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Abstract—Anomaly detection is an important technique to
identify network unusual behaviour patterns and keep the net-
work under control. The network attacks are increasing in both
number and sophistication. To avoid causing significant traffic
patterns and being detected by existing techniques, many newly
attacks tend to gradually adjust their behaviors, which always
generate incomplete sessions due to their running mechanisms.
In this work, we employ the behavior symmetry degree to profile
the anomalies and further identify and detect unusual behaviors.
By identifying the incomplete sessions generated by unusual
behaviors that only contain forward or backward packets, we
first proposed a behaviour symmetry degree to capture the
features of these unusual behaviors; then, we employ the sketch
to calculate the symmetry degree of an unusual behaviour to
improve the identification efficient for online application. To
reduce the memory cost and probability of collision, we divide
the IP addresses into four segments that can be used as keys of
the hash functions. To further improve the detection accuracy,
a threshold selection method is proposed for the dynamic traffic
pattern analysis. Then, the hash functions in the sketch are
designed using Chinese remainder theory, which can trace the IP
addresses associated with the anomalies analytically. We tested
the proposed techniques based on the traffic data collected from
northwest center of CERNET (China Education and Research
Network) and the results show that the proposed methods can
effectively detect anomalies in complex networks.

Index Terms—Smart attacks, Behavior patterns, Symmetry
degree, Degree sketch, Anomaly tracing.

I. INTRODUCTION

ANOMALY detection aims at identifying the presence of
unusually network traffic patterns, which has become an

increasingly critical challenge for network management and
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security. In recent, many different kinds of threats continu-
ally appear and the new slowly and continually attacks are
becoming more intelligent than we expected [1], [2]. These
nearly attacks tend to gradually change their behaviors to
reduce the change of network traffic patter, such as reduce the
total bytes, number of packets and flows, etc., to avoid being
detected by existing techniques. In this paper, we name those
attacks designed with specific strategies for avoiding detection
as smart attacks, such as APT (Advanced Persistent Threat)
attack [1], [2], Botnet [3], Stuxnet [4], etc. Most traditional
anomaly detection methods mainly examine the statistical
patterns extracted from the entire raw traffic volumes will
lose their efficiency in detecting those smart attacks [5], [6],
[7], [8], [9]. Furthermore, the traffic statistical features have
been changed with the increasing number of new applications
[10], [11]. As a result, to extract stable and efficient traffic
patterns from the massive raw traffic data and improve the
ability of detecting smart attacks is a key challenge. To address
these limitations, we propose the behavior symmetry degree to
characterize abnormal host behaviors. We then combine this
with sketch to detect the abnormal hosts with high efficiency
and accuracy.

In this work, we use directed graph G(V,E) to model a
network as shown in Fig 1, in which vertices V denote the
hosts and edges E represent the communication between hosts
[12]. In general, the NIDS (network based intrusion detection
system) collects traffic data from the egress routers, and the
hosts set V can be categorized into two groups: internal hosts
and external hosts. Internal hosts contains all hosts inside
the monitored network and external hosts contains all hosts
outside that can communicate with internal hosts. In G, each
edge e ∈ E represents a communication session between
the internal and external hosts, which is a set of aggregated
packets with the same internal and external addresses. It should
include both the forward and backward packets under normal
circumstances, we use bidirectional relationship denoted by
the black edges to represent it as show in Fig.1.

From our previous works [13], we noted that most of those
abnormal behaviors generate many incomplete flows, which
only contain the forward or backward packets. As shown in
Fig.1, the red links between two hosts denotes incomplete
sessions. In this work, we employ the connection degrees
to capture this kind of characteristics, whose efficiency has
been verified in [14], [15]. To detect whether the internal
hosts are abnormal or not, we mainly focus on analyzing
the characteristics of the internal host. For the internal hosts
profiling, we define two connection degrees: (1) In Connection
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Fig. 1. Communication model based on directed graph

Degree of specific Internal host (ICDI), which represents the
number of the unique external IP addresses which send packets
to the specific internal IP address during a time window T;
(2) Out Connection Degree of specific Internal host (OCDI),
which is the number of the unique external IP addresses which
receive packets from the specific internal IP address during
a time window T. Both the ICDI and OCDI can effectively
profile the abnormal hosts with incomplete sessions, e.g., in
Fig.1 I3 is attacking other hosts by sending scanning packets
to explore vulnerable targets, so it holds a bigger OCDI and
a smaller ICDI because most of the scanning requests do not
receive responses. In this work, we propose the Symmetry
Degree of specific Internal host (SDI), which can be defined
using the maximum ratio between the OCDI and ICDI to
characterize this kind of abnormal host behaviors effectively.

To improve the efficiency and scalability of anomaly de-
tection, we employ sketch for SDI calculation and anomaly
tracing. We divide the internal IP addresses into four segments
based on the structure of IPv4 addresses. Each segment is
selected as the key of the hash functions in the sketch to
minimize the memory cost and the probability of collision.
Meanwhile, we use the Chinese remainder theorem to design
hash functions, and make it to be a reversible sketch. We can
only use the information from hash functions to reconstruct the
keys without using any keys’ information. In other words, we
can obtain the anomaly-related IP addresses efficiently with
analytical calculation, and the computational time is constant
without considering the size of traffic volume. We also design
a threshold selection method based on the dynamic traffic
patterns to select suitable thresholds and improve the detection
accuracy.

Finally, to evaluate proposed methods in real traffic scenario,
a real dataset collected from northwest center of CERNET is
used to test the proposed method and results are compared
state-of-the-art algorithms. Experimental results demonstrate
that the proposed method outperforms existing methods, it
can detect anomalies with high accuracy, low computation and
memory cost.

The main contributions of this paper can be summarized as
follows:

1) A graph based network model is proposed to describe
the communication patterns between end hosts, in which
a symmetry degree id defined that can be used to charac-
terize the anomalies effectively. The proposed model can
aggregate packets with the same internal and external

IP addresses into one session, which can significantly
reduce the record amount and computational complexity.

2) IP segments are used as the keys of the hash functions
in sketch, and a reversible sketch is designed using
the Chinese remainder theorem. By doing this, the
model can minimize the memory cost and collision
probability. Furthermore, the proposed method can trace
the anomaly-related IP addresses for efficient security
management with analytic calculation and constant com-
putational time.

3) The proposed methods are tested using large-scale, real-
world traffic datasets. Compare with existing methods,
the proposed method can achieve a better performance
with lower computation overhead.

II. RELATED WORKS

Anomaly detection has become an important issue for the
network management and attracted significant attentions from
researchers. The main idea is to build normal behavior model
using historical data, and then detect the behaviors deviated
from the models.

In network management and security, anomaly detection can
be roughly classified as HIDS (host based intrusion detection)
and NIDS (network based intrusion detection) according to
the data sources used. HIDS usually uses data sources like
keystroke biometrics [16], mouse dynamics [17], system calls
[18], etc. The HIDS methods are effective in host level
anomaly detection, but the scalability of HIDS is limited
by the efficiency of data collection. The most popular data
used for NIDS is the traffic data. Meanwhile the statistics-
based models are the most popular and widely used methods.
The basic idea of statistics-based models is to analyze the
statistical characteristics of the traffic patterns (total number
of bytes, total number of packets, etc.), and then detect the
anomalies depends the significant pattern changes caused by
attacks such as DDOS [6], [7]. The source and destination IP
addresses in the packets can be treated as different hosts or
users, and we can perform anomaly detection by analyzing the
communication patterns among those hosts [19], [20], [21].
There are a number of statistical methods can be used for
this kind of pattern analysis, such as the Markov chain and
binary composite hypothesis testing [22], [23], [24]. However,
with the increasing number of network users and bandwidth,
especially sophisticated hackers, they tend to gradually change
their behaviors. Those kind of methods will reduce their
efficiency since anomaly behaviors never cause significant
changes in traffic volumes again.

To investigate the traffic patterns more efficiently, CISCO
proposed the netflow model [25], which aggregates is con-
sisted by a group of packets with the same source and
destination IP addresses, ports, etc. It is a logic links between
hosts and provides a way to profile the patterns by hosts.
Based on this model, a number methods based on machine
learning and data mining are proposed to perform anomaly
detection [26], [27], [28]. However, the netflow model is one
kind of non-interactive models, it divides the packets in the
same session into two or more flows, which is ineffectual for
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behavior profiling. Another issue for netflow is that the number
of flow records could be huge and the tasks of monitoring
and analyzing may encounter serious storage and computation
difficulties.

There are a number of methods have been developed for
reducing the number of data records to be processed for real-
time monitoring. Sampling is one of the most simple and
efficacious ways [29], [30], [31]. However, sampling may
cause missing important flow fingerprints especially when a
large number of flows mixed with only a small number of
flows generated by anomaly behaviors [32], [33]. Another one
is to extend the aggregated scale and extract the main traffic
matrix characters. ODflow model [34] and regional flow model
[35] are developed for large-scale traffic monitoring. The
experimental results using the actual traces in 10Gbps network
environment also verify their efficiency in traffic profiling. But
those kind of models have low efficiency in detailed traffic
patterns profiling and smart attack detection. Furthermore,
different aggregated scales may generate different results. It
is difficult to select the suitable scales for traffic aggregation.

Sketch based methods are widely used in dealing with
massive packets in real-time network monitoring. Sketch is
a kind of probabilistic dimension reduction techniques, which
“sketches” a huge number of flows into a probabilistic sum-
mary. It is clear that the goal of traffic measurement and
monitoring based on the traffic flow information approximately
reconstructed using the information of the sketch. Several
traffic measurement methods using sketch are proposed in
recent, such as finding heavy hitters, heavy changes and
estimating flow size distribution [36], [37], [38], [39]. To
further improve the processing efficiency and perform scalable
traffic anomaly detection, sketch can also be implemented
in hardware using FPGA [40], [41]. The sketch can also be
used to detect anomalies by combining with other statistical
methods, such as the CUSUM algorithm [42], etc. We can
also extract suitable features and combine them with sketch
for detecting specific anomalies with high accuracy, such as the
LD-Sketch and SkyShield sketch [43], [44]. Generally there are
mainly two issues in the sketch related methods: (1) designing
suitable hash function for the sketch, appropriate hash function
can reduce memory used and probability of collision, which
are key for the goal of anomaly related IP address tracing;
(2) selecting suitable features as keys, such as the source IP
address or destination IP address, or their combinations, and
different keys are suitable for detecting different anomalies.

Additionally, attacks in the network today become more and
more intelligent, they can gradually change their behaviors to
avoid causing significant pattern changes, such as the changing
trend of total bytes and the total number of flows. It is a
difficult task to find those slight changes from the massive
traffic patterns. Researchers focus on extracting new features
from different views for detailed behavior profiling. Zhang
et al. in [45] employ the underlying triggering relations of
network events to detect stealthy malware activities. Zhang
et al. in [46] used the dependency of network requests to
detect stealthy malware activities. In our previous works, we
developed a reversible user-embedding framework for this
kind of behavior detection [47], extracting measurable and

intelligible features and design efficient computing method are
becoming more and more important in detecting those smart
attacks.

Focus on the above problems and enlightened by the related
works, in this work we proposed the symmetry degree sketch
to perform degree calculation, anomaly detection and anomaly
related IP address tracing.

III. DESIGN GOALS AND THREAT MODEL

The works in [10], [11] have shown that the statistical
network traffic patterns have been changed and it is very
difficult to identify the slight abnormal patterns from the
massive traffic patterns. In this section, we mainly focus on
designing a lightweight and efficiency framework that can
match the needs of anomaly detection in the network today.
We also give the assumptions about the adversary and threat
model to help the readers to catch the key points of our work
easily [48].

A. Design goals

Taking both lightweight and efficiency into account, in this
paper we design an online anomaly detection method that
meets the following design goals:

1. Simple and usable: The method should be deployable
on most enterprise network without requiring installation of
new hardware components. The feature used should be easily
obtained and can be used to capture the pattern difference
between the normal operations and attacks.

2. Lightweight: The method should be capable of calculating
the features with little computational resources. Its computa-
tional complexity should change slightly with the change of
the network scale.

3. Efficiency: The method designed should be able to detect
the abnormal behaviors appear recently, such as attacks intend-
edly control their behavior to avoid cause obvious changes in
the traffic patterns.

B. Assumptions about the adversary and threat model

In a network, the attackers can explore the vulnerabilities
and then control weak hosts with vulnerabilities for unpermit-
ted behaviours, such as information theft, service monitoring
etc. To detect those ongoing attacks and develop reasonable
model, in the following sections we will elaborate on the
assumptions about the adversary and threat model.

Assume that the adversary could be someone who has
limited knowledge of the monitored network but somehow
want to access to the network. In other words, the adversary
does not have the physical accessible power but can only
explore the vulnerabilities using attack technologies. He does
know the detailed configurations and the defense policies of
the target network. In particular, our method is designed to
secure against the following common types of attacks:

1. Scanning Attack: Including the network and port scan, the
attacker tries to explore the vulnerabilities of the hosts inside
the target network by chance without any prior knowledge.
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2. Stealthy Attack with Heartbeats: Including the Trojan
Horse, Botnet and other similar virus. The virus has success-
fully infected the host. And the attacker utilizes the heartbeats
to master the running status of the viruses in the host system.

3. Worm and similar attacks: Those attacks can explore
the potential targets and propagate automatically. During the
propagation phase, the potential targets exploring by chance
will result in a large SDI.

4. DDoS Attack: The attacker employs many bots to occupy
most the computing resource of the specific server and make
it unavailable to normal users.

IV. FEATURE EXTRACTION AND FRAMEWORK DESIGNED

To achieve the goal of design a lightweight and efficient
anomaly detection method, we employ the model in Fig 1 to
design a network model to reduce the number of flow records.
We also design easily extracted and understand features for
measuring the difference between the attacks and the normal
operations.

A. Network model and behavior feature extraction

Assuming that the monitored network has m hosts and they
can interact with n external hosts. Let Ii(1 ≤ i ≤ m) denote
the i-th internal host, and Ej(1 ≤ j ≤ n) denote the j-th
external host, respectively. Assume sij equals to 1 when (1 ≤
i ≤ m, 1 ≤ j ≤ n) and there are packets transferred from
the internal host Ii to the external host Ej . Otherwise sij
equals to 0. Let dji equal to 1(1 ≤ i ≤ m, 1 ≤ j ≤ n) when
there are packets transferred from the external host Ej to the
internal host Ii, otherwise dji equals to 0. The communication
patterns in the specific time window T between the internal
and external hosts can be represented by the matrix M(t) in
Eq.(1). This model can be used to capture the dynamic and
exchange behavior patterns at the host level, its efficiency has
been verified in our previous work for application classification
[49].

M(t) =


(s11, d11) (s12, d21) ... (s1n, dn1)
(s21, d12) (s22, d22) ... (s2n, dn2)

... ... ... ...
(sm1, d1m) (sm2, d2m) ... (smn, dnm)

 (1)

The proposed model aggregates the packets with the same
internal and external addresses into one session, which can
significantly reduce the number of records and further reduce
the computational complexity. Based on the model proposed,
we define and employ the following features to profile the
communication behavior patterns.
Feature1: The In Connection Degree of specific Internal host
(ICDI): The number of unique external hosts which send
packets to a specific internal host during the time window
T, which is defined as

ICDIi =

n∑
j=1

dji, 1 ≤ i ≤ m (2)

Feature2: The Out Connection Degree of specific Internal host
(OCDI): The number of unique external hosts which receive

packets from the specific internal host during the time window
T, which is

OCDIi =

n∑
j=1

sij , 1 ≤ i ≤ m (3)

Feature3: The Symmetric Degree of specific Internal host
(SDI):The symmetric degree of the specific internal host
is defined using Equation 4, a constant 1 is added to the
denominator and numerator to avoid zero. Usually there are
two ways to define the symmetric degree: the first one can be
obtained using the Out connection degree divided by the In
connection degree; the other one can be obtained using the In
connection degree divided by the Out connection degree. In
this paper, we select the bigger value of them as the symmetric
degree to mine the anomalies.

SDIi = max{OCDIi + 1

ICDIi + 1
,
ICDIi + 1

OCDIi + 1
}, 1 ≤ i ≤ m (4)

B. Framework of the methods designed

To achieve real-time anomaly detection in large scale
networks, we propose an efficient framework as shown in
Fig 2, which contains the following four steps: step 1: Traffic
collection. The network traffic is collected from the northwest
center of CERNET, the offline traffic used for performance
evaluation is collected using the Coral Reef developed by
CAIDA (Cooperative Association for Internet Data Analysis)
[50].
step 2: Behavior symmetry degree extraction. To characterize
the anomalies, we extract the behavior symmetry degrees by
analyzing the packet set with the same internal and external IP
addresses in a specific time window T. We design the degree
sketch for efficient calculation. To reduce the memory cost and
collision probability, we select the IP segments as the keys for
hash functions.
step 3: Anomaly detection. We perform anomaly detection
mainly based on the analysis of SDI. If SDI at a host is
bigger than a selected threshold, we claim that we detected
an anomaly. To adapt with the dynamic changing trends of
traffic patterns, a threshold selection method is proposed.
step 4: Anomaly related IP address tracing. We design a
reversible sketch by using the Chinese remainder theorem, so
that we can trace the anomaly-related IP addresses efficiently.
And then we can control the anomalies with suitable policies
to keep the network under control.

V. DATA ACQUISITION

A. Anomalies Data Acquisition

In this work, we collected more than 500 attacks, including
the Worm, botnet, Scanning and DDOS attack, which can
be categorized into three groups: (1) The users report, the
users report their attacks they suffered to the administrator
and ask for help for solution; (2) Botnet detection system, we
established a honeynet in our LAB that includes more than 40
hosts (http://botwarden.xjtu.edu.cn). The anomalies captured
by the honeynet are reported to the botnet detection system;
(3) Monitoring system set in the campus network center, in



5

Out degree sketch

In degree sketch

Symmetry 

degree sketch

Symmetry Degree 

Calculation

Traffic Collection

Platform
Anomaly Detection 

Threshold selection 

based on dynamic traffic 

patterns

Anomaly Source Tracing

Different anomaly item 

combination 

Tracing based on 

Chinese reminder 

therom 

Anomaly symmetry 

degree selection

Fig. 2. overall flow of the algorithm

which each attack contains all the raw packets of one specific
victimized host or hacker. The detailed information of these
attacks is shown in Table ??. We also verified that the behavior
patterns reflected by the collected data are different with that
of the normal operations.

B. Traffic Data Collected in Our LAB

We collected one actual traffic trace from the egress
router of our LAB with 500 users. These users are
from different labs in the departments of school of
electrical and information engineering. Totally there are
about 500 hosts with global IP addresses, including two
servers, one is a FTP data server with an address as
ftp://202.117.54.250:4021. It is mainly used for
video and software sharing in the LAB. Another is a WEB
server with URL http://nskeylab.xjtu.edu.cn, the
IP address is 202.117.54.254. It is mainly used to provide
news and mail services to the students and faculties. Fig ??
shows the network topology. We filter the traffic collected
using the label methods used in section V.D to filter the
anomalies.

Fig. 3. Network topology of our LAB

C. Large scale data collected from our campus network

The large scale data used is collected from the Northwest
Regional Center of CERNET, its topology is shown in Fig 4.
The network being monitored is the campus network which
contains more than 30,000 end users with self-governed IP
addresses, including students, faculty members and contract

personnel from service providing companies. All of the traces
used in this paper are collected at an egress router (B2) with
a bandwidth of 10Gbps using the traffic collection tool Coral
Reef [50] for the time horizon of more than 20 hours ranging
from 2017 to 2018. We choose traffic traces that cover three
different time periods to collect traffic traces with different
kind of behaviors. The first one is the time period from 2:00
AM to 6:00 AM, when most of the students are asleep. The
time period from 8:00 AM to 12:00 AM, when most of the
students are having classes. We also select a time period from
8:00 PM to 12:00 PM, when most of the students are using the
Internet, the basic information of the traces collected is shown
in TABLE 2. Where # of PKT denotes the total number of
packets, # of IH denotes the number of internal hosts and # of
VA denotes the number of verified anomalies in the trace.
In this way, we try to make the data used contains more
kinds of behavior profiles and representative. Compare with
the public datasets, the collected data set has the following
advantages: 1) the detailed network configuration, we have the
detailed listed of IP addresses inside the monitored network,
which is employed for connection degrees and SDI calculation
of the internal hosts. 2) the data is collected from a large
scale network, which is useful for verify the efficiency of our
methods.

Fig. 4. Topology of the northwest of CERNET
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TABLE 1
The attacks collected and their influences on SDI

Type Number of
Attacks Simple attack descriptions and their influences on SDI

Worm 230
Hosts infect the worms search other targets automatically by sending many scanning packets, but there is no
response to most of the scanning packets. The infected host holds larger OCDI than ICDI, which results in a
larger SDI. In this paper the worm used include the Worm.WhBoy.cw, Ransomware, etc.

Botnet 60
Bot masters control many hosts that are named as Bots, and the master can launch attacks to others using those
Bots. The Bot masters receive many heart beating packets from different Bots but without response to those
packets, thus the ICDI of the master is larger than the OCDI, which results in a larger SDI.

Scanning 210

Scanning is the first step for hackers to search targets. The scanning attacks used in this paper are the internal
hosts explore the targets from the external hosts. Both the fast and slow scanning attacks send many scanning
packets to find the potential targets and most of them do not receive responses. The OCDI of the scanner is larger
than ICDI, which generates a larger SDI.

DDoS 20
The DDoS attack used in this paper is the DDoS attacks to the bbs server (bbs.xjtu.edu.cn) and the mail server
(mail.xjtu.edu.cn). These attacks send many packets from different attackers to one specific target and the target
does not generate response packets, the ICDI of the target is larger than the OCDI, which generate a larger SDI.

D. Anomaly identification from the trace

We integrated three different ways to identify the anomalies
from the raw packets to construct the benchmark to evaluate
our methods. Firstly, we build the black IP address list by col-
lecting the security reports from different third parties and the
DNS traffic collected from our campus network. The reports
collected include the security report published by the Com-
puter Emergency Response Team of Northeastern University
(NEUCERT). NEUCERT publishes the anomaly IP addresses
they detected and updates the list every five minutes, which is
publicly available at http://antivirus.neu.edu.cn/scan/ssh.php.
We also collect the abnormal urls from the security com-
pany 360. The report’s address is (https://webscan.360.cn/url),
which is updated every day. We also use the detection results
of the Botnet detection system set in our LAB to monitor
whether there are Bots in our campus network. If there are
Bots, we can obtain the domains they used for communication
with their masters. Combined with the DNS traffic data
collected from our campus network and the abnormal domains
obtained, we can obtain the abnormal IP addresses who query
these abnormal domains.

Except the black IP list, we also use the Netflow Analyzer
(https://www.manageengine.cn/products/netflow/) as a tool to
mine the anomalies in the data trace. We also manually analyze
the statistical traffic characteristics, such as the flow size,
flow life time, to determine whether there are anomalies.
The methods used include methods developed in our previous
works [35], [15]. By combine those technologies, we try to
identify the anomalies. We employ those verified anomalies
to evaluate the methods developed. The detailed information
about the anomalies identified is shown in TABLE 3.

TABLE 2
Simple description on dataset

Trace Duration Begin Time # of PKT # of IH # of VA

One 5.5 2017.10.15 20:10 378451461 4421 19
Two 5.5 2017.12.27 08:30 305452461 3620 28

Three 5.5 2018.03.12 02:08 264513582 3608 15

TABLE 3
Simple statistics on dataset

Trace Scan DDoS DoS Worm Botnet

One 12 2 1 3 1
Two 17 4 2 1 4

Three 10 3 0 1 1

VI. FEATURE ANALYSIS

A. SDI measurement using attack and normal behavior trace

We analysis the SDI of the anomalies and that of the data
collected from our LAB. The analysis results are shown in
Fig 5. As the figure shows, the SDI values of more than 85%
of the abnormal hosts are bigger than 40. We also analyzed the
abnormal hosts whose SDI values are less than 40, and we find
those hosts are the Bots which are controlled by the Bot master
outside the campus network. They send heartbeat packets to
the masters slowly. In this situation, the Bot masters hold larger
In connection degree than the Out connection degree. We can
simply include the SDI of the external address in the features
to detect this kind of attacks. Furthermore, the SDI of the
normal behaviors is around one. There are obvious differences
between the SDI of anomaly and normal behaviors, which
verify the efficiency of SDI in anomaly detection.

B. SDI measurement using large scale traces

We also verify the efficiency of SDI in profiling anomalies
by analyzing the traffic traces collected from the CERNET.
We firstly analyze the distribution of the SDI, including the
CDF (Cumulative Distribution Function) and PDF (Probability
Distribution Function), and the analysis results are shown
in Fig 6(a). It can be seen that most of the hosts in the
network being monitored approximately have the same OCDI
and ICDI, and the SDI approximately equals to one. This
analysis results versified that most of the users use the network
for information exchange, they send request packets to the
servers and receive the response packets from the servers. It
can also be found that some hosts hold either large OCDI or
ICDI and the SDI is far away from one. This is caused by the
incomplete sessions, which means the host sends the request
packets but it does not receive the response data or it receives
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many connection requests from many hosts but it does not
response them. These characteristics have been explored in
our prior works [43] and we claim that they are useful for
detecting anomalies.

To further mine the characteristics of the incomplete ses-
sions, we analyse the distribution of the incomplete session
size and the distribution of the number of incomplete sessions
that each host holds. The analysis results are shown in Fig 6(b),
where the outer is the results of the flow size and the inner
is that of the number of incomplete sessions each host holds.
As the results show, most of the incomplete sessions have less
than three packets, which means if the flow is a TCP flow, it
does not complete the three-way handshake process, which is
the necessary beginning process for a TCP connection. If the
flow is a UDP flow, it means there is only small pieces of data
exchanged, as the UDP mainly be used for files or multimedia
transfer between hosts and usually there are thousands of
packets in this kind of applications. Thus we claim most of
the incomplete sessions are generated by attacks. From the
inner figure we can find that most of the users only hold
less than 15 incomplete sessions during the monitoring time
period, this may be caused by the random normal behaviors,
for example you input a wrong domain in the browser and you
will receive no response. However, we also notice that there
are several hosts hold hundreds or thousands of incomplete
sessions, which is obvious different from normal operations.
Those results verify that the larger SDI is mainly caused by
abnormal behaviors and its efficiency in anomaly detection.

C. SDI robustness analysis

1) Sensitivity to different adversary’s policies: Assume that
the adversary does not have the physical accessible power and
he can only explore the vulnerabilities using attack technolo-
gies. The most common policy used is scanning the network to
explore potential targets by chance. Those attacks will generate
many incomplete sessions and can result in a large SDI. To
avoid cause obvious changes in SDI, the adversary can slow
down the attempt frequency or adopt some special policies.
If he slow down the attempt frequency, the exploring time

will increase dramatically. Such as he attempt 20 times per
minute originally, if there are 2,000 hosts in 200 minutes. If
the target network contains more hosts, the exploring process
will be longer. And this is not acceptable for the hacker. As
he has no knowledge about the target network, many attack
policies is not suitable for this case. Thus the SDI is sensitivity
to the adversary’s exploring patterns.

2) Sensitivity to different attack phases: Although SDI is
extracted based on the pattern difference between the attack
and the normal operations, it is only sensitive to attacks
patterns of different phase. Some virus, such as Trojan Horse
and some Botnets, may infect the host by Email, USB desk,
or Web script. The SDI is not sensitivity to those infection
behaviors. But for the virus explores the targets by scanning,
such as worm, the SDI can detect those propagation behaviors.
During the attack phase, such as the DDoS attack, there will be
many incomplete connections, and the SDI can be employed
to detect those attacks. In other words, SDI cannot detect the
abnormal behaviors with both req-ack packets or behaviors do
not cause obvious changes in SDI. Behaviors with both req-ack
packets hold the forward and backward packets at the same
time and the SDI is similar that of the normal behaviors. It is
difficult to detect those anomalies in the network today. We
can detect those anomalies by combining with other methods,
such as mining the co-occurrence or periodic behaviors from
a long time period traffic monitoring.

VII. FEATURE CALCULATION AND ANOMALY DETECTION

A. Symmetry degree sketch design
Sketch methods have been studied for several years and are

widely used in traffic measurement and anomaly detection.
Here we employ the sketch for symmetry degree online
calculation.

The Out and In connection degree sketches are de-
noted as Bout and Bin. We have B = (B1, ..., BH),
in which Bi(1 ≤ i ≤ H) is a v × mi bit arrays and
H is the number of data arrays. The columns of
Bi[j][k](0 ≤ j ≤ v, 0 ≤ k ≤ mi) are associated with a hash
function hi : {0, 1, ..., n− 1} → {0, 1, ...,mi − 1}, where n is
the size of the space of source IP addresses. All rows in Bi

share a hash function f : {0, 1, ..., E − 1} → {0, 1, ..., v − 1},
where E is the size of the destination IP addresses. The
update process is shown in Fig 7. Initially, the bits in each
Bi(1 ≤ i ≤ H) are all set to zero, when a packet pi = (si, di)
arrives, each Bi is updated by setting the bit in its row f(di)
and column hk(si) equal to 1, where the label di is the
destination IP address and si is the source IP address, as in
Eq.(5). Bout

i [f(di)][hi(si)] = 1, if pi is forward packet
Bin

i [f(si)][hi(di)] = 1, if pi is backward packet
1 ≤ k ≤ H

(5)

For one specific source IP address i, there is no any other
hosts mapped to the same items of B1(i),B2(i),...,BH(i) at
the same time. Thus we can obtain the Bi of specific user by
calculating the B1(i),B2(i),...,BH(i) using equation shown in
equation 6, and then we can obtain its OCDI(i) and ICDI(i).

B(i) = B1(i)⊗ ...⊗BH(i) (6)
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To minimize the memory space used and reduce the proba-
bility of collision of degree sketch, we divided the IP address
into 4 segments according to the IPv4 structure. Each segment
is one byte length and selected as the key of the hash function
in the sketch. Each IP segment only contains 256 different
situations, only and only if the four segments are conflicted at
the same time, the whole IP address is conflicted. Compared
with choosing the whole IP address as the key, our method
can reduce the length of hash table as well as the probability
of collision.

We employ the sketch with same structures and hash func-
tion groups to calculate the OCDI and ICDI, thus we can
obtain the SDI directly based on the OCDI and ICDI.

B. Hash function design

In this works, we employ the Chinese remainder theorem to
design the hash functions in the sketch to make the connection

degree sketch reversible.
The hash function used in this paper is defined in Eq.(7,

where m1,...,mH are different prime numbers.

hj(x) ≡ xmodmj , 1 ≤ j ≤ H (7)

We select the IP segments as the keys of the hash functions
of the degree sketches, and the mapping process are given in
Fig 8. We firstly divide the IP address into four segments as
IP1, IP2, IP3 and IP4. Using the first hash function h1(x) ≡
xmodm1 , we can obtain the a1, b1, c1 and d1, then we set the
item corresponding to the string a1.b1.c1.d1 in the hash table
to 1. We process other IP segments similarly. Compare with
the methods using whole IP address as the keys, our methods
can reduce the length of the hash table and the probability of
collision.

IP1 IP2

h1

a1

h1

b1

a1.b1.c1.d1

IP1 IP2

h1

c1

h1

d1

IP1 IP2

h2

a2

h2

b2

a2.b2.c2.d2

IP1 IP2

h2

c2

h2

d2

IP1 IP2

hH

aH

hH

bH

aH.bH.cH.dH

IP3 IP4

hH

cH

hH

dH

Fig. 8. IP segment mapping procedure

C. Anomaly threshold selection

For anomaly detection, we set a threshold for the feature
extracted to judge whether there is an anomaly. We can use
the probability of feature Y falls in the interval (µ− ε, µ+ ε)
to check whether the item Y is abnormal or not, where µ is the
expectation and σ is the variance of Y. Chebyshev’s theorem
is widely used in bounds selection. Based on the theorem, the
probability of feature Y falls in the interval (µ − ε, µ + ε) is
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not less than 1− σ2/ε2, where µ is the expectation and σ is
the variance of Y.

Usually, the network is running in normal states and the
traffic features are generated by normal operations. We can
treat the SDI distribution as normal distribution according to its
definition and the analysis results of Fig.6a. Thus we can use
the Eq.(8) to the traffic calculate the upper and lower bounds.
In this paper, we use the expectation µ of the SDI as the
baseline, the difference of 2 or 3 standard variance σ from
the baseline as the upper and lower bounds to construct the
thresholds. If the symmetry degree at the monitored time point
exceeds the range decided by the bounds, we regard it as an
anomaly. To improve the detection accuracy, we select the
bounds based on the dynamic changing patterns. A selecting
time window is set and then the expectation and variance of the
symmetry degree inside the window are selected to calculate
the bounds. The size of the sliding window can be adjusted
according to the detection results.

P (|Y − µ| ≤ σ) ≈ 68%
P (|Y − µ| ≤ 2σ) ≈ 95%
P (|Y − µ| ≤ 3σ) ≈ 99%

(8)

D. Anomaly related IP address tracing

The problem of tracing anomaly-related hosts can be de-
scribed as when we detect abnormal indices, ci in the hash
tables, how to reconstruct the abnormal hash key x (the
original IP addresses) correctly and quickly. In this paper, we
first reconstruct the IP segments and then combine them into
IP addresses. The detailed reconstruction process is described
as follows:
Step1: Extracted the anomaly item combinations from each
hash table and calculate their corresponding keys, if and only
if there is only one item in each table, then we can combine
the keys into the anomaly IP address directly; if not, turn to
Step4.
Step2: Based on the extracted abnormal items, we can extract
the different abnormal segments, such as the segment IP1, from
each hash table according to Eq.(9).

IP1 ≡ a1(modm1)
IP1 ≡ a2(modm2)
...
IP1 ≡ an(modmn)

(9)

Based on the Chinese reminder theorem, Eq.(9) only has
one solution as Eq.(10).

IP1 =
∑n

i=1 aitiMi

where

M = m1 ×m2 × ..×mn =
n∏

i=1

mi

Mi =M/mi,∀i ∈ {1, 2, ..., n}
ti =M−1

i

(10)

Similar to the above process, other IP segments IP2, IP3 and
IP4 can be derived, and then we can obtain the abnormal IP
address as IP(IP1.IP2.IP3.IP4).
Step3: If there are other abnormal item combinations which
have not been processed, turn to Step4, otherwise we have

extracted all the abnormal IP addresses.
Step4: Extract an abnormal item combination from the hash
tables and go to Step2, then mark this abnormal item com-
bination to be processed. If there is no new abnormal item
combination that is not processed in the hash tables, the whole
tracing process is ended.

E. Traced anomaly processing

After anomaly detection, to classify the anomalies detected
according to their processing agencies and threat degrees is a
main task. Based on the classification results, the administrator
can deal with the high threats timely with his limited time and
energy, in turn, keep the network under control.

There are two simply ways to classify the anomalies de-
tected: Firstly, classify the anomaly detected based on their
Connection degrees and Symmetry Degrees, we assume that
the host with biggest connection degree is more dangerous
to other hosts, and it need to be processed immediately;
Secondly, in our previous work [51], an anomaly threat degree
calculation method is developed based on the characteristics
extracted from themselves. The proposed method can also be
used here to qualify the threat degrees of the detected results.
Those simple classifications can greatly improve the efficiency
of the system security management.

As for control policy, we can employ the dynamic quar-
antine method to control the abnormal behaviors and reduce
their influence based on the principle of “assume guilty before
proven innocent”, which has been widely used for control
highly infectious disease. Zou et al. employed this method
to control the propagation of internet worms [52]. We can
control the internet access behavior of hosts with higher threat
degrees by a soft dynamic quarantine method. Each host in the
monitored network can be quarantined individually. And the
quarantine on a host is released after a fixed quarantine time
window, such as 120 seconds. Once the quarantine on a host
is released, this host can be quarantined again if it is classified
as anomalies again. This dynamic quarantine method has one
obvious advantage, a false detection only lead to a quarantine
on a normal host for a short time, thus its normal activities
will not be interfered heavily.

VIII. PARAMETER ADJUSTMENT AND OPTIMIZATION

The proposed model consists of three important parameters,
the number of hash functions in the sketch, the parameters of
the hash function designed and the thresholds selected. The
initial parameters can be selected based on the theoretical
analysis and network management experiences, we need to
adjust them to achieve better detection performance.

A. Metrics for performance evaluation

We use the precision and recall, which are widely used in the
related literature to evaluate the performance of the developed
method. The definitions of precision and recall are shown in
Eqs. (11) and (12), in which the True positives (TP) denotes
the number of the anomalies that are correctly classified as
anomalies, False positives (FP) denotes the number of the
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normal events that are wrongly classified as anomalies, and
False negatives (FN) denotes the number of the anomalies that
are wrongly classified as normal events, respectively.

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

B. Initial parameters selection

As the designed sketch is reversible and can be used
for anomaly tracing, so the IP segments obtained from the
reversible analytical process should be unique. Based on the
Chinese reminder theorem, when integers m1, . . . ,mH are co-
prime numbers and big enough, there is only on solution for
any arbitrary integers a1, a2, ..., an in Eq.(13) under mode M,
where M = m1 ×m2 × ...×mn.

x ≡ a1(modm1)
x ≡ a2(modm2)
...
x ≡ an(modmn)

(13)

As each segment of the IP address is a byte length and the
value is limited to 255, thus the product of all selected prime
numbers should be greater than 255, as shown in Eq.(14).

m1 ×m2 × ...×mn > 255 (14)

Secondly, the sketch designed should use minimum memory
for easily online application. In this work we select the IP
segments as the keys of the hash functions, thus there are
totally m4

i different item combinations after mapping based
on mi. After the selection of m1,m2, . . . ,mn, the number
of different items of the symmetry degree sketch should be
m4

1 +m4
2 + . . . +m4

n. To minimize the memory used, m4
1 +

m4
2 + . . .+m4

n should be as small as possible.
Thus the original parameter selection problem can be con-

verted to how to select the suitable m1,m2, ...,mn, which
satisfy that m1 ×m2 × ... ×mn > 255 , m1,m2, ...,mn are
positive prime numbers and m4

1 + m4
2 + ... + m4

n have the
smallest summation.

C. Adjustment of the Hash Function

Based on the analysis in Section VIII.B, we find when H
equals to 4 and the prime numbers as 2, 3, 5, 11, we can obtain
the unique IP address with smallest memory cost. However, the
experimental results show that this selection will cause high
collision rate, that can result in a low recall and precision.
Those parameters must be adjusted to achieve better detection
performance. Firstly we give the recall and precision using
a single hash table with different primes smaller than 100.
And then we select the primes with high recall, precision and
consume less memory to design the hash functions. The results
are shown in Fig ??. As the figure shows, when mj equal to
2, trace 1 and trace 3 have very low recall and precision,
approximately equals to 0. With the prime increases, the IP
collision rate decreases and the recall and precision increase.
With prime bigger than 23 the recall and precision of the three
traces is basically above 90%.
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Fig. 9. Anomaly detection rate of each prime number

To ensure the symmetric degree sketch occupies the minimal
memory, based on the results in Fig.9 and the selection
methods in Section VIII.B, the hash function group selected
is shown in Eq.(15).{

h1(x) ≡ xmod29
h2(x) ≡ xmod31

(15)

The experimental results based on the hash functions in
Eq.(15) are shown in Table 4, in which the NAV denotes the
Number of Anomaly Verified with manual efforts in the traces.
From Table 4, it can be found that after modifying the core
hash function group, the detection performance is significantly
improved. All the recall and precision have reached to more
than 90%. However, the precision of the trace 1 is lower than
50%, that of other traces are also lower than 70%. The results
indicate that the hash functions still need to be adjusted to
improve the performance.

TABLE 4
Algorithm results after modifying hash functions

Trace NAV TP FP FN Precision Recall

One 19 19 21 0 47.5% 100%
Two 28 26 18 2 59.1% 92.8%

Three 15 14 8 1 63.6% 93.3%

To further improve the detection efficiency and reduce the
false detection rate, we noted that the cause of IP address
collisions and its influence on the false detection results. It
is noted that the lower precision is mainly caused by the
collisions of IP segments between that of the normal IP
addresses and the abnormal IP addresses. A simple example is
shown in Fig.10. If in the raw datasets, there are two abnormal
IP addresses and one normal IP address. Segments of the
normal IP address conflicts with that of the abnormal IP1

in hash table 1, while segments of the normal IP address also
conflict with the abnormal IP2 in the hash table 2. During
the process of reverse solution, we obtain three different item
combinations. And these two conflicted normal IP segments



11

are combined into an abnormal IP address, which result in
a false detection. To solve this problem, we can increase
the number of hash functions to reduce the probability of
conflictions.

Fig. 10. Reason for false positives

In Table 5 we give the recall and precision with different
number of hash functions and different set of primes. From
TABLE 5 we can get that with the number of hash function
increasing, the precision is greatly reduced, which means the
confliction is reduced. When the H equals to 4 and mj equals
to 29, 31, 43, 47, respectively, the precision of all the traces are
higher and that of recall are higher too. Based on those analysis
results, the hash function group used is shown in Eq.(16).

TABLE 5
Detection results of different selection of hash functions

Trace Hash and primes used NAV TP FP FN Precision Recall

One

2(29,31) 19 19 21 0 47.5% 100%
3(29,31,43) 19 19 3 0 86.3% 100%

4(29,31,43,47) 19 19 0 0 100% 100%
5(29,31,43,47,53) 19 19 0 0 100% 100%

Two

2(29,31) 28 26 18 2 59.1% 92.8%
3(29,31,43) 28 26 5 2 83.8% 92.8%

4(29,31,43,47) 28 26 0 2 100% 92.8%
5(29,31,43,47,53) 28 26 0 2 100% 92.8%

Three

2(29,31) 15 14 2 1 87.5% 93.3%
3(29,31,43) 15 14 2 1 87.5% 93.3%

4(29,31,43,47) 15 13 1 2 92.8% 86.7%
5(29,31,43,47,53) 15 13 1 2 92.8% 86.7%


h1(x) ≡ xmod19
h2(x) ≡ xmod41
h3(x) ≡ xmod43
h4(x) ≡ xmod47

(16)

D. Rescale the sliding time window

Threshold is another important parameter for obtaining
better detection results. In this paper we selected the threshold
based on the dynamic changing traffic patterns by employing
sliding time window mechanism, which employ the patterns
inside of the sliding time window in front of the time point
being analyzed to generate the thresholds. Here we firstly
adjust the size of the sliding time window, which is selected as
30 seconds based on the network management experience, thus
the threshold of the current detection time point is computed
based on the network traffic patterns in the past 30 seconds.
Fig.11 shows the detection results of the developed algorithm
with different sliding time window size.

As the Fig 11 shows, with the sliding window size increas-
ing, the recall and precision decrease quickly. Those results
verified that the users behaviors exist a kind of inertia, they
won’t change their behaviors sharply. Thus we can employ the
thresholds extracted from historical data to perform anomaly
detection. Additionally, the behavior characteristics close to
the time point being analyzed have greater influence on the
results, and that of the time points far from the analyzed time
points may still have some influence. Thus we need select
the suitable sliding time window size to achieve better results.
From the experimental results shown in Fig 11, we can find
the suitable sliding time window size is 30.
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Fig. 11. Detection results with the sliding window size

E. Threshold adjustment

Another important parameter is the number of σ in Eq.(8),
we use L to denote it. We selected the mean of the SDI in
the sliding time window as the baseline, and the L variances
are used to generated a certain upper and lower bounds to
form the range used for anomaly detection. The experimental
results with different L are shown in Table 6. As the TABLE
shows, the precision increase decreases with the increase of
the upper and lower range of baseline, and select L equal to
3 can obtain higher recall and precision.

TABLE 6
Detection results with different L

Trace L NAV TP FP FN Precision Recall

One
2 19 19 8 0 70.3% 100%
3 19 19 0 0 100% 100%
4 19 19 0 0 100% 100%

Two
2 28 27 8 1 77.1% 96.4%
3 28 26 0 2 100% 92.9%
4 28 23 0 5 100% 92.9%

3
2 15 14 2 1 87.5% 93.3%
3 15 13 1 2 92.8% 86.7%
4 15 13 1 2 92.8% 86.7%
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IX. PERFORMANCE EVALUATION

Based on the parameters selected in above Section, we
evaluate proposed method with other related methods to verify
its performance.

A. Compared with methods using other statistical features
We first select the methods based on the total number of

flows [53] and the flow size distribution [54] to verify the
efficiency of the SDI in detecting smart attacks. In [53], [54],
the Netflow model is used to aggregate packets into flows.

In [53], the authors proposed EGADS contains three compo-
nents, including the time series modeling module, the anomaly
detection module and the alerting module. The anomaly detec-
tion methods are mainly based on time series methods. Their
methods can detect the anomalies such as the outliers whose
value is significantly different from the expected values. The
change points whose valve is significantly different before and
after time point t. In this paper we employ the EWMA (Ex-
ponentially Weighted Moving Average) methods to measure
the significantly changes in the dynamic changing trends of
the total number of flows. If we detect an abnormal change,
we regard it as an anomaly. But the number of flows of all
hosts are massive and the slight changes caused by anomalies
usually cannot be found by the time series model, thus the
recall and precision are lower.

In [54], the authors employ the entropy to measure the
distribution of specific traffic feature and then perform ab-
normal detection. Here we employ the entropy to measure the
distribution of flow size. We claim an anomaly is detected if
we find an obvious changes in the distribution. But the attacks
today trend to gradually change their behavior to avoid causing
obvious changes, the recall and precision are lower.

The performance evaluation results are shown in TABLE
7. As the TABLE shows, methods based on those statistical
features have very low recall and precision. This is because
that there are thousands of flow records per second in the
network today, there is no obvious changes in those patterns
with some ongoing anomalies. Meanwhile, SDI is extracted
according to the difference between the normal behaviors and
anomalies, it is more efficient in identifying anomalies from
the massive traffic patterns.

TABLE 7
Detection results with different features

Trace Methods NAV TP FP FN Precision Recall

One
Proposed 19 19 0 0 100% 100%

[53] 19 0 2 19 0% 0%
[54] 19 2 4 17 33.3% 10.5%

Two
Proposed 28 26 3 2 89.6% 92.85%

[53] 28 3 6 25 33.3% 10.7%
[54] 28 8 9 22 47.05% 28.57%

Three
Proposed 15 14 2 1 87.5% 93.33%

[53] 15 1 2 14 33.3% 13.3%
[54] 15 3 4 12 42.8‘% 20%

B. Compared with methods using fixed thresholds
The traffic patterns are dynamic changing trends and have

obvious routine characteristics. Generally speaking, different

detection time points should use different thresholds. There
are also many works using the fixed threshold for anomaly
detection, we believe these methods using fixed thresholds
will get higher recall and precision for short time period
monitoring. Those methods will lose their efficiency for long
time traffic monitoring. In this paper we employ the methods
proposed in [55] to evaluate the performance of our methods.

We apply different fixed thresholds and the experimental
results are shown in Fig.12. As the figure shows different
traces should select different thresholds to generate better
results. As analyzed in Section V.C, the traces are collected
from different time periods. In different time periods, the
users have different behavior characteristics and the selected
thresholds should be different. If we use a fixed threshold,
the recall and precision will be very low for other traces
with different collection time points. The results verify that
dynamic threshold selection mechanism is important for long
time monitoring.
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Fig. 12. Detection results with different threshold

C. Compared with sketch using whole IP mapping

The whole IP address can be selected as the key of hash
functions in the sketch and perform abnormal detection [55],
[56], [57]. Usually the IP address can be treated as a number
with 255255255255 as the maximum value. To perform eval-
uation, we first selected suitable parameters for the methods
based on whole IP mapping. Similar with the calculation pro-
cess in Section VIII.B, we calculated and selected H equal to 4,
and the prime numbers are 569, 577, 587, and 599 in Equation
16. TABLE 8 shows the experimental results of the methods
based on whole IP addresses mapping. From TABLE 8, we
can get that the recall is higher than the methods proposed,
but the precision is lower. This is because the data obtained
in the reverse process is a number instead of IP address.
When the number is not big enough, we can obtain several IP
addresses from the number and generate false detection results.
For example, when the reversed number is 1151541228, we
can obtain lots of legal IP addresses such as 115.154.12.28
or 115.154.1.228. Thus further analysis combined with the
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network configuration is needed to improve the detection
performance, which leads to higher time complexity.

TABLE 8
Detection results of whole IP mapping

Trace NAV TP FP FN Precision Recall

One 19 19 2 0 90.4% 100%
Two 28 26 3 2 89.6% 92.9%

Three 15 14 2 1 87.5% 93.3%

D. Evaluation on the computation complexity

We evaluate the computation complexity of our methods
with several related methods, including the method using the
fixed threshold [55], the methods using whole IP address as the
key and tracing the anomaly related IP addresses by querying
the table of all items and their corresponding keys [56], [57].
We selected the trace one as an example and the analysis
results are shown in TABLE 9, which verified the efficiency
and accuracy of our methods. The main differences among
those methods and our method can be summarized as follows:

1) In [55], the threshold used is fixed and the tracing
process is based on the method proposed in this paper.
The results show that the recall and precision is lower
than other methods, this is caused by the dynamic
changing characteristic of the traffic patterns, and single
fixed threshold is not suitable for long time monitoring.

2) In [56], select the whole IP address as the key and trace
the anomaly based on the table queries, use the dynamic
threshold selection proposed in this paper to select
suitable thresholds. Traditionally the hash functions are
not reversible, to trace the anomaly related IP addresses,
we must store the IP addresses and their corresponding
items in a table. After we detect the abnormal items from
the sketch, we can query the table to get the anomaly
related IP addresses. As the results show, the execution
time is much longer than that of the method proposed,
which is mainly caused by the time-consuming tracing
process. Additionally, it costs more memory than our
methods due to the key selection and the table storage.

3) In [57], it employs the IP segments as the key and
dynamic threshold selection mechanism to select suit-
able thresholds, the tracing method is still based on
the table queries. As the results, the memory cost can
be reduced by selecting the IP segments as keys. The
recall and precision is also increased by introducing the
threshold dynamic selection mechanism. However, the
tracing process is still quit time-consuming, which is
not suitable for real time security monitoring in large
scale network.

X. CONCLUSION AND FUTURE WORK

Mining anomaly behavior characteristics and employ them
to design the abnormal detection model is the basic way for
smart anomaly detection. We find most of the attacks today
generate lots of incomplete sessions, thus we propose the
connection degree and symmetry degree to characterize the

TABLE 9
Performance comparison of anomaly detection algorithms

Methods Time(S) Memory(MB) Precision Recall

Proposed 512 45.5 100% 100%
[55] 452 42.6 61.5% 85.5%
[56] 2594 249.4 81.8% 95.4%
[57] 2715 51.7 100% 100%

abnormal behaviors and use them to identify the anomalies
from massive raw traffic packets. We design a symmetry
degree sketch to calculate the symmetry degree quickly. To
reduce the memory cost and collision probability, we select
the IP segments as the keys. To make the sketch reversible
and trace the anomaly-related IP addresses efficiently, we
employ the Chinese remainder theorem to design the hash
functions. To capture the dynamic changing trends of traffic
patterns, we select the thresholds using sliding time windows
mechanism. By combining the symmetry degree with the
reversible sketch, we can greatly reduce the computational
complexity of security monitoring while increasing the detec-
tion accuracy in high speed network. We verified the efficiency
of our methods through experiments using actual network
traffic data traces collected from the northwest center of
CERNET. However, it cannot detect the abnormal behaviors
with both req-ack packets. The SDI of those anomalies are
similar with that of the normal behaviors. We can detect
those anomalies by combining with other methods, such as
mining the co-occurrence or periodic behaviors from a long
time period traffic monitoring. For future work, we will focus
on developing new framework based on machine learning
and mining those co-occurrence behaviors for traffic security
monitoring.
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