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ABSTRACT  30 
Microbiomes from every environment contain a myriad of uncultivated archaeal and 31 

bacterial viruses, but studying these viruses is hampered by the lack of a universal, 32 

scalable, taxonomic framework. We present vConTACT v2.0, a network-based application 33 

utilizing whole genome gene-sharing profiles for virus taxonomy that integrates distance-34 

based hierarchical clustering and confidence scores for all taxonomic predictions. We 35 

report near-identical (96%) replication of existing genus-level viral taxonomy assignments 36 

from the International Committee on Taxonomy of Viruses (ICTV) for NCBI virus Refseq. 37 

Application of vConTACT v2.0 to 1,364 previously unclassified viruses deposited in virus 38 
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RefSeq as reference genomes produced automatic, high confidence genus assignments for 39 

820/1364. We applied vconTACTv2.0 to analyse 15,280 Global Ocean Virome genome 40 

fragments and were able to provide taxonomic assignments for 31% of these data, which 41 

shows that our algorithm is scalable to very large metagenomic datasets. Our taxonomy 42 

tool can be automated and applied to metagenomes from any environment for virus 43 

classification. 44 

 45 

 46 

Editors summary 47 
Classification of archaeal and bacterial viruses can be automated with an algorithm that 48 
identifies relationships based on shared gene content. 49 
 50 
 51 

Bacteria and archaea have roles in nutrient and energy cycles in ocean and soil ecosystems1–52 

4, as well as playing a vital part in human and health5. Viruses that infect bacteria and archaea 53 

modulate these ‘ecosystem roles’ by killing, metabolic reprogramming or gene transfer6,7, with 54 

substantial effects of viral predation predicted in ocean8–10, soil11,12 and human microbiomes13,14. 55 

However, ecosystem-scale understanding of virus dynamics is hampered by the lack of universal 56 

viral genes, or methods that enable a formalized taxonomy or comparative surveys. For example, 57 

viruses do not have a single, universal marker gene15 so microbial-style 16S rRNA-based 58 

phylogenies and operational taxonomic units (OTUs) are impossible16. 59 

Virus sequencing has revealed structure17,18 and population genetic support for a species 60 

definition19, and hypotheses have been put forward to explain variable evolution among 61 

prokaryotic viruses20. Together with rapidly expanding viral genome databases, these advances 62 

have led the International Committee on Taxonomy of Viruses (ICTV) to present a consensus 63 
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statement suggesting a shift from the ‘traditional’ classification criteria21 e.g. virion morphology, 64 

single/multiple gene phylogenies, towards a genome-centered, and perhaps one-day, largely 65 

automated, viral taxonomy22.  66 

Given the pace of viral discovery a virus taxonomy is urgently needed. Hundreds of 67 

thousands of metagenome-derived viral  genomes and large genome fragments (more than 68 

700,000 at IMG/VR23) dwarf the 34,091 prokaryotic virus genomes present in the NCBI 69 

GenBank database24. Together with the recently proposed ‘minimum information about 70 

uncultivated virus genomes’ (MIUViGs) community guidelines25, evaluation of approaches to 71 

establish a scalable, genome-based viral taxonomy is needed to enable a universal classification 72 

framework.  73 

Multiple genome-based strategies have been proposed to develop a taxonomic framework for 74 

viruses of bacteria15,26–31, archaea32 or eukaryotes33. For bacterial viruses (“phages”), one early 75 

approach used complete genome pairwise protein sequence comparisons in a phylogenetic 76 

framework (the “phage proteomic tree”) and was broadly concordant with ICTV-endorsed virus 77 

groupings at the time15. However,  this approach was not widely adopted as it was thought that 78 

“rampant mosaicism” might blur taxonomic boundaries and violate the assumptions of the 79 

underlying phylogenetic algorithms used in the analyses34. Other approaches estimated the 80 

fraction of genes shared, and percent identity of shared gene cut-offs, to define genera and sub-81 

family affiliations35,36, but this approach failed to define taxonomic classification for several 82 

known virus groups due to the likelihood that the mode and tempo of prokaryotic virus evolution 83 

is highly variable20. Building on a prokaryotic classification algorithm, the Genome Blast 84 

Distance Phylogeny (GBDP)37, which comes with a freely accessible online tool (VICTOR), 85 

classifies phage genomes by combining phylogenetic and clustering methods29. This method has 86 
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insufficient scalability (100 genomes limit) and limited taxonomic assignment for viruses that 87 

lack reference genomes.  88 

Gene sharing networks, based on shared protein clusters (PCs) between viral genomes, have 89 

been shown to be largely concordant with ICTV-endorsed taxa, independent of whether 90 

monopartite27,28,38  (a single node type, i.e., viral genomes) or bipartite networks32,38 (two node 91 

types, i.e., viral genomes and genes) were used. We used a monopartite gene sharing network to 92 

build an iVirus39 app (vConTACT v1.0, hereafter v1.0) to automate network-based classification 93 

of prokaryotic viruses. v1.0 produced viral clusters (‘VCs’) that were ~75% concordant with 94 

ICTV prokaryotic viral genera28.  Network-based analytics have been applied to viral taxonomy 95 

in large-scale studies of ocean40,41, freshwater42 and soil43 and studies of single-virus amplified 96 

genomes (vSAGs)44,45. In all of these environments the viruses could only be classified upon 97 

application of a gene sharing network method. v1.0 cannot, however, make tentative taxonomic 98 

assignments. This is because v1.0 creates artifactual VCs of both undersampled genomes and 99 

highly overlapped regions of viral sequence space28, and lacks per-VC confidence metrics, 100 

necessary for establishing hierarchical taxonomy.  101 

Here we present vConTACT v2.0 (hereafter v2.0), which has a new clustering algorithm,  102 

confidence scoring of clusters and network analytics that together enable automation, improved 103 

taxonomy assignments and scalability to much larger datasets. We apply v2.0 to establish a 104 

centralized, ‘living’ taxonomic reference network as a community resource and show that v2.0 is 105 

robust and scalable to large metagenomic datasets. 106 

 107 

RESULTS 108 

Description of vConTACTv2.0 109 
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The aim of vConTACT is to automatically assign viral genomes into established or new taxa, 110 

with performance assessed relative to ICTV-assigned, manually-curated taxa (Fig. 1). However, 111 

in the current ICTV taxonomy for prokaryotic viruses, taxonomic classifications above the genus 112 

level are only sporadically available for sub-family and order ranks. For example, of the 2,304 113 

prokaryotic virus genomes available in RefSeq, 84.2% are unclassified at the subfamily level, 114 

and 61.6% are unclassified at the order level with virtually all of the remaining 38% lumped into 115 

a single “Caudovirales” order. Moreover, among the Caudovirales, the three phenotypically 116 

recognized and dominant bacterial virus family level designations – Podoviridae, Myoviridae 117 

and Siphoviridae – are being called into question by genome-based taxonomy methods46–48 and 118 

are thus in flux. Therefore, we focused specifically on assigning viruses at the genus level, as it 119 

constitutes the principal taxon of molecular classification in the ICTV taxonomy.  120 

In a network-based genome taxonomy framework (Fig. 1a), related genomes emerge as a 121 

group of nodes strongly connected through multiple edges, here termed a Viral Cluster, or ‘VC’. 122 

In a taxonomic context and based on the clustering of viral reference genomes, we have 123 

previously demonstrated that the network parameters can be tuned such that the VCs best 124 

represent genus-level grouping of viral genomes28. In v1.0, ~75% of VCs corresponded to 125 

established ICTV genera28 (‘concordant VCs’), but ~25% ‘discordant VCs’ were present. 126 

Discordant VCs can occur by production of outlier cluster genomes with no close relatives from 127 

‘undersampled VCs’, or by incorrect overlapping of multiple ICTV genera that share many genes 128 

or by misassignment of multiple ICTV genera into a structured VC  (Fig. 1b).  129 

To address these problems we developed a new clustering algorithm, established confidence 130 

scores and distance-based taxon separation for hierarchical taxonomy, and optimized and 131 

evaluated scalability and robustness using a large-scale viral metagenomic dataset. Briefly, after 132 
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the MCL-clustered protein clusters are generated, we optimized the protein-cluster-based gene-133 

sharing information to establish an automated two-step process whereby VCs are defined using 134 

ClusterONE49 (CL1), rather than MCL which is used in v1.0, and then subdivided using 135 

hierarchical clustering to disentangle problematic regions of the networks (Fig. 1b, Online 136 

Methods). This approach considers edge weight (degree of connection between genomes) to 137 

identify outlier genomes that are weakly connected with members of their VC compared to 138 

neighbour genomes, detect and separate genomes that ‘bridge’ overlapping VCs, and break down 139 

structured VCs into concordant VCs through distance-based hierarchical clustering (Fig. 1b).   140 

Additionally, v2.0 incorporates confidence scores for each VC to help differentiate between 141 

meaningful taxonomic assignments and those that might be artefacts. Briefly, each VC receives 142 

two types of confidence scores: a topology-based score (value range 0-1), which aggregates 143 

information about network topological properties, and a taxonomy-based score (value range 0-1), 144 

which estimates the likelihood of predicted VCs to be equivalent to a single ICTV genus (Online 145 

Methods). Higher values indicate either more confident linkages within the VC or better 146 

taxonomic agreement for the topology and taxonomy-based scores, respectively, and the 147 

taxonomy-based score is used to automatically optimize the hierarchical clustering of structured 148 

VCs into ICTV-concordant ‘subclusters’.  149 

Finally, although we present v2.0 as a monopartite (one type of node) network tool, it 150 

produces the necessary output to be visualized as a bipartite network (Supplementary Fig. 1). In 151 

bipartite visualizations, two types of nodes are used to display genomes and their connecting, 152 

shared protein clusters (PCs). Information about which PCs link a given set a viruses together is 153 

also provided (Supplementary Table 1; Online Methods), as it can enable identification of core 154 

virus group genes that might be useful for downstream analyses. 155 
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 156 

 157 

Comparison of vConTACT 1.0 and 2.0 158 

To assess clustering performance of v1.0 and v2.0, we quantified concordance with the set of  159 

940 prokaryotic virus genomes that have ICTV genus-level classification (accessed January 160 

2018, Online Methods and Supplementary Table 2). Clustering performance was evaluated by 161 

a composite performance score of Accuracy (Acc) and Separation (Sep). Both Acc and Sep are 162 

aggregate measures themselves (Online Methods), and report clustering precision, and how 163 

resulting clusters (or VCs) correspond to a single ICTV genus, respectively (Fig. 2a). Each 164 

metric has a value between 0 and 1, with 1 indicating perfect clustering accuracy and/or coverage.  165 

v2.0’s CL1, combined with hierarchical clustering, resulted in an overall performance 166 

improvement of 28.8% (Fig. 2a). To assess which changes in v2.0 contributed to improved 167 

performance we further optimized v1.0’s MCL-based VC clustering and found that, at an IF of 7, 168 

we could achieve nearly equivalent performance (Fig. 2a, Supplementary Table 3) and more 169 

VCs predicted by the optimized MCL-based configuration as it organized the 940 viral genomes 170 

into 180 VCs, whereas v2.0’s CL1 identified 157 VCs. However, higher values in Sep for CL1 171 

indicate better performance for assigning single genera into single VCs, even though MCL at its 172 

optimal IF value (i.e., 7) generated more VCs (Supplementary Table 1). Thus, although more 173 

VCs were assigned to ICTV genera by the optimized MCL configuration, they were largely 174 

discordant VCs of either lumped or split ICTV genera, or both; whereas this behavior was ~50% 175 

reduced using CL1 (see Supplementary Fig. 2a and b). Among these 22 lumped or split VCs 176 

from the optimized MCL configuration, the virus genomes shared very few proteins (average = 177 

17% range: 1-30%; Supplementary Fig. 1b) similarities, which modern cut-offs would suggest 178 
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should have been separated as separate genera, here outliers in the network. To better resolve 179 

these issues, we added a post-processing, Euclidean distance-based hierarchical clustering step to 180 

split mismatched VCs in v2.0. This step accurately classified 36 additional genera from the 181 

problematic structured VCs (Supplementary Table 2), which increased v2.0’s Sep value by 7%. 182 

Together, these findings suggested that both upgrading the clustering algorithm and adding 183 

hierarchical clustering were critical to improve automatic VC assignments.  184 

 185 

vConTACT v2.0 can analyse genomic relationships 186 

Next, we tested whether v2.0 could resolve discordant VCs (Fig. 1b). First, 55% of ICTV genera 187 

are undersampled (Supplementary Table 2), which in a gene-sharing network manifests as 188 

weakly connected, small VCs prone to artifactual clustering (Fig. 1b, top row) due to outlier 189 

genomes only weakly connected to any given VC. In v1.0, undersampled VCs accounted for 190 

64% (28/44) of all discordant VCs, and could not be resolved by increasing IF values (Fig. 2b 191 

and d and Supplementary Table 2). v2.0 correctly places 38 genomes from 15 genera into 15 192 

now concordant VCs using the same input data (Fig. 2c and d and Supplementary Table 2).  193 

Second, we evaluated the ability of v2.0 to resolve overlapping VCs (Fig. 1b). We detected 194 

overlapping VCs using a ‘match coefficient’ that measures the connection within- and between- 195 

other VCs (Online Methods). This approach identified nine overlapping VCs (ICTV-classified 196 

genera only) containing 30 viruses in 11 ICTV genera. These included viruses with known 197 

mosaic genomes47 (lambdoid or mu-like phages of the P22virus, Lambdavirus, N15virus, and 198 

Bcepmuvirus genera), recombinogenic temperate phages50,51 (Mycobacterium phages of the 199 

Bignuzvirus, Phayoncevirus, and Fishburnevirus genera and Gordonia phages of the genus 200 

Wizardvirus), and three newly-established genera (Cd119virus, P100virus and archaeal 201 
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Alphapleolipovirus), all bearing low topology-based confidence scores (averages of 0.32 for 202 

these VCs versus 0.52 for concordant VCs; P-value = 6.12e-09, Mann-Whitney U test) 203 

(Supplementary Fig. 3a). Overlapping VCs are linked to high horizontal gene flow, since most 204 

viruses in these VCs were classified as having high gene content variation (HGCF, Fig. 2e, 205 

Supplementary Fig. 3b) as assigned by a recently proposed framework of phage evolutionary 206 

lifestyles20. Though unresolvable in v1.0, v2.0 could assign eight of the 11 ICTV genera (24 207 

viruses) into 8 ICTV-concordant VCs (Supplementary Table 2). The remaining 3 ICTV genera, 208 

all comprised of Mycobacterium phages52 (6 genomes), could not be resolved (Supplementary 209 

Table 2), and may not be amenable to automated taxonomy.  210 

Third, structured VCs (Fig. 1b, bottom row) contained genomes that both gene sharing 211 

networks placed into a single VC due to many shared genes and/or gene modules across all the 212 

member genomes, but distributed into several ICTV genera due to subsets of the genomes also 213 

sharing additional genes (Supplementary Note 1). For v1.0 we previously reported that these 214 

structured VCs could be decomposed through hierarchical clustering27, but in v2.0, we 215 

formalized an optimized, quantitative hierarchical decomposition distance measure for this 216 

process (Online Methods and Supplementary Fig. 4). In the v2.0 network, 23 of the 31 217 

discordant VCs (74%) were structured VCs, spanning 86 genera (Fig. 3a,b and Supplementary 218 

Table 2). Automated v2.0 resolved 30% (26 of 86) of these ICTV genera from 6 of the 23 219 

structured VCs (Fig. 3c).  220 

Of the 2,304 reference virus genomes classified by ICTV at the genus rank, 1,364 are 221 

currently unassigned to a genus. This set of 1,364 reference viruses was organized into 404 well-222 

supported VCs with v2.0  (Supplementary Table 2). 544/1364 were placed in 104 VCs with 223 

genomes from known ICTV taxa, whereas 820/1364 formed 200 separate VCs. We propose that 224 
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these 820 genomes can be as 200 bona fide novel virus genera and have submitted these to the 225 

ICTV for consideration.  If ratified, application of vContact2.0 will double the number of 226 

prokaryotic viral genera (which is currently 264).  227 

v2.0 clustering changed the taxonomy of ten established ICTV genera: Barnyardvirus, 228 

Bcep78virus, Bpp1virus, Che8virus, Jerseyvirus, P68virus, Pbunavirus, Phietavirus, 229 

Phikmvvirus, and Yuavirus (Supplementary Fig. 5 and Supplementary Note 2), and manual 230 

inspection by ICTV members involved in this study has recommended revision of Phikmvvirus 231 

viruses (ICTV proposal 2015.007a-Db). Hierarchical decomposition of structured VCs into 232 

subclusters indicated that the gene content-based distance correctly recapitulated the ICTV 233 

taxonomy, but the cut-offs used to define subclusters are different from those currently used to 234 

delineate established genera (Fig. 3c and Supplementary Fig. 4). Universal cut-offs are known 235 

to be of limited use. Manual curation by experts has resulted in different cut-offs across viral 236 

sequence space53. A standardized taxonomy has been proposed for bacteria and archaea54 and for 237 

viruses standardization would be invaluable for automating virus taxonomy. v2.0 VCs and 238 

subclusters will provide a reference baseline for the ICTV to translate network-derived cut-offs 239 

into systematic taxonomic demarcation criteria.  240 

Some taxon assignments are not amenable to being resolved by gene-sharing networks. For 241 

example, when genera are defined on phenotypic or evolutionary evidence, e.g., archaeal 242 

fuselloviruses55 (VC42) or bacterial microviruses56 (VCs 30 and 49), a gene-sharing network 243 

approach will not be suitable (see Fig. 3c and Supplementary Table 2). An automated 244 

vConTACT-based approach can however identify problematic taxa and speed up revisions to the 245 

taxonomy.  246 

 247 
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vConTACT v2.0 can scale to large virome datasets  248 

To evaluate scalability of our algorithm, we added 15,280 curated viral genomes and large 249 

genome fragments (≥ 10 kb) from the Global Ocean Virome (GOV) dataset40 to our reference 250 

network in 10% increments (i.e., 0%, 10%, …, 100% of the total dataset). The final network 251 

comprised 16,960 sequences (Fig. 4a). We evaluated whether the incremental addition of GOV 252 

data to the network led to changes in node connections, as estimated by the ‘change centrality’ 253 

metrics (CC, values range from 0-1 with 0 indicating no change and 1 indicating complete 254 

change; Fig. 4b). We also evaluated concordance between v2.0 clustering and ICTV genera 255 

using the Sn, Acc & PPV performance metrics (Fig. 4c). A large fraction of added data initially 256 

experiences a moderate change (CC = 0.4), but the entire dataset eventually stabilized, as CC 257 

values for most of the data ranged from 0 to 0.1. A similar trend was observed for accuracy (Acc, 258 

Fig. 4c). This indicated that v2.0 can scale to thousands of input sequences, and that our 259 

reference network clustering is robust to large-scale data additions. 260 

We assessed whether GOV data can resolve ICTV outlier and singleton genomes as a proxy 261 

for assessing taxonomic ramifications of adding data. We reasoned that more data might connect 262 

outliers to new or existing VCs. Of 38 single-member VCs (Supplementary Fig. 6) three 263 

Mycobacterium phage VCs were improved, while two Mycobacterium virus genomes were 264 

merged into larger heterogeneous VCs composed of six ICTV genera, which did not constitute 265 

an improvement. We observed that 919 new VCs were created with the full GOV dataset (15, 266 

280 total contigs). We propose that these new VCs represent 919 viral genera that are not 267 

represented in the existing 264 ICTV genera. According to a recent consensus statement, any 268 

taxonomic reference network must be constrained to complete genomes22, and large genome 269 
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fragments commonly derived from metagenome-based studies must be utilized in a relevant 270 

manner to address questions specific to that study, so these results remain preliminary. 271 

 272 

Discussion 273 

vConTACT v2.0 offers a scalable, robust, systematic and automated means to classify bacterial 274 

and archaeal virus sequences. V2.0 is a highly scalable tool. Overall, there is a strong linear (R2 = 275 

0.99, see Supplementary Fig. 7) correlation between number of sequences and runtimes. For 276 

example, running the full virus dataset RefSeq with Diamond would take ~10 minutes on a 277 

regular laptop, while a GOV-sized dataset would run for several hours.  278 

There are limitation of v2.0. First, the complete reference network needs to be rebuilt each 279 

time new data are added. Avoiding this reconstruction step will require the development of 280 

approximation methods and/or a placement algorithm (akin to PPlacer for 16S phylogenies57) to 281 

incorporate new data.  Second, CL1-based VC generation may require manual parameter 282 

optimization if datasets with overlapping genomes are included. We have added an auto-283 

optimization option for determining the optimal distance for hierarchical decomposition of 284 

structured VCs in v2.0. v2.0 can run with prokaryotic viruses but has not been designed, tested or 285 

validated for eukaryotic viruses. These viruses will require new algorithms for classification as 286 

they have more diverse genomic configurations (segmentation, overlapping genes and  287 

ambisense transcriptional gene configurations) that pose unique computational challenges33,58. 288 

Short, complete prokaryotic virus genomes and small fragments of larger genomes (e.g., ≤ 3 PCs 289 

or ≤ 5 genes) have low statistical power in gene-sharing networks, and will require new solutions 290 

to establish higher confidence VCs, and remain taxonomically inaccessible using v2.0. Finally, 291 
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genomes identified as singletons, outliers or overlapping are currently excluded from the gene-292 

sharing network, which leaves a large fraction of viral sequence space unclassified.  293 

Assuming broad acceptance of vConTACT v2.0, and parallel efforts with eukaryotic 294 

viruses33, we may finally have the foundation to realize the consensus statement goals22,25 of 295 

establishing a genome-based viral taxonomy to better capture the broader viral sequence 296 

landscape emerging from environmental surveys.    297 

 298 
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 457 
 458 
 459 
 460 
Figure Legends 461 
Figure 1. Virus genome classification visualized as networks. (a) Left side panel: matrix of 462 
shared protein clusters (PCs, grey blocks) between a set of virus genomes can be visualized as a 463 
network of interconnected nodes, as shown on the right-side of the panel. Each node in this 464 
sample 6-node network represents a virus genome that may be connected to other nodes through 465 
edges. The edge value represents the strength of connectivity between nodes. If a set of nodes 466 
have considerably higher edge weights than the rest of the network they are linked to, these are 467 
grouped together to form a viral cluster, or ‘VC’. (b) Each row depicts a node clustering scenario 468 
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in which vConTACT v2.0 has improved upon. On the left side, each scenario is first depicted as 469 
a genome-PC matrix highlighting how shared protein clusters between certain genomes may 470 
induce erroneous virus groupings due to outlier genomes, overlapping viral groups or VCs 471 
containing multiple viral groups. On the right side of the matrices, the topology of each 472 
clustering scenario is depicted as small networks of nodes (color-coded according to the  ICTV 473 
genera colors next to the matrices), and shows how vConTACT version 1 and 2 handled 474 
clustering of problematic genomes and/or VCs. (c) Heatmap key corresponding to the various 475 
values related to edge weight in (a) and (b), which serve to connect the nodes in the networks 476 
and shows how closely related each connected node is to other nodes based on the number of 477 
common PCs between genomes.  478 
 479 
Figure 2. Performance of vConTACT 1.0 and 2.0 on prokaryotic virus genomes. (a) The 480 
same colors denote individual performance metrics for the ICTV genera (G) including 940 viral 481 
genomes, which are achieved by the Markov clustering (MCL) algorithm at each inflation factor 482 
(v1.0) as well as ClusterONE (CL1) and CL1 followed by distance-based hierarchical clustering 483 
(CL1 + H) (v2.0), respectively. For more objective comparisons, MCL at an inflation factor of 484 
7.0 followed by hierarchical clustering (IF 7.0 + H) with the same distance (i.e., 9.0) used for 485 
v2.0 was included. The total height and number of each bar indicate the composite score for 486 
overall performance comparison. For details, see Online Methods. (b, c) Gene-sharing networks 487 
were built using 2,304 archaeal and bacterial virus genomes retrieved from Viral RefSeq v85. 488 
Viral clusters (VCs) were obtained by vConTACT v1.0 (b) and v2.0 (c) that used MCL with 489 
inflation factor (IF) of 7.0 and CL1, respectively (see Online Methods). For both networks, 490 
genomes (nodes) are color-coded according to their taxonomic assignments. For example, 491 
genomes (only members of the ICTV-recognized genus) that are classified in VCs containing a 492 
single ICTV genus are colored in cyan, while genomes found in VCs containing more than two 493 
genera are colored in pink. Genomes without ICTV genus affiliation are in grey. Nodes with 494 
bold borders indicate those that were correctly identified either as outlier, overlap genomes or 495 
separate VCs through v1.0 (b), compared to v2.0 (c). Genomes whose taxonomic assignments 496 
and/or annotation are incomplete are colored in yellow, identified through v2.0 (c). For details, 497 
see Supplementary Figs 3 and 5 and Supplementary Table 2. (d) Box plots of the percentage 498 
of shared protein clusters (PCs) between member viruses within 28 v1.0-generated undersampled 499 
VCs having ≥2 genera before (pink), and after (cyan) removal of outlier and/or separation into 500 
individual clusters by v2.0. All box plots (n=61) were defined in terms of the minima, center, 501 
maxima, percentiles and sample size (Supplementary Table 5). (e) Pie charts depicting the 502 
number of overlapping genomes that belong to the high (HGCF) or low (LGCF) gene content 503 
flux evolutionary modes or mixed and lytic or temperate phages. Data on the lifestyle and 504 
evolutionary modes of 74 viruses were collected from Mavrich and Hatfull22. For details, see 505 
Supplementary Fig. 3. 506 
 507 
Figure 3. Application of the hierarchical decomposition to discordant VCs. (a) Distribution 508 
of all 31 discordant VCs across the archaeal and bacterial virus gene sharing network, where 509 
genomes (nodes) of the given VCs are highlighted in pink and others in grey. (b) Box plots show 510 
the fraction (%) of protein clusters (PCs) that were shared within an ICTV genus (i.e., intra-511 
genus proteome similarity) and between multiple genera (i.e., inter-genera similarity) found in 512 
each discordant VC including structured clusters whose member genera have similar inter-genera 513 
and intra-genus similarities (black dot). All box plots (n=60) were defined in terms of the 514 
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minima, center, maxima, percentiles and sample size (Supplementary Table 6). (c) Left, A full 515 
link dendrogram is represented. Note that the Euclidean distance of nine yielded the highest 516 
composite score of accuracy (Acc) and clustering-wise separation (Sep) for sub-clusters from all 517 
v2.0-generated VCs, which was used to split the discordant clusters (Online Methods and 518 
Supplementary Fig. 4). Right, module profiles showing the presence and absence of 7,662 total 519 
protein clusters (PCs) across 362 genomes. Each row represents a phage and each column 520 
represents a PC, with a unique color (left of the module) representing the genome’s VC and 521 
ICTV genus, respectively. Sub-clusters, which are generated by distance-based hierarchical 522 
grouping, are represented across all discordant VCs on the right side of the heat map. From the 523 
12 discordant VCs, 37 sub-clusters (corresponding to a single ICTV genus), are highlighted as 524 
green boxes. For details, see Supplementary Table 2. 525 
 526 
Figure 4. Adding the Global Ocean Virome to NCBI Viral RefSeq. (a) Selected network 527 
images from the largest connected component of GOV additions. Red nodes are virus RefSeq 528 
genomes, and grey nodes are GOV. Despite adding 15,280 new genomes, the network maintains 529 
its overall structure. (b) Change centralities on a per-genome (grey) and per-VC (aqua) basis 530 
through successive, 10% increments of GOV data. A value of zero in change centrality (Y-axis) 531 
represent no change in any of the nodes connected to the origin node (or that the node was 532 
removed), while a value of one represents origin node creation. High change centrality scores 533 
imply that nodes are being created adjacent to the origin node, with the further a node’s creation 534 
is from the origin node, the less of an impact it has on the origin node’s centrality. Dotted lines in 535 
each violin represent quartiles, whereas the width of each violin plot is scaled to be equal 536 
between GOV % (X-axis), such that distributions can be compared between datasets. Numbers in 537 
parentheses indicate the number of genomes corresponding the GOV % above and numbers in 538 
bracket indicate the number of corresponding VCs. Pairwise heatmap comparison at all GOV 539 
incremental additions using normalized mutual information (NMI) values. NMI measures VC 540 
similarity to other VCs by comparing genome content changes across incremental additions of 541 
data. Darker blue hues correspond to more similar information content (i.e. genomes maintaining 542 
the same VC membership). (c) GOV network performance through successive data 543 
accumulations. As GOV sequences are added (X-axis), individual performance score (ranging 544 
from 0 to 1, Y-axis; calculated from the clustering-wise positive predictive value (PPV), 545 
clustering-wise sensitivity and accuracy) across genus- and family-level predictions (represented 546 
by circular and square data points, respectively) generally trend towards stabilization. Boxplots 547 
depicting the average Euclidean distance within VCs across GOV data increments. Grey boxes 548 
are samples prior to hierarchical trimming, while blue boxes are post-trimming. Points represent 549 
discordant VCs, with darker hues representing increasing discordance (i.e., more genera per VC). 550 
 551 
 552 

 553 

ONLINE METHODS 554 

 555 
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Data sets. Full-length viral genomes were obtained from the National Center for Biotechnology 556 

Information (NCBI) viral reference dataset24,59 (‘ViralRefSeq’, version 85, as of January, 2018), 557 

downloaded from NCBI's viral genome page (https://www.ncbi.nlm.nih.gov/genome/viruses/) 558 

and eukaryotic viruses were removed. The resulting file contained a total of 2,304 RefSeq viral 559 

genomes including 2,213 bacterial viruses and 91 archaeal viruses (Supplementary Table 2). In 560 

parallel, the ICTV taxonomy (ICTV Master Species List v1.3, as of February, 2018) was 561 

retrieved from the ICTV homepage (https://talk.ictvonline.org/files/master-species-lists/). ICTV-562 

classifications were available for a subset of genomes at each taxonomic rank, and the final 563 

dataset included: 884 viruses from two orders, 974 viruses from 23 families, 363 viruses from 28 564 

subfamilies, and 940 viruses from 264 genera. To maintain hierarchical ranks of taxonomy, we 565 

manually incorporated 2016 and 2017 ICTV updates48,60,61 to NCBI taxonomy when ICTV 566 

taxonomy was absent.  567 

 568 

Generation of viral protein clusters. Both version 1 and 2 of vConTACT share an identical 569 

protein clustering initial step, in which viral proteins are grouped in protein clusters (PCs) 570 

through MCL, followed by the formation of viral clusters (VCs) using either MCL (version 1) or 571 

ClusterOne (version 2). First, a total of 231,166 protein sequences were extracted from the 2,304 572 

viral genomes (above). Second, to group protein sequences into homologous protein clusters 573 

(PCs)28, all proteins were subjected to all-versus-all BLASTP62 searches (default parameters, cut-574 

offs of 1E-5 on e-value and 50 on bit score). Third, PCs were generated by applying MCL 575 

(inflation factor of 2.0), and resulted into all the proteins being organized into 25,513 PCs, with a 576 

fraction of proteins (26,625 or 11.5%) as singletons (i.e. isolated protein with no relatives).  577 

 578 
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Calculating genome similarity between viruses. The resulting output was parsed in the form of 579 

a matrix comprised of genomes, PCs and singleton proteins (i.e., 2,304 × 52,138 matrix) 580 

(Supplementary Table 1). We then determined the similarities between genomes by calculating 581 

a one-tailed P value of observing at least c PCs in common between each pair of genomes, based 582 

on the following hypergeometric equation as per Lima-Mendez et al27:  583 

 584 

ܲ(ܺ ≥ ܿ) = ∑ ೌ షೌ್ష್୫୧୬	(,)ୀ                                                     585 

(1) 586 

 587 

in which c is the number of PCs in common; a and b are the numbers of PCs and singletons in 588 

genomes A and B, respectively; and n is the total number of PCs and singletons in the dataset. 589 

The hypergeometric formula calculates the probability of sharing a number of common PCs 590 

between two genomes at or above the number (c) under the null hypothesis that the observed 591 

result is likely to occur by chance. A score of similarity between genomes was obtained by 592 

taking the negative logarithm (base 10) of the hypergeometric P-value multiplied by the total 593 

number of pairwise genome comparisons (i.e., (2,304	 × 2,303)/2). Genome pairs with a 594 

similarity score ≥1 were previously shown to be significantly similar through permutation test 595 

where PCs and singleton proteins with genome pairs having a similarity score below the given 596 

threshold (negative control) were randomly rearranged. None of the genome pairs in this 597 

negative control produced similarity score >1, indicating values above this threshold did not 598 

occur by chance28. 599 

 600 
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Network visualization. The gene (protein)-sharing network was constructed, in which nodes are 601 

genomes and edges connect significantly similar genomes. This network was visualized with 602 

Cytoscape software (version 3.6.0; http://cytoscape.org/), using an edge-weighted spring 603 

embedded model, which places the genomes sharing more PCs closer to each other.  604 

 605 

Parameter optimization for viral cluster formation of vConTACT v1.0 and 2.0. Due to 606 

different criteria for parameter optimization between the clustering methods, different number 607 

and size of the clusters are often generated, which can make objective performance comparisons 608 

difficult63. Thus, to more comprehensively compare performance, v1.0’s MCL-based VCs were 609 

generated at inflation factors (IFs) of 2.0 to 7.0 by 1.0 increments, with an optimal IF of 1.4 610 

showing the highest intra-cluster clustering coefficient (ICCC)27 (Supplementary Table 2 and 611 

Supplementary Fig. 8). Unlike MCL, which uses a single parameter27 (i.e., the inflation factor),  612 

VC formation with CL1 (used in vConTACT v2.0), involves multiple parameters that can detect 613 

complex network relationships49. The three main parameters of CL1,  minimum density/node 614 

penalty, haircut, and  overlap, automatically quantify (i) the cohesiveness of a cluster, (ii) the 615 

boundaries of the clusters (i.e. outlier genomes), and (iii) the size of overlap between clusters , 616 

respectively49. Of these parameters, the first one is used to detect the coherent groups of VCs as 617 

follows:  618 

 619 

ܥ                                                               = 	 ௐ()ௐ	()ା	ௐೠ	()ା||                                                       620 

(2) 621 

 622 
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in which ܹ(ܸ) and ܹ௨௧	(ܸ)	are the total weight of edges that lie within cluster ܸ and that 623 

connect the cluster ܸ and the rest of the network, respectively, |ܥ| is the size of the cluster,  is a 624 

penalty that counts the possibility of uncharted connections for each node. 625 

The second parameter, the haircut, can find loosely connected regions of the network (outliers) 626 

by measuring the ratio of connectivity of the node g within the cluster c to that of its 627 

neighbouring node h as:  628 

 629 

                                                           ∆௨௧= 	݇ ∑ ܹ,ୀଵ ∑ ܹ,ୀଵൗ                                                   630 

(3) 631 

 632 

in which ݇	is the number of edges of the node ݃, and ܹis the total weight of edges of the 633 

respective nodes ݃ and	ℎ. If the total weight of edges from a node (ℎ) to the rest of the cluster (c) 634 

is less than x times that we specified the average weight of nodes (݃) within the given cluster, 635 

CL1 will remove the node (ℎ) from a given VC and consider it an outlier. 636 

The third CL1 parameter, the overlap size, determines the maximum allowed overlap (ω) 637 

between two clusters, measured by the match coefficient, as follows:  638 

 639 

                                                                       ω	 = 	 ݅ଶ ܽ ∗ ܾ⁄                                                                 640 

(4) 641 

 642 

in which ݅ is the size of overlap, which is divided by the product of the sizes of the two clusters 643 

under consideration (ܽ and ܾ). Since CL1 identifies overlap between VCs, it can find both 644 

hierarchical and overlapping structures within viral groups. This ability is a significant 645 
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improvement over v1.0, as v1.0’s MCL cannot handle modules with overlaps7. Specifically, for 646 

each pair of clusters, CL1 calculates the overlap score between them (above) and merges these 647 

clusters if the overlap is larger than a given threshold. Thus, in the resulting output file, viral 648 

groups (or clusters) having the identical member viruses can be found in multiple clusters, called 649 

‘overlapping viral clusters’ (Supplementary Table 2 and Fig. 1b, middle row).    650 

 To determine the best parameter combination to use for CL1, we tested a wide range of 651 

values for the three aforementioned parameters: minimum density ranging from 0 to 1 by 0.1 652 

increments; node penalty from 1 to 10 by 1.0; haircut from 0 to 1 by 0.05; overlap from 0 to 1 by 653 

0.05) and default settings for the other parameters: 2 as minimum cluster size, weighted as edge 654 

weight, single-pass as merging, unused nodes as seeding. This resulted in 53,361 clustering 655 

results, which we evaluated individually to determine the highest performance on our genome 656 

data set (above)To identify the best parameter combination, we used the geometric mean value 657 

of prediction accuracy (Acc) and clustering-wise separation (Sep, see next section), as previously 658 

described64. The final, optimized CL1 parameters were a minimum density of 0.3, a node penalty 659 

of 2.0, a haircut of 0.65, and an overlap of 0.8, which resulted in 280 VCs (Supplementary 660 

Table 2).            661 

 Next, to further decompose ‘discordant VCs’, we added as a post-clustering step in v2.0, 662 

which allows additional  hierarchical separation of such VCs into sub-clusters using the 663 

unweighted pair group method with arithmetic mean (UPGMA) with pairwise Euclidean 664 

distances (implemented in Scipy). To determine the optimal distance for sub-clustering of VCs, 665 

we assessed the distances of sub-clusters across all the VCs in the network. We tested the effect 666 

of  these distances (ranging from 1 to 20 in 0.5 increments) and picked as optimal distance the 667 

one which maximized the composite score by multiplying the prediction accuracy (Acc) and 668 
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clustering-wise separation (Sep) at the ICTV genus rank (see next section). A distance of 9.0 669 

yielded the highest composite score of Acc and Sep (Supplementary Fig. 4). Notably, 670 

vConTACT v2.0 was designed to help users optimize these parameters for grouping of 671 

genomes/contigs into VCs and distance for post-decomposition of VCs into sub-clusters. This 672 

tool automatically evaluates the robustness of each VCs and sub-clusters, based on the external 673 

performance evaluation statistics (below).  674 

 675 

Performance comparison between vConTACT v1.0 and v2.0. Six external quality metrics 676 

were used to compare clustering performance between MCL and CL164 (Fig. 2a) . Specifically, 677 

the performance of v1.0 (MCL) and v2.0 (CL1 alone and CL1 + hierarchical sub-clustering) 678 

were evaluated based on : (i) cluster-wise sensitivity, Sn (ii) positive predictive value, PPV (iii) 679 

geometric mean of Sn and PPV, Acc (iv) cluster-wise separation, Sepcl (v) complex (ICTV 680 

taxon)-wise separation Sepco, and (vi) geometric mean of Sepcl and Sepco, Sep. As an internal 681 

parameter, we computed the intra- and inter-cluster proteome similarities (fraction of shared 682 

genes between genome that are within the same VCs and different VCs, respectively). For 683 

vConTACT v1.0,  we only included clustering results which had been determined to yield the 684 

highest clustering accuracy value (i.e., inflation factor of 7.0), and this configuration was used 685 

for comparison to v2.0’s clustering. Therefore, testing each parameter combination (6 686 

performance metrics, for one taxon rank, for 10 clustering results, all cross-compared; i.e., 6 x 1 687 

x 45) resulted in 270 comparisons.  688 

To generate six external measures, we first built a contingency table T, in which row i 689 

corresponds to the ith annotated reference complex (i.e., ICTV-recognized order, family, 690 

subfamily, or genus), and column j corresponds to the jth predicted complex (i.e., sub-/clusters). 691 
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The value of a cell Tij denotes the number of member viruses in common between the ith 692 

reference complex and jth predicted complex.  693 

Sensitivity: The sensitivity can be defined as the fraction of member viruses of complex i which 694 

are found in sub-/cluster j. 695 

                                                                 ܵ݊, = 	 ܶ, ܰ⁄                                                          696 

(5) 697 

In the formula above, Ni is the number of member viruses of complex i. We then calculated the 698 

coverage of complex i by its best-matching cluster ܵ݊ , as the maximal fraction of member 699 

viruses of complex i assigned to the same sub-/cluster by the formula below: 700 

                                                               ܵ݊ = ୀଵݔܽ݉	 ܵ݊,                                                     701 

(6) 702 

The clustering-wise sensitivity was computed as the weighted average of  ܵ݊ over all 703 

complexes. Higher Sn values indicate a better coverage of the member viruses in the real 704 

complexes as: 705 

                                                               ܵ݊ = 	∑ ேసభ ௌ∑ ேసభ                                                          706 

(7) 707 

Positive predictive value: The positive predictive value (PPV) indicates the proportion of 708 

member viruses of the sub-/cluster j which belong to complex i, relative to the total number of 709 

member viruses of the sub-/cluster assigned to all complexes by:  710 

         ܲܲ ܸ, = 	 ܶ, ∑ ܶ, = 	 ܶ, .ܶ⁄ୀଵ⁄                                                 711 

(8) 712 
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where .ܶ is the marginal sum of a column j. We calculated the maximal fraction of member 713 

viruses of sub-/cluster j found in the same annotated complex ܲܲ ܸೕ , as the prediction 714 

reliability of sub-/cluster j to belong to its best-matching complex as: 715 

                                                              ܲܲ ܸೕ = ୀଵݔܽ݉	 ܲܲ ܸ,                                                    716 

(9) 717 

The clustering-wise PPV was then computed as the weighted average of ܲܲ ܸೕover all 718 

sub/clusters by: 719 

                                                                   ܸܲܲ = 	∑ ்.ೕೕೕసభ∑ ்.ೕೕసభ                                                      720 

(10) 721 

Higher PPV values indicate that the predicted sub-/clusters are likely to be true positives.  722 

Accuracy: As a summary metric, the Acc can be obtained by computing the geometrical mean of 723 

the Sn and PPV values as: 724 

ܿܿܣ 725  = 	√ܵ݊	 × ܸܲܲ                                                           726 

(11) 727 

 728 

Complex- and Cluster-wise separations: With the same contingency table used for Sn, PPV, and 729 

Acc, we calculated the relative frequencies with respect to the marginal sums for each row 730 

 respectively:  731 ,(,ೕܨ) and each column (௪,ೕܨ)

௪,ೕܨ                                                              = 	 ܶ, ∑ ܶ,ୀଵ⁄                                                      732 

(12) 733 
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,ೕܨ                                                               = 	 ܶ, ∑ ܶ,ୀଵ⁄                                                       734 

(13) 735 

Then the separation is computed as the product of column-wise and row-wise frequencies as: 736 

,݁ܵ                                                             = ,ೕܨ	 	×  ௪,ೕ                                                    737ܨ	

(14) 738 

The separation values range from 0 to 1, with 1 indicating a perfect correspondence between 739 

complex j and sub-/cluster i (i.e., the cluster contains all the members of the complex and only 740 

them). Additionally, the separation penalizes the case when member viruses of a given complex 741 

are split into multiple sub-/clusters. The complex-wise ܵ݁	and cluster-wise ܵ݁ values are 742 

calculated as the average of ܵ݁ over all complexes, and of ܵ݁ೕ over all sub-/cluster, 743 

respectively: 744 

 745 

݁ܵ = 	 ∑ ௌసభ                                                               746 

(15) 747 

 748 

݁ܵ = 	 ∑ ௌೕೕసభ                                                               749 

(16) 750 

To estimate these separation results as a whole, the geometric mean (clustering-wise separation; 751 

Sep) of Sepco and Sepcl was computed:  752 

݁ܵ 753  = 	ඥܵ݁ ×                                                            754݁ܵ

(17) 755 
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High clustering-wise separation values indicate a bidirectional correspondence between a sub-756 

/cluster and each ICTV taxon: a score of 1.0 indicates that a cluster corresponds perfectly to each 757 

taxon. For overall comparison, we used a composite score49, calculated by multiplying Acc by 758 

Sep. 759 

As an internal measure, the fraction of PCs28 between two genomes (i.e., proteome similarity) 760 

was computed by using the geometric index (G). The proteome similarity was estimated as: 761 

ܩ 762  = 	 |ே()∩ே()||ே()|	×	|ே()|                                                             763 

(18) 764 

 765 

in which N(A) and N(B) indicate the number of PCs in the genomes of A and B, respectively. A 766 

total of 400,234 pairs of genomes with >1% proteome similarity are shown in Supplementary 767 

Table 4. 768 

 769 

Clustering-based confidence score. To generate  confidence scores for each viral cluster 770 

prediction, we used three previously described confidence scoring methods65,66, with some 771 

modifications. Two of them exploit the network topology properties by assessing the weight of 772 

cluster quality and  the probability of cluster quality. We then combined these two values as an 773 

aggregate topology-based confidence score per VC. For the first scoring method, we computed 774 

the quality (ܳ) of sub-cluster (ܿ) as: 775 

 776 

                                                                    ܳ = 	 ܹ ( ܹ +	 ܹ௨௧)⁄                                                777 

(19) 778 
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 779 

in which ܹ and ܹ௨௧	are the total weight of edges that lie within sub-cluster ܿ and across 780 

others, respectively. For the second method, we evaluated the P-value of a one-sided Mann-781 

Whitney U test for in-weights and out-weights of sub-clusters. The rationale behind this test is 782 

that sub-clusters with a lower P-value contains significantly higher in-weights than out-weights, 783 

thus indicative that a formed sub-cluster is valid, and not a random fluctuation. These two 784 

independent values, weight of cluster quality and the probability of cluster quality are then 785 

multiplied to derive a topology-based confidence score for each cluster. Along with this 786 

confidence score, we quantified the likelihood that each sub-cluster corresponds to an ICTV-787 

approved genus (or equivalent) by using distance threshold that are specified at the ICTV genus 788 

rank, which we refer to as “taxon predictive score”. This score can be calculated as: 789 

 790 

݊݅ݐܿ݅݀݁ݎ  = 	∑ ݈, /݈                                                  (20) 791 

 792 

Specifically, for a sub-cluster (ܿ) having the genus-level assignment, vConTACT v2.0 793 

automatically measures the maximum distance between taxonomically-known member viruses 794 

and calculate the scores by dividing the sum of links having less than the given maximum 795 

distance threshold between nodes (݅ and ݆) by the total number of links (݈) between all nodes. 796 

For a sub-cluster that does not have the genus-level assignment, v2.0 uses Euclidean distance of 797 

9.0 that can maximize the prediction accuracy and clustering-wise separation (see above) as 798 

distance threshold. 799 

 800 
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Measuring effect of GOV on network structural changes. GOV contigs (14,656 sequences) 801 

were added in 10% increments (randomly selected at each iteration) to NCBI Viral RefSeq and 802 

processed using vConTACT v2.0 with one difference – Diamond67 instead of BLASTp was used 803 

to construct the all-versus-all protein comparison underlying the PC generation. For running this 804 

large number of sequences, high-memory computer nodes from the Ohio State supercomputer 805 

Center68 were used. Once generated, vConTACT v2.0 networks were post-processed using a 806 

combination of the Scipy69, Numpy, Pandas70 and Scikit-learn71 python 3.6 packages. Networks 807 

were rendered using iGraph72. The method to calculate change centrality was calculated as 808 

described previously73. CCs were calculated in a successive way, in which each addition was 809 

compared to Viral RefSeq 85 independently of other additions (0% versus 10%, 0% vs 20%, 810 

[…], 0% vs 100%).  811 

 812 

Data and code availability statement 813 

The set of reference genomes used to evaluate vConTACT were retrieved from 814 

https://www.ncbi.nlm.nih.gov/genome/viruses/. The Global Ocean Virome (GOV) contigs were 815 

retrieved from the publically available CyVerse data commons repository, accessible at 816 

http://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/GOV.The utility of v2.0 817 

depends upon its expert evaluation and community availability. The tool is available through 818 

Bitbucket (https://bitbucket.org/MAVERICLab/vcontact2) as a downloadable python package, 819 

and usable  as an app through iVirus39, the viral ecology apps and data resource embedded in the 820 

CyVerse Cyberinfrastructure, with detailed usage protocols available through Protocol Exchange 821 

(https://www.nature.com/protocolexchange/) and protocols.io (https://www.protocols.io/). 822 

Finally, the curated reference network is available at each of these sites, and will be updated 823 
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approximately bi-yearly with as complete genomes become available and resources exist to 824 

support this effort. 825 
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