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Abstract. As a promising way to extract insightful information from massive 

data, service recommendation has gained ever-increasing attentions in both aca-

demic and industrial areas. Recently, the Locality-Sensitive Hashing (LSH) tech-

nique is introduced into service recommendation to pursue high recommendation 

efficiency and the capability of privacy-preservation, especially when the histor-

ical service quality (QoS) data used to make recommendation decisions are dis-

tributed across different platforms. However, existing LSH-based service recom-

mendation approaches often face the following challenge: they often assume that 

the QoS data for service recommendation are static and unique, without consid-

ering the influence of dynamic context (e.g., time) on QoS. In view of this chal-

lenge, we extend the traditional LSH technique to incorporate the time factor and 

further propose a novel time-aware and privacy-preserving service recommenda-

tion approach based on LSH. Finally, we conduct extensive experiments on a 

large-scale real-world dataset, i.e., WS-DREAM, to validate the effectiveness and 

efficiency of our proposal. The experiment results show that our approach 

achieves a good tradeoff between recommendation accuracy and efficiency while 

guaranteeing privacy-preservation. 

Keywords: Distributed Service Recommendation, Privacy-preservation, Time, 

Locality-Sensitive Hashing. 

1 Introduction 

With the advent of Internet-of-Things (IoT), an ever-increasing number of intelligent 
sensor devices (e.g., mobile phones, smart watches and GPS navigators) are deployed in 
human daily activities, industrial production and social interactions, generating consid-
erable amount of data with sparse but valuable information [12, 25, 24]. In this situation, 
the service recommendation techniques (e.g., Collaborative Filtering) have become a 
promising way for users to extract insightful information from massive data. Typically, 
through analyzing the historical QoS (quality of services) data of candidate services and 
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the subjective preferences of a target user, a recommender system can help the target 
user to find out the appropriate services that he or she prefers in a time-efficient and cost-
effective manner; thus the target user’s service selection burden can be reduced consid-
erably. 

However, in the IoT environment, the historical QoS data for service recommendation 
decision-makings are often not centralized, but distributed across different platforms or 
parties (e.g., some QoS data are recorded by Amazon; some are owned by IBM; the rest 
are owned by other companies) [21, 6, 30]. In this situation, from the perspective of 
recommender systems, it is necessary to integrate the QoS data recorded by Amazon,  
IBM and other companies appropriately to pursue more comprehensive and accurate 
recommended results. However, Amazon, IBM as well as other companies often cannot 
release their data to the public due to privacy concerns, which impedes the cross-plat-
form data integration and the distributed service recommendation significantly. There-
fore, it becomes an essential requirement for a recommender system to protect the pri-
vate information of users when integrating the distributed QoS data for recommendation. 

The Locality-Sensitive Hashing (LSH) [5] technique has recently been introduced 
into service recommendation to achieve the abovementioned privacy-preservation goal. 
Typically, the data owners (e.g., Amazon and IBM) first transform their private QoS 
data into corresponding hash values with little privacy and then release the hash values 
to the public. Afterwards, a recommender system utilizes the hash values with little pri-
vacy to make recommendation decisions; this way, the private information of users can 
be protected. Besides, as the hash tables can be built offline, the recommendation effi-
ciency would be improved considerably.  

However, existing LSH-based service recommendation approaches often assume that 
the bases of recommendation decisions, i.e., the historical QoS data of candidate services 
are static and unique, without considering the dynamic influence of context factors (e.g., 
time) on QoS; therefore, the produced recommended results may be not reasonable and 
accurate enough.  

In view of this challenge, we extend the traditional LSH-based recommendation mod-
els to incorporate a time factor. In this paper, we propose a novel time-aware and pri-
vacy-preserving service recommendation approach to improve the recommendation ac-
curacy. In summary, the contributions of this paper are three-fold. 

(1) We introduce the time factor into LSH-based service recommendation models, in 
order to adapt the dynamic QoS update of candidate services. 

(2) We propose a novel time-aware and privacy-preserving service recommendation 
approach based on the time-aware LSH to pursue more accurate recommended results. 

(3) A wide range of experiments are conducted based on the public QoS dataset, i.e., 
WS-DREAM. Experiment results demonstrate the advantages of our proposal in terms of 
service recommendation accuracy and efficiency while protecting the private infor-
mation of users. 

The reminder of this article is structured as follows. Section 2 reviews the existing 
approaches for service recommendation. In Section 3, we formulate the time-aware and 
privacy-preserving service recommendation problem in the distributed environment and 
then motivate our paper through an intuitive example. In Section 4, we introduce the 
details of our suggested recommendation approach. Experiments are presented in Sec-
tion 5. Finally, in Section 6, we summarize the whole paper and discuss some potential 
research directions in the future. 
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2 Related Work 

In this paper, we mainly focus on the time-aware service recommendation problems 

with privacy-preservation. Therefore, we review the related work from the following 

two aspects. 

(1) Time-aware service recommendation 

Many researchers have investigated the influence of the time factor on the service 

quality prediction and service recommendation. In [34], the authors calculate the user 

similarity or item similarity based on a three-dimensional user-service-time QoS matrix 

and then utilize the time-aware similarity to predict the missing QoS data and then make 

service recommendation. In [37], a matrix factorization technique is used to decompose 

the user-service QoS matrix into the product of two matrices, i.e., the user-time matrix 

and time-service matrix; afterwards, the missing quality data are predicted based on the 

obtained two matrices. In [27], the authors formulate the time-aware QoS prediction 

problem as a generic regression problem; through minimizing the gap between the real 

QoS and predicted QoS, a QoS regression model is derived and then employed to per-

form service quality prediction. The correlation between API popularity and time is 

investigated in [39] where only the popular web APIs at current time slots are recom-

mended to the app developers to create promising mashups. In [19, 10, 18], the user 

similarity or item similarity are assigned a time-aware coefficient to quantify the influ-

ence of the time factor on similarity-based QoS prediction.  

The above approaches all consider the important role of the time factor in service 

recommendation; however, they still have several shortcomings. Firstly, existing time-

aware recommendation approaches seldom consider privacy disclosure risks when the 

distributed QoS data are required to be merged together to make comprehensive service 

recommendation decisions. Secondly, existing approaches often fall short in offering 

high efficiency and scalability because the similarity calculation or model training need 

to be repeated when the QoS data increase or are updated frequently. 

(2) Privacy-preserving service recommendation. 

The distributed property of data often leads to security and privacy concerns [9, 16, 

35, 3, 36, 8, 28, 7]. Anonymity is an effective technique to protect the sensitive infor-

mation of users. In [15], K-anonymity technique is adopted to confuse the real QoS 

data of services. Although the anonymous QoS data contain little private information, 

the data availability after anonymization would be reduced accordingly; therefore, the 

recommendation accuracy would be decreased accordingly. To protect the user privacy 

contained in QoS data, in [4], the authors advise to partially publish or release QoS data 

at a small portion; however, the potential attackers can still extract the private infor-

mation hidden in the partially released QoS data through various machine learning tech-

niques. Considering this drawback, data obfuscation technique is employed in [40] 

where the real QoS data are obfuscated by adding a random value and then the obfus-

cated QoS data are utilized to calculate user similarity and make appropriate recom-

mendations. However, as the obfuscated QoS data instead of the real QoS data are used 

to make recommendations, the accuracy of recommended results is reduced to some 

extent. In [13], each piece of QoS data is randomly divided into several segments that 
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are recorded by different users; afterwards, the distributed QoS segments (with only 

partial private information of a user) are merged together to calculate user similarity 

approximately. However, this privacy-aware recommendation approach has two draw-

backs. Firstly, much communication cost will be incurred when the QoS segments from 

different users are merged. Secondly, this approach may still reveal some privacy of 

users, e.g., the services co-executed by different users. 

Due to the inherent property of “similarity retention” (i.e., two neighboring points 

are still neighbors after hash), LSH has recently been employed to protect the sensitive 

information of users (e.g., the quality of services invoked by a user) in service recom-

mendation. In [20], the authors first transform the sensitive QoS data into less-sensitive 

user indices offline; afterwards, the user indices are used to search for the similar neigh-

bors of a target user and then make corresponding recommendations. This way, the 

service recommendation process can be finished in a time-efficient and privacy-pre-

serving manner. However, this LSH-based service recommendation approach still faces 

the following challenge, i.e., it does not consider the dynamic fluctuation of QoS data 

incurred by in a varied context environment (e.g., time).  

With the above reviews and analyses, existing service recommendation approaches 

seldom consider both the time-aware QoS variation and the capability of privacy-

preservation simultaneously. In view of this challenge, in this paper, we propose a novel 

time-aware service recommendation approach with privacy-preservation. 

3 Formulation and Motivation 

3.1 Problem formulation 

To facilitate the following discussions, some symbols used in this paper are formu-

lated as below. For simplicity, only one quality dimension q of services (e.g., the re-

sponse time) is considered in this paper.  

(1) utarget: a target user to whom a recommender system plans to recommend its ser-

vices.  

(2) WS = {ws1, …, wsn}: the set of candidate recommended services for utarget. 

(3) PF = {pf1, …, pfN}: the set of distributed platforms that record the QoS data of 

services in set WS. 

(4) U = {u1, …, um}: the set of users who have ever invoked services in set WS.  

(5) T = {t1, …, tp}: the set of time slots when a service is invoked by a user.  

(6) qi,j,k: the QoS value of q for user ui (1 ≤ i ≤ m) and service wsj (1 ≤ j ≤ n) at time 

slot tk (1 ≤ k ≤ p). Specifically, if ui did not invoke wsj at time slot tk, then qi,j,k = 

0 holds.  

With the above formal symbols, we can formulate the time-aware and privacy-pre-

serving service recommendation problem as follows: according to the time-aware QoS 

data qi,j,k distributed in different platforms in the set of PF, a recommender system 

searches for the appropriate services from candidates in the set of WS and recommends 

them to the target user utarget, during which the real values of qi,j,k will not be revealed 
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to the recommender system. In this paper, we will propose a novel approach to tackle 

this specific recommendation problem. 

 

3.2 Paper motivation 

To facilitate the understanding of readers, we introduce an intuitive example (in 

Fig.1) to illustrate the motivation of this paper.  

In Fig.1, in this example, the historical QoS data for recommendation are distributed 

in two platforms: Amazon and IBM. The Amazon platform records the QoS data gener-

ated by {utarget, …}, while the IBM platform records the QoS data generated by {u1, …}. 

Assume that there are totally n candidate services {ws1, …, wsn}. Each (ui, wsj) pair is 

corresponding to p QoS values {qi,j,1, …, qi,j,p}. Then for the recommender system, it 

should fuse or integrate the QoS data across Amazon and IBM, to search for the similar 

neighbors of utarget in a privacy-preserving way and then pursue more comprehensive 

and accurate recommended results. 

However, existing recommendation approaches seldom consider the time-aware 

QoS values {qi,j,1, …, qi,j,p} (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p) and the capability of privacy-

preservation simultaneously. Considering this drawback, a novel service recommenda-

tion approach is proposed in this paper, which will be introduced in detail in the next 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Time-aware and privacy-preserving service recommendation in a distributed environment: an intui-

tive example. 

4 Time-aware and Privacy-preserving Service Recommendation 

Approach based on LSH: SerRectime-LSH 

In this section, we introduce a novel time-aware and privacy-preserving service rec-

ommendation approach based on LSH, named SerRectime-LSH. The basic idea of our pro-

posed SerRectime-LSH approach is: according to the LSH technique, we first transform 

the sensitive and dynamic QoS data into less-sensitive user indices; afterwards, we uti-

lize the less-sensitive user indices to determine the similar time slots of utarget; finally, 
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we predict the missing QoS data of utarget at a certain time slot based on the QoS data at 

the similar time slots and then recommend appropriate services to utarget. This way, the 

dynamic QoS data of services are considered and the private information of users is 

also protected. Concretely, our approach consists of the following three steps, where 

utarget denotes a target user and q is a quality dimension of services. 

 

Step-1: Build a time-aware user index table based on LSH. According to the dynamic service QoS 

data observed by users, generate less-sensitive and time-aware user index table Tableindex based 

on the LSH technique.  

Step-2: Determine the similar time slots of ui based on the user index table. According to the user 

index table Tableindex, determine the similar time slots of ui from T = {t1, …, tp}, denoted by 

similarity matrix SIM_matrix (ui).  

Step-3:  Service recommendation based on the QoS data observed by utarget at similar time slots. 

According to the QoS data observed by utarget at the similar time slots in set SIM_matrix (utarget), 

predict the missing QoS data of services never invoked by utarget and then recommend the optimal 

services to utarget. 

 

Fig.2 Three steps of the proposed SerRectime-LSH approach 

Step-1: Build a time-aware user index table based on LSH. 

As Fig.3 shows, in the dynamic service running environment, a QoS value qi,j,k is 

corresponding to a point in three-dimensional space constituted by user (i.e., i), service 

(i.e., j) and time (i.e., k). In this situation, the QoS data for user ui can be represented 

by a service-time matrix as specified in (1), where each row depicts the QoS values of 

n services invoked by ui at a time slot, and each column depicts the QoS values of a 

service invoked by ui at p time slots. Please note that qi,j,k = 0 if ui does  not invoke wsj 

at time slot tk. 

                                                Q(ui) =  [

𝑞𝑖,1,1 ⋯ 𝑞𝑖,𝑛,1

⋮ ⋱ ⋮
𝑞𝑖,1,𝑝 ⋯ 𝑞𝑖,𝑛,𝑝

]                                                (1) 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Dynamic QoS representation in three-dimensional space. 

 

• qi,j,k 

i (user) 

j (service) 

k (time) 
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Next, we utilize the QoS matrix in (1) to build a time-aware index for user ui based 

on the LSH technique. Generally, Pearson Correlation Coefficient (PCC) [22] is often 

used as the user similarity measurement in the traditional collaborative filtering-based 

service recommendation approaches. Therefore, to guarantee the property of “similarity 

retention” of the LSH technique, we utilize the LSH function [11] corresponding to the 

PCC distance to realize the transformation from the sensitive QoS data in (1) to less-

sensitive user indices. Concretely, for each row of the QoS matrix in (1), the LSH func-

tion in (2) is adopted. Here, ( )i kQ u denotes the n-dimensional vector corresponding to 

k-th row of matrix Q(ui); v = (v1, …, vn) is an n-dimensional vector where vj (1 ≤ j ≤ n) 

is randomly selected from the range [-1, 1]; operation “a○b” means the dot product of 

vectors a and b. 

h( ( )i kQ u ) = 
1      if  ( ) 0

0      if  ( ) 0

i k

i k

Q u v

Q u v

 




                                           (2) 

Thus through the hash mappings in (2), the vector corresponding to the k-th row of 

matrix Q(ui), i.e., ( )i kQ u is transformed into a Boolean value h( ( )i kQ u ) in (2). Repeat 

the above the hash mapping process until the original QoS matrix Q(ui) in (1) is trans-

formed into the p-dimensional Boolean vector h(Q(ui)) in (3) where “aT” means the 

transpose of vector a.  

h(Q(ui)) = (h( 1( )iQ u ), …, h( ( )i pQ u ))T                                            (3) 

However, LSH is a probability-based approximate neighbor search technique; there-

fore, only one LSH function in (2) often cannot guarantee the “similarity retention” 

property of LSH. Considering this drawback, multiple LSH functions are used  in our 

hash mapping process. Concretely, we randomly generate r LSH functions h1(.), …, 

hr(.) (see (2)) and then utilize them to realize the transformation from Q(ui) in (1) to 

h(Q(ui)) in (3). Afterwards, we obtain a p*r hash value matrix, denoted by H(Q(ui)) in 

(4). Thus, H(Q(ui)) can be regarded the time-aware user index for ui, which is often less 

sensitive compared to the original Q(ui).  

H(Q(ui)) =  

[
 
 
 
 1h ( 1( )iQ u ⋯

rh ( 1( )iQ u )

⋮ ⋱ ⋮

1h ( ( )i pQ u ) ⋯
rh ( ( )i pQ u )

]
 
 
 
 

                                       (4) 

For each user ui in set U, we repeat the above process to build his/her time-aware 

index H(Q(ui)) in (4); afterwards, the users as well as their respective index values form 

a hash table (i.e., user index table), denoted by Tableindex. Thus, for a platform that is 

willing to but dares not share its data with other platforms, it can publish the less sen-

sitive user index table Tableindex to the public; this way, the private information of users 

can be protected very well.  
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Step-2: Determine the similar time slots of ui based on the user index table. 

According to Step-1, in the user index table Tableindex, each user ui∈U is correspond-

ing to a p*r index matrix H(Q(ui)) (here, p is the number of time slots). Next, we deter-

mine the similar time slots of ui based on Tableindex. Concretely, to reduce the compu-

tational cost, for the p*r matrix H(Q(ui)) in (4), we treat its each row as a r-dimensional 

0-1 string and then convert the 0-1 string into its corresponding decimal number. For 

example, if r = 5, then the “01101” string will be converted into decimal number “13”. 

Thus we transform the p*r matrix H(Q(ui)) in (4) into the p-dimensional column vector 

H(Q(ui))decimal in (5).  

H(Q(ui))decimal = 

1( )

    

( )

i

p i

A u

A u

 
 
 
 
 

                                           (5) 

Next, for user ui, we compare its hash values at p time slots, i.e., A1(ui), …, Ap(ui). If 

Ak1(ui) = Ak2(ui) (k1 < k2), then we denote simk1,k2(ui) = 1 where simk1,k2(ui) means the 

similarity between hash values of ui at the k1-th and k2-th time slots; otherwise, 

simk1,k2(ui) = 0. Thus, for user ui, we can obtain a p*p symmetric matrix Sim_matrix (ui) 

as in (6) where each entry is a Boolean value (specifically, simk,k(ui) = 0 as the similarity 

between hash values of ui at an identical time slot makes no much sense). Then the 

mappings from ui to Sim_matrix (ui) form a hash table (denoted by HT); moreover, as 

the QoS data of services are already recorded by different platforms, the hash table HT 

can be created offline by the corresponding platforms.  

LSH is actually a probability-based approximate neighbor search technique; there-

fore, for user ui, one hash table is often not enough to evaluate the similarity between 

the QoS values at different time slots. Considering this, we create L hash tables offline, 

i.e., HT1, …, HTL and accumulate their corresponding similarity matrices Sim_matrix 

(ui)1, …, Sim_matrix (ui)L. Afterwards, a new similarity matrix for user ui, i.e.,  

SIM_matrix (ui) is obtained as in (7) where each entry simk1,k2(ui)∈[0, L] holds. Fur-

thermore, a larger simk1,k2(ui) often means higher probability that the QoS values at the 

k1-th and k2-th time slots are similar; in other words, the QoS value at the k1-th time slot 

is more suitable to be utilized to predict the missing QoS value at the k2-th time slot, 

vice versa. 

                               Sim_matrix (ui) =

1,1 1,

,1 ,

( ) ( )

                       

( ) ( )

i p i

p i p p i

sim u sim u

sim u sim u

 
 
 
 
 

                                     (6) 

                            SIM_matrix (ui) = Sim_matrix (ui)1 + …+ Sim_matrix (ui)L                        (7) 

Step-3: Service recommendation based on the QoS data of utarget at similar time slots. 

Next, we predict the missing QoS data of utarget at the k2-th time slot based on the 

QoS data of utarget at the k1-th time slot, if these two time slots are similar. Concretely, 

we set a similarity threshold for simk1,k2(utarget) in (7). If simk1,k2(utarget) is larger than the 

threshold, then for each service wsj never invoked by utarget, its missing QoS value of 
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criterion q at the k2-th time slot (i.e., qtarget,j,k2) can be predicted by the equation in (8). 

Here, Sim_set(tk2) denotes the set of time slots which are similar to the k2-th time slot 

(see (9)); |Sim_set(tk2)| means the size of set Sim_set(tk2). Finally, we select the services 

with the highest predicted value qtarget,j,k2, denoted by wsoptimal, and recommend them to 

the target user. 

qtarget, j, k2 = 
2

1

| ( )|kSim_set t
*

1 2

, , 1

 _ ( )k k

i j k

t Sim set t

q


                                   (8) 

Sim_set(tk2) = { tk1 | simk1,k2(utarget) ≥ threshold}                                 (9) 

Through the abovementioned Step-1~Step-3 of our proposed SerRectime-LSH ap-

proach, we can make time-aware and privacy-preserving service recommendations in 

a distributed environment. More formally, the pseudo code of SerRectime-LSH approach 

is presented as follows. 

 

Algorithm-1: SerRectime-LSH 

Inputs: utarget: a target user 

            WS = { ws1, …, wsn }: web service set 

            U = { u1, …, um }: user set 

            T = { t1, …, tp }: time slot set 

            qi,j,k: QoS value of q for user ui and service wsj at time slot tk 

Output: wsoptimal: optimal services that are recommended to utarget 

 

1  For x =1 to r do  // generate r hash functions h1(.), …, hr(.) 

2      For j =1 to n do 

3          vj = random [-1, 1] 

4      End For 

5      hx(.) = (v1, …, vn) 

6      For each ui∈U do 

7          generate QoS matrix Q(ui) according to (1) 

8          For k =1 to p do 

9              h( ( )i kQ u ) = Q(ui)k * hx(.)  // LSH mappings 

10          End For 

11          h(Q(ui)) = (h( 1( )iQ u ), …, h( ( )i pQ u ))T 

12      End For 

13  End For 

    14  For each ui∈U do 

15      generate H(Q(ui)) according to (4) 

16  End For 

17  generate Tableindex based on all the “ui H(Q(ui))” pairs  

18  For each ui∈U do 

19      For k =1 to p do 

20          transform H(Q(ui))k into corresponding decimal number A(ui)k 

21      End For 

22      If A(ui)k1 =  A(ui)k2 
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23          Then simk1,k2(ui) = 1 

24          Else simk1,k2(ui) = 0 

25      End If 

26  End For 

27  Create a hash table HT based on “ui  Sim_matrix (ui)” mappings  

28  Repeat line 18-27 to create L hash tables HT1, …, HTL 

29  Calculate SIM_matrix (ui) based on the accumulation operation in (7) 

30  Set a similarity threshold threshold  

31  Set a time slot tk2 at which the QoS value needs to be predicted 

32  For k1 =1 to p do 

33      If k1 < k2 and simk1,k2(utarget) ≥ threshold 

34          Then qtarget, j, k2 is predicted by (8)-(9) 

35      End If 

36  End For 

37  wsoptimal = {wsj | qtarget, j, k2 = optimal (qtarget, j, k2)}  // optimal services are selected 

38  Return wsoptimal to utarget 

 

5 Experiments 

To validate the feasibility of SerRectime-LSH approach, we conduct a set of experiments 

based on a real-world time-aware QoS dataset. Concretely, we introduce the experiment 

settings in Subsection 5.1 and analyze the experiment results in Subsection 5.2. 

 

5.1 Experiment Dataset and Configurations 

Our experiments are deployed on a distributed web service QoS dataset, i.e., WS-

DREAM [38], which was tested and collected by Dr. Zibin Zheng in 2014. The WS-

DREAM dataset consists of the QoS values of 4532 real-world web services invoked 

by 142 users at 64 different time slots. Therefore, the dataset is suitable for testing the 

performance of our suggested time-aware distributed service recommendation ap-

proach, i.e., SerRectime-LSH.  

Concretely, we test the following two criteria (due to the inherent property of LSH, 

the capability of privacy-preservation of our proposal is not measured here; the security 

that is crucial in many systems [23, 32, 1, 17, 14] is out of the scope of this paper):  

(1) RMSE (Root Mean Square Error, the smaller the better): measure the accuracy 

of finally derived recommended results. 

(2) Time cost: measure the recommendation efficiency and scalability (scalability is 

also a key criterion to evaluate the system performance [2, 29]).  

Besides, we compare SerRectime-LSH approach with the following three approaches:  

(1) Average: the missing QoS value of a service observed by utarget at time slot tp is 

predicted based on the service’s average QoS values at time slot t1, …, tp-1; 

(2) Partial-HR [18]: the missing QoS value of a service observed by utarget at time 

slot tp is predicted based on the service’s QoS values at time slot t1, …, tp-1, and each 

QoS value is assigned a time-aware weight; 
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(3) SerRecdistri-LSH [21]: the missing QoS value of a service observed by utarget at time 

slot tp is predicted based on the average QoS values of the service observed by the 

similar neighbors of utarget at time slot tp. 

The experiments configurations are listed as follows. (1) hardware: 2.60 GHz CPU 

and 8.0 GB RAM; (2) software: Windows 10 and Python 3.6. Each experiment was 

carried out 50 times (the reason will be explained in Profile-6) and their average exper-

iment results were adopted finally.  

5.2 Experiment Results 

In our experiments, totally six profiles are designed, tested and compared, which are 

presented and analyzed as below. Here, m and n denote the size of user set U and size 

of service set WS, respectively; r and L represent the number of hash functions and the 

number of hash tables, respectively (r and L are two key parameters that control the 

similar neighbor search conditions). In the following profiles, r = 2 and L = 10 holds. 

Profile-1: RMSE comparison of four recommendation approaches. 

In this profile, we measure the service recommendation accuracy of four approaches 

through RMSE. The experiment parameters are set as follows: n is varied from 500 to 

4500. Concrete comparison results are demonstrated in Fig.4.  

As indicated in Fig.4, the recommendation accuracy of the Partial-HR approach is 

the lowest (i.e., RMSE is the highest); this is because the weighting mechanism adopted 

in Partial-HR is a bit rough and the similarity between different users are not consid-

ered. The accuracy of SerRecdistri-LSH approach is also not high as this approach does not 

consider the dynamic variation of service QoS values either. While our suggested Ser-

Rectime-LSH approach outperforms the other three approaches in terms of accuracy; this 

is because SerRectime-LSH not only considers the time-aware QoS variation of services 

but also recruits the QoS values at similar time slots for missing QoS prediction and 

service recommendation.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Recommendation accuracy comparison of four approaches. 

Profile-2: Time cost comparison of four recommendation approaches. 

Next, we measure and compare the efficiency and scalability of four service recom-

mendation approaches. The parameters are set as follows: n is varied from 500 to 4500. 

The compared experiment results are shown in Fig.5.  
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As Fig.5 demonstrates, the time costs of four approaches all increase with the growth 

of n (i.e., the number of services), because more computational cost is required when 

the volume of candidate services becomes larger. Besides, the efficiency of our Ser-

Rectime-LSH approach is close to that of SerRecdistri-LSH approach because they both take 

the same privacy protection strategy (i.e., LSH). However, as Fig.5 shows, our SerRec-

time-LSH performs worse than Average and Partial-HR in terms of recommendation effi-

ciency and scalability; this is because no additional privacy-preservation operations are 

adopted in both Average and Partial-HR approaches.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Recommendation efficiency comparison of four approaches. 

Profile-3: RMSE with respect to threshold in our SerRectime-LSH 

In Step-3 of our proposed SerRectime-LSH approach, similarity threshold is a key factor 

which can influence the recommendation performances. Thus, in this profile, we test 

the relationship between the recommendation accuracy (i.e., RMSE) and the threshold. 

In the test, the threshold is varied from 2 to 8 and the concrete experiment results are 

shown in Fig.6. As Fig.6 indicates, the recommendation accuracy increases (i.e., RMSE 

drops) with the growth of threshold. This is because a larger similarity threshold often 

means stricter search condition for similar time slots and correspondingly, the recom-

mendation accuracy is improved.  

 
Fig.6 RMSE w.r.t. similarity threshold (SerRectime-LSH) 
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Profile-4: Time cost with respect to threshold in our SerRectime-LSH 

In this profile, we test the relationship between the time cost and the similarity 

threshold. Here, the threshold is varied from 2 to 8 and the concrete experiment results 

are presented in Fig.7. As Fig.7 shows, the time cost gradually decreases with the 

growth of similarity threshold and becomes gradually convergent when the threshold is 

larger than 6. This is because when the similarity threshold rises, the “qualified” similar 

time slots becomes fewer and increasingly stable and therefore, the time cost for QoS 

prediction and service recommendation gradually decreases and stays approximately 

stable.  

 
Fig.7 Time cost w.r.t. similarity threshold (SerRectime-LSH) 

Profile-5: Number of similar time slots with respect to threshold in SerRectime-LSH 

The similarity threshold plays an important role in the search of similar time slots in 

our proposed SerRectime-LSH approach. In this profile, we test and analyze their correla-

tions, whose results are presented in Fig.8. As Fig.8 shows, when the threshold grows, 

the search condition for similar time slots becomes stricter and correspondingly, the 

“qualified” similar time slots become fewer. 

 
Fig.8 Number of similar time slots  w.r.t. similarity threshold (SerRectime-LSH) 
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Profile-6: RMSE convergence with respect to experiment times  

As introduced in Subsection 5.1, each experiment was repeated 50 times. The exper-

iment times (i.e., 50) is concluded from the experiment results in Fig.9 (the number of 

services, i.e., n is varied from 500 to 4500). In Fig.9, we test the RMSE convergence of 

four approaches with respect to the experiment times. As can be seen from the experi-

ment results, when the experiment times approach 50, the RMSE values of four recom-

mendation approaches all become convergent approximately (especially for the Ser-

Recdistri-LSH approach). Therefore, in our experiments, each test was repeated 50 times 

and their average experiment results were adopted finally.  

 

Fig.9 RMSE convergence  w.r.t. experiment times 

6 Conclusions 

In the distributed environment, integrating the QoS data distributed across multiple 

platforms while protecting the private information of users is an indispensable condi-

tion for the success of service recommendation. Besides, the QoS data of services are 

often not static but varied with time. While existing service recommendation ap-

proaches seldom consider the time-aware QoS and the capability of privacy-preserva-

tion simultaneously. In view of this challenge, we proposed a novel time-aware and 

privacy-preserving service recommendation approach, i.e., SerRectime-LSH. Firstly, we 

utilize the dynamic QoS data of services to build a time-aware user index table which 

is often less sensitive; Secondly, we use the less sensitive user indices to determine the 

similar time slots of the target user; Finally, we make service quality prediction and 

service recommendations to the target user based on the QoS data of services observed 

by the target user at the similar time slots. Through a wide range of experiments de-

ployed on a real-world time-aware QoS dataset named WS-DREAM, we validate the 

effectiveness and efficiency of our proposal while guaranteeing privacy-preservation.  
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However, there exists several shortcomings in our approach. First, we assume that 

the recommendation decisions only depend on a single quality criterion, without con-

sidering the criterion diversity [26] as well as their weight values [33]. Therefore, in the 

future, we will investigate this multi-dimensional recommendation scenario to widen 

the applicability of our proposal. Second, the quality of services often depends on many 

context factors [31]. Thus, in the future, we will further refine our recommendation 

approach by considering more context factors besides time such as user location, ser-

vice location, the distance between services and users.  
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