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ABSTRACT
Digital audio synthesis has become an important component
of modern music production with techniques that can produce
realistic simulations of real instruments. Physical modelling
sound synthesis is a category of audio synthesis that uses
mathematical models to emulate the physical phenomena of
acoustic musical instruments including drum membranes, air
columns and strings. The synthesis of physical phenomena
can be expressed as discrete variants of Newton’s laws of mo-
tion, using, for example, the Finite-Difference Time-Domain
method or FDTD.

FDTD is notoriously computationally expensive and the
real time demands of sound synthesis in a live setting has led
implementers to consider offloading to GPUs. In this paper
we present multiple OpenCL implementations of FDTD for
real time simulation of a drum membrane. Additionally, we
compare against an AVX optimized CPU implementation
and an OpenGL version that utilizes a careful mapping to
the GPU texture cache. We find using a discrete, laptop
class, AMD GPU that for all but the smallest mesh sizes, the
OpenCL implementation out performs the others. Although,
to our surprise we found that optimizing for workgroup local
memory provided only a small performance benefit.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Software and its engineering → Compilers.
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Figure 1: Audio Unit (AU) plugin

1 INTRODUCTION
The physical synthesis of sound is the general process of
using mathematical models to simulate a physical source of
sound. The technique of simulating sound using mathematical
models, although not the earliest example, was first made
popular by Karplus and Strong, using a method of physical
modelling synthesis that circulates a short waveform through
a filtered delay line to simulate the sound of a hammered
or plucked string [12]. The algorithm was later extended by
David and Smith [13] and remains in use today, due in part
to its low computational footprint.

While the Karplus-Strong algorithm remains popular in
the domain of real time synthesis, it does not accurately
represent the way in which vibrations propagate through
a medium, e.g. a drum membrane, and alternative models
have been proposed that address these shortcomings1. For
example, finite difference approximation is a common method
to simulate the movement of waves through physical mediums,
presented very early on in the area of acoustics and synthesis,
e.g. Hiller and Ruiz studied using finite difference methods
for sound synthesis in the early 1970s [10].

To simulate vibrations moving through a material, we can
utilize Newton’s laws of motion, describing the movement
using Ordinary Differential Equations (ODEs). For these to
be implemented as a discreet algorithm, ODEs are expressed
as Finite Discreet Time-Domain (FDTD) equations. FDTDs
are used as the basis of numerous physical modelling efforts
that seek to digitally synthesize the sounds of, for example,
drum membranes [16], wind instruments [3] and strings [8].

1It is worth noting that in the end, most sound synthesis is performed
in the context of music composition and as such the need to sound
like a "real" drum or some other form of instrument is subjective.
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Of course, it is well known that the real-time simulation
of FDTD is hard, it requires a large amount of floating point
computation. Consider, for example, the case of simulating a
drum membrane with a mesh of 32x32 at an audio sample
rate of 48kHz. Each point in the domain requires 40 floating
point instructions per sample and thus approximately 2 Giga
FLOPS of compute for real time synthesis. Of course, in
a real audio application, any particular sound engine must
compete for resources with, synthesis, effects, mixing, and
so on. To this end, acceleration of FDTDs on GPUs has
been proposed as a method to offload the simulation of drum
membranes and other physical models of musical phenomena.
For example, Sosnick and Hsu describe a straightforward
implementation using NVIDIA’s Cuda [16], while Zappi et
al use OpenGL [20]. In this paper we again step into the
breach to use GPUs to accelerate FDTD, for real time audio
synthesis, initially utilizing OpenCL2 [9], but we then go
further presenting a comparison of implementations ranging
from a serial CPU implementation, an SOA AVX variant,
a recreation of Zappi et al’s OpenGL implementation, and
two OpenCL versions, one using only global memory, and
one using workgroup local memory. We find that on AMD
hardware, in all but the smallest grids, OpenCL outperforms
the other implementations, and the use of workgroup local
memory provides little to zero benefit.

We have implemented two variants of our drum simulation.
The first implementation uses our OpenCL and CPU imple-
mentations and is provided as a Apple Audio Unit (AU) [1]
plugin, that can be loaded into a Digital Audio Workstation
(DAW) (e.g. Ableton Live, Logic Pro, and so fourth). A screen
shot of the plugin is given in Figure 1 and includes controls
that change properties of the drum membrane, such as the
speed at which sound travels through the material. While
not directly relevant to how the FDTD was optimized, the
focus of this paper, it played an important role within the
context of the work as a whole, enabling practicing musicians
to utilize the drum within their standard work-flow and to
provide feedback on the sound quality—it is of little use to
provide real time synthesis for a drum that sounds terrible!

The second implementation is focused on providing a sim-
ple test framework in which the OpenCL, OpenGL, and CPU
variants can be compared. The simulations are controlled
from (JSON) configuration files and are fully automated. For
the most part the framework for each implementation is the
same, however, for the OpenGL version we also support a
simple visualization of the drum membrane.

The OpenGL version’s ability to generate visual feedback
is shown in Figure 2. This figure simply takes the pressure
points of the current implementation and uses it to calculate
a colour gradient, using an additional drawcall. The red dot
is the positioning of the microphone and is the point that
is sampled for the audio output. The yellow square is the
excitation point, i.e. the point where an excitation function
is fed to the membrane—in general, it would not be placed in

2Throughout this paper we use OpenCL as shorthand for OpenCL 1.2
and do not consider OpenCL 2.x.

Figure 2: OpenGL Visual rendering of 2D membrane

the centre of the mesh, but for simplicity it is located there
for demonstration.

We conclude this introduction by outlining the remainder
of the paper:

(1) Section 2 provides a short overview of related and
existing work;

(2) Section 3 introduces the FDTD equations, describing
implementation as pseudo code, and then details the
CPU, OpenCL, and OpenGL implementations;

(3) The benchmark results for the different implementa-
tions are presented in Section 4; and

(4) Finally, Section 5 concludes and provides pointers to
future work.

2 RELATED WORK
To our knowledge there are no OpenCL implementations of
FDTD that have been specifically developed for digital audio
synthesis. As we would expect, there have been a selection of
implementations of 3D FDTDs. For example, in the context
of electromagnetic wave interaction, Cannon and Honary
present an implementation in OpenCL [7]. They demonstrate
good speedup, including multiple GPUs, however, unlike our
work they fail to consider alternatives, such as OpenGL or
AVX and focus on HPC style platforms and highend GPUs
(Nvidia Tesla M2075), utilizing a large number of SIMD
units and DDR4 memory. It is worth noting that due to the
problem they are tackling, the size of meshes they consider are
much larger than those we present, which has the potential
to provide an easier context for acceleration, when comparing
to single threaded CPU performance.

Although FPGAs are a good way of processing FDTD
grids [18], the focus of this work has been towards commodity
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hardware, in particular, live digital musician will tend towards
using a medium to highend laptop, with an external audio
device to handle input and output to the analog domain. To
date easy to access FPGAs is not accessible on a commodity
scale within this domain.

Returning the focus to 2D FDTDs for digital audio synthe-
sis for GPUs a number of researchers have studied this area,
for example [4, 6, 16, 20]. In particular, Sosnick and Hsu [16]
implement a simple 2D membrane simulation using a FDTD
written in CUDA. However, there results are limited, testing
only on small meshes and single buffer size. They also to
not consider other optimized implementations, such as AVX
CPU or other GPU programming models such as OpenGL
or OpenCL.

Zappi et al [20] implement an FDTD simulation of a drum
head model very similar to ours. They use a novel approach to
packing the previous, current, and next step simulation data
within a single RGBA texture. The OpenGL implementation
used in the benchmarks presented in Section 4 uses a variant
of their design. While it performs well it fails, by a small
amount, to out perform our OpenCL implementation. This
leaves us to hypothesize that while single texture encoding
is interesting, it might in fact lead to a less cache friendly
algorithm.

3 IMPLEMENTATION
In this section we describe the FDTD algorithm, firstly as
equations, then as pseudo code. This is then followed by
details of each implementation. The example used to demon-
strate the implementation is the OpenCL global memory
kernel, and, although the other implementations differ in
details regarding the particular target language, they are for
the most part similar. In the case were they differ, e.g. using a
packed texture for the OpenGL implementation a discussion
is included to outline important aspects. The full source code
for each implementation used within the Section 4, outlining
the benchmark results, can be found here [15].

3.1 The FDTD Algorithm
In this subsection, the numerical algorithm used for modelling
the drum membrane is described. It follows the discretization
of the standard 2D wave propagation equation [17].

pn+1
=

2pn +
(︀
µ− 1

)︀
pn−1 + α

(︀
pl + pr + pu + pd − 4pn

)︀
µ + 1

(1)

PL,R,U,D =

{︃
pnγ if n boundary
pn

l,r,u,d if n free
(2)

where:
• pn+1 is the pressure point to be calculated for the next

time step, n + 1.
• pn is the pressure point of current time step, n.
• pn−1 is the pressure point of the previous time step,
n− 1.

1 for i = 0 to bufferSize
2 for row = 1 to gridHeight
3 for column = 1 to gridWidth
4 centrePoint = getPoint(row,column)
5 if(centrePoint == boundary)
6 neighbours = calculateBoundary(centrePoint)
7 else
8 neighbours = getNeighbours(centrePoint)
9 compute(centrePoint, neighbours)

10 end for
11 end for
12 rotateGrids()
13 end for

Figure 3: Pseudocode for FDTD membrane simulation.

• µ is the damping/absorption coefficient of the modelled
material. (0.0 < µ < 1.0), for all values of µ.

• α is the propagation factor. (α ≤ 0.5), for all values of
α.

• pl,r,u,d are the pressure points for the neighbouring
values of the centre point currently under consideration.

• γ is the centre points boundary gain. This is the degree
at which the pressure is reflected back into the grid.
(0.0 < γ < 1.0), for all values of γ.

This equation is used to simulate wave propagation across
the 2D surface when applied to all grid points. Every time
step, the equation is used to calculate the next pressure
value of the currently considered grid point from the current,
previous and neighbouring pressure values.

The neighbouring values are determined by the centre
points boundary value (See equation 2). If the centre is not a
boundary point, then the actual neighbouring pressure points
are taken for PL,R,U,D. If it is a boundary point, then the
neighbour pressure values are not used and instead the centre
pressure point multiplied by the boundary gain γ is used in
place of the neighbour values in the equation.
α, the propagation factor determines the speed at which

sound passes through the medium. It is formed from the
speed of sound, the sample rate and the size of each grid
point. Therefore when modelling some material, the size of
the grid and the sample rate affect the speed at which waves
are simulated to pass through the material if the propagation
factor is not adjusted.

3.2 Pseudo Code
The pseudocode for implementing the previous equations
is given in Figure 3 and outlines the sequential method of
calculating the FDTD grid. This code is a straightforward
way to compute a 2D FDTD grid, of any size. It works
by visiting each point in the grid and calculating the next
pressure value using the compute function. This basically
applies equation 3.1 to generate the next time step pressure
value. The grid of n + 1 is updated with the new value.

Once the whole grid has advanced one time step by setting
the centre point to the new computed point, the grids are
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advanced too, by rotating the grids. Aligning them correctly
ready for the next time step.

3.3 OpenCL Kernel
Figure 4 is the source code for the OpenCL global memory
variant of our FDTD implementation. For ease of presentation
the local memory variant is not presented in this paper,
but the interested reader can �nd the code for the all the
implementations on our Gitlab repository [15].

Note how the rotation index is used to de�ne the FDTD
pointers to each grid. By incrementing the index, the address
to which the pointers are set to shifts along to the next grid,
simulating the advancement of a time-step. It is important
to note that the rotation index is not incremented within the
kernel, but in the host application between kernel calls. As a
consequence, an explicit synchronization barrier is necessary
between each OpenCL "ndrange" dispatches, thus, kernel calls
cannot be batched. An alternative would be to utilize a kernel
to increment the rotation index in between FDTD kernels;
this would allow batching and avoid host side synchronization
and copying of the rotation index. To date we have not felt
this necessary, but it is likely that as we optimize further this
will become necessary.

3.4 Implementations
This section provides an overview of each of the di�erent
implementations. The implementations, which are outlined
in the following subsections, all share an FDTD grid class
that stores the locations of the excitation and listener points,
along with the pressure and boundary grids as a �attened 2D
Structure of Arrays (SOA) data structure. Although the un-
derlying kernels for each of the di�erent implementations vary
in design, with the goal of utilizing the di�erent optimizations
opportunities provided by each programming model.

3.4.1 CPU Serial.The serial implementation works by visit-
ing each grid point and calculating the new pressure value
using the equation 1, then moving onto the next cell sequen-
tially. The whole grid must be calculated before one sample
can be obtained. A few optimizations were used to avoid
needless computation like cache alignment, avoiding copies
and redundant calculations.

Cache alignment is achieved by using �attened 2D arrays
of the grids. This ensures the next item in the array is usually
held in the same cache line, even at the ends of the grid rows.
For each time step, the pressure grids need to increment along
in time. Take a look at Figure 5. After the newly calculated
grid of N+1 pressure values is complete, a pointer which
determines the current pressure grid addresses the N+1 grid.
All the pointers shift forward one to correctly address the
new set of pressure grids. This is done rather than copying all
the data between the grids which would be highly ine�cient.

Redundant calculations are removed including only cal-
culating � � 1 once for calculating the next pressure point.
� can change, therefore it should still be calculated once
per bu�er �ll, but it is not necessary to calculate every cell
visited.

3.4.2 CPU AVX. The AVX optimized CPU implementation
follows after most of what the serial version does. However,
it vectorizes the grids for processing. Using AVX SIMD in-
trinsics, the grid can be vectorized into vectors of four �oats.
These vectors are processed and stored, using Structure of
Arrays, in parallel. Intel's compiler intrinsics [ 2] were used
to do an explicit vectorization of FDTD computation, rather
than using compiler pragmas or a C++ SIMD library, for
example.

Although the grid calculations are applied universally, the
checks for boundary, excitation and listener points cause each
element in the vectors to be checked, often using shu�es.
This can likely be improved, with further considerations for
packing certain data bits, but we leave this to further work.

Additionally, in future work we intend to extend the SIMD
vectorization to support AVX-256/512. This would e�ectually
double the vector size and therefore in ideal circumstances,
would result in doubling of performance.

3.5 OpenCL global memory kernel
The OpenCL versions start by initializing the FDTD grid
and the OpenCL con�guration on the CPU. Then, when a
bu�er of samples is to be computed, an excitation bu�er is
loaded onto the GPU. Every iteration, the kernel is called
which calculates the next time step and produces an output
sample. The output samples remain on the GPU in a sample
bu�er. Only once the bu�er is full is it read back by the
host application on the CPU to minimise transfer overheads
associated with passing data back and forth.

As with the serial implementation described earlier, the
method for rotating pressure grids with pointers is also used
here. At each time step, the GPU uses an index value, incre-
mented by the CPU, to determine which grids the pointers
address. In the OpenCL global version, the grids are held in
the GPUs global memory and no local memory caching is
performed.

3.5.1 OpenCL workgroup local kernel.An OpenCL version
almost identical to the previous one was developed, but using
the workgroup local memory to store the current pressure
grid. In the kernel before any calculations are made the
workitems load the current pressure value into a local grid
accessible by all workitems in the same workgroup. This
means when the neighbouring values of the centre point are
needed, they can be fetched from the local grid which has
shorter access times than the global grid. There are cases
on the edge of workgroups where a work item will need
to access a neighbour outside the workgroup, see �gure 6.
Therefore, conditional checks are made and if the neighbour
is outside the workgroup, it will need to be fetched from
global memory. This technique has been used in optimized
convolution kernels, see for example [14]. These conditionals
are suspected to impact any performance gained from using
the local memory.
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1 __kernel
2 void ftdtCompute(__global float * gridOne, __global float * gridTwo, __global float * gridThree,
3 __global float * boundaryGain, int samplesIndex, __global float * samples, __global float * excitation,
4 int listenerPosition, int excitationPosition, float propagationFactor,
5 float dampingFactor, int rotationIndex) {
6 // get index for current and neighbouring nodes
7 int ixy = (get_global_id(1)) * get_global_size(0) + get_global_id(0);
8 int ixMy = (get_global_id(1)-1) * get_global_size(0) + get_global_id(0);
9 int ixPy = (get_global_id(1)+1) * get_global_size(0) + get_global_id(0);

10 int ixyM = (get_global_id(1)) * get_global_size(0) + get_global_id(0)-1;
11 int ixyP = (get_global_id(1)) * get_global_size(0) + get_global_id(0)+1;
12

13 // determine each buffer in relation to time from a rotation index//
14 __global float * nMOne; __global float * n; __global float * nPOne;
15 if (rotationIndex == 0) {
16 nMOne = gridOne;
17 n = gridTwo;
18 nPOne = gridThree;
19 } else if (rotationIndex == 1) {
20 nMOne = gridTwo;
21 n = gridThree;
22 nPOne = gridOne;
23 } else if (rotationIndex == 2) {
24 nMOne = gridThree;
25 n = gridOne;
26 nPOne = gridTwo;
27 }
28 // initialize pressure values//
29 float centrePressureNMO = nMOne[ixy];
30 float centrePressureN = n[ixy];
31 float leftPressure; float rightPressure; float upPressure; float downPressure;
32

33 if (boundaryGain[ixy] > 0.0) {
34 leftPressure = n[ixy] * boundaryGain[ixy];
35 rightPressure = n[ixy] * boundaryGain[ixy];
36 upPressure = n[ixy] * boundaryGain[ixy];
37 downPressure = n[ixy] * boundaryGain[ixy];
38 } else {
39 leftPressure = n[ixMy];
40 rightPressure = n[ixPy];
41 upPressure = n[ixyM];
42 downPressure = n[ixyP];
43 }
44 // calculate next pressure value
45 float newPressure = 2 * centrePressureN;
46 newPressure += (dampingFactor - 1.0) * centrePressureNMO;
47 newPressure += propagationFactor * (leftPressure + rightPressure +
48 upPressure + downPressure - (4 * centrePressureN));
49 newPressure *= 1.0 / (dampingFactor + 1.0);
50

51 // if the cell is the listener position, sets the next sound sample in buffer to value contained here
52 if (ixy == listenerPosition) {
53 samples[samplesIndex] = n[ixy];
54 }
55 if (ixy == excitationPosition) { // if the position is an excitation...
56 // input excitation value into point. Then increment to next excitation in next iteration.
57 newPressure += excitation[samplesIndex];
58 }
59 // update grid plus one
60 nPOne[ixy] = newPressure;
61 }

Figure 4: OpenCL FDTD Kernel
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