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Abstract  30 

Background: Tracking and predicting the growth performance of plants in different 31 

environments is critical for predicting the impact of global climate change. Automated 32 

approaches for image capture and analysis have allowed for substantial increases in the 33 

throughput of quantitative growth trait measurements compared to manual assessments. Recent 34 

work has focused on adopting computer vision and machine learning approaches to improve 35 

the accuracy of automated plant phenotyping. Here we present PS-Plant, a low-cost and 36 

portable 3D plant phenotyping platform based on an imaging technique novel to plant 37 

phenotyping called photometric stereo (PS). 38 

Results: We calibrated PS-Plant to track the model plant Arabidopsis thaliana throughout the 39 

day-night (diel) cycle and investigated growth architecture under a variety of conditions to 40 

illustrate the dramatic effect of the environment on plant phenotype. We developed bespoke 41 

computer vision algorithms and assessed available deep neural network architectures to 42 

automate the segmentation of rosettes and individual leaves, and extract basic and more 43 

advanced traits from PS-derived data, including the tracking of 3D plant growth and diel leaf 44 

hyponastic movement. Furthermore, we have produced the first PS training data set, which 45 

includes 221 manually annotated Arabidopsis rosettes that were used for training and data 46 

analysis (1768 images in total). A full protocol is provided, including all software components 47 

and an additional test data set.     48 

Conclusions: PS-Plant is a powerful new phenotyping tool for plant research that provides 49 

robust data at high temporal and spatial resolutions. The system is well-suited for small and 50 

large-scale research and will help to accelerate bridging of the phenotype-to-genotype gap. 51 

 52 

Keywords 53 
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Arabidopsis thaliana, leaf angle, segmentation, machine learning, near-infrared (NIR) LEDs,  54 

photomorphogenesis, thermomorphogenesis.  55 

 56 

Introduction 57 

Quantitative and accurate methods are required to aid strategies for predicting plant growth 58 

performances in our changeable natural environments. Such tools are critical for calibrating 59 

predictive models in the face of a changing global climate and our growing global population 60 

[1–6]. Computer vision is an evolving technology that is helping to drive advances in plant 61 

phenotyping both in fundamental research and agriculture [7–10]. Reflecting its considerable 62 

promise, effort has been directed toward automated ground vehicles (AGVs) [11,12], satellite 63 

[13], drone [14] and gantry-style platform imaging of field plants [15], and automated 64 

phenotyping of greenhouse [16,17] and lab-grown plants (the challenges are different for field 65 

and indoor phenotyping) [18,19]. While there have been significant advances, problems 66 

associated with high cost, automated data capture, large data sets and variable visual and 67 

temporal resolutions have created barriers to the uptake of these technologies. These challenges 68 

are currently being addressed in the next generation of plant phenotyping tools. 69 

 70 

Above ground growth is a strong indicator of plant yield and therefore 3D imaging of 71 

vegetative growth is a very active area of phenotyping research [20–25]. A number of excellent 72 

2D imaging systems have been developed [26–28], however, while they represent a qualitative 73 

improvement on manual data capture, they have limited capacity to resolve plant architecture 74 

at high resolution. For example, leaf area measurements are affected by blade curvature, leaf 75 

angle and movement, making accurate estimations of plant growth challenging using 2D [9,29]. 76 

Several 3D imaging methods have been developed that overcome some of the limitations of 77 
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2D. These can be classified as passive and active 3D imaging approaches and are briefly 78 

outlined below. 79 

 80 

Passive 3D imaging approaches capture plant architecture without introducing new energy (e.g. 81 

light) into the environment [30]. Methods and technologies using this approach include multi-82 

view stereo [31,32], of which the most common is binocular stereo [33,34], structure from 83 

motion [35], light-field (plenoptic) cameras [36], and space carving approaches [37]. Passive 84 

approaches that use two or more sensors, or have moving parts (e.g. robot arm or gantry 85 

systems), often encounter difficulties in identifying and aligning the same points in different 86 

images (i.e. the so called ‘correspondence problem’), which can result in imprecise 87 

reconstruction of 3D shapes [38]. Plant leaves and canopies can be particularly challenging as 88 

they often represent large homogenous areas with little salient texture. Imprecise 3D 89 

reconstructions can be smoothed, but at the expense of plant surface detail [39]. Space carving 90 

overcomes the correspondence problem, but requires many different views of an object and 91 

may still fail to reconstruct crowded areas (e.g. overlapping leaves) [37]. To our knowledge, 92 

only light-field cameras have been utilised successfully for capturing 3D plant growth 93 

throughout the diel (day-night) cycle [36,40]. However, light-field systems rely on expensive 94 

camera technology to capture high-resolution data, and like other passive approaches, require 95 

consistent and favourable lighting conditions.  96 

 97 

Active 3D imaging approaches emit energy (e.g. light), which can overcome several problems 98 

associated with passive approaches. Structured light [41] and laser scanners [42–44] are active 99 

technologies that rely on triangulation to determine the point locations in a 3D space. Both 100 

methods can provide high-quality 3D reconstructions of plant canopy architecture, but 101 

structured light approaches require very accurate correspondence between images while laser 102 
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scanners can be slow, and can potentially heat or even damage plants at high frequencies [45]. 103 

Furthermore, triangulation techniques are susceptible to occlusions (e.g. other objects in the 104 

environment or leaf overlap) that can reduce data quality. Time of Flight (ToF) cameras (e.g. 105 

LiDAR) comprise another active 3D imaging approach that determine the distance of a point 106 

directly from the time delay between an emitted light pulse and its reflection. However, the 107 

resolution of ToF cameras is still relatively low, which has tended to limit its use to imaging 108 

larger plants [46,47]. Although both passive and active 3D imaging approaches can 109 

significantly improve the accuracy of plant growth measurements and even expand on the 110 

architectural traits available to capture compared to 2D imaging, existing 3D imaging 111 

techniques still lack in several crucial areas such as speed, availability, portability, spatial 112 

resolution and cost [25].  113 

 114 

Photometric Stereo (PS) is an active imaging technique that is low-cost and can achieve high 115 

image resolutions and fast capture speeds [48]. This approach has been applied only recently 116 

to plant phenotyping and has shown significant promise [49]. PS relies on a set of images of 117 

an object captured under controlled, varied and directional illumination (Fig. 1; Supplementary 118 

Information S1). The obtained images are then used to generate a dense surface normal (SN) 119 

map of matching resolution, where each pixel represents a normal vector’s components (i.e. 120 

the orientation in three cardinal directions - x, y and z) that allows the overall orientation of the 121 

object to be determined. Prior work has shown that plant leaf SN data acquired by PS can be 122 

captured at high resolutions (4.1 megapixel (MP)), and thus has significant advantages in 123 

encoding complex 3D morphology to aid challenging automated recognition and quantification 124 

tasks, such as the extraction of plant growth data [49,50].  125 

Machine learning is now emerging as a promising field to transform the automation of trait 126 

extractions from plant image data sets [51,52]. Work in the model plant Arabidopsis thaliana 127 



6 
 

(hereafter Arabidopsis) has revealed much about the molecular processes underlying the 128 

relationship between leaf area, biomass and yield [53], and several methods have been 129 

developed for automating data extraction from Arabidopsis images [54–56]. Recently, 130 

significant advances have been made in the development of artificial neural networks (NNs) 131 

for automated segmentation of the rosette and individual leaves, and leaf counting using 2D 132 

image data [57–59]. However, the performance of NN approaches for leaf segmentation, for 133 

example, are still limited by a need for large annotated data sets for training, as models trained 134 

with small-scale databases typically generalise weakly. To our knowledge, currently there are 135 

no NN models optimised for leaf segmentation using 3D data. A subsequent challenge is 136 

accurate object tracking to enable segmented leaves to be tracked across different time points 137 

of a data set [60,61].  138 

 139 

Here we present a novel, low-cost imaging system called PS-Plant that for the first time utilises 140 

PS for monitoring the growth and development of Arabidopsis in 3D. We compared the 141 

accuracy of 3D vs 2D data from PS-Plant for estimating leaf area, angle, and rosette growth 142 

against ground truth measurements and showed comparable results to the state-of-the-art 3D 143 

light-field camera and laser scanning systems [36,43,44]. To demonstrate the versatility of PS-144 

Plant, we analysed growth under a matrix of different conditions that illustrate the dramatic 145 

effect of the environment on the 3D phenotype of a wild-type Arabidopsis plant. Furthermore, 146 

we showed that 3D data from PS-Plant can be used to train NN models for automated leaf 147 

segmentation of a growing rosette, as an important first step in extracting plant features. 148 

Finally, we demonstrated that utilisation of machine learning for leaf segmentation and PS data 149 

can be combined to extract useful growth traits related to dynamic leaf movement and rosette 150 

development.   151 

 152 
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Results and discussion 153 

Photometric stereo imaging using PS-Plant provides accurate spatial data for Arabidopsis 154 

plants   155 

PS-Plant consists of a machine vision camera surrounded by four or eight Near Infrared (NIR) 156 

Light Emitting Diodes (LEDs) and a bespoke LED controller that allows rapid switching of the 157 

LEDs for high temporal data acquisition (Fig. 1A-C; Supplementary Data S1). PS-Plant can 158 

acquire up to 40 2D images per second at a spatial resolution of 2048 × 2048 pixels. The 159 

acquisition process takes 125-225 milliseconds per set of PS images, followed by ca. 5 s to 160 

process the 2D images to compute SN map estimations and 3D surface integration 161 

(Supplementary Information S1 and S2). A NIR filter positioned in front of the lens provides 162 

consistent contrast and brightness for images captured throughout the diel cycle. The camera 163 

provides a 17 x 17 cm field of view that allows simultaneous tracking of up to nine Arabidopsis 164 

plants in 5 x 5 cm pots. Growth data sets for individual plants were extracted from each master 165 

image experiment data set using a Python-based GUI software. Overall, PS-Plant is portable 166 

and light-weight (ca. 7 kg without a PC) and could be adjusted to fit in different growth 167 

environments including growth cabinets or greenhouse environments. At the time of 168 

manufacture, the total cost for PS-Plant was approximately US$3,200. 169 

 170 

A key assumption in PS is that the surface of the imaged object should exhibit Lambertian 171 

reflectance (i.e. it reflects light equally in all directions, while the reflected intensity diminishes 172 

according to the Lambert’s cosine law) (Supplementary Information S1) [48]. As the 173 

reflectance of the object deviates from the Lambertian model, the subsequent estimation error 174 

increases accordingly. To verify if PS-Plant could accurately estimate total area and angle of 175 

an object, we initially used rectangular flat pieces of acrylic of known area (600 mm2) covered 176 

in white matte paper, which achieved a close approximation of Lambertian reflectance [62], 177 
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and imaged with a black matte background to facilitate image segmentation [63]. The acrylic 178 

objects were placed on laser cut wedges to allow imaging at a range of known angles (Fig. 2A). 179 

The projected areas were estimated using 2D and 3D data obtained from PS-Plant. The 3D data 180 

enabled us to estimate the object inclination angles, which were compared to the ground truth 181 

(Fig. 2B).  Using 3D data, the area was estimated accurately up to 45° with a Mean Relative 182 

Error (MRE) of 1.0% (see Supplementary Information S3 for formulas). In contrast, estimates 183 

based on 2D data became inaccurate at inclinations greater than 10°, with a MRE of 10.3% 184 

when all angles were considered. Angle estimations consistently matched the known angle for 185 

all inclinations tested with a Mean Absolute Error (MAE) of 0.89°. These results highlighted 186 

the accuracy of PS-Plant in estimating the angle and area of a flat object in 3D space. 187 

 188 

Next, we investigated Arabidopsis rosettes in PS-Plant and observed that Arabidopsis leaves 189 

exhibited near Lambertian reflectance under NIR light (Supplementary Information S1). We 190 

hypothesised that longer wavelengths penetrate deeper into the leaf and are then typically 191 

scattered, rather than specularly reflected at the leaf surface [64,65]. Similarly to the object 192 

area and angle estimation experiment, we imaged Arabidopsis rosettes inclined from 0° to 45° 193 

using a rotary inclination table and compared the estimated areas using 2D and 3D data with 194 

ground truth measurements of the imaged rosettes (Fig. 2C). Even without inclination (i.e. at 195 

0°) estimates based on 3D data were more accurate compared to those from 2D data, indicating 196 

that the former was more capable of approximating areas for complex objects that include a 197 

degree of surface topographic relief (e.g. an Arabidopsis rosette). 3D data continued to 198 

outperform 2D data at increased inclinations with a MRE of 4.5% and 18.1% for 3D and 2D 199 

estimations, respectively. The accuracy of 3D estimations did decrease at angles >30° due to 200 

the increase in leaf (self-) occlusion that occurred when the whole rosette was inclined 201 

(Supplementary Information S4). When the accuracy of angle estimations was tested with 202 
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selected individual leaves from the Arabidopsis rosettes (Fig. 2D), PS-Plant achieved a MAE 203 

of 3.8° for leaf angle estimations. We observed that the estimated and known leaf inclination 204 

angle correlated in the mid-range (10 to 30°) but less so at lower and higher angles. This was 205 

likely due to the natural curvature of Arabidopsis leaves compared to a flat surface, as 206 

Arabidopsis leaf blades typically have a convex shape when observed from above. Therefore, 207 

when the leaves were not inclined (i.e. at 0°), the estimated angles were still higher than zero 208 

as they were calculated from the varying SN values across each leaf blade surface.  209 

 210 

PS-Plant enables accurate 3D reconstructions of growing Arabidopsis rosettes   211 

Following validation, we assessed the accuracy and consistency of PS-Plant in monitoring plant 212 

growth and mean rosette inclination over time (Fig. 3). PS-Plant captured both 2D and 3D data 213 

for Arabidopsis plants for 12 days, starting from 11 days after germination (DAG) in standard 214 

growth conditions (22 °C, 150 µmol photons m-2 s-1, 12 : 12 hr light : dark). The automated 215 

image capture program resulted in a SN map produced for each plant every 30 minutes that 216 

was used to characterise rosette surface curvature (Fig. 3A) as described in Supplementary 217 

Information S1. Furthermore, SN data could be used to derive rosette surface inclination angles 218 

and concavity/convexity values.  Such information can be used, for example, in leaf 219 

developmental analysis to evaluate perturbances in normal leaf abaxial / adaxial expansion 220 

[66,67]. 221 

 222 

Both 2D and 3D data sets produced exponential growth curves for projected rosette area (PRA) 223 

that were typical for Arabidopsis growth (Fig. 3B). However, 2D data consistently 224 

underestimated PRA and showed erroneous reductions in area estimates consistent with 225 

rhythmic nastic leaf movements (Fig. 3C, D; Supplementary Data S2). In contrast, 3D data 226 

accounted for leaf curvature and movement (Supplementary Information S1), such that PRA 227 
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increased more smoothly over the time course of the experiment. The small decreases observed 228 

for PRA from 3D data were associated with self-occlusion at high leaf inclination angles (as in 229 

Fig. 2). A number of studies have shown that growing Arabidopsis leaves exhibit rhythmic 230 

movement that is controlled by the circadian oscillator [68–71]. PS-Plant estimations of rosette 231 

surface inclination (i.e. the total inclination of all rosette leaf blades and petioles) is able to 232 

accurately record this rhythmicity, which in our 12L:12D conditions achieved an amplitude 233 

peak at 4-6 hr post dusk (Fig. 3D) (calculated using BioDare2; see Materials and Methods). 234 

Interestingly, our data showed that leaf rhythmicity appears to be anticipatory up to 16 DAG, 235 

after which it was strictly diurnal. As older plants have a higher proportion of mature leaves, 236 

that are no longer elongating, our data suggests that these leaves still exhibit rhythmic 237 

movements but they are driven by the daily light-dark cycle rather than the circadian oscillator.  238 

These data highlight the capability of PS-Plant to not only provide accurate area estimates, but 239 

to capture leaf movement rhythms that are regulated by the circadian clock and the prevailing 240 

photoperiod.  241 

 242 

Rosette architectural parameters derived from 2D data were also obtained from PS-Plant, 243 

including circularity (or stockiness), compactness, diameter and perimeter (Fig. 3E-H) 244 

[36,72,73]. These data showed, for example, an increase in perimeter and diameter that was 245 

consistent with plant growth, and a decrease in compactness, which was associated with 246 

elongation of leaf petioles as the rosette developed.   247 

 248 

PS-Plant reveals 3D growth traits for Arabidopsis plant grown in different environments 249 

We next wanted to establish whether PS-Plant could capture alterations in growth plasticity 250 

induced by changes in the external light and temperature environment. Low levels of 251 

photosynthetic active radiation are known to elicit a shade avoidance response (SAR), where 252 
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plants exhibit elongated stems and petioles, increased hyponasty and smaller and fewer leaves 253 

[74–76]. As high temperatures to some extent target the same molecular pathways, heat also 254 

elicits an SAR-type response [77,78]. These studies illustrate that the growth strategy adopted 255 

by the plant is strongly dependent on the surrounding light environment and the ambient 256 

temperature.  To capture these morphological changes we tracked Arabidopsis plants under 257 

nine conditions that differed in temperature [17 (LT), 22 (LT) and 27°C (HT)] and light 258 

intensity [40 (LL), 150 (ML) and 300 µmol photons m-2 s-1 (HL)] (Fig. 4A; Supplementary Fig. 259 

S1; Data S3). 260 

 261 

Plants grown in LL had small leaves, recorded as low PRA, which was comparable in plants 262 

grown at different temperatures. Increases in light levels led to a concomitant rise in PRA, 263 

however, over light intensities of 150 µmol m-2 s-1 the PRA was strictly temperature-dependent 264 

with the highest PRA achieved at the highest light and temperature (Fig. 4B). The observed 265 

differences in PRA were reasonably consistent with overall biomass accumulation at 24 DAG 266 

(Fig. 4C, D). Notably, in ML plants a shift from 17°C to 22°C led to an increase in biomass, 267 

while a shift from 22°C to 27°C did not. Although we have not measured leaf thickness, 268 

previous work has shown that plants grown in high temperatures tend to have thinner leaves 269 

and a higher specific leaf area (the ratio of leaf area to dry mass) [79,80], which could explain 270 

the increase in area from 22°C to 27°C but no increase in biomass. HL and ML plants produce 271 

more leaves at 22°C compared to 17°C, signifying a larger investment in vegetative growth. 272 

Plants grown at 27°C induced flowering in HL and ML plants and so their final leaf number 273 

was slightly lower than at 22°C (Fig. 4E). 274 

  275 

Together, these results could be explained by the thermodynamic relationship between the dark 276 

reactions (e.g. Rubisco activity and the Calvin cycle) and light reactions of photosynthesis. The 277 
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assimilation rate of CO2 by Rubisco is temperature-dependent, such that increased 278 

temperatures (up to ca. 30 °C) typically correlate with increased CO2 assimilation in C3 plants 279 

grown under non-limiting light conditions [81–83]. These photochemical processes most likely 280 

underlie the light- and temperature-dependent changes in PRA and investment in leaf biomass 281 

production.   Contrasting with this, in LL the supply of ATP and NADPH to the Calvin cycle 282 

by the light reactions may have constrained CO2 uptake, and thus growth rates were not 283 

increased by higher temperatures.  284 

 285 

PS-Plant also captured differences in petiole length. Analysis of the ML and HL illustrated that 286 

increased temperature stimulated petiole elongation in these plants. This is evident in PS-Plant 287 

measurements of plant compactness. However, this data also show that HL plants are generally 288 

more compact than ML (Supplementary Fig. S2), and that temperature-mediated differences in  289 

compactness are less evident in plants grown in HL. This indicates that plants tend to invest 290 

more in leaf expansion compared to petiole elongation under higher light intensities.  291 

 292 

We then compared the relative expansion rate (RER) based on 3D PRA data for different light-293 

temp conditions over the diel cycle (Fig. 4F-H). RER data for Arabidopsis vary between 294 

different studies, but generally have comparable rates within light and dark periods for wild-295 

type plants grown under standard growth conditions [9,36,43,84]. In the present study, RER in 296 

the dark period was not significantly different across all growth conditions tested [as 297 

determined by one-way ANOVA (p < 0.05), followed by Tukey’s HSD tests]. This was not 298 

unexpected, as the rate of leaf starch turnover during the night is known to be maintained over 299 

a wide range of environmental conditions and temperatures in Arabidopsis [85,86]. RER values 300 

during the light period were comparable for plants grown in ML and plants grown in HL-MT 301 

and HL-LT. In contrast, HL-HT plants showed an increase RER in the light compared to the 302 
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dark period. As HL-HT plants also had the highest biomass accumulation (Fig. 4D), results 303 

obtained with PS-Plant suggest HL-HT plants were limited more by carbon turnover than CO2 304 

assimilation. All plants grown in LL had a significantly decreased RER in the light compared 305 

to the dark period. Notably, temperature had no impact on RER in the light for LL plants, 306 

indicating that photosynthetic growth was primarily limited by the low irradiance. Further 307 

studies on carbon allocation and starch turnover should be carried to complement these 308 

observations and hypotheses generated using PS-Plant data. 309 

 310 

The internal circadian clock in plants has a periodicity close to 24 hr that can be entrained by 311 

environmental cues [87]. Thus, we next used PS-Plant to examine the rhythmicity of total leaf 312 

movement (i.e. rosette surface inclination, see Fig. 3D) to compare the capacity of entrainment 313 

of the clock to different growth conditions (Fig. 5A-C; Supplementary Fig. S3) [68]. We 314 

compared three standard parameters: period, phase and amplitude [87,88].  315 

 316 

As expected, all conditions showed a similar period for leaf movement of ca. 24 hr (p < 0.05) 317 

as all plants were grown in a 12 : 12 hr light : dark cycle (Fig. 5D). However, phase and 318 

amplitude differed between growth conditions. Through all conditions peak phase occurred 319 

during the night, with the general observation that incremental rises in light intensity led to a 320 

phase delay in the peak. A possible exception is that in 17°C HL rhythms peaked at the end of 321 

the day. It is noteworthy that the 17°C ML and HL leaf rhythm traces are very low amplitude, 322 

most likely because these plants had very limited petiole growth. We also found that 323 

temperature effects the phase of the rhythm across all light conditions. For example, in both 324 

ML and HL growth at 27°C advanced the peak phase compared to 22°C.  325 

 326 
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Monitoring plant behaviour through time revealed the impact on light and temperature through 327 

development (Supplementary Fig. S3).  A common trend is that warm temperatures increase 328 

mean rosette leaf inclination angle, or hyponasty, though the threshold for this response varies 329 

in the different light treatments. Another notable feature is that hyponasty and rhythm 330 

amplitude dampen over time.  Our data show that under LL the leaf movement rhythms are 331 

more sinusoidal and higher amplitude rhythms than in ML and HL. Leaf movement rhythm 332 

waveforms of ML and HL are also quite different from LL, with some evidence of tracking 333 

dawn and dusk. Interestingly in HL the rhythm at 17°C is clearly in antiphase with 22°C and 334 

27°C. Through time the 17°C rhythm dampens to high leaf hyponasty, while 22°C/ 27°C leaf 335 

rhythms dampen to a low leaf angle. In both cases this effect appears to arise from a gradual 336 

reduction in rhythmic regulation during the night period. Overall, these data illustrate that PS-337 

Plant is able to extract quantitative data on a large range of traits associated with rhythmic leaf 338 

growth that are typically challenging to capture.   339 

 340 

Use of PS-Plant data and machine learning for accurate leaf segmentations  341 

Our next goal was to examine the capacity of PS-Plant to track the phenotypic behaviour of 342 

individual leaves on a growing Arabidopsis rosette. To achieve this, we labelled individual 343 

leaves in 221 images of ML-MT rosettes (Supplementary Information S5) and used machine 344 

learning approaches to segment leaves. We compared two available NN architectures, the end-345 

to-end recurrent neural network with recurrent attention (RNN) [58] and the Mask R-346 

convolutional neural network (R-CNN) [89], to examine the suitability of PS-Plant data for 347 

NNs designed for instance segmentation using RGB images. We focused on ML-MT plants as 348 

their growth was more uniform across different individuals compared to other growth 349 

conditions, which allowed the models to converge faster and achieve better results during the 350 

training process. The data set was split into 179 and 42 images (approx. 80: 20 ratio) for training 351 
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and validating the models, respectively. To avoid overfitting the model, we manually 352 

partitioned plant images for training and validation data sets to ensure that all time-series 353 

images of a single specimen appear in either training or validation data sets, but not both.  354 

 355 

PS-Plant produces a range of different data: from grayscale images to SN maps (e.g. Fig. 3). 356 

We trained the RNN and R-CNN architectures from initial random weights, while R-CNN was 357 

also pre-trained using transfer learning weights generated using the COCO data set [90]. The 358 

RNN and R-CNN architectures were trained using three different types of PS data to compare 359 

for segmentation accuracy: i) composite (SN in x and y direction, and albedo for RGB layers), 360 

ii) grayscale, and iii) albedo images. All data used for training, including the raw PS-Plant data 361 

and rosette masks are available as outlined Supplementary Information S5. The obtained leaf 362 

segmentations were compared to the ground truth images using Symmetric Best Dice (SBD; 363 

score of the accuracy of leaf instance segmentation) and Foreground-Background Dice (FBD; 364 

score of the accuracy of rosette segmentation) evaluation formulas (Supplementary 365 

Information S3) [91]. 366 

 367 

The type of PS data used did not significantly influence SBD or FBD scores, suggesting that 368 

accuracy of RGB-based models was not affected by the different types of PS-based data. The 369 

most accurate leaf segmentation results were achieved with models based on the R-CNN 370 

architecture using pre-trained weights (Fig. 6; Table 1), resulting in SBD scores that ranged 371 

from 0.806 (composite image) to 0.814 (albedo). In comparison, the RNN architecture resulted 372 

in lower SBD scores of 0.440 (composite image) and 0.560 (albedo and grayscale). The pre-373 

trained R-CNN model also achieved the most accurate rosette segmentation results, with FBD 374 

scores ranging from 0.94 (albedo) to 0.946 (grayscale). In contrast, FBD scores for the RNN 375 

model varied from 0.798 (composite image) to 0.891 (albedo), indicating that the relative 376 
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performance of the RNN architecture was worse for both leaf and rosette segmentation with 377 

our data sets when compared to the R-CNN approach. 378 

 379 

Table 1. Performance comparison of leaf instance segmentation for two different machine 380 

learning architectures. The Mask R-CNN [89] and RNN [58] architectures were trained with 381 

composite (SN in x and y direction, and albedo for RGB layers), grayscale or albedo images. 382 

The training procedure for the RNN architecture was the same as proposed by the authors [58], 383 

while the Mask R-CNN was as follows: head layers for 10 epochs at 10−2 Learning Rate (LR); 384 

all layers for 30 epochs at 10−2 LR, 30 epochs at 10−3 LR, 30 epochs at 10−4 LR, and head 385 

layers for 10 epochs at 10−4 LR. The Mask R-CNN was trained both from initial random 386 

weights and from pre-trained model weights, while RNN was only trained from initial random 387 

weights. Abbreviations: SBD, Symmetric Best Dice; FBD Foreground-Background Dice. 388 

   389 

Image type 

Mask R-CNN  RNN  

Random weights Pre-trained weights Random weights 

SBD FBD SBD FBD SBD FBD 

Grayscale 0.813 0.942 0.812 0.946 0.556 0.866 

Albedo 0.758 0.913 0.814 0.940 0.560 0.891 

Surface normal map 0.789 0.922 0.806 0.941 0.440 0.798 

 390 

Using PS-Plant data for dynamic tracking of individual leaf growth and movement 391 

We next investigated the performances of four different approaches for tracking leaves using 392 

the segmented image data sets (e.g. Fig. 6): i) kernelized correlation filters [92], ii) optical flow 393 

[93], iii) multiple instance learning tracker [94], and iv) a particle filter [95]. Object tracking, 394 

especially with partially or even completely occluded objects, is one of the most challenging 395 
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areas in computer vision [60,61]. Tracking Arabidopsis leaves over time is particularly 396 

challenging due to changes in both shape and movement during growth together with 397 

associated occlusions (Supplementary Information S4). The best results were achieved with a 398 

particle filter based on leaf instance centroid location and velocity across the time-series images 399 

(Fig. 7). Leaf overlap remained a limitation, as an occluding leaf was sometimes assigned the 400 

label of an occluded leaf. However, erroneous labelling was found to be infrequent and 401 

straightforward to manually corrected post hoc, resulting in a robust semi-automated leaf 402 

tracker (Supplementary Data S4).  403 

 404 

Once we were confident that we could reliably track individual leaves using PS-Plant, we 405 

separated leaf blades and petioles by applying a morphological opening function with a 406 

predefined radius (3 to 11 pixels based on the leaf size) to the leaf binary mask. The point of 407 

differentiation (PB) is the mean x and y coordinates of the leaf blade and petiole (Fig. 8A). This 408 

enabled separate examinations of leaf blade and petiole traits. We then derived separated tissue-409 

specific data including leaf blade area and inclination angle, and leaf blade and petiole length. 410 

The angle of leaf blade inclination was estimated using two different methods: i) a point-based 411 

approach where leaf blade angle was determined using SN data across the line from PB to the 412 

leaf tip (PT), and ii) the mean surface inclination of the whole leaf blade. Both methods 413 

produced similar results (Supplementary Fig. S4). However, we chose to use the latter (ii) as 414 

the PB was not always visible due to leaf occlusions or the petiole being too small to be 415 

distinguished (e.g. maturing leaves or leaves grown in low temperature).  416 

 417 

To demonstrate our approach, we tracked leaves 1 to 4 of plants grown in ML at three different 418 

temperatures from 15 to 18 DAG. Leaves 1 to 4 were chosen as representative examples of 419 

maturing (1 and 2) and immature (3 and 4) leaves (Fig. 8; Supplementary Data S5A-D). 420 
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Consistent with our findings for PRA under different growth conditions (Fig. 4; Supplementary 421 

Fig. S1), the leaf blade areas of maturing and immature leaves from HT plants were 422 

significantly larger than leaf blades from MT and LT plants [as determined by one-way 423 

ANOVA (p < 0.05), followed by Tukey’s HSD tests; Fig. 8B]. The latter results confirmed that 424 

the increased PRA observed using PS-Plant for plants grown in HT plants was specifically 425 

associated with an increase in leaf blade area. Leaves that emerged prior to the start of the 426 

experiment at 11 DAG (i.e. leaf 1) showed an increase in leaf blade area in HT plants compared 427 

to MT and LT plants (Fig. 8B). However, leaves that emerged after 11 DAG (i.e. leaf 4) had 428 

an even more dramatic growth response to increased temperatures. For example, the blade area 429 

for leaf 1 and 4 at 17 DAG was 40% and 130% higher in HT compared to LT, respectively. 430 

Similarly, the mean surface inclination of leaf blades was higher in HT (Fig. 8C). The latter 431 

result was also consistent with our findings for whole rosette surface inclination at higher 432 

temperatures (Fig. 3; 5; Supplementary Fig. S3).  433 

 434 

We then calculated parameters associated with diurnal movement for individual leaf blades 435 

(Fig. 8D). We targeted immature leaf blades as their movement patterns were clearer and more 436 

consistent compared to maturing leaf blades. Period or phase measurements from immature 437 

leaf blades were generally similar between growth conditions and comparable to values for 438 

whole rosettes (Fig. 5). In contrast, measurements of immature leaf blade amplitude were 439 

significantly enhanced at MT and HT and generally higher than values for whole rosettes. This 440 

was not unexpected as immature leaves are more active than older leaves and contribute more 441 

to overall whole rosette amplitude (see Supplementary Data S3 and S5). Furthermore, the 442 

observed temperature-associated increases in amplitude and leaf hyponasty were consistent 443 

with whole rosette data (Fig. 5D; Supplementary Fig. S3B). Thus, we concluded that 444 

measurements of periodic rhythms can be performed reliably with PS-Plant data using whole 445 
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rosettes or individual leaf blades. The values obtained in the present study for period and phase 446 

are comparable to those reported for wild-type plants under standard growth conditions by 447 

other automated top-down systems for monitoring leaf movement, such as OSCILLATOR 448 

[96].  449 

 450 

Finally, we used PS-Plant to reveal whether petiole elongation showed a similar response to 451 

temperature as the leaf blade by comparing the ratio of leaf blade and petiole length from 452 

maturing and immature leaves (Fig. 8E). Petioles have been shown to elongate faster at higher 453 

temperatures [77,80,97]. In the present study we observed that leaves from MT and LT plants 454 

had a blade: petiole length ratio that ranged from 2: 1 to 4: 1. Immature leaves did not have a 455 

detectable petiole under LL, thus only maturing leaves were included at LT.  In contrast, HT 456 

plants had ratios of approximately 1: 1 for both maturing and immature leaves, indicating that 457 

HT resulted in an increase petiole elongation relative to leaf blade growth under ML.  Future 458 

work should examine this ratio at different light intensities, as petioles and leaf blades are 459 

known to have different responses to light. For example, petioles are known to elongate faster 460 

under low light while leaf blades grow more slowly [78,98].  461 

 462 

Conclusion 463 

In this paper, we have introduced an adaptable and low-maintenance platform for affordable, 464 

advanced image-based phenotyping. A key goal was to ensure accessibility to the research 465 

community. In this regard, PS-Plant can be considered a powerful, alternative solution to 3D 466 

systems based on laser scanning and light-field camera technologies [36,43], which is 467 

particularly well suited for setup in low-income or developing countries. Our system exploits 468 

the richer data provided by PS-Plant with a combination of traditional image processing and 469 

machine learning techniques to extract rosette and leaf-level measurements in an automated 470 
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manner. Here, we have demonstrated that PS-Plant is able to accurately monitor several growth 471 

traits and diurnal rhythms of different phenotypes of Arabidopsis plants produced in response 472 

to varied environments. This provides credibility that future work with PS-Plant will produce 473 

robust data for a wide variety of mutant phenotypes. Additionally, the concomitant 474 

quantification of overall growth, leaf traits and circadian rhythms can facilitate a better 475 

understanding of the relationships among environment, plant yield and internal molecular 476 

networks. Previous work has also highlighted that PS can capture high-resolution 3D surface 477 

details of leaf surface structures, such as leaf curvature and trichomes, which could be used to 478 

investigate dynamic changes in leaf development [50]. Research in plant phenotyping needs to 479 

focus on increasing accessibility and instituting effective data standards and management 480 

practices to assist with improving plant productivity and genetic gain [99,100]. To help 481 

accelerate the latter, we have provided the PS training imaging data set from this study for 482 

community access (Supplementary Information S5) and a detailed protocol for software usage 483 

and data analysis with a test experimental data set (Supplementary Information S6). In its 484 

current design, PS-Plant is optimal for measuring growth traits in rosette-shaped plants such as 485 

Arabidopsis. However, we believe it can also be used during the seedling stage of other eudicot 486 

species (e.g. tomato, cabbage, oilseed rape) to analyse circadian rhythms by observing the 487 

rhythmic movements of cotyledons. Future work with PS-Plant will focus on improvements in 488 

leaf tracking [101], integration with spectral information [102], and incorporation of a low-cost 489 

depth camera to combine the high resolution of PS with a lower resolution depth map to 490 

characterise whole plants with more complex architectures.  491 

 492 

Materials and Methods 493 

Plant materials 494 
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Arabidopsis (Arabidopsis thaliana (L.) Heynh. Col-0) wild-type seeds were stratified for 2-3 495 

days at 4 °C. Each seed was placed in a square pot (50 mm) containing F2+S compost 496 

(Levington) covered in acrylic black felt fabric with a central hole (5 mm) and germinated at 497 

22 ºC under white light (150 µmol photons m-2 s-1 at the plant level) in 12 : 12 hr light : dark 498 

for 10 d in a Percival growth cabinet (SE‐41AR2). For the plant area validation experiment, 499 

the plants were kept in this cabinet for 22 DAG. For imaging with PS-Plant, the seedlings were 500 

transferred to a Snijders growth cabinet (Microclima MC1000). 501 

 502 

PS-Plant hardware 503 

PS-Plant consists of a machine vision NIR monochrome camera (Grasshopper3 GS3-U3-504 

41C6NIR-C, FLIR Systems Inc., Canada) with a 16 mm fixed focal length lens (Kowa 1”SC 505 

LM25SC, Kowa Company Limited, Japan) with a NIR filter attached (LP920, MidOpt, Illinois, 506 

USA), four or eight NIR LEDs (PowerStar IR 940 nm,  Intelligent LED Solutions, UK), and 507 

an in-house designed LED controller that allows rapid switching of LEDs using an Arduino 508 

platform (MKRZero, Arduino, Italy). The camera and LEDs were fixed on a square acrylic 509 

sheet (44 × 44 cm) and positioned at a height of 40 cm above the imaging plants (Fig. 1B, C). 510 

The camera was positioned centrally in the sheet and the LEDs were positioned around the 511 

camera at 45º angle increments. The LEDs were tilted at a 30º angle to illuminate the area 512 

under the camera field of view (Fig. 1B). The base of the rig was painted matt black to limit 513 

the introduction of specularities from the background. A PC laptop (K501UQ-DM050T, 514 

AsusTek Computer Inc., Taiwan) was used to control LED illuminations, and acquire, store 515 

and process images using GUI software written in Python. Details on rig assembly and the 516 

LED controller design are outlined in Supplementary Information S2.  517 

 518 

Leaf movement rhythm analysis  519 
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The leaf movement rhythm analysis was performed using the mean inclination angles (whole 520 

rosette or individual leaf blade) as an input for BioDare2 beta (https://biodare2.ed.ac.uk/). The 521 

data was treated with baseline detrending prior to period, phase and amplitude estimations, 522 

which was done using the MFourFit algorithm [88].  523 

 524 

AVAILABILITY OF SUPPORTING DATA 525 

The training data set supporting the results of this article is available in an Edinburgh DataShare 526 

repository (https://datashare.is.ed.ac.uk/handle/10283/3280) and outlined in Supplementary 527 

Information S5. This data set represents approximately 0.4% of the 50,625 images captured 528 

during the “matrix” growth experiment (see Fig. 4A). A user protocol is available in 529 

Supplementary Information S6 to assist with software installation (all software is available at 530 

https://bit.ly/2EFOk0O, the PS-Plant software RRID number is SCR_017032) and provides 531 

detailed instructions from image capture through to dynamic growth analyses. Furthermore, a 532 

test data set is available in the Edinburgh DataShare repository 533 

(https://datashare.is.ed.ac.uk/handle/10283/3279). 534 

 535 

ADDITIONAL FILES 536 

Supplementary Information S1. Overview of 2D image data processing captured using PS-537 

Plant. 538 

Supplementary Information S2. Overview of the PS-Plant hardware. 539 

Supplementary Information S3. Formulas. 540 

Supplementary Information S4. Area estimation errors. 541 

Supplementary Information S5. PS-Plant training data set description. 542 

Supplementary Information S6. PS-Plant protocol. 543 

Supplementary Figure S1. Rosette and individual leaf growth analysis.   544 
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Supplementary Figure S2. Rosette compactness for plants grown in different conditions. 545 

Supplementary Figure S3. Mean rosette surface inclinations for all growth conditions 546 

separated by light treatment. 547 

Supplementary Figure S4. Estimated leaf inclination of leaf 1 in medium light and 27oC. 548 

Supplementary Data S1. Interactive 3D model of the PS-Plant system. The model is 549 

provided as an .stl file (Rich Media 1.stl), an online link to zoomable, colour version can be 550 

found here: https://bit.ly/2GXNhLy. 551 

Supplementary Data S2. Comparison of Arabidopsis growth from 2D and 3D data. The 552 

graph (top) includes standard deviation of PRA data for three plants growing under conditions 553 

outlined in Fig. 3. Examples of plant growth are shown below for 2D [albedo; bottom left (see 554 

Supp. Info. 1 for details)] and surface normal map data (bottom right). 555 

Supplementary Data S3. Arabidopsis plants grow and move differently under different 556 

light and temperature conditions. Examples of (A) surface normal models or (B) greyscale 557 

images for plants of the same age under each growth conditions tested (see Fig. 4) are shown 558 

from 11 to 24 DAG.  559 

Supplementary Data S4. Automated tracking of individual Arabidopsis leaves.  Example 560 

of leaf label tracking following rosette segmentation of a ML-MT plant shown from 15 to 18 561 

DAG. Note that leaves retained the same colour after tracking (right). 562 

Supplementary Data S5. Using PS-Plant for automated tracking of individual 563 

Arabidopsis leaf movement in 3D. Four videos illustrate leaf blade tracking of leaves 1 to 4, 564 

respectively, for a plant grown in ML-MT from 15 to 18 DAG. Each video shows a trail of leaf 565 

blade centroid movement (red dots) on an albedo 2D video (top left). Blue dots illustrate leaf 566 

blade movement on 2D x-y (bottom left) and y-z projections (bottom right), and a 3D x-y-z 567 

graph (top right). 568 

 569 
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 861 

FIGURE LEGENDS 862 

Figure 1. Capturing dynamic plant growth traits using photometric stereo imaging. (A) 863 

PS comprises a circular arrangement of NIR LEDs with a central camera positioned above the 864 

plant(s). Red-dashed lines show the direction of light vectors. (B, C) Assembled PS-Plant 865 

system shown from side and top views. Each LED is attached to a dedicated heatsink and 866 
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angled at 30º using a custom 3D printed bracket to minimise the light distribution across the 867 

field of view. Both the camera and light sources are stationary.  868 

 869 

Figure 2. Evaluating the accuracy of PS-Plant with 2D and 3D data.  (A, B) The estimated 870 

area and inclination angle of a flat, matte object (600 mm2) from 0º to 45º at 5º intervals. Each 871 

data point represents the average of thirty randomly selected regional patches of varying size 872 

(35-600 mm2). (C, D) The area of three similarly sized Arabidopsis whole rosettes (750 ± 13.5 873 

mm2) and leaf inclination angles were estimated from 0-45º at 5º intervals. The dashed-black 874 

lines indicate ground truth measurements. Error bars represent ±SD of the means. 875 

 876 

Figure 3. Data outputs of PS-Plant for Arabidopsis. (A) Surface normal map (top) rendered 877 

for a wild-type Arabidopsis rosette used to derive models for surface inclination (middle) and 878 

convexity (bottom). (B) Projected rosette area estimates captured for wild-type plants under 879 

standard growth conditions (22 °C, 150 µmol photons m-2 s-1, 12 : 12 h light : dark) for 2D and 880 

3D data from the mean ± SE values of 13 biological replicates. (C) Percentage difference 881 

between 2D and 3D estimations. (D) Estimated rosette mean inclination angles across the 882 

rosette surface. (E-H) Circularity, compactness, diameter and perimeter estimates derived from 883 

2D data.  884 

 885 

Figure 4. PS-Plant shows that Arabidopsis plants grown under different conditions show 886 

differences in growth architecture. (A) Wild-type Arabidopsis plants (24 DAG) following 887 

growth under nine different light and temperature conditions. (B) Estimated 3D projected 888 

rosette area growth of rosettes grown under the different environments. (C-E) Estimated 3D 889 

projected area, fresh weights and leaf count for rosettes at 24 DAG. (F-H) The average relative 890 

expansion rate (RER) during light and dark periods for each growth condition (calculated from 891 
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15-18 DAG with a 4 hr sliding window). Values represent the mean ± SE values of at least 892 

three biological replicates. Asterisks indicate significant differences between light and dark 893 

values for each condition based on Student’s t-test (p < 0.05). The colour legends in A are 894 

applicable to B, and F-H.  895 

 896 

Figure 5. Arabidopsis plants grown under different conditions show differences in 897 

circadian movement. (A-C) The relative rosette surface inclination (i.e. rosette surface 898 

inclination following baseline detrending and alignment to the mean) for plants grown in high, 899 

medium and low light from 15-18 DAG (see Supplementary Figure S3 for full data sets). (D) 900 

Period, phase and amplitude calculated by the MFourFit method [88] using data from 11-24 901 

DAG.  Values are the mean ±SD of measurements made on at least three biological replicates. 902 

Values within each column followed by different letters are significantly different from each 903 

other and values followed by the same letter are not (P < 0.05) as determined by ANOVA 904 

followed by Tukey’s HSD tests. 905 

 906 

Figure 6. Automated segmentation of individual Arabidopsis leaves using PS-Plant data. 907 

Examples are shown based on the Mask R-CNN architecture for plants grown in ML at three 908 

different temperatures. (A) Composite input images are composed of surface normals in x, y 909 

directions and albedo data. (B) Manually labelled images (ground truth) used for training. (C) 910 

Mask R-CNN outputs images showing automated leaf segmentation. For ground truth images 911 

and Mask-RCNN outputs each leaf was assigned a unique arbitrary colour.  912 

 913 

Figure 7. Automated tracking of leaf labels from segmented Arabidopsis rosettes. (A) 914 

Three consecutive frames for labelled leaves produced using the trained Mask R-CNN 915 

architecture (as in Fig. 6). (B) Tracked leaves retained the same colour after applying label 916 



38 
 

tracking (see Rich Media 4). The particle filter allowed calibration of a variety of parameters, 917 

including span (the velocity of ‘span + 1’ recent frames), search radius (the furthest distance 918 

(in pixels) an object may travel between frames), frame memory (the maximum number of 919 

frames a seen/tracked object that is absent will be remembered) and filter (the minimum 920 

number of frames an object must be seen/tracked to be included). The following particle filter 921 

settings produced the best results: span (10), search radius (30), frame memory (3) and filter 922 

(100). (C) Example of leaf tracking using leaf centroid locations. Each coloured line represents 923 

the movement of the centroid location of an individual leaf from 11 to 24 DAG. 924 

 925 

Figure 8. Analyses of growth and movement for individual leaves. (A) Key landmarks for 926 

leaf analysis: rosette origin (Po), leaf base/leaf blade and petiole intersection point (PB) and leaf 927 

tip (PT). Data are shown from plants grown in ML at three different temperatures [17 °C (LT) 928 

22 °C (MT) or 27 °C (HT)]. (B, C) Leaf blade area and mean surface inclination of a maturing 929 

leaf (leaf 1) and an immature leaf (leaf 4) from 15 to 18 DAG. Error bars represent the mean ± 930 

SE of three separate leaves. (D) Period, phase and amplitude values of the leaf blade from 931 

immature leaves (leaves 3 and 4; n = 6 leaves). Letters above the error bars indicate significant 932 

differences within each data type (p < 0.05) as determined by ANOVA followed by Tukey’s 933 

HSD tests. Data sets with the same letter are not significantly different. (E) The ratio of leaf 934 

blade: petiole length for leaves 1 to 4 (L1 to L4). Values represent the mean ratio over 24 hr 935 

(17-18 DAG) for three separate leaves. Letters indicate significant differences (p < 0.05) within 936 

each leaf data set for different temperatures (i.e. L1, L2, L3 and L4). 937 
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