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Abstract

The ability to learn is crucial for neural network (NN) control as it is able to enhance
the overall stability and robustness of control systems. In this study, a composite
learning control strategy is proposed for a class of strict-feedback nonlinear systems
with mismatched uncertainties, where raised-cosine radial basis function (RCRBF)-
NNs with compact supports are applied to approximate system uncertainties. Both
online historical data and instantaneous data are utilized to update NN weights.
Practical exponential stability of the closed-loop system is established under a weak
excitation condition termed interval excitation (IE). The proposed approach ensures
fast parameter convergence, implying an exact estimation of plant uncertainties,
without the trajectory of NN inputs being recurrent and the time derivation of
plant states. The RCRBF-NNs applied not only reduces computational cost, but also
facilitates the exact determination of a subregressor activated along any trajectory
of NN inputs so that the IE condition is verifiable. Numerical results have verified
validity and superiority of the proposed approach.
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1 Introduction

One of the successful stories of applying machine learning to intelligent con-
trol is neural network (NN)-based adaptive control (NNAC) [1]. Compared
with the traditional adaptive control, the most appealing merit of NNAC is
that the modelling difficulty in many practical control problems can be greatly
mitigated resulting in the simplification of control synthesis for a wider class
of nonlinear systems with functional uncertainties [2]. However, in most ex-
isting NNAC methods, e.g. see [3–17] for some recent results, the ability of
NNs to learn plant uncertainties is not completely exploited and only tracking
error convergence is available. The ability to learn for NNs, reflected by the
convergence of NN weights, is guaranteed by the well-known condition termed
persistent excitation (PE) [18]. Parameter convergence in NNAC brings several
salient benefits, e.g. accurate online modeling, superior tracking, and robust-
ness against various perturbations [19].

The classical PE condition is too stringent and often infeasible in practice
[20]. A more practical PE condition based on radial basis function (RBF)-
NNs shows that any recurrent trajectory of NN inputs that stays within a
regular lattice leads to a partial PE condition [21]. Based on the practical
PE condition, several NN learning control (NNLC) methods were proposed
to guarantee closed-loop practical exponential stability so that accurate NN
learning is obtainable [21–25]. The relationship between PE levels and RBF-
NN structures was analyzed in [26]. However, in the existing NNLC methods,
the necessity that the trajectory of NN inputs is recurrent is still stringent
in practice, and the parameter convergence rate highly depends on PE levels,
which generally gives rise to a slow parameter convergence speed [27].

A hybrid direct and indirect adaptive control strategy termed composite adap-
tive control utilizes both tracking and prediction errors to update parameter
estimates such that both tracking accuracy and parameter convergence can
be improved [28–30]. Motivated by the composite adaptation, an emerging
composite learning technique was proposed to achieve parameter convergence
in adaptive control at the absence of PE [31–37]. The difference of the com-
posite learning compared with the composite adaptation is that online histor-
ical data (OHD) are employed to construct prediction errors so that closed-
loop exponential stability is ensured by an interval excitation (IE) condition
which greatly relaxes the PE condition. A model reference composite learning
control method was presented for a class of nonlinear systems with matched
parametric uncertainties in [31], where the time derivation of plant states is
eliminated by using an integral transformation. In [32], the approach of [31]
was extended to a class of strict-feedback nonlinear systems with mismatched
parametric uncertainties via command filtered backstepping. The approach
of [32] was further extended to the case with functional uncertainties in [33].
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In [34], the composite learning was applied to achieve parameter convergence
in least squares-based identification and indirect adaptive control. The IE con-
dition for parameter convergence in the composite learning was relaxed to be
a condition of sufficient excitation (SE) in [35]. In [36], a composite learning
control approach was developed for a general class of robotic arms. In [37], an
NN composite learning control approach with friction compensation was de-
signed and implemented to an industrial robot arm. However, the approaches
of [36,37] are specifically designed for robotic systems, the time derivatives of
plant states are needed to be estimated in [32,33], and the extension of the in-
tegral transformation in [31,34,35] to the case with mismatched uncertainties
is infeasible.

In this article, an NN composite learning control (NNCLC) strategy is present-
ed for the class of strict-feedback nonlinear systems in [29], where raised-cosine
RBF (RCRBF)-NNs are used to approximate plant uncertainties. Command
filtered backstepping [38] is resorted to alleviate the problem of “explosion
of complexity” in the traditional integrator backstepping. Compared with ex-
isting NNLC approaches, the attractive feature of our approach is that fast
parameter convergence in NNs, implying exact learning of plant uncertainties,
is guaranteed without the trajectory of NN inputs being recurrent. Compared
with the NNCLC approach of [33], the distinctive feature of the proposed ap-
proach include: 1) The state derivation is not needed for the computation of
prediction errors; 2) the RCRBF-NNs applied is not only helpful for reducing
computational cost but also convenient for exactly determining a subregres-
sor activated along any trajectory of NN inputs so that the IE condition is
verifiable.

The rest of this article is organized as follows: The problem is formulated in
Section II; the RCRBF-NN is described in Section III; the NNCLC is designed
in Section IV; illustrative results are provided in Section V; conclusions are
drawn in Section VI. Through out this brief, R, R+ and R

n denote the spaces
of real numbers, positive real numbers and real n-vectors, respectively, L∞
is the space of bounded signals, ‖x‖ is the Euclidean norm of x, min{·},
max{·} and sup{·} are the operators of minimum, maximum and supremum,
respectively, tanh(x) is a hyperbolic tangent function, Ωc := {x|‖x‖ ≤ c} is
the ball of radius c, and Ck represents the space of functions for which all
k-order derivatives exist and are continuous, where c ∈ R

+, x ∈ R, x ∈ R
n,

and n and k are positive integers.
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2 Problem Formulation

Consider the following class of nth-order strict-feedback nonlinear systems
with functional uncertainties [29]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi = fi(xi) + xi+1, i = 1 to n− 1

ẋn = fn(xn) + u

y = x1

(1)

with xi(t) := [x1(t), x2(t), · · · , xi(t)]
T ∈ R

i, where x(t) = xn(t) is a vector of
system states, u(t) ∈ R is a control input, y(t) ∈ R is a controlled output,
fi(xi) : R

i �→ R are unknown functions, and i = 1 to n. Let xd(t) ∈ R denote
a desired output. The following assumptions are given to facilitate the control
design.

Assumption 1 [41]: fi(xi) are of C1 for i = 1 to n.

Assumption 2 [41]: xd(t) and ẋd(t) are continuous and of L∞.

Let αi(t) ∈ R and αc
i (t) ∈ R with i = 1 to n− 1 be virtual control inputs and

the filtered counterparts, respectively. Define tracking errors ei(t) := xi(t) −
αc
i−1(t) with αc

0(t) = xd(t) and i = 1 to n. Let e(t) := [e1(t), e2(t), · · · , en(t)]T
and xd(t) := [xd(t), ẋd(t)]

T ∈ Ωd ⊂ R
2. In this study, the objective is to design

an NN-based control law for the system (1) under Assumptions 1 and 2 such
that the tracking error e tends to 0 and fi(xi) with i = 1 to n are accurately
approximated by NNs along NN input trajectories.

3 Radial-Basis-Function Neural Network

Let Ωx ∈ R
n be a domain of NN approximation. The region of each xi is

divided into mi − 1 uniform and symmetric grids with widths σi ∈ R
+ by mi

grid points clii ∈ R, where mi ≥ 3 is an odd number, li = 1 to mi, and i = 1
to n. Then, a RCRBF of the form [43]:

ξlii (xi) =

⎧⎪⎨
⎪⎩

1
2

(
1 + cos

(
π(xi−c

li
i )

σi

))
, if |xi − clii | ≤ σi

0, otherwise

is applied to cover at least one grid for each possible li and i. Hence, N =
m1m2 · · · mn neural nodes can be generated. The N neural nodes ordered in
an n-dimension matrix can be reordered into a one-dimension array through

4



a scalar index

j =l1 +m1(l2 − 1) +m1m2(l3 − 1)

+ · · ·+m1m2 · · ·mn−1(ln − 1).

Then, a RCRBF-NN is represented as follows:

f̂(x, Ŵ ) = ΦT (x)Ŵ (2)

in which Ŵ ∈ Ωw ⊂ R
N is a vector of NN weights, Φ(x) = [φ1(x), φ2(x),

· · · , φN(x)]
T ∈ R

N is a regressor, φj(x) :=
∑n

i=1 ξ
li
i (xi) is a regression function

corresponding to the thj NN node, and j = 1 to N . The RCRBF belongs to
a class of localized RBFs as its support is a compact set [clii − σi, c

li
i + σi].

The RBF NN (2) is used to approximate a certain function f(x) : Ωx �→ R

resulting in an optimal NN approximation error

ε(x) := f(x)− f̂(x,W ∗) (3)

with W ∗ ∈ Ωw a constant vector of optimal weights given by

W ∗ := argmin
Ŵ∈Ωw

{
sup
x∈Ωx

|f(x)− f̂(x, Ŵ )|
}
. (4)

The approximation theorem of RBF-NNs shows that |ε(x)| ≤ ε∗, ∀x ∈ Ωx can
be guaranteed for any given small constant ε∗ ∈ R

+ if N is sufficiently large
[44]. The following definitions and lemmas are presented for the subsequent
development.

Definition 1 [18]: A bounded signal Φ(t) ∈ R
N is of IE over [Te − τd, Te] if

∃Te, τd, σ ∈ R
+ such that

∫ Te
Te−τd

Φ(τ)ΦT (τ)dτ ≥ σI.

Definition 2 [18]: A bounded signal Φ(t) ∈ R
N is of PE if ∃τd, σ ∈ R

+ such
that

∫ t
t−τd

Φ(τ)ΦT (τ)dτ ≥ σI, ∀t ≥ 0.

Lemma 1 [21]: For any given trajectory x(t) : R+ �→ Ωx, f(x) can be approx-
imated by the RCRBF-NN (2) with a limited number of NN nodes located in
a local region along x(t) such that 1

f(x) = ΦT
ζ (x)W

∗
ζ + ε(x) (5)

with W ∗
ζ ∈ R

Nζ and Φζ ∈ R
Nζ subvectors of W ∗ and Φ, respectively, where

Nζ < N is the number of total activated NN nodes.

1 In [21], due to the usage of Gaussian RBFs, one has f(x) = ΦT
ζ (x)W

∗
ζ + εζ(x)

with εζ ∈ R
+ of the order ε. For the RCRBF-NN (2), as the RCRBF has a compact

support, the outputs of most regression functions φj can be strictly zero, and thus,
ε can be used directly instead of εζ in (5).

5



Lemma 2 [21]: For the RBF NN (5) with centers placed on a regular lattice to
cover Ωx, given any C1 recurrent trajectory x(t) : R+ �→ Ωx, the subregressor
Φζ(x) is almost always PE.

Remark 1 : Because the RCRBF has a compact support, the maximal num-
ber of RCRBFs with nonzero values for a given input xi, denoted by m̄, is
controlled by the width σi, and the number of current activated NN nodes
in the RCRBF-NN (2) is at most Nc = m̄n. Typically, m̄ is set to be 2 or 3
which is smaller than the numbers of grid points m1 to mn, and thus, Nc is
generally much smaller than the total number of NN nodes N . A distribution
of RCRBFs is illustrated in Fig. 1, where xi ∈ [−3, 3], mi = 7, σi = 1.5, clii
= li − 4, m̄ = 3, i = 1 to 3, and li = 1 to 7. In this case, one has Nc =
33 = 27 which is much smaller than N = 73 = 343. Therefore, we can use
only activated NN nodes, determined by nonzero RCRBFs, to update Ŵ and
to compute the NN output so that the RCRBF-NN (2) can have much lower
computational cost than other types of RBF NNs [43].

4 Composite Learning Backstepping Control

4.1 Neural network-based backstepping control

In the subsequent sections, the valuation of all i is i = 1 to n except special
indications. As fi(xi) in (1) is unknown, a RCRBF-NN of the form (2) with
extra subscripts i as follows:

f̂i(xi, Ŵi) = ΦT
i (xi)Ŵi (6)

is applied to approximate each fi(xi), where Ŵi ∈ Ωwi
⊂ R

Ni , Φi ∈ R
Ni ,

‖Φi(xi)‖ ≤ ψi [18], Ni is the number of neural nodes, and ψi ∈ R
+ is a con-

stant. An NN-based command-filtered backstepping control law is presented

Fig. 1. A distribution of raised-cosine radial basis functions.
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as follows: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αi = vi + α̇c
i−1 − ΦT

ζi(xi)Ŵζi

(i = 1, 2, · · · , n− 1)

u = vn + α̇c
n−1 − ΦT

ζn(xn)Ŵζn

(7)

where vi ∈ R is an auxiliary control term given by

vi = −kiei − βitanh(ei/υi) (8)

with ki, βi, υi ∈ R
+ being control parameters, and αc

i and α̇c
i with i = 1 to n−

1 are generated by the command filter as follows [38]:

⎧⎪⎨
⎪⎩
ż1 = z2

ż2 = −2ςωz2 + ω2(αi − z1)
(9)

with z1(0) = αi(0), z2(0) = 0, αc
i = z1, and α̇c

i = z2, where ω ∈ R
+ is a natural

frequency, and ς ∈ R
+ is a damping ratio. Note that only excited neural nodes

are applied to compute the NN output in (7), and tanh(ei/υi) in (8) serves
as an approximation of the sliding mode control term sgn(ei) to reject system
perturbations.

It follows from Lemma 1 that fi(xi) can be expressed by

fi(xi) = ΦT
ζi(xi)W

∗
ζi + εi(xi) (10)

where W ∗
ζi is a subvector of W ∗

i , and εi and W ∗
i are given by (3) and (4) with

extra subscripts i, respectively. Thus, one has |εi(xi)| ≤ ε∗i , ∀x ∈ Ωx, where
ε∗i ∈ R

+ are constants that can be made sufficiently small by increasing Ni.
Applying (10) to (1) yields

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi = ΦT
ζi(xi)W

∗
ζi + εi(xi) + xi+1

(i = 1, 2, · · · , n− 1)

ẋn = ΦT
ζn(xn)W

∗
ζn + εn(xn) + u

. (11)

Applying (7) to (11) and after some transformations, one obtains the closed-
loop tracking error dynamics

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ėi = vi + ei+1 + ΦT
ζi(xi)W̃ζi + α̃i + εi

(i = 1, 2, · · · , n− 1)

ėn = vn + ΦT
ζn(xn)W̃ζn + εn

(12)

where W̃ζi := W ∗
ζi − Ŵζi is a parameter estimation error. The detailed steps

to obtain (12) can be referred to [30].
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4.2 Composite learning using neural networks

In the composite ANC design, the prediction errors εi are usually generated
by first-order filters as follows [28]:

ε̇i = −αfεi + ΦT
i (xi)W̃i + εi

with αf ∈ R
+ being a filtering constant such that εi can be obtained without

the usage of ẋi. Although the convergence of both ei and εi can be achieved in
composite ANC, the PE condition still has to be satisfied to guarantee partial
convergence of W̃i. In this section, composite learning laws of Ŵi are designed
such that partial convergence of W̃i can be guaranteed by the IE condition in
Definition 1 which is much weaker than the PE condition in Definition 2.

Let λ
s+λ

be a stable low-pass filter with s a complex variable and λ ∈ R
+ a

filtering constant. To avoid the usage of ẋi in parameter update, λ
s+λ

is applied
to each item of (11) such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χi = ΦT
fζi(t)W

∗
ζi + εfi(t) + xf(i+1)

(i = 1, 2, · · · , n− 1)

χn = ΦT
fζn(t)W

∗
ζn + εfn(t) + uf

(13)

in which χi = λs
s+λ

[xi], Φfζi = λ
s+λ

[Φζi], εfi = λ
s+λ

[εi], xf(i+1) = λ
s+λ

[xi+1]

and uf = λ
s+λ

[u] are denoted in hybrid time-frequency domain [45]. Define an
excitation matrix

Θi(t) :=
∫ t

t−τd

Φfζi(τ)Φ
T
fζi(τ)dτ. (14)

Multiplying each side of the ith equation in (13) by Φfi and integrating the
result over [t− τd, t], one obtains

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Θi(t)W
∗
ζi + εai(t) =

∫ t
t−τd

Φfζi(χi − xf(i+1))dτ

(i = 1, 2, · · · , n− 1)

Θn(t)W
∗
ζn + εan(t) =

∫ t
t−τd

Φfζn(χn − uf )dτ

(15)

with εai(t) :=
∫ t
t−τd

Φfζi(τ)εfi(τ)dτ . Combining the definitions of εai with

‖Φζi‖ = ‖Φi‖ ≤ ψi, Φfζi =
λ

s+λ
[Φζi], |εi| ≤ ε∗i and εfi =

λ
s+λ

[εi], one obtains
‖εai‖ ≤ τdψiε

∗
i , ∀x ∈ Ωx.

From Lemma 2 and Definitions 1 and 2, for any given C1 trajectory x(t) that is
not necessary to be recurrent, there exist constants Tei > Ta and σi ∈ R

+ such
that Φζi is of IE over [Tei − τd, Tei] implying Θi(Tei) ≥ σiI. Define computable
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prediction errors

εi(t) =

⎧⎪⎨
⎪⎩
Θi(t)W̃ζi(t) + εai(t), t < Te

Θi(Tei)W̃ζi(t) + εai(Tei), t ≥ Te

(16)

with Te := max{Tei}. Noting W̃ζi = W ∗
ζi − Ŵζi, one obtains εi = (ΘiW

∗
ζi +

εai) − ΘiŴζi where (ΘiW
∗
ζi + εai) is available via (15) such that εi in (16) is

attainable. Define compact sets Ωwi
:= {Ŵζi| ‖Ŵζi‖ ≤ cwi

}, where cwi
∈ R

+

are some constants. Then, design composite update laws

˙̂
Wζi = γiP(Φζi(xi)ei + κiεi) (17)

in which γi ∈ R
+ are learning rates, κi ∈ R

+ are weight factors, and P(•) is
a projection operator given by [42]

P(•) =
⎧⎪⎨
⎪⎩
•, if ‖Ŵζi‖ < cwi

or ‖Ŵζi‖ = cwi
& Ŵ T

ζi• ≤ 0

• − ŴζiŴ
T
ζi

ŴT
ζi
Ŵζi

•, otherwise
.

Remark 2 : Another advantage of applying RCRBF-NNs is that the subregres-
sor Φζi(xi) activated along any given trajectory x(t) can be exactly determined
due to the compact support of RCRBFs such that the IE condition in Defini-
tion 1 is verifiable by checking the minimal singular value of Θi(t) in (14) and
the time Tei that satisfies the IE condition is obtainable accordingly.

4.3 Stability and convergence analysis

The following lemmas are useful in the subsequent analysis.

Lemma 3 [39] 2 : Consider the system (1) and Assumptions 1 and 2. For any
given x(0) ∈ Ωx0 ⊂ R

n, there exist Ωx ⊃ Ωx0 and Ta ∈ R
+ such that x(t) ∈ Ωx,

∀t ∈ [0, Ta).

Lemma 4 [40]: For the filter (9) on t ∈ [0, Ta) under Assumptions 1 and 2,
given any small constant μ ∈ R

+, there exists a sufficiently large frequency ω
in (9) such that |α̃i(t)| ≤ μ, ∀t ∈ [0, Ta).

Let Ŵζ := [Ŵ T
ζ1, Ŵ

T
ζ2, · · · , Ŵ T

ζn]
T , W ∗

ζ := [W ∗T
ζ1 , W

∗T
ζ2 , · · · , W ∗T

ζn ]
T and W̃ζ :=

W ∗
ζ − Ŵζ . Define compact sets Ωx := {x|‖x‖ ≤ cx}, Ωx0 := {x|‖x‖ ≤ cx0},

2 Lemma 3 implies that the state vector x of the closed-loop system does not have
finite escape time during a short interval ∀t ∈ [0, Ta).
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Ωe := {e|x ∈ Ωx, xd ∈ Ωd} = {e|‖e‖ ≤ ce}, Ωe0 := {e|x ∈ Ωx0 , xd ∈ Ωd} =
{e|‖e‖ ≤ ce0} and Ωw :=

∏n
i=1 Ωwi

, in which cx, cx0 , ce, ce0 ∈ R
+ are some

constants. As Ωx ⊃ Ωx0 , one has cx > cx0 and ce > ce0. The following theorem
demonstrates the main results of this study.

Theorem 1 : For the system (1) under Assumption 1 with x(0) ∈ Ωx0 and xd(t)
under Assumption 2 driven by the control law constituted by (7)-(9) and (17)
with Ŵζi(0) ∈ Ωwi, if there exist constants Tei > Ta and σi ∈ R

+ to satisfy
the IE conditions Θi(Tei) ≥ σiI in Definition 1 and the control parameters kci
and βi in (8) are chosen to satisfy

kc1, kcn > 1/2, kci > 1, i = 2 to n− 1, (18)

βn ≥ ε∗n, βi ≥ ε∗i + μ, i = 1 to n− 1 (19)

there exist sufficiently large control parameters kci, γi and ω so that all signals
involved are of L∞ on t ∈ [0,∞) and the equilibrium point of the closed-loop
system has practical exponential stability on t ∈ [Te,∞).

Proof : Firstly, noting Lemma 3, one gets x(t) ∈ Ωx so that e(t) ∈ Ωe on
t ∈ [0, Ta), ∀x(0) ∈ Ωx0 . Noting Lemma 4, one has |α̃i(t)| ≤ μ, ∀t ∈ [0, Ta).
Choose a Lyapunov function candidate

Vi(ei, W̃ζi) = e2i /2 + W̃ T
ζiW̃ζi/(2γi) (20)

for the ith subsystem of (12). Differentiating Vi in (20) along (12) with respect
to time t and using (8), one gets

V̇i =− kcie
2
i + eiei+1 − βiei tanh(ei/υi)

+ ei(εi + α̃i) + W̃ T
ζi(Φζi(xi)ei − ˙̂

Wζi/γi) (21)

with α̃n = en+1 = 0. From the projection operation result in [42, Th. 4.6.1],
P in (17) guarantees Ŵζi(t) ∈ Ωwi

, ∀t ≥ 0 and

W̃ T
ζi(Φζi(xi)ei − ˙̂

Wζi/γi) ≤ −κiW̃
T
ζiεi

as long as Ŵζi(0) ∈ Ωwi
. Applying the above result to (21) and noting |εi| ≤

ε∗i and |α̃i| ≤ μ, one obtains

V̇i ≤− kcie
2
i + eiei+1 − κiW̃

T
ζiεi

+ (ε∗i + μ)|ei| − βiei tanh(ei/υi).

Applying 0 ≤ |ei| − ei tanh(ei/υi) ≤ cκυi with cκ = 0.2785 [1] to the above
result and noting the selection of βi in (19) yields

V̇i ≤ −kcie
2
i + eiei+1 + cκβiυi − κiW̃

T
ζiεi.
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Applying the formulas of εi in (16) to the above result yields

V̇i ≤− kcie
2
i + eiei+1 + cκβiυi

− κiW̃
T
ζiΘiW̃ζi − κiW̃

T
ζiεai. (22)

Secondly, the stability is analyzed at t ∈ [0,∞). Applying Θi ≥ 0 from (14)
and eiei+1 ≤ e2i /2 + e2i+1/2 to (22), one gets

V̇i ≤− ksie
2
i /2 + cκβiυi − κiW̃

T
ζiεai

with ks1 := 2kc1 − 1, ksn := 2kcn − 1 and ksi := 2kci − 2 for i = 2 to n− 1.
from the above result, one obtains

V̇i ≤− ksi
(
e2i /2 + W̃ T

ζiW̃ζi/(2γi)
)
+ cκβiυi

+ ksiW̃
T
ζiW̃ζi/(2γi)− κiW̃

T
ζiεai.

Noting (20), the above result leads to

V̇i ≤− ksiVi(t) + ksiW̃
T
ζiW̃ζi/(2γi)− κiW̃

T
ζiεai + cκβiυi.

Noting Ŵζi,W
∗
ζi ∈ Ωwi

, Ωwi
= {Ŵζi| ‖Ŵζi‖ ≤ cwi

} and W̃ζi = W ∗
ζi − Ŵζi, one

gets ‖W̃ζi‖ ≤ 2cwi. Substituting ‖W̃ζi‖ ≤ 2cwi and ‖εai‖ ≤ τdψiε
∗
i , ∀x ∈ Ωx

into the foregoing result, one gets

V̇i ≤− ksiVi + 2ksic
2
wi
/γi + 2τdκicwi

ψiε
∗
i + cκβiυi.

Applying [42, Lemma A.3.2] to the above inequality yields

Vi(t) ≤(Vi(0)− ηi)e
−ksit + ηi, ∀t ∈ [0, Ta)

on x ∈ Ωx where ηi(kci, γi, ε
∗
ζi) := 2c2wi

/γi + 2τdκicwi
ψiε

∗
i /ksi+ cκβiυi/ksi, im-

plying Vi(t) ≤ max{ηi, Vi(0)}. Let V :=
∑n

i=1 Vi be a Lyapunov function
candidate of the entire system so that

V (t) ≤V (0)e−kst + η, ∀t ∈ [0, Ta)

on x ∈ Ωx with η :=
∑n

i=1 ηi ∈ R
+ and ks := mini∈[1,n]{ksi} ∈ R

+, where the
positivity of ks is from the definitions of ksi and the choice of kci in (18). The
conditions x ∈ Ωx (implying e ∈ Ωe) and Ŵi, W

∗
i ∈ Ωwi

are used to determine
a Lyapunov surface

V = δ, δ := c2e/2 +
n∑

i=1

2c2wi
/γi.
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Thus, one has δ > V (0) as ce0 < ce and Ŵζi(0) ∈ Ωwi
. Then, there exist

sufficiently large kci and ω to satisfy

n∑
i=1

(2τdκicwi
ψiε

∗
i /ksi + cκβiυi/ksi) < c2e/2

implying η < δ. Thus, {V ≤ δ} ∩ Ωw is positively invariant such that the
trajectories of (e(t), W̃ζ(t)) started from Ωe0 ∩ Ωw stay within {V ≤ δ} ∩
Ωw for all time implying Ta = ∞ and converge to {V ≤ η} ∩ Ωw as t → ∞.
Hence, one gets e(t) ∈ Ωe, W̃ ζ(t) ∈ Ωw, ∀ t ∈ [0, ∞) implying x(t), u(t), αi(t),
αc
i (t) ∈ L∞, ∀ t ∈ [0, ∞). Consequently, all signals involved are of L∞ on t ∈

[0, ∞).

Thirdly, the stability is analyzed at t ∈ [Te,∞). As there exist Tei > Ta and
σi ∈ R

+ to satisfy Θi(Tei) ≥ σiI, it follows from (22) with the derivations in
the second part that

V̇i ≤− ksie
2
i /2− κiσiW̃

T
ζiW̃ζi − κiW̃

T
ζiεai + cκβiυi

=− ksie
2
i /2− κiσiW̃

T
ζiW̃ζi/2 + cκβiυi

− κiσi(W̃
T
ζiW̃ζi + 2W̃ T

ζiεai/σi)/2.

Applying the Young’s inequality to the third line of the above expression and
noting (20) and ‖εai‖ ≤ τdψiε

∗
i , one gets

V̇i ≤− kmiVi(t) + cκβiυi + κi(τdψiε
∗
i )

2/(2σi)

with kmi := min{ksi, γiκiσi}. Thus, one gets

V̇i(t) ≤ −kmiVi(t) + kmiϕi, ∀t ∈ [Te,∞)

in which ϕi(kci, γi, ω, ε
∗
i ) := κi(τdψiε

∗
i )

2/(2kmiσi) + cκβiυi/kmi. Solving the
above inequality using [42, Lemma A.3.2] leads to

Vi(t) ≤ (Vi(Te)− ϕi)e
−kmit + ϕi, ∀t ∈ [Te,∞).

Using the above result, one obtains

V (t) ≤ V (Te)e
−kmt + ϕ, ∀t ∈ [Te,∞)

with ϕ :=
∑n

i=1 ϕi ∈ R
+ and km := min1≤i≤n{kmi} ∈ R

+, which implies the
trajectories of (e(t), W̃ζ(t)) exponentially converge to a positively invariant set
{V ≤ ϕ}. Thus, practical exponential stability is achieved on t ∈ [Te,∞) in
the sense that e(t) and W̃ζ(t) converge to small neighborhoods of 0 dominated
by kci, γi and ω.

END
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Remark 3 : Dynamic regressor extension and mixing (DREM) is an alternative
parameter estimation approach where the PE condition of the regressor Φf is
relaxed to be a non-square-integrability condition for the determinant of an
instrumental matrix [46]. However, the DREM estimator was studied only for
open-loop parameter estimation and its closed-loop stability was not formal-
ly proven. In addition, the non-square-integrability condition is not directly
correlated to the IE condition so that parameter convergence still may not be
guaranteed for the DREM estimator even if the IE condition is satisfied.

5 Illustrative Results

Consider the following model that describes aircraft wing rock [28]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋi = f2(x2) + b2x3

ẋn = −b3x3 + b3u

(23)

where x1 (rad) is the aircraft roll angle, x2 (rad/s) is the roll rate, x3 (N) is the
actuator output, b2, b3 ∈ R

+ are known constants, and f2(x2) is an unknown
function. For simulation, set b2 = 3, b3 = 15, f2(x2) = 0.2314x1 + 0.6918x2 −
0.6245|x1|x2 + 0.0095|x2|x2 + 0.0214x3

1 + 0.8, cw = 5, and x(0) = [π/6, 0, 0]T .
From (23), only one RCRBF-NN f̂2(x2, Ŵ2) in (6) is needed to approximate
f2(x2).

The control law composed of (7)-(9) and (17) is set up as follows: 1) let the
domain Ωx = [−1.2, 1.2]×[−0.6, 0.6] and select RCRBFs with m1 = m2 = 7,
σ1 = 0.6 and σ2 = 0.3 to evenly cover Ωx so that one has N = 72 = 49 NN
nodes in total; 2) set the control parameters k1 = k2 = 2, k3 = 1, υ1 = υ2 =
υ3 = 0.1, β1 = 0.2, β2 = 0.1, β3 = 0 in (8); 3) set the filter parameters ω =
20 and ς = 1 in (9) and λ = 30 in (13); 4) set the integral duration τd = 25 in
(14); 5) set the learning parameters γ2 = 10 and κ2 = 30 in (17). Simulation
is carried out in MATLAB software with the solver being fixed-step ode 1 and
the step size being 1 ms. In addition, 35 dB Gaussian white noise is applied to
corrupt state measurement, and the traditional NNLC with κ2 = 0 is selected
as the baseline controller.

The reference output xd is generated by

ẋd =

⎡
⎢⎣ 0 1

−1 −21

⎤
⎥⎦xd +

⎡
⎢⎣ 0
1

⎤
⎥⎦ xc
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(a)

(b)

Fig. 2. Control performances under two controllers. (a) By the NNLC. (b) By the
proposed NNCLC.

where xc = π/3 at t ∈ [5, 10] ∪ [35, 40] s, xc = −π/3 at t ∈ [15, 20] ∪[45, 50]
s and xc = 0 for other time. It is clear that the xd generated by the above
model includes two tasks that are the same, and it does not satisfy the partial
PE condition in Lemma 2. Control trajectories by the two controllers are
depicted in Fig. 2. It is shown that the proposed NNCLC achieves a much

14



(a)

(b)

Fig. 3. Learning performances under two controllers. (a) By the NNLC. (b) By the
proposed NNCLC.

better transient tracking performance than the NNLC under the control input
u with a similar gain and less oscillations, where the transient errors e1 by
the proposed NNCLC are reduced from 0.1115 and 0.05136 to 0.07008 and
0.03079 for the first and second tasks, respectively. The slight oscillations in u
result from the significantly and frequently changing reference trajectory xd.
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Learning trajectories under the two controllers are depicted in Fig. 3. For the
NNLC, no approximation of f2 and no convergence of ‖Ŵ2‖ are shown due
to the absence of the partial PE condition. On the contrary, for the proposed
NNCLC, f2 is accurately estimated and ‖Ŵ2‖ converges to a constant after a
short transient process. The excitation level σ2 based on the subregressor Φfζ2

is clearly shown in Fig. 3, where σ2 by the proposed NNCLC is about two
times larger than that by the NNLC. The major drawbacks of the proposed
NNCLC include: 1) The calculation of the prediction errors εi in (16) with i =
1 to n increases the computational cost; 2) the composite update laws (17)
with i = 1 to n are more sensitive to external disturbances so that the control
design needs to be carefully considered in this case.

6 Conclusions

In this brief, an NNCLC strategy based on RCRBF-NNs has been developed
for a class of strict-feedback nonlinear systems with mismatched uncertainties,
where closed-loop practical exponential stability is established under the IE
condition that relaxes the classical PE condition. Compared with existing
composite learning approaches, the proposed approach has two distinctive
features: 1) An exact estimation of plant uncertainties is achieved without
using the time derivatives of plant states; 2) a subregressor activated along
any trajectory of NN inputs can be determined such that the IE condition is
verifiable. Illustrative results have demonstrated that the proposed NNCLC
achieves much better control and learning performances under a similar control
input compared with the traditional NNLC, and the excitation level is clearly
shown due to the usage of RCRBF-NNs. The determination of centers and
widths of RBFs using self-organizing techniques [47–49] and the extension to
a more general class of pure-feedback nonlinear systems [50] for the proposed
approach are interesting for future studies.
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