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 23 

ABSTRACT  24 

Viruses of bacteria and archaea are likely to be critical to all natural, engineered and human ecosystems, 25 

and yet their study is hampered by the lack of a universal or scalable taxonomic framework. Here, we 26 

introduce vConTACT 2.0, a network-based application to establish prokaryotic virus taxonomy that 27 

scales to thousands of uncultivated virus genomes, and integrates confidence scores for all taxonomic 28 

predictions. Performance tests using vConTACT 2.0 demonstrate near-identical correspondence to the 29 

current official viral taxonomy (>85% genus-rank assignments at 96% accuracy) through an integrated 30 

distance-based hierarchical clustering approach. Beyond “known viruses”, we used vConTACT 2.0 to 31 

automatically assign 1,364 previously unclassified reference viruses to tentative taxa, and scaled it to 32 
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modern metagenomic datasets for which the reference network was robust to adding 16,000 viral contigs. 33 

Together these efforts provide a systematic reference network and an accurate, scalable taxonomic 34 

analysis tool that is critically needed for the research community. 35 

Main text  36 

Bacteria and archaea modulate the nutrient and energy cycles that drive ocean and soil ecosystems1–4, 37 

and impact humans by producing metabolites that alter health, behavior, and susceptibility to disease5. 38 

Viruses that infect these microbes modulate these ‘ecosystem roles’ via killing, metabolic reprogramming 39 

and gene transfer6,7, with substantial impacts predicted in the oceans8–10, soils11,12 and human 40 

microbiome13,14. However, ecosystem-scale understanding is bottlenecked by the lack of universal genes 41 

or methods that could facilitate a formalized taxonomy and comparative surveys. In fact, viruses do not 42 

share a single gene15, and, thus, no analog to microbial 16S rRNA-based phylogenies and OTUs are 43 

possible16. 44 

Another potential challenge is that some viruses are prone to high rates of gene exchange (i.e., 45 

‘rampant mosaicism’17), which, if broadly true, would stymie genome-based prokaryotic virus 46 

taxonomy18. Fortunately, explorations of viral sequence space are revealing structure19,20 and population 47 

genetic support for a biological species definition21, and new hypotheses to explain variable evolution 48 

among prokaryotic viruses22. Such findings, alongside rapidly expanding viral genome databases, led the 49 

International Committee on Taxonomy of Viruses (ICTV) to present a consensus statement suggesting a 50 

shift from the traditional (i.e., phenotypic and genotypic criteria to classify  viruses within community-51 

curated taxonomic ranks) approach23 towards a genome-centered, and perhaps one-day, largely 52 

automated, viral taxonomy24. This shift is particularly critical given the modern pace of viral discovery in 53 

which , as of March 2018, hundreds of thousands of metagenome-derived viral reference genomes and 54 

large genome fragments (369,518 at IMG/VR25) now dwarf the 26,223 available from prokaryotic virus 55 

sequences in the NCBI GenBank database26. Thus, evaluation of approaches to establish a scalable, 56 
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genome-based viral taxonomy is needed as the implementation of a commonly agreed-upon approach 57 

available to the community would be highly desirable.  58 

Multiple genome-based strategies have been proposed to develop such a unified bacterial15,27–32, 59 

archaeal33 and eukaryotic34 virus taxonomic framework. For bacterial viruses (“phages” ), the first 60 

approach targeted phage relationships only by using complete genome pairwise protein sequence 61 

comparisons in a phylogenetic framework (the “phage proteomic tree”) and was broadly concordant with 62 

ICTV-endorsed virus groupings of the time15. Such efforts were not widely adopted, presumably because 63 

(i) need was low (few metagenomics studies existed), and (ii) the paradigm was that “rampant 64 

mosaicism” would blur taxonomic boundaries and violate the assumptions of the underlying phylogenetic 65 

algorithms used in the analyses17. Other efforts sought to establish percent of genes shared and percent 66 

identity of-shared genes cut-offs to define genera and sub-family affiliations35,36, but lacked taxonomic 67 

resolution for several virus groups. This lack of resolution was due to the likelihood that the mode and 68 

tempo of prokaryotic virus evolution could vary significantly across the viral sequence space22. Building 69 

upon a prokaryotic classification algorithm, the Genome Blast Distance Phylogeny (GBDP)37, a freely 70 

accessible online tool (VICTOR) now provides phage genomes for classification via combined 71 

phylogenetic and clustering methods from nucleotide and protein sequences30. Although a key advance, 72 

this method suffers from limited scalability (100-genomes limit) and taxonomic assignment challenges 73 

for the many novel, environmental viruses that lack genes shared with reference genomes.  74 

Alternatively, several groups reasoned that the highly variable evolutionary rates across phage 75 

sequence space could be examined through gene sharing networks28,29,38 to determine whether a 76 

meaningful structure, and therefore taxonomic signal, occurs in this space. These networks, based on 77 

shared protein clusters (PCs) between viral genomes, were largely concordant with ICTV-endorsed taxa 78 

independent of whether  monopartite28 (a single node type, i.e., viral genomes) or bipartite networks33,38 79 

(two node types, i.e., viral genomes and genes) were used. Given these successes, we previously revisited 80 

the monopartite gene sharing network approach to establish an iVirus39 app (vConTACT) to automate a 81 
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network-based classification pipeline for prokaryotic virus genomes. Performance tests indicated that the 82 

network analytics used by vConTACT produced viral clusters (VCs) that are ~75% concordant with 83 

accepted ICTV prokaryotic viral genera, even with seven times more genomes  now available29. The 84 

capacity to incorporate these genomes and accuracy of the network-based analytics have resulted in viral 85 

taxonomy applications across large-scale studies of ocean40,41, freshwater42 and soil43, and studies of 86 

single-virus amplified genomes (vSAGs)44,45. vConTACT 1.0 was an important step forward but could 87 

not be used for automatic tentative taxonomic assignments because (i) it creates artefactual clusters of 88 

both under-sampled genomes (i.e., low number of genomes in a VC) and highly-overlapped regions of 89 

sequence space among some genomes29, and (ii) lacks several key, community-desired features such as 90 

confidence metrics for the resultant VCs, a metric for establishing hierarchical taxonomy, and scalability. 91 

Here we introduce and evaluate vConTACT v2.0, which updates the network analytics and feature set 92 

of the original program. We apply this program to (i) establish a centralized, ‘living’ taxonomic reference 93 

network as a foundational community resource and (ii) demonstrate that the updated vConTACT is robust 94 

and scalable to modern datasets. 95 

 96 

RESULTS AND DISCUSSION 97 

 98 

vConTACT 2.0 key features and updates 99 

The underlying goal of vConTACT is to automatically assign viral genomes into relevant established 100 

or tentative taxa, with performance assessed relative to ICTV-assigned, manually-curated taxa. Viral 101 

reference genomes of a single ICTV genus that are correctly grouped by vConTACT into a single viral 102 

cluster (VC) are deemed ‘concordant VCs’. The original vConTACT 1.0 performed well in this area, with 103 

~75% of VCs corresponding to ICTV genera29. However, ~25% of VCs did not match ICTV genera 104 

(termed ‘discordant VCs’). These mismatches broadly represented three scenarios: (i) VCs that 105 

encompass ICTV genera represented by 1-2 genomes (termed ‘undersampled VCs’), (ii) VCs that 106 
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encompass ICTV genera represented by virus genomes that shared many genes and/or modules with other 107 

VCs (termed ‘overlapping VCs’), and (iii) VCs that encompass ICTV genera represented by virus 108 

genomes that shared many genes and/or gene modules across genomes within the VC, and within subsets 109 

of the genomes in the VC (termed ‘structured VCs’). Further, vConTACT 1.0 lacked several key features 110 

to enable broader adoption and utility as described above.  111 

To address these issues and establish vConTACT v2.0, we (i) implemented a new clustering 112 

algorithm, (ii) established confidence scores and measures of distance-based taxon separation that are 113 

crucial for hierarchical taxonomy, and (iii) optimized expansion to a large-scale viral metagenomic 114 

dataset. Briefly, the clustering algorithm was upgraded from Markov cluster (MCL) to ClusterONE46 115 

(CL1), resulting in single parameter optimization (i.e., the inflation factor, IF) to determine VC generation 116 

being converted to three processes to better disentangle confounding signals across problematic regions of 117 

the networks (Online Methods). All three processes consider edge weight, (i.e., degree of connection 118 

between genomes), to (i) identify outlier genomes, (ii) detect and separate genomes that bridge 119 

overlapping VCs, and (iii) break down structured VCs into concordant VCs through distance-based 120 

hierarchical clustering. In addition, to help differentiate between meaningful taxonomic assignments and 121 

those that might be artefacts, each VC now receives a topology-based confidence score (value range 0-1), 122 

which aggregates information about network topological properties, and a taxonomic (genus) prediction 123 

score (value range 0-1), which estimates the likelihood of VCs to be equivalent to a single ICTV genus 124 

(Online Methods). In both scores, higher values indicate either more confident linkages (topology-based 125 

confidence score) or higher taxonomic agreement (taxonomic prediction score). Therefore, vConTACT 126 

2.0 assigns taxonomy by a two-step clustering approach, in which VCs are first defined using CL1, and 127 

then VCs are further subdivided using hierarchical clustering to maximize the taxonomic prediction score. 128 

In such cases where VCs were further sub-divided, these are referred to as sub-VCs (benchmarking 129 

below). 130 

 131 
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Performance comparison of vConTACT versions 1.0 and 2.0 132 

To assess clustering performance of vConTACT v1.0 and v2.0 (hereafter ‘v1.0’ and ‘v2.0’, 133 

respectively), we quantified ICTV correspondence from 336 comparisons (Online Methods) against all 134 

available ICTV-classified archaeal and bacterial virus genomes (n=2,304, accessed January 2018). 135 

Notably, though some combination of family, order, genus and species designations were available for all 136 

of these viruses, only 41% (n=940) had genus-level classifications (Supplementary Table 1). Our 137 

performance comparisons focused on this subset of classified genomes. Composite performance, the sum 138 

of six metrics (cluster-wise sensitivity, Sn; positive prediction value, PPV; geometric accuracy of Sn and 139 

PPV, Acc; cluster-wise separation, Sepcl; complex (ICTV taxon)-wise separation Sepco; and geometric 140 

mean of Sepcl and Sepco, Sep) was used to assess overall performance of v1.0 and v2.0 (Fig. 1a). Each of 141 

these metrics has values range from 0 to1 with 1 indicating perfect clustering accuracy and/or coverage 142 

(Online Methods). We found that v1.0 organized the 2,304 analysed viral genomes into 305 VCs at its 143 

best inflation factor (IF=7), and 77.5% of these were concordant at the genus rank, whereas v2.0 144 

identified 279 VCs, and 79.2% of these were concordant at the genus rank (Supplementary Table 2). 145 

Moreover, we added to v2.0 a post-processing, Euclidean distance-based hierarchical clustering step to 146 

split mismatched VCs. This step accurately and automatically classified 36 additional genera from 147 

structured VCs (Supplementary Table 1), resulting in the highest composite score of 5.4 (maximum 148 

achievable score of 6.0) at the genus rank, with a concordance of 85.0% and accuracy of 96.4%. (Fig. 1a 149 

and Supplementary Table 2). Together, these findings suggest that both upgrading the clustering 150 

algorithm and adding hierarchical clustering were critical to improve automatic VC designations.  151 

Next, we assessed how v2.0 handled areas of the reference network that represented discordant VCs. 152 

First, 55% of ICTV genera are undersampled (Supplementary Table 1), which in a gene-sharing 153 

network manifests as weakly connected, small VCs prone to artefactual clustering. In v1.0, undersampled 154 

VCs accounted for 64% (28/44) of all discordant VCs, and they could not be resolved by increasing IF 155 

values (Fig. 1b and d and Supplementary Table 1). In contrast, v2.0 automatically and accurately 156 
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handled these same 28 undersampled VCs (comprising 60 genomes) by splitting the 37 problematic 157 

genera  into 22 outliers (i.e., genera with only one member) and correctly placing the remaining 38 158 

genomes from 15 genera into 15 VCs (Fig. 1c and d and Supplementary Table 1). Thus, in instances in 159 

which v1.0 performed poorly on undersampled VCs, v2.0 was able to resolve all undersampled VCs into 160 

their appropriate ICTV genera. 161 

Second, we evaluated the ability of v2.0 to handle overlapping VCs, which share more genes across 162 

VCs than expected, presumably due to gene exchange that could erode structure in the network. In v1.0, 163 

overlapping VCs could not be identified. In v2.0 we automated their detection via a ‘match coefficient’ 164 

between each VC that measured the connection within- and between- other VCs, and sensitivity analyses 165 

established a maximum cluster overlap value of 0.8 as diagnostic (Online Methods). In this way, nine 166 

overlapping VCs (ICTV-classified genera only) were detected. These clusters contained 30 viruses across 167 

11 ICTV genera, which included viruses with known mosaic genomes47 (e.g., lambdoid or mu-like phages 168 

of the P22virus, Lambdavirus, N15virus, and Bcepmuvirus genera), temperate phages48,49 (i.e., 169 

Mycobacterium phages of the Bignuzvirus, Phayoncevirus, and Fishburnevirus genera and Gordonia 170 

phages of the genus Wizardvirus), and three newly-established genera (i.e., Cd119virus, P100virus and 171 

archaeal Alphapleolipovirus), all bearing low topology-based confidence scores (averages of 0.29 for 172 

these VCs versus 0.50 for concordant VCs; P-value = 2.09e-08, Mann-Whitney U test) (Supplementary 173 

Fig. 1). Interestingly, this set of viruses within overlapping VCs (74 in total, including non-classified 174 

genomes from ICTV) contained 31 phages having a high gene content variation due to extensive gene 175 

flow (HGCF, Fig. 1e), related to the recently proposed framework of phage evolutionary lifestyles22. 176 

Further, these VCs contained highly recombinogenic temperate phages, more likely to exchange genes as 177 

opposed to low gene content flux (LGCF) phages that follow a predominantly lytic life cycle 178 

(Supplementary Fig. 1b). Thus, this observation may indicate a high linkage between overlapping 179 

genomes and phages with high gene flow. Although unresolvable in v1.0, v2.0 could assign eight of the 180 

11 ICTV genera (24 viruses) into eight ICTV-concordant VCs (Supplementary Table 1). The remaining 181 
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three ICTV genera, all comprised of Mycobacterium phages50 (six genomes), could not be resolved. This 182 

lack of resolution is presumably due to high gene flow resulting from a predominantly temperate lifestyle 183 

that is associated with an exceptionally high fraction (avg = 69%) of genes shared across VCs 184 

(Supplementary Table 3). Undoubtedly, these genomes are the most challenging to classify, and may 185 

not be amenable to automated taxonomy. Whether such highly recombinogenic genomes are the 186 

exception or the norm across environments is unknown.  187 

Third, structured VCs contained genomes that our gene sharing networks placed into a single VC 188 

(due to many shared genes and/or gene modules across all the member genomes), whereas ICTV 189 

delineated multiple genera (due to subsets of the genomes also sharing additional genes). V1.0 190 

qualitatively and selectively handled these structured VCs via decomposing hierarchical patterns of gene 191 

sharing27. In v2.0, we formalized an optimized, quantitative hierarchical decomposition distance measure 192 

(9.0, Online Methods, Fig. 2c, and Supplementary Fig. 2) that maximized composite scores of two 193 

geometric mean values of performance metrics (Acc and Sep; Online Methods) that divide discordant VCs 194 

into concordant (to ICTV genera) sub-VCs, and used this distance as a generalized threshold. In the v2.0 195 

network, 31 discordant VCs contained 101 phage and two archaeal virus genera, in which 23 (74%) were 196 

structured VCs spanning 86 genera (Fig. 2a,b and Supplementary Table 1). This v2.0 approach resolved 197 

30% (26 of 86) of these ICTV genera from 6 of the 23 structured VCs (Fig. 2c). Curiously, one such 198 

structured VC was comprised of T4-like phages (of which nine out of ten T4-related genera were resolved; 199 

Supplementary Note 1), in which hierarchical ‘T4 core’ and ‘cyano T4 core’ gene sets are well 200 

documented51. In our networks, the T4-like phages represent a single VC, but with sub-VCs that are 201 

consistent with ICTV-established genera (VC 1 in Fig. 2c and Supplementary Table 1). Extrapolating 202 

from this network, we interpret structured VCs to represent areas of viral sequence space that are well-203 

sampled to the point that the core gene sets that define a virus (capsid, tail, replication machinery) 204 

establish the VC in the network, whereas ecologically diverse viral genomes within the VC reveal 205 

structure due to niche-defining genes that represent adaptation to diverse environments and/or hosts. We 206 
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posit that the 19 structured VCs that cannot be resolved towards ICTV concordance (Fig. 2c and 207 

Supplementary Table 1), represent either regions of the network where niche-defining genomic 208 

information is lacking or may require complementary phenotypic or evolutionary evidence to establish 209 

ICTV genera, as done for the archaeal fuselloviruses (VC42) and bacterial microviruses (VCs 30 and 49). 210 

Thus, whether these structured VCs result from lack of resolution in v2.0 or from genera needing ICTV 211 

revision remains an outstanding question. 212 

Finally, given such strong performance, we suggest that this gene sharing network already offers 213 

significant new taxonomic insights. First, as described earlier, only 41% of the 2,304 reference virus 214 

genomes are classified by ICTV at the genus rank. Thus, we propose that the remaining 1,364 currently 215 

genus-unclassified reference viruses, which organized into 304 well-supported hierarchically decomposed 216 

sub-VCs (Supplementary Table 1), represent genomes from bona fide novel virus genera. This finding, 217 

if officialised, immediately doubles established viral taxonomy and invites a framework for manual 218 

curation of these automatic assignments, which in itself will improve future vConTACT analytic 219 

performance. As first evidence of the value of such an iterative process, we note that v2.0 clustering 220 

suggested an alternative taxonomy among ten current ICTV genera: Barnyardvirus, Bcep78virus, 221 

Bpp1virus, Che8virus, Jerseyvirus, P68virus, Pbunavirus, Phietavirus, Phikmvvirus, and Yuavirus 222 

(Supplementary Fig. 3 and Note 2), and manual inspection had already recommended some of these 223 

ICTV genera be revised (e.g. Phikmvvirus viruses, ICTV proposal 2015.007a-Db). An automated 224 

vConTACT-based approach would systematically identify such problematic taxa and drastically speed up 225 

these critical revisions as new data become available. 226 

 227 

vConTACT v2.0 is scalable to modern virome datasets  228 

A major bottleneck regarding automated taxonomic assignments is the ability to robustly integrate 229 

large sets of newly discovered virus genomes. To evaluate this concern, we added ~16K curated viral 230 

genomes and large genome fragments from the Global Ocean Virome (GOV) dataset40 to our reference 231 
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network. We added these genomes and genome fragments in successive 10% increments (i.e., 0%-232 

10%,[…], 0%-100%), to assess the impact of various data scales on the reference network stability of VC 233 

assignments. Network changes were tracked by assessing (i) network performance metrics (Sn, Acc & 234 

PPV, as above), (ii) ‘normalized mutual information’(NMI), as a measure of VC similarity (values range 235 

from 0 to 1 with 0 indicating that none of the original member genomes within a VC remained in that 236 

same VC and 1 indicating that all members in a VC remain in that same VC across time), and (iii) 237 

‘change centrality’ (CC), reflecting how much each node’s connections changed as more sequences were 238 

added to the network (values range from 0-1 with 0 indicating no change and 1 indicating complete 239 

change), classified over three ‘change intensity’ groups: low (0 - 0.283), medium (0.283 - 0.506) and high 240 

(0.506 - 0.999) groups (Online Methods). Although CC indicates changes in connections between nodes, 241 

these may still remain in a given VC, albeit re-shuffled. Together, NMI and CC assess the impact of 242 

additional data on the network clusters and topology, respectively, while Sn, Acc and PPV assess 243 

concordance with ICTV taxonomy. 244 

All measures indicated that most network changes occurred with early additions of the novel GOV 245 

data (up to 20-30% of the dataset), with the network largely stabilized after that (Fig. 3). For example, 246 

Acc (mean value of Sn and PPV) is reduced by 12% when only using 20% of the GOV data, but stabilizes 247 

at a ~7% decrease (Supplementary Fig. 4); similar responses were observed in NMI (Fig. 3b). This 248 

initial drop appears driven by formation of novel, undersampled VCs, a disruptive effect similarly 249 

observed with undersampled ICTV genera bearing low quality or confidence in VC membership. With 250 

more data, undersampled VCs reach ‘saturation’, which increases confidence scores for these new VCs 251 

and buffers from further disruption. This stabilization is likely due to strong intra-cluster forces (within 252 

VCs) vastly out-weighing inter-cluster forces (between VCs).The lasting minimal decrease represents the 253 

novelty of sequence space in GOV relative to RefSeq and the fact that these additions are commonly large 254 

genome fragments rather than complete genomes. Sequential CC analysis showed minimal impact on the 255 

RefSeq network structure and VC membership, as 85% of reference genomes had low-to-medium change, 256 
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whereas 0.05% of genomes experienced high change. The remaining 15% were classified as either 257 

singleton, outlier, or overlaps. These data support a similar pattern as NMI fluctuations (Fig. 3d): as data 258 

accumulated, fewer and fewer nodes or VCs were impacted due to new data influencing only pre-existing 259 

areas in the network. Therefore, as a network grows in scale, adding new data mostly similar to pre-260 

existing data will have minimal impact on the underlying network structure (e.g., adding new marine data 261 

to a marine network), as newly added data is already “represented,” whereas utterly novel data will 262 

generate novel VCs and increase CC values. Indeed, most unaffected VCs (CC = 0) were non-marine or 263 

soil in origin e.g., Andromedavirus viruses, Saetivirus viruses, two archaeal viruses (Methanobacterium 264 

virus psiM2, Methanothermobacter virus psiM100), Thermus phages, or cyanobacterial mat viruses. 265 

      266 

As contigs accumulate, the number of VCs also increases linearly (R2 = 0.998, P-value = 1.2 x 10-12). 267 

We examined whether GOV data may partially resolve ICTV outlier and singleton genomes. More data 268 

should create new connections to singletons, whereas outliers may get connected to new or existing VCs. 269 

Out of 38 single-member VCs of singleton and outlier genomes (Supplementary Fig. 5), three 270 

Mycobacterium phages clusters were improved, with two other Mycobacterium viruses genomes merged 271 

into six-genera heterogeneous VCs. Together, this analysis suggests that v2.0’s underlying methodology 272 

is sufficiently robust to handle large amounts of data. With 100% of GOV added (16,960 total contigs), 273 

919 new VCs are created, representing potentially 919 new viral genera over existing RefSeq genomes.  274 

 275 

Community availability and future needs 276 

The utility of v2.0 depends upon its expert evaluation and community availability. To maximize this 277 

evaluation, members of the ICTV Bacterial and Archaeal Viruses Subcommittee were invited as co-278 

authors to critique the work, and we made the resulting optimized tool available in two ways. First, the 279 

source code is available through Bitbucket (https://bitbucket.org/MAVERICLab/vcontact2 as a 280 

downloadable python package. Second, v2.0 is available as an app through iVirus39, the viral ecology 281 
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apps and data resource embedded in the CyVerse Cyberinfrastructure, with detailed usage protocols 282 

available through Protocol Exchange (https://www.nature.com/protocolexchange/) and protocols.io 283 

(https://www.protocols.io/). Finally, the curated reference network is available at each of these sites. 284 

Although v2.0 performance metrics are strong and provide a critically needed, systematic reference 285 

viral taxonomic network, limitations still remain. First, our reference network needs to be rebuilt each 286 

time new data are added. Avoiding this reconstruction step will require the development of approximation 287 

methods and/or a placement algorithm (akin to PPlacer for 16S phylogenies52) to incorporate new data. 288 

Second, although v2.0 handles reference prokaryotic virus genomes (including ssDNA or dsDNA phages) 289 

and large GOV genome fragments, this framework has not been designed, tested or validated for 290 

eukaryotic viruses, which pose unique computational challenges34. Third, shorter prokaryotic virus 291 

genomes and genome fragments (e.g., ≤ 3 PCs or ≤ 5 genes) are of low statistical power in the v2.0 292 

framework, and will require new solutions to establish higher confidence VCs. Fourth, genomes 293 

identified as singletons, outliers or overlapping are currently excluded from the gene-sharing network. 294 

Although singletons and outliers can be resolved by the addition of new data, overlapping VCs can 295 

remain challenging to resolve, particularly for the HGCF phages22 that are highly recombinogenic. Such 296 

rampantly mosaic virus genomes are problematic for viral taxonomy. However, they are identifiable in 297 

the networks and, at least to date, represent the minority of known viral sequence space. Most (~75%) are 298 

LGCF viruses that remain amenable to automated genome-based viral taxonomy. Whether this situation 299 

will remain so awaits further exploration of viral sequence space—particularly where temperate phages 300 

may predominate (e.g., soils53, human gut54). For now, we propose vConTACT 2.0 as a tool that offers a 301 

robust, systematic and automatic means to aid the classification of bacterial and archaeal viruses. 302 

 303 

METHODS 304 

 305 
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Data sets. Full-length viral genomes were obtained from the National Center for Biotechnology 306 

Information (NCBI) viral reference dataset26,55 (‘ViralRefSeq’, version 85, as of January, 2018), 307 

downloaded from NCBI's viral genome page (https://www.ncbi.nlm.nih.gov/genome/viruses/) and 308 

eukaryotic viruses were removed. The resulting file contained a total of 2,304 RefSeq viral genomes 309 

including 2,213 bacterial viruses and 91 archaeal viruses (Supplementary Table 1). In parallel, the ICTV 310 

taxonomy (ICTV Master Species List v1.3, as of February, 2018) was retrieved from the ICTV homepage 311 

(https://talk.ictvonline.org/files/master-species-lists/). ICTV-classifications were available for a subset of 312 

genomes at each taxonomic rank, and final dataset included; 884 viruses from two orders, 974 viruses 313 

from 23 families, 363 viruses from 28 subfamilies, and 975 viruses from 264 genera. To maintain 314 

hierarchical ranks of taxonomy, we manually incorporated 2016 and 2017 ICTV updates56–58 to NCBI 315 

taxonomy when ICTV taxonomy was absent.  316 

 317 

Network construction. A total of 231,165 protein sequences were extracted from the 2,304 viral 318 

genomes (above). To group protein sequences into homologous protein clusters (PCs)29, all proteins were 319 

subjected to all-to-all BLASTP59 searches (default parameters, cut-offs of 1E-5 on e-value and 50 on bit 320 

score). A subsequent application of the MCL with inflation factor 2.0 grouped 204,540 protein sequences 321 

into 25,510 PCs, with the remaining 26,625 proteins being to singletons (those that do not have close 322 

relatives). The resulting output was parsed in the form of a matrix comprised of genomes and PCs (i.e., 323 

2,304 × 25,510 matrix). We then determined the similarities between genomes by calculating the 324 

probability of finding a common number of PCs between each pair of genomes, based on the following 325 

hypergeometric equation as per Lima-Mendez et al28:  326 

 327 

ܲ(ܺ ≥ ܿ) = ∑ ೌ షೌ್ష್୫୧୬	(,)ୀ                                                     (1) 328 

 329 
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in which c is the number of PCs in common; a and b are the numbers of PCs and singletons in genomes A 330 

and B, respectively; and n is the total number of PCs and singletons in the dataset. A score of similarity 331 

between genomes was obtained by taking the negative logarithm (base 10) of the hypergeometric P-value 332 

multiplied by the total number of pairwise genome comparisons (i.e., 2,304	 × 2,303). Genome pairs 333 

with a similarity score ≥1 were previously shown to be significantly similar through permutation test of 334 

PCs and/or singletons between genomes29. Afterwards, a gene (protein)-sharing network was constructed, 335 

in which nodes are genomes and edges connect significantly similar genomes. This network was 336 

visualized with Cytoscape software (version 3.6.0; http://cytoscape.org/), using an edge-weighted spring 337 

embedded model, which places the genomes sharing more PCs closer to each other.  338 

 339 

Parameter optimization of vConTACT v1.0 and 2.0. Due to different criteria for parameter 340 

optimization between the clustering methods, different number and size of the clusters are often generated, 341 

which can make objective performance comparisons difficult60. Thus, to more comprehensively compare 342 

performance, v1.0’s MCL-based VCs were generated at inflation factors (IFs) of 2.0 to 7.0 by 1.0 343 

increments, with an optimal IF of 1.4 showing the highest intra-cluster clustering coefficient (ICCC)28 344 

(Supplementary Table 1 and Supplementary Fig. 6). CL1, which was incorporated into a new version 345 

of vConTACT (v2.0), operates in multiple stages of complex detection46. Unlike the MCL that uses a 346 

single parameter28, CL1 uses a set of parameters, which can act as the threshold for each stage of complex 347 

detection. For example, as four main parameters of CL1, the minimum density, node penalty, the haircut, 348 

and the overlap automatically quantifies (i) the cohesiveness of cluster, (ii) the boundaries of the clusters 349 

(outliers), and (iii) the size of overlap between clusters , respectively46. Of these parameters, the first two 350 

are used to detect the coherent groups of VCs as follows:  351 

 352 

ܥ                                                               = 	 ௐ()ௐ	()ା	ௐೠ	()ା||                                                       (2) 353 

 354 
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in which ܹ(ܸ) and ܹ௨௧	(ܸ)	are the total weight of edges that lie within cluster ܸ and that connect the 355 

cluster ܸ and the rest of the network, respectively, |ܥ| is the size of the cluster,  is a penalty that counts 356 

the possibility of uncharted connections for each node. 357 

As another parameter of CL1, the haircut can find loosely connected regions of the network (outliers) by 358 

measuring the ratio of connectivity of the node g within the cluster c to that of its neighbouring node h as:  359 

 360 

                                                           ∆௨௧= 	݇ ∑ ܹ,ୀଵ ∑ ܹ,ୀଵൗ                                                   (3) 361 

 362 

in which ݇	is the number of edges of the node ݃, and ܹis the total weight of edges of the respective 363 

nodes ݃ and	ℎ. If the total weight of edges from a node (ℎ) to the rest of the cluster (c) is less than x times 364 

that we specified the average weight of nodes (݃) within the given cluster, CL1 will remove the node (ℎ) 365 

from a given VC and place it into the outlier. 366 

Additionally, CL1 can specify the maximum allowed overlap (ω) between two clusters, measured by the 367 

match coefficient, as follow:  368 

 369 

                                                                       ω	 = 	 ݅ଶ ܽ ∗ ܾ⁄                                                                 (4) 370 

 371 

in which ݅ is the size of overlap, which is divided by the product of the sizes of the two clusters under 372 

consideration (ܽ and ܾ). Since CL1 identifies overlap between VCs, it can consequently find both 373 

hierarchical and overlapping structures of viral groups. This capability is a significant improvement over 374 

v1.0, given v1.0’s MCL cannot handle modules with overlaps7. Specifically, CL1 (i) finds cluster(s) 375 

having less than maximum value of specified overlap threshold (above) and (ii) merges these clusters 376 

together with their interacting cluster(s) to make the results easier to interpret. Thus, in the resulting 377 

output file, viral groups (or clusters) having the identical member viruses can be found in multiple 378 

clusters, called ‘overlapping clusters’ (Supplementary Table 1). CL1 was run with varying conditions 379 
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for these four parameters (minimum density ranging from 0 to 1 by 0.1 increments; node penalty from 1 380 

to 10 by 1.0; haircut from 0 to 1 by 0.05; overlap from 0 to 1 by 0.05) and default settings for other 381 

parameters: 2 as minimum cluster size, weighted as edge weight, single-pass as merging, unused nodes as 382 

seeding. We therefore obtained a total number of 53,361 clustering results, which we evaluated 383 

individually to yield the highest performance on taxonomic data set (above), in terms of geometric mean 384 

value of prediction accuracy (Acc) and clustering-wise separation (Sep, see next section), as previously 385 

described61 We then used minimum density = 0.3, node penalty = 2.0, haircut = 0.65, and overlap = 0.8 to 386 

derive the final set of clusters, resulting in a total of 279 VCs (Supplementary Table 1). As a post-387 

clustering step of v2.0, all VCs including discordant clusters (those comprising ≥ 2 taxa) were further 388 

hierarchically separated into sub-clusters using the unweighted pair group method with arithmetic mean 389 

(UPGMA) with pairwise Euclidean distances implemented in Scipy. To optimize the distance-based sub-390 

clustering of VCs, we assessed the distances of sub-clusters across all the VCs. These distances (ranging 391 

from 1 to 20 in 0.5 increments) maximized the geometrical mean values of the prediction accuracy (Acc) 392 

and clustering-wise separation (Sep) at the ICTV genus rank (see next section). This optimization resulted 393 

in the distance of 9.0 yielding the highest composite score of Acc and Sep (Supplementary Fig. 2). 394 

Notably, vConTACT v2.0 was designed to help users optimize (i) parameters for grouping of 395 

genomes/contigs into VCs and (ii) distance for post-decomposition of VCs into sub-clusters. This tool 396 

automatically evaluates the robustness of VCs and sub-clusters, respectively, based on the external 397 

performance evaluation statistics (below).  398 

 399 

Performance comparison between vConTACT v1.0 and v2.0. Since the external measures such as 400 

precision, recall, and others often neglect overlapping clusters, which might not reflect the true 401 

performance of CL1, we used 6 external quality metrics that were successfully used for performance 402 

comparison between MCL and CL161 (see below). Specifically, the performance of v1.0 (MCL) and v2.0 403 

(CL1 alone and CL1 + hierarchical sub-clustering, respectively) were evaluated based on : (i) cluster-wise 404 
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sensitivity, Sn (ii) positive predictive value, PPV (iii) geometric accuracy of Sn and PPV, Acc (iv) cluster-405 

wise separation, Sepcl (v) complex (ICTV taxon)-wise separation Sepco, and (vi) geometric mean of Sepcl 406 

and Sepco, Sep. As an internal parameter, we computed the intra- and inter-cluster proteome similarities 407 

(fraction of shared genes between genome that are within the same VCs and different VCs, respectively). 408 

For vConTACT v1.0, clustering result yielding the highest clustering accuracy value (inflation of 7.0) 409 

was subsequently used for comparison to v2.0’s clusters and sub-clusters. 410 

To generate six external measures, we first built a contingency table T, in which row i corresponds to the 411 

ith annotated reference complex (i.e., ICTV-recognized order, family, subfamily, or genus), and column j 412 

corresponds to the jth predicted complex (i.e., sub-/clusters). The value of a cell Tij denotes the number of 413 

member viruses in common between the ith reference complex and jth predicted complex. Here, Ni is the 414 

number of member viruses belonging to reference complex n. Sn and PPV are then defined as follows: 415 

 416 

ܵ݊ = 	∑ ୫ୟ୶ೕ{்}సభ∑ ேసభ                                                           (5) 417 

 418 

ܸܲܲ = 	∑ ୫ୟ୶{்}ೕసభ∑ ்ೕసభ                                                          (6) 419 

 420 

Generally, higher Sn values indicate a better coverage of the member viruses in the real complexes, 421 

whereas higher PPV values indicates that the predicted clusters are likely to be true positives. As a 422 

summary metric, the Acc can be obtained by computing the geometrical mean of the Sn and PPV values:  423 

ܿܿܣ 424  = 	√ܵ݊	 × ܸܲܲ                                                           (7) 425 

 426 

 427 
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With the same contingency table used for Sn, PPV, and Acc, we calculated the averages of complex-wise 428 

separation Sepco, and cluster-wise separation Sepcl, respectively, below: 429 

 430 

݁ܵ = 	 ∑ ௌసభ                                                               (8) 431 

 432 

݁ܵ = 	 ∑ ௌೕೕసభ                                                               (9) 433 

 434 

High Sepco and Sepcl, (both have maximal values of 1.0) indicate how well a given complex is isolated 435 

from the other complexes and a cluster from other clusters, respectively. To estimate these separation 436 

results as a whole, the geometric mean (clustering-wise separation; Sep) of Sepco and Sepcl was computed:  437 

݁ܵ 438  = 	ඥܵ݁ ×                                                         (10) 439݁ܵ

 440 

High clustering-wise separation values indicate a bidirectional correspondence between a sub-/cluster and 441 

each ICTV taxon: maximal value of 1.0 can be obtained when a sub-/cluster corresponds perfectly to each 442 

taxon.  443 

As an internal measure, the fraction of PCs29 between two genomes (i.e., proteome similarity) was 444 

computed by using the geometric index (G). The proteome similarity was estimated as: 445 

ܩ 446  = 	 |ே()∩ே()||ே()|	×	|ே()|                                                             (11) 447 

 448 

in which N(A) and N(B) indicate the number of PCs in the genomes of A and B, respectively. A total of 449 

400,234 pairs of genomes with >1% proteome similarity are shown in Supplementary Table 3. 450 

 451 
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Clustering-based confidence score. To generate the confidence score per sub-cluster, we used four 452 

confidence scoring methods, as previously described62,63, with some modifications. Three of them exploit 453 

the network topology properties by assessing (i) the significance of clustering coefficient, (ii) the weight 454 

of cluster quality, and (iii) the probability of cluster quality. We then used combined these three values 455 

into an aggregate topology-based confidence score.  456 

Specifically, for the significance of the clustering coefficient, we quantified the fidelity (ܨ) of the edge () 457 

by calculating cumulative hypergeometric P- values using Equation 1 (above) between sub-clusters. The 458 

fidelity values are lower (close to 0) for the genomes having the higher number of shared genes. We then 459 

defined the confidence of sub-cluster cohesiveness as the product of the fidelity values of total edges (i.e., 460 1	݀݊ܽ	2) within the sub-cluster ܿ as below: 461 

 462 Confidence	(ܿ) = ଵ,ܨ	 	×  ଶ,                                          (12) 463ܨ	

 464 

For the second scoring method, we computed the quality (ܳ) of sub-cluster (ܿ) as: 465 

 466 

                                                                    ܳ = 	 ܹ ܹ + 	 ܹ௨௧⁄                                                (13) 467 

 468 

in which ܹ and ܹ௨௧	are the total weight of edges that lie within sub-cluster ܿ and across others, 469 

respectively. For the third method, we evaluated the P-value of a one-sided Mann-Whitney U test for in-470 

weights and out-weights of sub-clusters. The rationale behind this test is that sub-clusters with a lower P-471 

value contains significantly higher in-weights than out-weights, thus indicative that a formed sub-cluster 472 

is valid, and not a random fluctuation. All pairs of three values above were then incorporated into the 473 

topology-based confidence score with the Spearman rank correlation coefficient by using in-house python 474 

scripts and Scipy. Along with this confidence score, we quantified the likelihood that each sub-cluster 475 
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corresponds to an ICTV-sanctioned genus (or equivalent) by using distance threshold that are specified at 476 

the ICTV genus rank, which we refer to as “taxon predictive score”. This score can be calculated as: 477 

 478 

݊݅ݐܿ݅݀݁ݎ  = 	∑ ݈, /݈                                                  (14) 479 

 480 

Specifically, for a sub-cluster (ܿ) having the genus-level assignment, vConTACT v2.0 automatically 481 

measures the maximum distance between taxonomically-known member viruses and calculate the scores 482 

by dividing the sum of links having less than the given maximum distance threshold between nodes (݅ 483 

and ݆) by the total number of links (݈) between all nodes. For a sub-cluster that does not have the genus-484 

level assignment, v2.0 uses Euclidean distance of 9.0 that can maximize the prediction accuracy and 485 

clustering-wise separation (see above) as distance threshold. 486 

 487 

Measuring effect of GOV on network structural changes. GOV contigs (14,656) were added in 10% 488 

increments (randomly selected at each iteration) to NCBI Viral RefSeq and processed using vConTACT 489 

2.0 with one difference – Diamond64 instead of BLASTp was used to construct the all-versus-all protein 490 

comparison underlying the PC generation. Once generated, vConTACT 2.0 networks were post-processed 491 

using a combination of the Scipy65, Numpy, Pandas66 and Scikit-learn67 python 3.6 packages. Networks 492 

were rendered using iGraph68. To calculate NMI, each network’s genomes and their VC membership was 493 

compared in pairwise fashion to all other networks using the “adjusted mutual info score” function of 494 

Scikit-learn. Intra-cluster distances were calculated using the agglomerative clustering functions 495 

“linkage” with distance calculated from shared PCs using the cluster average (also known as UPGMA), 496 

and novel clusters identified using the “fcluster” function of Scipy’s hierarchical clustering. In parallel, 497 

the method to calculate change centrality was calculated as described previously69. CCs were calculated in 498 

a successive way, in which each addition was compared to Viral RefSeq 85 independently of other 499 

additions (0% versus 10%, 0% vs 20%, […], 0% vs 100%).  500 
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Code availability. The vConTACT v2.0 package is freely distributed through Bit Bucket as a python 501 

package (https://bitbucket.org/MAVERICLab/vcontact2). 502 

 503 

REFERENCES 504 

1. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s 505 
biogeochemical cycles. Science 320, 1034–1039 (2008). 506 

2. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science (80-. ). 348, 507 
(2015). 508 

3. Moran, M. A. The global ocean microbiome. Science 350, (2015). 509 

4. Zhao, M. et al. Microbial mediation of biogeochemical cycles revealed by simulation of global 510 
changes with soil transplant and cropping. ISME J. 8, 2045–2055 (2014). 511 

5. Cho, I. & Blaser, M. J. The human microbiome: At the interface of health and disease. Nature 512 
Reviews Genetics 13, 260–270 (2012). 513 

6. Fernández, L., Rodríguez, A. & García, P. Phage or foe: an insight into the impact of viral 514 
predation on microbial communities. ISME Journal 1–9 (2018). doi:10.1038/s41396-018-0049-5 515 

7. Hurwitz, B. L. & U’Ren, J. M. Viral metabolic reprogramming in marine ecosystems. Current 516 
Opinion in Microbiology 31, 161–168 (2016). 517 

8. Suttle, C. a. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–518 
812 (2007). 519 

9. Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science (80-. ). 348, 520 
(2015). 521 

10. Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, (2016). 522 

11. Pratama, A. A. & van Elsas, J. D. The ‘Neglected’ Soil Virome - Potential Role and Impact. 523 
Trends in Microbiology (2018). doi:10.1016/j.tim.2017.12.004 524 

12. Gómez, P. & Buckling, A. Bacteria-phage antagonistic coevolution in soil. Science (80-. ). 332, 525 
106–109 (2011). 526 

13. Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F. & Gordon, J. I. Going viral: Next-527 
generation sequencing applied to phage populations in the human gut. Nature Reviews 528 
Microbiology 10, 607–617 (2012). 529 

14. Abeles, S. R. & Pride, D. T. Molecular bases and role of viruses in the human microbiome. 530 
Journal of Molecular Biology 426, 3892–3906 (2014). 531 

15. Rohwer, F. & Edwards, R. The phage proteomic tree: A genome-based taxonomy for phage. J. 532 
Bacteriol. 184, 4529–4535 (2002). 533 

16. Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 534 
16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014). 535 

17. Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. Imbroglios of viral taxonomy: Genetic exchange 536 
and failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002). 537 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/


22 

 

18. Sullivan, M. B. Viromes, Not Gene Markers, for Studying Double-Stranded DNA Virus 538 
Communities. J. Virol. 89, 2459–2461 (2015). 539 

19. Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence 540 
space. Nature 513, 242–245 (2014). 541 

20. Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread 542 
horizontal gene transfer. BMC Genomics 17, (2016). 543 

21. Bobay, L. & Ochman, H. Biological species in the viral world. 115, (2018). 544 

22. Mavrich, T. N. & Hatfull, G. F. Bacteriophage evolution differs by host, lifestyle and genome. 545 
Nat. Microbiol. 2, (2017). 546 

23. Ackermann, H.-W. Phage Classification and Characterization BT  - Bacteriophages: Methods and 547 
Protocols, Volume 1: Isolation, Characterization, and Interactions. in (eds. Clokie, M. R. J. & 548 
Kropinski, A. M.) 127–140 (Humana Press, 2009). doi:10.1007/978-1-60327-164-6_13 549 

24. Simmonds, P. et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat. Rev. 550 
Microbiol. 15, 161–168 (2017). 551 

25. Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). 552 

26. Brister, J. R., Ako-Adjei, D., Bao, Y. & Blinkova, O. NCBI viral Genomes resource. Nucleic 553 
Acids Res. 43, D571–D577 (2015). 554 

27. Nishimura, Y. et al. ViPTree: The viral proteomic tree server. Bioinformatics 33, 2379–2380 555 
(2017). 556 

28. Lima-Mendez, G., Van Helden, J., Toussaint, A. & Leplae, R. Reticulate representation of 557 
evolutionary and functional relationships between phage genomes. Mol. Biol. Evol. 25, 762–777 558 
(2008). 559 

29. Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect 560 
Archaea and Bacteria. PeerJ 5, e3243 (2017). 561 

30. Meier-Kolthoff, J. P. & Göker, M. VICTOR: genome-based phylogeny and classification of 562 
prokaryotic viruses. Bioinformatics (2017). doi:10.1093/bioinformatics/btx440 563 

31. Yu, C. et al. Real Time Classification of Viruses in 12 Dimensions. PLoS One 8, (2013). 564 

32. Gao, Y. & Luo, L. Genome-based phylogeny of dsDNA viruses by a novel alignment-free method. 565 
Gene 492, 309–314 (2012). 566 

33. Iranzo, J., Koonin, E. V., Prangishvili, D. & Krupovic, M. Bipartite Network Analysis of the 567 
Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile 568 
Elements. J. Virol. 90, 11043–11055 (2016). 569 

34. Aiewsakun, P. & Simmonds, P. The genomic underpinnings of eukaryotic virus taxonomy: 570 
creating a sequence-based framework for family-level virus classification. Microbiome 6, 38 571 
(2018). 572 

35. Lavigne, R. et al. Classification of myoviridae bacteriophages using protein sequence similarity. 573 
BMC Microbiol. 9, (2009). 574 

36. Lavigne, R., Seto, D., Mahadevan, P., Ackermann, H. W. & Kropinski, A. M. Unifying classical 575 
and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. 576 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/


23 

 

Res. Microbiol. 159, 406–414 (2008). 577 

37. Henz, S. R., Huson, D. H., Auch, A. F., Nieselt-Struwe, K. & Schuster, S. C. Whole-genome 578 
prokaryotic phylogeny. Bioinformatics 21, 2329–2335 (2005). 579 

38. Iranzo, J., Krupovic, M. & Koonin, E. V. The double-stranded DNA virosphere as a modular 580 
hierarchical network of gene sharing. MBio 7, (2016). 581 

39. Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. IVirus: Facilitating new 582 
insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. 583 
ISME J. 11, 7–14 (2017). 584 

40. Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean 585 
viruses. Nature 537, 689–693 (2016). 586 

41. Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017). 587 

42. Roux, S. et al. Ecogenomics of virophages and their giant virus hosts assessed through time series 588 
metagenomics. Nat. Commun. 8, (2017). 589 

43. Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. 590 
Microbiol. (2018). doi:10.1038/s41564-018-0190-y 591 

44. Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant 592 
viruses. Nat. Commun. 8, (2017). 593 

45. de la Cruz Peña, M. J. et al. Deciphering the Human Virome with Single-Virus Genomics and 594 
Metagenomics. Viruses 10, 113 (2018). 595 

46. Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein-protein 596 
interaction networks. Nat. Methods 9, 471–472 (2012). 597 

47. Hulo, C., Masson, P., Le Mercier, P. & Toussaint, A. A structured annotation frame for the 598 
transposable phages: A new proposed family ‘Saltoviridae’ within the Caudovirales. Virology 477, 599 
155–163 (2015). 600 

48. Doyle, E. L. et al. Genome Sequences of Four Cluster P Mycobacteriophages. Genome Announc. 601 
6, e01101-17 (2018). 602 

49. Pope, W. H. et al. Bacteriophages of Gordonia spp. Display a spectrum of diversity and genetic 603 
relationships. MBio 8, (2017). 604 

50. Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals 605 
a continuum of phage genetic diversity. Elife 4, e06416 (2015). 606 

51. Sullivan, M. B. et al. The genome and structural proteome of an ocean siphovirus: A new window 607 
into the cyanobacterial ‘mobilome’. Environ. Microbiol. 11, 2935–2951 (2009). 608 

52. Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and 609 
Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 610 
11, 538 (2010). 611 

53. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: 612 
Mechanisms, impact and ecology of temperate phages. ISME Journal 11, 1511–1520 (2017). 613 

54. Mirzaei, M. K. & Maurice, C. F. Ménage à trois in the human gut: Interactions between host, 614 
bacteria and phages. Nature Reviews Microbiology 15, 397–408 (2017). 615 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/


24 

 

55. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic 616 
expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016). 617 

56. Krupovic, M. et al. Taxonomy of prokaryotic viruses: update from the ICTV bacterial and 618 
archaeal viruses subcommittee. Arch. Virol. 161, 1095–1099 (2016). 619 

57. Adams, M. J. et al. Changes to taxonomy and the International Code of Virus Classification and 620 
Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Arch. 621 
Virol. 162, 2505–2538 (2017). 622 

58. Adriaenssens, E. M. et al. Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial 623 
and Archaeal Viruses Subcommittee. Archives of Virology 1–5 (2018). doi:10.1007/s00705-018-624 
3723-z 625 

59. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database 626 
search programs. Nucleic Acids Research 25, 3389–3402 (1997). 627 

60. Wiwie, C., Baumbach, J. & Röttger, R. Comparing the performance of biomedical clustering 628 
methods. Nat. Methods 12, 1033–1038 (2015). 629 

61. Brohée, S. & van Helden, J. Evaluation of clustering algorithms for protein-protein interaction 630 
networks. BMC Bioinformatics 7, (2006). 631 

62. Kamburov, A., Stelzl, U. & Herwig, R. IntScore: A web tool for confidence scoring of biological 632 
interactions. Nucleic Acids Res. 40, (2012). 633 

63. Goldberg, D. S. & Roth, F. P. Assessing experimentally derived interactions in a small world. 634 
Proc. Natl. Acad. Sci. 100, 4372–4376 (2003). 635 

64. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. 636 
Methods 12, 59–60 (2015). 637 

65. Oliphant, T. E. SciPy: Open source scientific tools for Python. Comput. Sci. Eng. 9, 10–20 (2007). 638 

66. McKinney, W. Data Structures for Statistical Computing in Python. Proc. 9th Python Sci. Conf. 639 
1697900, 51–56 (2010). 640 

67. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 641 
(2011). 642 

68. Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 643 
Complex Syst. 1695, 1–9 (2006). 644 

69. Federico, P., Pfeffer, J., Aigner, W., Miksch, S. & Zenk, L. Visual Analysis of Dynamic Networks 645 
Using Change Centrality. in 2012 IEEE/ACM International Conference on Advances in Social 646 
Networks Analysis and Mining 179–183 (2012). doi:10.1109/ASONAM.2012.39 647 

 648 

ACKNOWLEDGEMENTS. We thank Laura Bollinger, Gareth Trubl, and Igor Tolstoy for their 649 
comments on improving the manuscript, as well as Wesley Zhi-Qiang You for helping push the network 650 
analytics. High performance computational support was provided as an award from the Ohio 651 
Supercomputer Center to MBS. Funding was provided in part by the Department of Energy’s Genome 652 
Sciences Program Soil Microbiome Scientific Focus Area award (#SCW1632) to Lawrence Livermore 653 
National Laboratory; an NSF Biological Oceanography award (OCE#1536989), and a Gordon and Betty 654 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/


25 

 

Moore Foundation Investigator Award (#3790) to MBS.  Funding was provided to JRB by the Intramural 655 
Research Program of the NIH, National Library of Medicine. The work conducted by the U.S. 656 
Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. 657 
Department of Energy under Contract DE-AC02-05CH11231 to SR. This work was funded in part 658 
through Battelle Memorial Institute’s prime contract with the US National Institute of Allergy and 659 
Infectious Diseases (NIAID) under Contract No. HHSN272200700016I to JHK. The content of this 660 
publication does not necessarily reflect the views or policies of the US Department of Health and Human 661 
Services or of the institutions and companies affiliated with the authors. 662 

AUTHOR CONTRIBUTIONS. HBJ, BB and MBS designed the study. OZ and MBS wrote the 663 
manuscript with significant contributions from all co-authors. HBJ and BB performed the statistical and 664 
network analyses.  665 

COMPETING INTERESTS. The authors declare no competing interests. 666 

MATERIALS & CORRESPONDENCE. Correspondence and material requests should be addressed to 667 
Matthew B. Sullivan at sullivan.948@osu.edu. 668 

 669 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/533240doi: bioRxiv preprint first posted online Jan. 29, 2019; 

http://dx.doi.org/10.1101/533240
http://creativecommons.org/licenses/by/4.0/

	Article File
	Figure 1.tif
	Figure 2.tif
	Figure 3.tif

