al., 2016); however, no study provides 70 
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a clear direction on BIM implementation for waste management. Existing studies provide only 71 

frameworks and guidelines for design-based CW management (Liu et al., 2011; Osmani et al., 72 

2008; Won et al., 2016).  The frameworks and guidelines only spell out CW management and 73 

minimisation practices, but they do not provide means of integrating the practices into design 74 

tools. The frameworks and guidelines also lack a measure of performance for the CW 75 

minimisation practices. As such, the frameworks and guidelines are too cumbersome to be used 76 

during the design stage.  Although BIM capabilities for transforming construction processes is 77 

common knowledge in the industry, Design-out-Waste (DoW) principles have not been 78 

integrated into BIM platforms because of the lack of computational methodology for measuring 79 

CW from building 3D models. Thus, two gaps exist: (i) there is a lack of a methodological 80 

mechanism for integrating Design-out-Waste (DoW) principles into BIM platforms, and (ii) 81 

there is no BIM-based measure of performance for DoW principles. The lack of BIM-based 82 

measure of DoW performance exists because of the limited knowledge on how to translate 83 

existing CW minimisation knowledge to computational models that can be incorporated into 84 

existing BIM software.  The gap in knowledge raises serious concerns and it calls for action on 85 

BIM implementation for CW management in the construction supply chains. As such, there is 86 

a need to improve the current BIM systems to integrate the construction supply chains fully 87 

and to ensure that material waste minimisation is achieved.  88 

Based on the preceding discussion and the identified gap in knowledge, the overall aim of the 89 

study is to development of a BIM platform for the construction supply chains to predict CW 90 

from building designs. Achieving accurate CW prediction is critical to improving current CW 91 

management practices because a phenomenon cannot be improved if it cannot be measured. 92 

The specific research objectives of the study are: 93 
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1) To investigate CW management principles empirically and to structure the required 94 

BIM principles to enhance CW management  95 

2) To develop a predictive model for estimating CW from building BIM designs.  96 

3) To develop a BIM platform that will enable the integration and collaboration of the 97 

supply chains towards CW minimisation. 98 

The study adopts experimental and case study research methodologies to achieve the specific 99 

objectives. A review of the extant literature was carried out to understand the state of the art in 100 

CW management in the construction supply chains and to understand the BIM requirements 101 

for CW management. The model developed for CW prediction is underpinned by an Adaptive 102 

Neuro-Fuzzy Inference System (ANFIS), which is a combination of artificial neural networks 103 

and fuzzy logic. The model was then integrated into Autodesk Revit software as an add-in. The 104 

final BIM tool was tested using a case study design. 105 

The remaining sections of the paper are structured as follows: Section 2 contains a review of 106 

the literature on construction supply chains integration, BIM requirements for CW 107 

management, and ANFIS. Section 3 discusses the system design, specification, and the 108 

schematic illustration of the methodological approach for the study. Section 4 contains a 109 

discussion on the process of ANFIS model development and BIM tool development for DoW. 110 

The section also covers the discussion on the programming environment, i.e., C# programming 111 

language, the Autodesk Revit Application Programming Interface (API), and User Interface 112 

(UI) frameworks. Section 5 contains a discussion of the results and Section 6 provides the 113 

implications of the study. Section 7 concludes the paper with a discussion of areas of further 114 

studies. 115 



6 

 

2 Supply chains integration and construction waste 116 

minimisation 117 

Supply chains integration is a well-researched area, and it has been explored from different 118 

perspectives (Alfalla-Luque et al., 2015; Ataseven and Nair, 2017; Dainty et al., 2001; 119 

Gimenez and McIvor, 2016; Huang et al., 2014). Evidence from the literature shows that 120 

integrating the supply chains have a direct relationship on the operational and business 121 

performances (Flynn et al., 2010; Narasimhan and Kim, 2002). However, the inability of the 122 

AEC industries to achieve the integration of the supply chain streams has resulted in the failure 123 

of the industry to deliver the expected operational efficiency and value delivery to clients 124 

(Egan, 1998). Key concerns in the industries still include economic concerns (epidemic profit 125 

margin erosion and cost overruns), project control and delivery concerns (project management, 126 

procurement, plant and equipment, quality) and waste (material, resources, and process).  127 

Although the economic and project control concerns have been given more attention for several 128 

decades, waste management in construction projects is becoming prominent because of the 129 

increasing stringency of waste legislation and regulations. Despite the increasing stringency of 130 

waste legislation and policies, the construction supply chains are still inefficient in terms of 131 

CW minimisation because of the lack of a computational waste measurement mechanism. A 132 

major reason for the non-existence of computational approaches for CW measurement is the 133 

lack of sufficient waste data (Akinade et al., 2016). Waste data record from most construction 134 

site are recorded as mixed waste and transferred to third-party segregation and treatment 135 

companies because it is not economically viable to segregate waste onsite. Lord Kelvin rightly 136 

argued that “To measure is to know. If you cannot measure it you cannot improve it.” This 137 

argument points out that the development of a computational Waste Prediction Model (WPM) 138 

is crucial to improving waste-related value delivery in an integrated construction supply chains. 139 
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WPMs estimate the potential waste of building models at the design stage. Estimation of CW 140 

at the design stage is essential because it is cheaper to make design changes to buildings when 141 

its construction has not commenced (Ekanayake and Ofori, 2004; Faniran and Caban, 1998; 142 

Osmani et al., 2008). The review of literature reveals that existing WPMs are based on four 143 

concepts, which are: (i) waste generation rates (Li et al., 2013; Masudi et al., 2011; Poon et al., 144 

2004); (ii) construction activities (Ekanayake and Ofori, 2004; Fatta et al., 2003; Wang et al., 145 

2004); (iii) building elements and materials (Bergsdal et al., 2007; Cochran et al., 2007; Jalali, 146 

2007; Shen et al., 2005; Solís-Guzmán et al., 2009); and (iv) computer simulation (Salem et 147 

al., 2008; Wu et al., 2013; Zaman and Lehmann, 2013). A major limitation of these WPMs is 148 

that most of them rely on the national waste generation rates and they can be used only after 149 

the completion of the building design.  150 

However, a more practical approach to guaranteeing the effectiveness of the WPMs in 151 

supporting CW management decision-making is to ensure that they are accessible during the 152 

design process. As such, it is important to establish the relationships between building 153 

parameters and CW generation. Another limitation that affects the usability of the WPMs is 154 

that they are external to existing 3D BIM visualisation and design software despite the common 155 

knowledge that BIM could improve building process performances. The foregoing discussion 156 

shows that the development of a BIM-based WPM is timely.  157 

2.1 Collaborative strategies for construction waste analytics 158 

It is established in the literature that design decisions have multiple ripple effects throughout 159 

the building lifecycle (Ekanayake and Ofori, 2004; Faniran and Caban, 1998; Osmani et al., 160 

2008). This fact means that design decisions could influence project performance indicators 161 

such as cost, time, air quality, daylight visibility, etc. (Lopez and Love, 2012). MacLeamy 162 
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(2004) highlights that design-based philosophy offers a flexible and cost-effective approach to 163 

influencing the project performance indicators than in subsequent building lifecycle stages. 164 

This possibility highlights the potentials for CW prevention and minimisation through 165 

appropriate design decisions (Faniran and Caban, 1998; Osmani et al., 2008).  Therefore, 166 

adequate effort must be made to integrate the construction supply chains so that all stakeholders 167 

can contribute to CW-related design decisions. However, a major impediment to fulfilling this 168 

responsibility is that existing CW management tools cannot support the supply chains 169 

adequately (Akinade et al., 2017; Bilal et al., 2015). Although BIM for improving the 170 

efficiency of processes has been emphasised as a key competitive and operational differentiator 171 

in the construction supply chains; most of the existing CW management tools are not BIM 172 

compatible.  173 

While assessing the industry stakeholders’ expectations on using BIM technology for 174 

designing out CW, Akinade et al. (2018) highlight five BIM strategies that must be considered 175 

for CW Analytics (CWA), which are summarised in Figure 1. A key requirement for effective 176 

BIM strategies for CW analytics  is the development of a collaborative platform. This is 177 

because the AEC industries are highly fragmented because the body of knowledge within the 178 

industries cuts across various fields. Each stakeholder makes decisions in isolation to maximise 179 

personal gains in a traditional construction methodology, which leads to several problems. The 180 

major problems are clashes, cost and time uncertainty, waste, and risks (Lichtig, 2010). These 181 

problems arise because of lack of communication and collaboration. BIM practice and 182 

technology, therefore, provide a collaborative process to the delivery of built assets through 183 

efficient stakeholders integration throughout the building lifecycle to mitigate these problems 184 

(AIA, 2014). As such, the adoption of BIM strategies enables early informed decision-making 185 

with the involvement of all stakeholder,  a higher project cost and time certainty, reduction in 186 
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waste (material, time, and human resources), improved project quality (Azhar et al., 2007) 187 

among other benefits. Hence the need to adopt BIM for efficient coordination of participating 188 

project teams. 189 

 190 

 191 

Figure 1: BIM strategies for construction waste analytics 192 

2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)  193 

Hybrid systems are becoming the next generation of AI systems because of their ability to 194 

proffer solutions to complex real-life problems (Abraham, 2005). AI techniques such as 195 

artificial neural networks, fuzzy logic, support vector machines, genetic algorithm, and expert 196 
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systems can be applied to varieties of problems; but combining them into a single hybrid 197 

system offers a way to address their limitations and to combine their strengths. Examples of 198 

hybrid systems include neuro-fuzzy systems  (Jang, 1993), Genetic Fuzzy Systems (Gordon et 199 

al., 2001), Fuzzy Expert Systems (Otto, 1990), and Evolutionary Neural Networks (Abraham, 200 

2004; Yao, 1993). Despite the various combination possibilities that hybrid systems offer, 201 

neuro-fuzzy systems are the most widely used because of their ability to achieve 202 

interoperability and accuracy at the same time (Lin et al., 1996). This unique feature contributes 203 

to the wide adoption of neuro-fuzzy systems for addressing several real-life problems. This 204 

study adopts a neuro-fuzzy system called Adaptive Neuro-Fuzzy Inference System (ANFIS) 205 

for CW prediction. ANFIS integrates the strengths of fuzzy logic and Artificial Neural Network 206 

(ANN). Hybridization of fuzzy logic and ANN overcomes the weaknesses of the individual 207 

systems (Jang, 1996). The major weakness of fuzzy logic is that considerable time and effort 208 

is required to compute membership functions and rules in a complex system. Chief among the 209 

weaknesses of ANN is the effort required to determining the optimal structure of the network. 210 

As such, combining fuzzy logic and ANN to produce ANFIS provides a more superior 211 

predictive capability that significantly aid model transparency and validation. 212 

An system with two inputs (we assume that each input has three membership functions) and 213 

one output is chosen to explain the concept and operations of an ANFIS model as shown in 214 

Figure 2. The network is made up of nine if-else rules and a typical ruleset in a first order 215 

Sugeno-Fuzzy model, which can be expressed as: 216 

𝑖𝑓 𝑥 𝑖𝑠 𝐴𝑖 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵𝑖, then 𝑓1 = 𝑝1x + 𝑞1y + 𝑟1 (1) 
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 217 

Figure 2: A two inputs (x and y) and one output (f) ANFIS network 218 

Where p, r and q are the output parameters. The layers of the ANFIS network are described 219 

below:   220 

Layer 1 (Fuzzification layer):  The node function of the fuzzification layer is given as: 221 

𝑂𝑖
1 =  𝜇𝐴𝑖(𝑥)      (2) 222 

Where 𝑂𝑖
1 is the membership grade of the fuzzy set 𝐴𝑖, and it specifies the degree to 223 

which 𝑥 satisfies the quantifier 𝐴. 𝜇𝐴𝑖 is the membership function of the linguistic 224 

variable 𝐴. The membership function is a real interval [0, 1], where a value of 1 means 225 

that 𝑥 is a full member of set and a value of 0 means that 𝑥 is not a member of the set. 226 

For example, a Gaussian membership function is given as: 227 

𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 [− (
𝑥−𝑐𝑖

𝑎𝑖
)

2

]    (3) 228 

Where 𝑎𝑖 and 𝑐𝑖 are the premise parameters. 229 
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Layer 2 (Multiplication layer): 230 

The output of each node of the multiplication later is the product of all incoming nodes, 231 

i.e.: 232 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) × 𝜇𝐵𝑖(𝑥), 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 9  (4) 233 

The nodes of the multiplication layer are the antecedent connectives. The output of each 234 

node is called the firing strength of a rule. 235 

Layer 3 (Normalization layer): 236 

The nodes on the normalisation layer compute the ratio of the corresponding firing 237 

strength to the sum of all firing strength, i.e.: 238 

𝑂𝑖
3 = 𝑤𝑖̅̅ ̅ =  

𝑤𝑖

𝑤1+𝑤2+𝑤3+⋯+𝑤9
, 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 9  (5) 239 

The output of each node is called the normalised firing strengths.  240 

Layer 4 (Defuzzification layer): 241 

The fourth layer produces the consequent parameters and the node function is: 242 

𝑂𝑖
4 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖 + 𝑞𝑖 + 𝑟𝑖), 𝑓𝑜𝑟 𝑖 = 1,2,3, … ,9  (6) 243 

Where the parameters 𝑝𝑖, 𝑞𝑖 , and 𝑟𝑖 are the adjusted consequent parameters. 244 

Layer 5 (Summation Layer): 245 
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The summation layer is made up of a single fixed node and it computes the overall 246 

output by using: 247 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑓) =  𝑂𝑖
5 =  ∑ 𝑤𝑖̅̅ ̅𝑖 𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
   (7) 248 

According to Jang (1993), the learning process of ANFIS is done in two independent stages: 249 

(i) adaptation of learning weights and (ii) adaptation of non-linear membership functions. This 250 

unique feature allows the learning complexity in ANFIS (Singh et al., 2005) and the uniqueness 251 

of this learning process enables ANFIS to be well-suited for modelling complex problems. 252 

3 System design and specification 253 

The process flow diagram for the ANFIS-based Waste Analytics System (A-WAS) tool is 254 

shown in Figure 3. The use of BIM as a technological tool to facilitate decision-making gives 255 

the designers the flexibility to choose the building design that will generate the minimum CW. 256 

This approach enables the designers to consider CW performance of building design vis-à-vis 257 

other performance metrics such as cost, time, buildability, quality standard, health and safety, 258 

sustainability, etc. The entire system is designed into four modules, which are: (i) access BIM 259 

design document, (ii) extract and compute design parameters, (iii) engage predictive models 260 

for CWA, and (iv) CW report generation. 261 
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 262 

Figure 3: Process flow for the ANFIS-based Waste Analytics System (A-WAS) 263 

The first module allows the user to give a name to the new CW analytical model and to select 264 

the construction type of the building. The Revit document is then extracted for analyses, and a 265 

new CW analytical model is created. The second module takes the Revit document as input, 266 

and it creates a material take-off. This module also extracts and compute some parameters, 267 

which include the number of levels, number of floors and, gross floor area (GFA). Building 268 

elements are then collected according to floors and levels using filter benchmarks. An 269 

assumption that was made here is that all levels are explicitly specified correctly in the BIM 270 

model. The third module is where the predictive models are used to estimate the CW from the 271 

building designs. The outputs of the predictive models are used to populate the CW analytical 272 

model that was created by the first module. The last part of the process is where an interactive 273 

CWA report is generated. The UI frameworks and analytical models are enabled to populate 274 

and prepare the CWA report. The report contains necessary project information, the overall 275 

waste generation, waste management routes, and floor level waste distribution. The fourth 276 

module also enables the users to export the CWA report as a PDF document. 277 
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4 A-WAS tool for CW prediction in the construction supply 278 

chains 279 

The A-WAS tool developed in this study runs as an add-in to Autodesk Revit Architecture. 280 

Although several BIM software exists from companies such as Autodesk, Graphisoft, 281 

Nemetschek, Bentley, etc, Autodesk Revit remains the most widely used BIM software. Apart 282 

from its common use, Revit comes with a robust API to extend its core functionalities and this 283 

has enabled the development of several add-ins to enhance the modelling, visualisation, and 284 

simulation capabilities of Revit. Three types of add-in entry point exist in Revit API, which 285 

are: (i) IExternalCommand for External Commands, which is added to the “external tools” 286 

menu of Revit; (ii) IExternalApplication for external applications, which provide better add-in 287 

UI customisation by adding controls to ribbons; and (iii) IExternalDBApplication for database-288 

level external applications, which is used to assign events/updaters to Revit session. The A-289 

WAS tool developed in this study is an external application because it provides better UI 290 

customisation and programming flexibility. Revit API uses .NET programming languages 291 

(Visual Basic, C#, and F#) but C# remains the most popular programming language because 292 

of its easy learning curve and implementation. The development of the BIM software was done 293 

in Visual Studio Express IDE using C#. The remainder of this section details the predictive 294 

model development and the A-WAS tool development. 295 

4.1 Predictive model development for construction waste prediction 296 

The methodological process adopted for the predictive model development is illustrated in 297 

Figure 4. The stages of the methodological process are explained in this section. 298 
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 299 

Figure 4: Methodological process of predictive model development 300 

4.1.1 Data preparation and exploratory data analytics 301 

The first task is the collection of historical Waste Data Records (WDR) of 117 building 302 

construction projects from waste contractors. Exploratory data analysis and data discretisation 303 

were done to understand the data distribution and interpretation. CW distribution according to 304 

waste types, construction type, project usage, GFA classification, and cost classification is 305 

shown in Table 1, Table 2, Table 3, Table 4, and Table 5 respectively. Figure 5 shows the 306 

Waste data record by waste type and waste management routes. After that, the pre-processed 307 

data was split into two, i.e., training and testing data, for predictive model development. 308 

Table 1: Construction waste distribution by waste types 309 

Waste type Total (tonnes) 

Binders 110.48 

Bricks 764.90 

Concrete 2359.48 

Gypsum 355.00 

Hazardous 27.42 

Inert 9288.79 

Insulation 14.38 

Metals 92.24 

Mixed 11083.02 

Packaging 25.22 

Plastics 28.03 

Timber 426.89 

Total 24,575.85 

 310 
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 311 

Table 2: Waste data record by construction types 312 

Construction type Total (tonnes) 

Concrete frame 3,403.72 

Load bearing masonry 17,302.49 

Steel frame 2,407.32 

Timber frame 1,462.32 

Total 24,575.85 
 313 

 314 

Table 3: Waste data record by project usage 315 

Project usage  Total (tonnes) 

Civil engineering  79.76 

Commercial offices  1,987.92 

Education  2,086.04 

Healthcare  247.83 

Industrial buildings  391.27 

Leisure  90.66 

Mixed-use development  2,450.14 

Public buildings  86.29 

Residential  17,155.94 

Total  24,575.85 

 316 

Table 4: Waste data record by gross floor area classification 317 

GFA classification Range Total (tonnes) 

Small < 536.0m2 1,488.88 

Medium 537.0m2 – 837.5m2 4,137.61 

Large 837.6m2 – 1,713.0m2 3,791.22 

Mega > 1,713.0m2 15,158.14 

Total  24,575.85 
 318 

Table 5: Waste data record by cost classification 319 

Cost Classification Range Total (tonnes) 

Minor <= £500,000 967.50 

Medium £500,001 - £1,000,000 4,553.32 

Major £1,000,001 - £10,000,000 13,998.33 

Mega > £10,000,000 5,056.70 

Total  24,575.85 

 320 
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 321 

Figure 5: Waste data record by waste type and waste management routes 322 

4.1.2 Feature selection and model training 323 

The complexity associated with the modelling of real-life problems with a large number of 324 

predictors brings to the fore the need to find more efficient way to isolate the most relevant 325 

predictors. While addressing this challenge, Jang (1996) proposed an efficient approach to 326 

feature selection in ANFIS. The approach employs a two-way pass system, which include: (i) 327 

the forward pass using the least-square method to quickly calculate the consequent parameters, 328 

(ii) the backward pass where the premise parameters are updated using gradient descent. 329 

Adopting this approach allows ANFIS to converge to a result with few training epochs. The 330 

target of the feature selection process is to select the two best predictors for CW from four 331 

predictors (Project cost, GFA, Construction type, and Building usage).  The selection process 332 

involves the creation of six (6) 2-input ANFIS models. The six models are then passed through 333 

the two-way hybrid algorithm to select the model with the least Root Mean Square Error 334 
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(RMSE). RMSE measures the differences between actual values and the values estimated by a 335 

predictive model. This measurement is done by calculating the residual between the actual and 336 

estimated values using Equation 8.  337 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=0     (8) 338 

Where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is predicted values, and n is the sample size. RMSE is a positive 339 

value and the least value depicts the best fit. The results of the input selection for the ANFIS 340 

model are shown in Table 6, and it reveals that model 2 (“GFA” and “Construction Type”) 341 

produces the least RMSE.  342 

Table 6: Input selection for the A-WAS model 343 

Model no Inputs RMSE 

Model 1 GFA-Project cost 0.121984 

Model 2 GFA-Construction type *0.071806 

Model 3 GFA-Building usage 0.092198 

Model 4 Project cost-Construction type 0.098120 

Model 5 Project cost-Building usage 0.079349 

Model 6 Construction type-Building usage 0.079349 

*Model 2 has the least RMSE 344 

Grid partitioning was used to create the structure of the ANFIS model. Grid partitioning creates 345 

more rules than other methods such as subtractive clustering; however, it was selected because 346 

the dimension of the search space is already minimised through feature selection. Figure 6 347 

shows the block diagram of the final A-WAS model. After that, the Membership Functions 348 

(MFs) of the input variables were created. Several input MFs exist, which are trimf, trapmf, 349 

gbellmf, gaussmf, gauss2mf, pimf, dsigmg, and psigmf. However, only two output MFs exist 350 

for ANFIS-based systems, which are constant and linear. The ANFIS model was trained using 351 
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all the eight input MFs and two output MFs. The performance of the different configuration 352 

was evaluated using the RMSE.  353 

 354 

Figure 6: Block diagram of the final ANFIS model 355 

Using a combination of possible eight input MFs and two output MFs, the ANFIS model was 356 

trained and the RMSE of each iteration is noted to select the best performing model. The results 357 

reveal that “gaussmf” MF produces the best predictions. The next task is the integration of the 358 

ANFIS predictive model with a BIM platform. 359 

4.2 BIM tool development on the Autodesk Revit 360 

The software development environment comprises the C# programming environment, 361 

Autodesk Revit API, and UI frameworks. The development of the A-WAS tool was divided 362 

into three active modules to capture its essential functionalities, which include (i) UI module, 363 

(ii) material take-off and parameter computation module, and (iii) CWA report generation 364 

module.  The UI of the BIM tool was integrated into Revit as an external application add-in 365 

using ribbon panel as presented in Figure 7. A new CWA project is initiated when the “Create 366 

CWA Model” is clicked. The button activated a dialogbox to enter the name of the new project 367 
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and the construction type of the building. The completed dislogbox will initiate the creation of 368 

the CWA report, and the “Reports” button displays previous CWA reports. 369 

 370 

Figure 7: BIM tool ribbon as a Revit add-in 371 

A material database was created to facilitate efficient CWA. The classes of materials in the 372 

database include: (a) All_Material_Class (A) contains all materials from Revit database; (b) 373 

Unknown_Material (K) contains the materials that are unknown; i.e. "Generic", 374 

"Miscellaneous", "Unassigned"; (c) Exception_Material_Class (X) contains the materials that 375 

are excluded from the CWA. The material take-off was then computed for all valid material 376 

‘x’ using the set calculation in Equation 9. 377 

𝑥 ∈ (𝐴 ∪ 𝐾) ∩ 𝑋′                (9) 

The material take-off was extracted from the building design to automate the CW 378 

quantification process. The material take-off provides a list of building components, and their 379 

properties (dimensions, area, volume) were aggregated. In addition to this, floor levels and the 380 

GFA were also computed. Given a set of floor levels 𝐿 = {𝐿1, 𝐿2, 𝐿3, … , 𝐿𝑛}, the GFA is 381 

computed using Equation 10. Accordingly, the building materials and elements in the material 382 

take-off are aggregated using the floor level filter benchmark to enable CWA by building 383 

levels. 384 
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𝐺𝐹𝐴 =  ∑ 𝐴𝑟𝑒𝑎(𝐿𝑖)

𝑛

𝑖=1

 (10) 

The UI of the CWA report uses Bootstrap and ChartJS to generate the interactive charts. The 385 

report view panel contains the following: (a) building information, (b) dashboard that shows 386 

the total waste, CW management route, and disposal costs, (c) building levels information, (d) 387 

CW by element type, (e) CW by material type; CW distribution charts by element and material 388 

types, (g) building element-material CW distribution; and (h) CW distribution by levels. Figure 389 

8 to Figure 10 show sections from a sample CWA report.  390 
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 391 

Figure 8: Dashboard of a A-WAS report 392 

 393 

Figure 9: Construction waste distribution by levels 394 

 395 
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 396 

Figure 10: Construction waste distribution by material types 397 

5 Results and discussion 398 

This study tackles CW prediction by adopting the five BIM strategies proposed by Akinade et 399 

al. (2018). After a careful consideration of the BIM strategies, the A-WAS tool aligns with 400 

these strategies as follows: (i) improved collaboration for waste management is achieved by 401 

enabling the ability to share CW information among stakeholders and the adoption of BIM as 402 

a coordination tool for designing out CW; (ii) waste-driven design process and solutions was 403 

achieved through automatic waste performance analysis of building models; (iii) lifecycle 404 

waste analytics was achieved in BIM by supporting CWA at various lifecycle stages and 405 

whole-life preservation of CW information; (iv) innovative technologies for waste intelligence 406 

and analytics was achieve using a hybrid machine learning technique (ANFIS) and BIM for 407 

building CW performance monitoring and analyses; and (iv) improved documentation for 408 

waste management was achieved through extraction of the CW-related documents from the 409 

building designs. 410 
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A case study was used to test the A-WAS tool for prediction ability and usability. The test case 411 

study is a commercial building, and its description is presented in Table 7. The CWA report 412 

shows that 39.44 tonnes of waste would be generated from the case study, i.e., 0.0673 tonnes 413 

of reusable arisings, 39.3048 tonnes of recyclable arisings, and 0.0693 tonnes that would be 414 

sent to landfills. The breakdown of the results according to material types is as follows: 0.07 415 

tonnes of brick, 5.63 tonnes of concrete, 0.03 tonnes of gypsum, 17.42 tonnes of inert, 0.57 416 

tonnes of metal, and 15.71 tonnes of mixed waste. 417 

 418 

Table 7: Test case study for the BIM tool 419 

Test case Description of test case study 

 

 

Building type: Commercial 

No of levels: 5 Levels 

No of floors: 2 Floors 

GFA: 33,952.41m2 

 420 

Although the adoption of BIM for improved processes in AEC industries is a key competitive 421 

and operational differentiator in the construction supply chains; most of the existing CW 422 

management tools are not BIM compatible. The A-WAS tool’s offering in integrating CW 423 

management into BIM shows that the tool is relevant to the stakeholders of the construction 424 

supply chains.  With the increasing adoption of BIM in the AEC industries and the development 425 

of improved laser scanning techniques, the number of buildings that have BIM model is rapidly 426 
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increasing. This evidence and the results of this study shows that the relevance and usefulness 427 

of the A-WAS tool. The A-WAS tool can perform the following functions: (i) extraction of 428 

material take-off (list of all element according to category, materials, and volume), (ii) 429 

calculation of the GFA and floor levels, (iii) estimation of the CW arisings by building material 430 

type, component type, and level, and (iv) generation of CW analytical report. The BIM tool 431 

enables users to interact and export the report.  432 

The major limitation of existing WPMs is that they rely on the national waste generation rates 433 

and they can be used only after the completion of the building design. However, the AWAS 434 

tool provides a computational mechanism to continuously estimate the waste arisings during 435 

the design stage. Besides, the ability of A-WAS tool to isolate the sources of CW by building 436 

material type, component type and levels have huge implications for CW management. The 437 

development of the tool also broadens the understanding of how DoW factor could be 438 

integrated into BIM software. The BIM tool is therefore useful to several industry stakeholders, 439 

and the implications for practice on the construction supply chains are discussed in details in 440 

the next section. 441 

6 Implications of findings 442 

This study shows that supply chains integration and the adoption of principles in a BIM 443 

environment are critical for CW management. This study, therefore, offers huge implications 444 

for construction supply chains integration and collaboration, the circular economy agenda, and 445 

future tool development. 446 
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6.1 Implications for supply chains integration and collaboration 447 

Dainty and Brooke (2004) argue that supply chains solutions are central to CW minimisation 448 

and waste diversion from landfills. Early supply chains integration and alliance with suppliers, 449 

sub-contractors, recycling companies, and secondary users of waste offer mutual benefits for 450 

stakeholders. These relationships are essential for effective information sharing, dynamism, 451 

competitive synergy, and superior operating performance within the entire supply chains (Cao 452 

and Zhang, 2011; Prajogo and Olhager, 2012; Zhou and Benton, 2007). However, a major gap 453 

in the leverage of supply chain integration for CW management is the lack of a tool that is 454 

relevant to the operations of the key stakeholders. The A-WAS tool developed as part of this 455 

study fills this gap. The study and the A-WAS tool are, therefore, relevant to the practices of 456 

building material manufacturers and suppliers. It is important for material manufacturers and 457 

suppliers to ensure that their products have minimal impact on the environment. The A-WAS 458 

tool will assist material manufacturers and suppliers to estimate and minimise the potential 459 

impact of their products on CW generation. In the same way, a client such as the government 460 

with huge commitment on the sustainability agenda could use the A-WAS tool to assess various 461 

building designs with regards to their CW generation potentials. As such, the A-WAS tool 462 

could serve as a selection tool for delivering low-waste buildings. 463 

6.2 Implications for the circular economy agenda 464 

The circular economy agenda proposes a shift from the traditional  “take-make-waste” model 465 

of considering waste as a norm to an integrated system that emulates the nature’s sustainable 466 

cycle  (Despeisse et al., 2017; Ghisellini et al., 2016). Adopting this approach promotes closed 467 

material cycle through recycling economy and reuse. As such, it is imperative that all work 468 

stages of production minimise waste and reduce the demand for resources to achieve 469 
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sustainable development. While CW management tools exist for the construction stage of 470 

buildings (BRE, 2008; WRAP, 2011), little effort has been given to the design stages. This 471 

study, therefore, has significant implications for low-waste building design practices. The study 472 

has huge implications for architectural and design practices by broadening the understanding 473 

of how CW reduction could be achieved through appropriate design decisions. The A-WAS 474 

tool provides architects and design engineers with insights into potential sources of waste 475 

during building design. Achieving this provides an objective comparative mechanism for 476 

selecting the building design with the least CW generation potential. In addition, the study has 477 

huge implications for the circular economy agenda because it provides the management routes 478 

for the predicted CW, i.e. the portion of the CW that could be recycled or reused. This offering 479 

is important to ensure that the value of building materials is sustained within the economic 480 

circle. 481 

6.3 Implications for BIM and future tool development 482 

This study could also influence the BIM practices in the built environment. Although several 483 

studies suggest that BIM capability is critical to efficient CW management, BIM-based CW 484 

management practices are often ignored. The increasing rate of BIM adoption and the 485 

governments’ sustainability goals have compelled more industry practitioners to become 486 

interested in the integration of sustainable practices into BIM software. This study provides a 487 

clear direction on how to achieve this integration by streamlining the estimation of CW in a 488 

BIM environment. This study also shows that adequate CW management requires early supply 489 

chains involvement using BIM as a coordination and collaboration tool. This study also has 490 

huge implications for BIM software developers. The recent advancement in Information and 491 

Communication Technology (ICT) and BIM technologies show that innovation within the 492 
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AEC industrial practices requires BIM compliance. Besides, complex, and repetitive AEC 493 

tasks need to be automated to achieve the required reliability, and efficiency. As such, the 494 

framework employed in this study and the A-WAS tool development process serves as a 495 

blueprint for developing BIM-enabled software for CW management and related tasks.  496 

7 Conclusion 497 

This study aims to develop a BIM tool for building CWA. The waste prediction capability of 498 

the BIM tool was achieved using a hybrid system known as ANFIS, which combines the 499 

strengths of fuzzy systems and ANN. The model development process reveals that the two key 500 

predictors for CW are “GFA” and “Construction type”. The hybrid model was integrated into 501 

the BIM platform and packaged as an add-in for Autodesk Revit. The development of the A-502 

WAS tool fills two main gaps in knowledge, i.e., the detachment of existing CW tools from 503 

the design process, and lack BIM interoperability capabilities in existing CW management 504 

tools. Test results of the BIM tool show that the tool predicted CW according to waste types, 505 

element types, and building levels. The outputs of this study, therefore, offers huge 506 

implications for industry practice of several stakeholders, which include architects, design 507 

engineers, building material suppliers, BIM professionals, sustainability experts, software 508 

developers, and academics. 509 

This study has some limitations despite its contribution to existing knowledge. A major 510 

limitation is that the study was carried out within the UK construction industry context, so the 511 

findings have a UK bias. Another limitation of the study is the nature of the data used for model 512 

development. An exploration of the collected historical WDR reveals that 45% of CW arising 513 

are recorded as mixed waste. This figure supports the general industry practice of recording 514 

most arising under mixed or general waste because it is not cost-effective to segregate CW on-515 
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site. This challenge constitutes a significant hindrance to CW prediction because the waste data 516 

from building projects are not adequately recorded. Overcoming this challenge requires the 517 

adoption of an integrated approach to CW data collection. Future research should also consider 518 

the development of BIM-enabled CW collection tools, which will integrate WDR into BIM 519 

models.  520 

Acknowledgement 521 

The authors would like to acknowledge and express their sincere gratitude to the Engineering 522 

and Physical Sciences Research Council (EPSRC) and Innovate UK (Grant Reference No. 523 

EP/N509012/1; Grant Application No. 54832–413479/File No. 102473) for providing the 524 

financial support for this study.  525 

References 526 

Abraham,  a, 2005. Hybrid intelligent systems: evolving intelligence in hierarchical layers. Do Smart 527 
Adapt. Syst. Exist. 179, 159–179. 528 

Abraham, A., 2004. Meta learning evolutionary artificial neural networks. Neurocomputing. 529 
doi:10.1016/S0925-2312(03)00369-2 530 

AIA, 2014. Integrated Project Delivery: An Updated Working Definition, AIA California Council, 531 
Sacramento, CA. 532 

Ajayi, S.O., Oyedele, L.O., Akinade, O.O., Bilal, M., Alaka, H.A., Owolabi, H.A., 2017. Optimising 533 
material procurement for construction waste minimization: An exploration of success factors. 534 
Sustain. Mater. Technol. 11, 38–46. doi:10.1016/j.susmat.2017.01.001 535 

Ajayi, S.O., Oyedele, L.O., Akinade, O.O., Bilal, M., Owolabi, H.A., Alaka, H.A., Kadiri, K.O., 2016. 536 
Reducing waste to landfill: A need for cultural change in the UK construction industry. J. Build. 537 
Eng. 5, 185–193. doi:10.1016/j.jobe.2015.12.007 538 

Ajayi, S.O., Oyedele, L.O., Bilal, M., Akinade, O.O., Alaka, H.A., Owolabi, H.A., Kadiri, K.O., 2015. 539 
Waste effectiveness of the construction industry: Understanding the impediments and requisites 540 
for improvements. Resour. Conserv. Recycl. 102, 101–112. doi:10.1016/j.resconrec.2015.06.001 541 

Akinade, O.O., Oyedele, L.O., Ajayi, S.O., Bilal, M., Alaka, H.A., Owolabi, H.A., Arawomo, O.O., 542 
2018. Designing out construction waste using BIM technology: Stakeholders’ expectations for 543 
industry deployment. J. Clean. Prod. 180, 375–385. doi:10.1016/J.JCLEPRO.2018.01.022 544 

Akinade, O.O., Oyedele, L.O., Ajayi, S.O., Bilal, M., Alaka, H.A., Owolabi, H.A., Bello, S.A., 545 
Jaiyeoba, B.E., Kadiri, K.O., 2017. Design for Deconstruction (DfD): Critical success factors for 546 
diverting end-of-life waste from landfills. Waste Manag. 60, 3–13. 547 
doi:10.1016/j.wasman.2016.08.017 548 

Akinade, O.O., Oyedele, L.O., Bilal, M., Ajayi, S.O., Owolabi, H.A., Alaka, H.A., Bello, S.A., 2015. 549 



31 

 

Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score 550 
(BIM-DAS). Resour. Conserv. Recycl. 105, 167–176. doi:10.1016/j.resconrec.2015.10.018 551 

Akinade, O.O., Oyedele, L.O., Munir, K., Bilal, M., Ajayi, S.O., Owolabi, H.A., Alaka, H.A., Bello, 552 
S.A., 2016. Evaluation criteria for construction waste management tools: Towards a holistic BIM 553 
framework. Int. J. Sustain. Build. Technol. Urban Dev. 7, 3–21. 554 
doi:10.1080/2093761X.2016.1152203 555 

Akintoye, A., McIntosh, G., Fitzgerald, E., 2000. A survey of supply chain collaboration and 556 
management in the UK construction industry. Eur. J. Purch. Supply Manag. 6, 159–168. 557 
doi:10.1016/S0969-7012(00)00012-5 558 

Alfalla-Luque, R., Marin-Garcia, J.A., Medina-Lopez, C., 2015. An analysis of the direct and mediated 559 
effects of employee commitment and supply chain integration on organisational performance. Int. 560 
J. Prod. Econ. 162, 242–257. doi:10.1016/J.IJPE.2014.07.004 561 

Anderson, J., Thornback, J., 2012. A guide to understanding the embodied impacts of construction 562 
products. Constr. Prod. Assoc. 1–53. 563 

Andi, Minato, T., 2003. Design documents quality in the Japanese construction industry: factors 564 
influencing and impacts on construction process. Int. J. Proj. Manag. 21, 537–546. 565 
doi:10.1016/S0263-7863(02)00083-2 566 

Ataseven, C., Nair, A., 2017. Assessment of supply chain integration and performance relationships: A 567 
meta-analytic investigation of the literature. Int. J. Prod. Econ. 185, 252–265. 568 
doi:10.1016/J.IJPE.2017.01.007 569 

Azhar, S., 2011. Building information modeling (BIM): Trends, benefits, risks, and challenges for the 570 
AEC industry. Leadersh. Manag. Eng. 11, 241–252. 571 

Azhar, S., Hein, M., Sketo, B., 2007. Building Information Modeling ( BIM ): Benefits , Risks and 572 
Challenges. Leadersh. Manag. Eng. 11, 241–252. 573 

Baek, C., Park, S.H., Suzuki, M., Lee, S.H., 2013. Life cycle carbon dioxide assessment tool for 574 
buildings in the schematic design phase. Energy Build. 61, 275–287. 575 
doi:10.1016/j.enbuild.2013.01.025 576 

Bergsdal, H., Bohne, R.A., Brattebø, H., 2007. Projection of construction and demolition waste in 577 
Norway. J. Ind. Ecol. 11, 27–39. 578 

Bilal, M., Oyedele, L.O., Munir, K., Ajayi, S.O., Akinade, O.O., Owolabi, H.A., Alaka, H.A., 2017. 579 
The application of web of data technologies in building materials information modelling for 580 
construction waste analytics. Sustain. Mater. Technol. 11, 28–37. 581 
doi:10.1016/J.SUSMAT.2016.12.004 582 

Bilal, M., Oyedele, L.O., Qadir, J., Munir, K., Ajayi, S.O., Akinade, O.O., Owolabi, H.A., Alaka, H.A., 583 
Pasha, M., 2016. Big Data in the construction industry: A review of present status, opportunities, 584 
and future trends. Adv. Eng. Informatics 30, 500–521. doi:10.1016/j.aei.2016.07.001 585 

Bilal, M., Oyedele, L.O., Qadir, J., Munir, K., Akinade, O.O., Ajayi, S.O., Alaka, H.A., Owolabi, H.A., 586 
2015. Analysis of critical features and evaluation of BIM software: towards a plug-in for 587 
construction waste minimization using big data. Int. J. Sustain. Build. Technol. Urban Dev. 6, 588 
211–228. doi:10.1080/2093761X.2015.1116415 589 

BRE, 2008. SMARTWASTE [WWW Document]. URL http://www.smartwaste.co.uk/index.jsp 590 
(accessed 4.25.16). 591 

Cao, M., Zhang, Q., 2011. Supply chain collaboration: Impact on collaborative advantage and firm 592 
performance. J. Oper. Manag. 29, 163–180. doi:10.1016/j.jom.2010.12.008 593 

Christopher, M., 1998. Logistics and Supply Chain Management: Strategies for reducing cost and 594 
improving services. Financ. Times/prentice Hall, London. 595 



32 

 

Cochran, K., Townsend, T., Reinhart, D., Heck, H., 2007. Estimation of regional building-related C&D 596 
debris generation and composition: case study for Florida, US. Waste Manag. 27, 921–31. 597 
doi:10.1016/j.wasman.2006.03.023 598 

Cui, J., Zhang, L., 2008. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. 599 
Mater. 158, 228–256. doi:10.1016/J.JHAZMAT.2008.02.001 600 

Dainty, A.R.J., Brooke, R.J., 2004. Towards improved construction waste minimisation: a need for 601 
improved supply chain integration? Struct. Surv. 22, 20–29. doi:10.1108/02630800410533285 602 

Dainty, A.R.J., Millett, S.J., Briscoe, G.H., 2001. New perspectives on construction supply chain 603 
integration. Supply Chain Manag. An Int. J. 6, 163–173. doi:10.1108/13598540110402700 604 

Despeisse, M., Baumers, M., Brown, P., Charnley, F., Ford, S.J., Garmulewicz, A., Knowles, S., 605 
Minshall, T.H.W., Mortara, L., Reed-Tsochas, F.P., Rowley, J., 2017. Unlocking value for a 606 
circular economy through 3D printing: A research agenda. Technol. Forecast. Soc. Change 115, 607 
75–84. doi:10.1016/J.TECHFORE.2016.09.021 608 

Eadie, R., Browne, M., Odeyinka, H., McKeown, C., McNiff, S., 2013. BIM implementation 609 
throughout the UK construction project lifecycle: An analysis. Autom. Constr. 36, 145–151. 610 
doi:10.1016/j.autcon.2013.09.001 611 

Eastman, C., Teicholz, P., Sacks, R., Liston, K., 2011. BIM handbook: A guide to building information 612 
modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons. 613 

Egan, J., 1998. Rethinking construction, Department of the Environment, Transport and the Regions, 614 
London. 615 

Ekanayake, L.L., Ofori, G., 2004. Building waste assessment score: design-based tool. Build. Environ. 616 
39, 851–861. 617 

Faniran, O., Caban, G., 1998. Minimizing waste on construction project sites. Eng. Constr. … 5, 182–618 
188. 619 

Fatta, D., Papadopoulos, A., Avramikos, E., Sgourou, E., Moustakas, K., Kourmoussis, F., Mentzis, A., 620 
Loizidou, M., 2003. Generation and management of construction and demolition waste in 621 
Greece—an existing challenge. Resour. Conserv. Recycl. 40, 81–91. doi:10.1016/S0921-622 
3449(03)00035-1 623 

Flynn, B.B., Huo, B., Zhao, X., 2010. The impact of supply chain integration on performance: A 624 
contingency and configuration approach. J. Oper. Manag. 28, 58–71. 625 
doi:10.1016/J.JOM.2009.06.001 626 

Ghisellini, P., Cialani, C., Ulgiati, S., 2016. A review on circular economy: the expected transition to a 627 
balanced interplay of environmental and economic systems. J. Clean. Prod. 114, 11–32. 628 
doi:10.1016/J.JCLEPRO.2015.09.007 629 

Gimenez, C., McIvor, R., 2016. Risk, risk management practices, and the success of supply chain 630 
integration. Int. J. Prod. Econ. 171, 361–370. doi:10.1016/J.IJPE.2015.03.020 631 

Goedert, J.D., Meadati, P., 2008. Integrating construction process documentation into building 632 
information modeling. J. Constr. Eng. Manag. 134, 509–516. 633 

Gordon, O., Herrera, F., Hoffmann, F., Luis, M., 2001. Genetic fuzzy systems: Fuzzy Knowledge 634 
Extraction by Evolutionary Algorithms. Sci. Publ. Co. Pte. Ltd, UK. doi:10.1142/4177 635 

Grilo, A., Jardim-Goncalves, R., 2010. Value proposition on interoperability of BIM and collaborative 636 
working environments. Autom. Constr. 19, 522–530. doi:10.1016/j.autcon.2009.11.003 637 

Hegde, V., Kulkarni, R.D., Ajantha, G.S., 2007. Biomedical waste management. J. Oral Maxillofac. 638 
Pathol. 11, 5. 639 

Hicks, C., Heidrich, O., McGovern, T., Donnelly, T., 2004. A functional model of supply chains and 640 
waste. Int. J. Prod. Econ. 89, 165–174. doi:10.1016/S0925-5273(03)00045-8 641 



33 

 

Huang, M.-C., Yen, G.-F., Liu, T.-C., 2014. Reexamining supply chain integration and the supplier’s 642 
performance relationships under uncertainty. Supply Chain Manag. An Int. J. 19, 64–78. 643 
doi:10.1108/SCM-04-2013-0114 644 

Jalali, S., 2007. Quantification of Construction Waste Amount, in: 6th International Technical 645 
Conference of Waste. 646 

Jang, J.-S.R., 1993. ANFIS : Adap tive-Ne twork-Based Fuzzy Inference System. IEEE Trans. Syst. 647 
Man. Cybern. 23. 648 

Lavy, S., Jawadekar, S., 2014. A Case Study of Using BIM and COBie for Facility Management. Int. 649 
J. Facil. Manag. 5, 13–27. 650 

Li, J., Ding, Z., Mi, X., Wang, J., 2013. A model for estimating construction waste generation index for 651 
building project in China. Resour. Conserv. Recycl. 74, 20–26. 652 
doi:10.1016/j.resconrec.2013.02.015 653 

Lichtig, W.A., 2010. The Integrated Agreement for Lean Project Delivery, in: Improving Healthcare 654 
through Built Environment Infrastructure. pp. 85–101. doi:10.1002/9781444319675.ch6 655 

Lin, C.-T., Lee, C.S.G., Lin, C.-T., Lin, C.T., 1996. Neural fuzzy systems: a neuro-fuzzy synergism to 656 
intelligent systems. Prentice hall PTR Upper Saddle River NJ. 657 

Liu, Z., Osmani, M., Demian, P., Baldwin, A., 2011. The potential use of BIM to aid construction waste 658 
minimalisation, in: Proceedings of the CIB W78-W102 2011: International Conference. Sophia 659 
Antipolis, France. 660 

Lopez, R., Love, P.E.D., 2012. Design Error Costs in Construction Projects. J. Constr. Eng. Manag. 661 
doi:10.1061/(ASCE)CO.1943-7862.0000454 662 

MacLeamy, P., 2004. MacLeamy Curve. Collab. Integr. Information, Proj. Lifecycle Build. Des. 663 
Constr. Oper. 664 

Manning, R., Messner, J., 2008. Case studies in BIM implementation for programming of healthcare 665 
facilities, in: ITcon - IT in Construction, 13 (Special Issue - Case Studies of BIM Use). ITcon. 666 

Masudi, A.F., Rosmani, C., Hassan, C., Mahmood, N.Z., Mokhtar, S.N., 2011. Construction Waste 667 
Quantification and Benchmarking : A Study in Klang Valley , Malaysia 5, 909–916. 668 

Mirabella, N., Castellani, V., Sala, S., 2014. Current options for the valorization of food manufacturing 669 
waste: a review. J. Clean. Prod. 65, 28–41. doi:10.1016/J.JCLEPRO.2013.10.051 670 

Narasimhan, R., Kim, S.W., 2002. Effect of supply chain integration on the relationship between 671 
diversification and performance: evidence from Japanese and Korean firms. J. Oper. Manag. 20, 672 
303–323. doi:10.1016/S0272-6963(02)00008-6 673 

Osmani, M., Glass, J., Price, A.D.F., 2008. Architects’ perspectives on construction waste reduction by 674 
design. Waste Manag. 28, 1147–1158. 675 

Otto, M., 1990. Fuzzy expert systems, TrAC Trends in Analytical Chemistry. doi:10.1016/0165-676 
9936(90)85030-B 677 

Oyedele, L.O., Ajayi, S.O., Kadiri, K.O., 2014. Use of recycled products in UK construction industry: 678 
An empirical investigation into critical impediments and strategies for improvement. Resour. 679 
Conserv. Recycl. 93, 23–31. doi:10.1016/j.resconrec.2014.09.011 680 

Oyedele, L.O., Regan, M., von Meding, J., Ahmed, A., Ebohon, O.J., Elnokaly, A., 2013. Reducing 681 
waste to landfill in the UK: identifying impediments and critical solutions. World J. Sci. Technol. 682 
Sustain. Dev. 10, 131–142. doi:10.1108/20425941311323136 683 

Pan, S.-Y., Du, M.A., Huang, I.-T., Liu, I.-H., Chang, E.-E., Chiang, P.-C., 2015. Strategies on 684 
implementation of waste-to-energy (WTE) supply chain for circular economy system: a review. 685 
J. Clean. Prod. 108, 409–421. doi:10.1016/J.JCLEPRO.2015.06.124 686 



34 

 

Poon, C.S., Yu, A.T.W., Jaillon, L., 2004. Reducing building waste at construction sites in Hong Kong. 687 
Constr. Manag. Econ. 22, 461–470. doi:10.1080/0144619042000202816 688 

Prajogo, D., Olhager, J., 2012. Supply chain integration and performance: The effects of long-term 689 
relationships, information technology and sharing, and logistics integration. Int. J. Prod. Econ. 690 
135, 514–522. doi:10.1016/J.IJPE.2011.09.001 691 

Salem, O., Asce, M., Shahin, A., Khalifa, Y., 2008. Minimizing Cutting Wastes of Reinforcement Steel 692 
Bars Using Genetic Algorithms and Integer Programming Models 133, 982–992. 693 

Sepehri, A., Sarrafzadeh, M.-H., 2018. Effect of nitrifiers community on fouling mitigation and 694 
nitrification efficiency in a membrane bioreactor. Chem. Eng. Process. - Process Intensif. 128, 695 
10–18. doi:10.1016/J.CEP.2018.04.006 696 

Shen, L.-Y., Lu, W.-S., Yao, H., Wu, D.-H., 2005. A computer-based scoring method for measuring 697 
the environmental performance of construction activities. Autom. Constr. 14, 297–309. 698 
doi:10.1016/j.autcon.2004.08.017 699 

Singh, T.N., Kanchan, R., Verma, A.K., Saigal, K., 2005. A comparative study of ANN and Neuro-700 
fuzzy for the prediction of dynamic constant of rockmass. J. Earth Syst. Sci., 114, 75–86. 701 

Singh, V., Gu, N., Wang, X., 2011. A theoretical framework of a BIM-based multi-disciplinary 702 
collaboration platform. Autom. Constr. 20, 134–144. doi:10.1016/j.autcon.2010.09.011 703 

Solís-Guzmán, J., Marrero, M., Montes-Delgado, M.V., Ramírez-de-Arellano, A., 2009. A Spanish 704 
model for quantification and management of construction waste. Waste Manag. 29, 2542–2548. 705 
doi:http://dx.doi.org/10.1016/j.wasman.2009.05.009 706 

Steel, J., Drogemuller, R., Toth, B., 2012. Model interoperability in building information modelling. 707 
Softw. Syst. Model. 11, 99–109. doi:10.1007/s10270-010-0178-4 708 

Sud, D., Mahajan, G., Kaur, M.P., 2008. Agricultural waste material as potential adsorbent for 709 
sequestering heavy metal ions from aqueous solutions – A review. Bioresour. Technol. 99, 6017–710 
6027. doi:10.1016/J.BIORTECH.2007.11.064 711 

Thunberg, M., Rudberg, M., Karrbom Gustavsson, T., 2017. Categorising on-site problems: A supply 712 
chain management perspective on construction projects. Constr. Innov. 17, 90–111. 713 
doi:10.1108/CI-10-2015-0059 714 

Villarreal, B., Garcia, D., Rosas, I., 2009. Eliminating transportation waste in food distribution: a case 715 
study. Transp. J. 48, 72–77. 716 

Wang, J.Y., Touran, A., Christoforou, C., Fadlalla, H., 2004. A systems analysis tool for construction 717 
and demolition wastes management. Waste Manag. 24, 989–97. 718 
doi:10.1016/j.wasman.2004.07.010 719 

Won, J., Cheng, J.C.P., Lee, G., 2016. Quantification of construction waste prevented by BIM-based 720 
design validation: Case studies in South Korea. Waste Manag. doi:10.1016/j.wasman.2015.12.026 721 

WRAP, 2011. Designing-out Waste Tool for Buildings. Available from http//dowtb.wrap.org.uk/. 722 

Wu, Z., Fan, H., Liu, G., 2013. Forecasting Construction and Demolition Waste Using Gene Expression 723 
Programming. J. Comput. Civ. Eng. 04014059. doi:10.1061/(ASCE)CP.1943-5487.0000362 724 

Yao, X., 1993. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8, 539–567. 725 
doi:10.1002/int.4550080406 726 

Zaman, A.U., Lehmann, S., 2013. The zero waste index: a performance measurement tool for waste 727 
management systems in a ‘zero waste city.’ J. Clean. Prod. 50, 123–132. 728 
doi:10.1016/j.jclepro.2012.11.041 729 

Zhou, H., Benton, W.C., 2007. Supply chain practice and information sharing. J. Oper. Manag. 25, 730 
1348–1365. doi:10.1016/J.JOM.2007.01.009 731 



35 

 

 732 


