
Efficient and Interpretable Real-Time Malware
Detection Using Random-Forest

Alan Mills
Computer Science Research Centre
University of the West of England

Bristol, UK
Alan2.Mills@live.uwe.ac.uk

Theodoros Spyridopoulos
Computer Science Research Centre
University of the West of England

Bristol, UK
theo.spyridopoulos@uwe.ac.uk

Phil Legg
Computer Science Research Centre
University of the West of England

Bristol, UK
phil.legg@uwe.ac.uk

Abstract—Malicious software, often described as malware, is
one of the greatest threats to modern computer systems, and
attackers continue to develop more sophisticated methods to
access and compromise data and resources. Machine learning
methods have potential to improve malware detection both in
terms of accuracy and detection runtime, and is an active area
within academic research and commercial development. Whilst
the majority of research focused on improving accuracy and
runtime of these systems, to date there has been little focus on
the interpretability of detection results. In this paper, we propose
a lightweight malware detection system called NODENS that
can be deployed on affordable hardware such as a Raspberry
Pi. Crucially, NODENS provides transparency of output results
so that an end-user can begin to examine why the classifier
believes a software sample to be either malicious or benign. Using
an efficient random forest approach, our system provides inter-
pretability whilst not sacrificing accuracy or detection runtime,
with an average detection speed of between 3-8 seconds, allowing
for early remedial action to be taken before damage is caused.

I. INTRODUCTION

Malware (malicious software) is widely regarded as one
of the most effective threats in cyberspace and to modern
computer systems [1]. Whilst we seek measures to protect
against malware, attackers continue to develop more sophisti-
cated methods to access and compromise data and resources.
Traditional techniques for malware analysis and detection rely
on comparing known malicious signatures against suspected
malicious programs. Such static systems require that a mali-
cious signature is ‘known’, making them ineffective against
new (‘zero-day’) threats and reliant on end users to keep their
systems up to date. Attackers know that these systems may
also be susceptible to circumvention, such as by obfuscating
the code to evade detection against the known signatures.

Alternatives to database-orientated malware detection are
beginning to emerge, including behavioural analysis and
heuristic analysis techniques [1]. Behavioural analysis is a
type of dynamic analysis that monitors a suspected program
during execution. This requires a safe and secure sandbox
environment that the suspected malware is allowed to run
within, possibly to completion, making it impractical for real-
time situations, or where computational resource is limited.
In addition, malware authors may incorporate techniques to
perform ‘floor checks’ or ‘ceiling checks’ to detect if the
malware is running in a virtual machine environment. If it

is, the malware will know not to carry out any malicious
processes and therefore act benign, making any attempts at
sandbox detection or analysis futile. Heuristic analysis can be
either static or dynamic, mitigating the possible time penalty
associated with behavioural analysis and does not require a
sandbox (though can be run inside one). It analyses the source
code of suspected malware, following the code execution
either before execution or during run time and monitors for any
malicious calls or access. However this type of analysis can be
defeated through code obfuscation, in much the same way as
database-orientated systems can be. We believe that the answer
to the current gap in cyber security is the use of machine
learning to support the process of malware analysis and
detection. To that end, we developed NODENS, a lightweight
machine learning-based system to detect malware based on
what we refer to as ‘process signatures’ which are created
by processes during execution. The system is intended to be
lightweight for deployment on affordable hardware such as a
Raspberry Pi, to satisfy the following objectives:

• To provide a near real-time malware detection and alert-
ing system, allowing a user to take early remedial action
to prevent any further damage.

• Able to detect previously unseen malware, to counter the
threat presented by ‘zero-day’ malware.

• To be interpretable for a user to identify why a detec-
tion alert has occurred, and what characteristics of the
software have caused this.

• To be capable of re-fitting, utilising end-user input to
validate or counter automated decisions, and to contin-
ually improve detection capability without reliance on
an internet connection, signature updates, or a sandbox
environment.

II. RELATED WORKS

The use of automated machine learning in malware de-
tection has been a growing area of interest within both the
academic community and commercially, however the majority
of work has been proof-of-concept models, or the use of
machine learning to augment already existing systems [1] [2].

A number of proposed solutions incorporate machine learn-
ing with existing analysis tools, such as Cuckoo Sandbox,
Anubis or HookMe, e.g., [3] [4] [5] [6], however the reliance



on sandboxing applications, or significant configuration or pre-
processing of data means that these may not be commercially
viable for many organisations. Despite high accuracy in lab
experiments (e.g., 97% accuracy in [4]), they often incorporate
a time penalty in the processing (e.g., [6] requires a logging
period beforehand), therefore resulting in a delay to malware
classification. Detection time is critical for identifying malware
samples, with great variability in performance from previous
techniques, ranging from 5 seconds [7] up to 100 seconds [8],
by which time a malicious process could well have completed
its intended action.

Neural Networks are widely used in many end-to-end de-
tection systems, e.g., [7] [9] [10] [8], with high degrees of
accuracy reported, from 94% [7] to 98.3% [10]. However,
Neural Networks are known to be computationally expensive
for training the classifier, e.g., in [9] they use an Amazon
EC2 node with 60GB RAM and a 1,536 CUDA core GPU to
train, and in [7] they use a Nvidia GTX 1080 GPU for training
purposes, and both utilise Recurrent Neural Networks (RNNs).
RNNs often require a significant amount of time for training in
order to achieve high accuracy results. Crucial to our work, due
to their recurrent structure RNNs can be extremely difficult to
examine for interpretability and transparency of how the model
has made a decision. Whilst some work has begun to address
this problem, e.g., [11], other ML techniques such as decision
trees are much better suited for interpretation.

There is an increasing interest in the transparency of auto-
mated decision-making processes, and machine learning algo-
rithms, yet for malware analysis there is little work concerning
the ability to interpret and interrogate a model to understand
why a particular process is considered to be malware. Given
the ever-evolvling threat of malware authors and malicious
attackers, such as cyber-criminals, script kiddies, and state-
sponsored attackers, there is a need to re-address this issue.
NODENS allows users to interrogate the learning model
results without the need for an in-depth exploration of the
malware binary. This notion of interpretability in malware
analysis aims to enable end-users to see why the software
is deemed a threat, what the impact of the software is on the
system, and what action is appropriate for the user to take to
mitigate the threat.

III. PROPOSED METHOD

All malware samples used during the testing of NODENS
were taken from open source malware repositories (VX Vault
and Virus Share), and run on a Windows 7 Virtual Machine,
running PowerShell (Version 4.0) which was used to collect
process details using the Get-Process cmdlet. These pro-
cess details were the building blocks used to train the system
and identify malware. The classifier(s) and all scripts were
built using Python (scikit-learn) and run remotely from a Kali
Linux OS.

A. Process Details

We adopted the guidelines used in [8] to identify and label
a process as malicious, consisting of the following steps:

1) The process shared the same name as the pre-determined
malware file

2) Any children processes generated from a process iden-
tified by (1)

3) Any process which is injected by malicious code from
(2) or (3)

Initially the process details consisted of 64 features (the
raw output from Get-Process | Export-csv, with no
specified parameters). However, many of these features were
displaying the same information (e.g., WorkingSet and Work-
ingSet64 both reported the same memory usage) or deemed to
be of little or no value for the purpose of process classification
(e.g., FileVersion). After removing duplicate or unnecessary
attributes, 22 features were used for the classification model:

1) Handles
2) Path
3) Company
4) Description
5) Product
6) HasExited
7) Handle
8) HandleCount
9) NonpagedSystemMemorySize64

10) PagedMemorySize64
11) PagedSystemMemorySize64
12) PeakPagedMemorySize64

13) PeakWorkingSet64
14) PeakVirtualMemorySize64
15) PrivateMemorySize64
16) PrivilegedProcessorTime
17) ProcessorAffinity
18) Responding
19) TotalProcessorTime
20) UserProcessorTime (UPT)
21) VirtualMemorySize64

(VMS64)
22) WorkingSet64 (WS64)

For each entry, Name was also stored for human readabil-
ity and labelling purposes, along with a manually-labelled
Legitimate column, that was used for supervised training.
Each process will generate multiple data entries within the
same file, with features varying dependant upon the running
conditions of the process (e.g., memory usage, running time,
etc.). Therefore, a single malware (or benignware) sample
could create up to 5000 rows or more of process details (e.g.,
Table I).

Name Handles Path Company . . . UPT VMS64 WS64
audiodg 109 0 0 . . . 0.0100144 41664512 13869056
audiodg 118 0 0 . . . 0.0100144 41926656 13918208
audiodg 122 0 0 . . . 0.0100144 42450944 13971456
audiodg 122 0 0 . . . 0.0100144 42188800 13959168

2lm5xNQU 80 1 1 . . . 0 50917376 3493888
2lm5xNQU 134 1 1 . . . 0.1702448 61988864 5242880
2lm5xNQU 134 1 1 . . . 0.5407776 63037440 5537792
2lm5xNQU 134 1 1 . . . 0.9413536 63037440 5922816

TABLE I
SAMPLE OF FEATURES TO DESCRIBE PROCESS DETAILS.

B. Algorithm Selection and Testing

Figure 1 shows an overview of the training and algo-
rithm selection process. The initial stage was to test multiple
algorithms against a pool of 55 unique malware samples.
To do this n malware samples were randomly selected and
then run on the Windows 7 virtual environment, which was
also running a PowerShell Get-Process script that would
collect the process data from both the selected malware and
background benignware processes. This was done 10 times,
with the virtualised environment being reset to a default clean
state between each running of malware samples. Features were



captured as described previously in Section III-A, along with
manual labels for malicious or benign, and then tested against
the following classification algorithms:

• Random-Forest
• GNB
• DecisionTree
• KNearestNeighbour
• AdaBoost

• SVC
• GradientBoosting
• LogisticRegression
• OneClassSVM

Fig. 1. Training and Algorithm Selection Process

We use a k-fold cross validation (k=7) with a testing /
validation split of 80 / 20, and feature selection utilised during
each run of the comparison script. For each input file this
was performed 10 times, giving a total of 100 training runs.
A ‘winning’ algorithm was established each time based on
the following outputs: Accuracy score, false positive rate and
false negative rate. In addition each process was given its own
individual score.

Malware Classification Number of Samples
Trojan 26

Spyware 12
Unknown 7
Ransom 6

Backdoor 2
Worm 2

TABLE II
BREAKDOWN OF MALWARE BY CLASSIFICATION USED IN TRAINING DATA

By the end of the comparison process each algorithm had
seen 55 unique malware samples in total (see Table II).
Random Forest performed best for this experiment, giving
the highest accuracy score for 73 out of 100 training runs
(see Table III for the Random Forest accuracy scores). As
a result, a Random Forest classifier was then developed and
trained using the combined data from all training malware
and benignware process, using only the features identified as
having been key in 50% or more of the comparison script
runs. However, deeper investigation found that the selection
of features proved to be inaccurate and would mis-classify
benign processes as malware. To overcome this, we performed
multiple iterations of feature selection on the combined set

using different feature combinations. We describe the final
feature selection in further detail in Section V-A.

Precision Recall F1 False Positive False Negative Runs
1 1 1 <1% <1% 94
1 0.79 0.88 21.41% 0% 1
1 0.97 0.99 2.82% 0% 1
1 0.98 0.99 1.64% 0% 1
1 0.99 0.99 1.29% 0% 1
1 0.99 1 0.92% 0% 2

TABLE III
BREAKDOWN OF CLASSIFICATION REPORT FOR RANDOM FOREST

TRAINING RUNS

C. Live Testing

Following the successful training of the classifier on static
data it was then tested live, against previously unseen malware
samples. Initially, there was a delay of approximately 30
seconds between a malicious process being started and it being
detected by our system. This was deemed unsuitable for the
design parameters of desired system.

The classifier was then modified to introduce a whitelisting
approach for previously-known processes, such as consistent
background processes. The data collection script was also
modified to split input files down to a smaller size, limited
to the output of 10 iterations of the Get-Process cmdlet.
This meant there was a constant creation of new, smaller files,
which the system would use as input (see Figure 2). As a result
of these modifications the delay was shortened to between 3-8
seconds and deemed to be within acceptable parameters.

Fig. 2. NODENS Live Process

During testing the systems accuracy was found to be below
that expected from initial training output, and as a result
the classifier was re-trained (using the same training data)
without feature selection. After further testing this proved to
be more accurate, correctly identifying previously undetected
malware processes, but creating more raw data and increasing



the workload for manual interrogation of the data. This also
made it more challenging to define which features were key
in identifying a malware process.

D. Alternative Classifiers

Two alternative algorithms were trialled during the live
testing phase in an attempt to shorten the time between
execution and detection. Both a Neural Network and a SGD
(Stochastic Gradient Descent) classifier were found to be faster
and better suited to incremental learning, however neither
were as accurate as the original Random-Forest, with accuracy
dropping down to 63% in one instance. The authors believes
that in the instance of the Neural Network this drop in accuracy
is due to relatively low number of training samples used (the
same 55 as used to train the Random-Forest) classifier. It
is highly likely that with access to a larger, more industrial
scale data-set the accuracy of the Neural Network could be
improved. The dataset used by Rhode et al. [7] is publicly
available, however we found that the features they provide
did not coincide with those that we have identified, making it
difficult for comparison. A comparison between the difference
feature sets is a potential area for future research.

E. NODENS

Figure 3 shows an end to end overview of the NODENS
work flow. A command line interface was implemented which
allows an end user to utilise multiple different ‘plug-in scripts’,
such as being able to start and stop the data collection
and detection process from the command line, as well the
termination of malware processes and re-fitting of the clas-
sifier upon identification of previously unseen malware. The
classifier would also seek clarification on previously unseen,
but suspected malware processes, in this way the classifiers
understanding could be refined with the assistance of the end-
user and limit the chances of misidentifying processes and
then embedding these errors into the algorithm.

The refitting was proven to be effective as it allowed
the system to identify malware process it had previously
not detected, correctly identifying 5 previously undetected
malware processes following refitting. This demonstrates that
the system was able to increase it’s understanding of malware
processes and points to a generalised link between all malware
process behaviour, based off the ability for the system to use
readily identified malware and their features to then identify
those it had previously missed. We believe that this is linked
to the common factors found across the malware samples
NODENS was tested against, which we discuss in Section VI.
It also demonstrates how an adaptive system such as NODENS
can remain at the forefront of malware detection.

IV. DATASET

As described in Section III, malware samples were gath-
ered and deployed within a Windows 7 VM using the
Get-Process cmdlet. This gave an initial CSV file that
consists of the typical background processes for a Windows
7 VM, the PowerShell process, and the malware process.

Fig. 3. Flow diagram for NODENS

Multiple benignware processes were also set to execute during
the testing of NODENS to further refine and test the ability
to distinguish between malware and benignware.

Subsequently, the ability to re-fit NODENS was introduced
as an additional plugin to allow the system to stay at the edge
of malware detection and consistently learn from and adapt to
changes in the threat landscape. As re-fitting is a continuous
process the dataset used for re-fitting is continual expanding,
as more malware and benignware processes are added to it.

A. Data Pre-processing

As the output of the Get-Process cmdlet was a mixture
of strings, integers and date-time formats it required data-
type conversion before the classifier was able to process it.
String values were converted to binary data (1 = present, 0
= no value), with the exception of Has Exited, which was
translated as 1 = Exited, -1 = Not Exited, and 0 indicates
this field had no value during pre-processing. All other data
was converted to either integers or floating point, dependent
on which was more appropriate, i.e. measurements in seconds
and milliseconds. This process was conducted live and ran
parallel to the collection and classification of data from the
virtualised environment.

B. Training Data

As previously mentioned, a total of 55 unique malware
samples were used to create the training dataset (see Table II),



while the benignware samples consisted of data extracted from
native windows background processes. Table IV shows the
number of process entries in the data that were labelled as
either malware or benignware processes. It should be noted
that these do not represent individual malware or benignware
samples, but the number of times each type of process was
seen, and that multiple processes would belong to the same
instance of a malware or benignware sample, albeit with
variance in features, such as time on processor or virtual
memory size:

Process Classification Number Percentage
Malware 95,191 9%

Benignware 953,384 91%

TABLE IV
BREAKDOWN OF TRAINING DATA USED DURING INITIAL TRAINING

C. Live Testing

In addition to testing against downloaded malware samples
(see Table V for the breakdown of samples), the system
was also tested against malware created using the Metasploit
framework (msfvenom). These tests were conducted to test
NODENS ability to detect bespoke malware and malware
with persistence. While NODENS was able to successfully
detect all malware created with msfvenom, including those
with persistence, it was unable to defeat the persistence once
detected. It would detect and kill the persistent malicious
process the first time it ran, but failed to detect or kill the
process if it self-generated a second time. We believe that
this is likely tied to the persistence process having a smaller
memory footprint on being re-initialised, using cached and
recent memory. Detecting of malware persistence would be a
further area of research outside the scope of this current work.

Malware Classification Number of Samples Detection Ratio
Trojan 47 93%

Ransom 15 100%
Spyware 15 100%
Backdoor 7 100%

Bit Coin Miner 3 100%
Process Injector 3 100%

Virus 1 100%

TABLE V
BREAKDOWN OF MALWARE CLASSIFICATIONS USED DURING LIVE

TESTING OF NODENS, INCLUDING DETECTION RATES

D. Ransomware

Given the current threat landscape, there is a significant shift
towards ransomware attacks where a user’s files are encrypted
and a payment is demanded (tyipcally via Bitcoin) to decrypt
the files to their original state. As an increasingly popular form
of attack, it is important to test NODENS against this malware
variant. As such a dedicated ransomware test was conducted
and recorded using 10 unique samples of ransomware, which
were downloaded and executed in the VM environment. On
average, NODENS was able to identify the ransomware sam-
ples within 9 seconds of execution. However, in one particular

case it was noted that NODENS and the ransomware were
‘racing’ each other. This race occurred because the method of
data processing meant that there was window of time when
the output of the Get-Process cmdlet was accessible to
the ransomware on the VM creating a race condition. In
certain cases, this meant the CSV file would arrive encrypted
and NODENS would be unable to process it, forcing it to
wait for the creation of the next CSV file (with a new file
being produced every 10 iterations of Get-Process). In all
tested scenarios NODENS was able to identify the ransomware
samples, however in this particular example, the encryption of
the CSV meant that detection took 96 seconds (see Figure 4).
This time frame is obviously outside the design parameters
that NODENS was built around. A further consideration for
the system would be how to prevent infection or encryption
of files that are associated with the detection routines.

Fig. 4. Ransomware Detection

V. INTERPRETABILITY

The interpretability of NODENS originally started as man-
ual interrogation of the raw CSV output from the processes,
showing which process had been classified as benignware or
malware and the values for each process feature. Later on the
system was modified to automate the production of decision-
specific data as a choice of CSV or different graphical file(s).
This made understanding the data and the relevant decision
thresholds much easier. This output could be created in one or
multiple formats for malware, benignware or both, dependant
on end user preference. In the following sections of the paper
malware processes are referred to as class 0, this is due to the
binary classification nature of processes by the algorithm.

A. Raw Data

During the initial phase, the output from the classifier was
manually interrogated. The data consisted of all the processes
from each run of NODENS and the feature values. The use of
feature selection was important as it helped to filter the size
of the output dataset and therefore helped to identify features
that were deemed to be key in the identification of malware
processes.

The following features were identified as being crucial for
the distinction between benignware and ransomware:

• ProcessorAffinity - (Binary Data)
• VirtualMemorySize64 - (Variable Data)



• HandleCount - (Variable Data)
• HasExited - (Binary Data)
• Company - (Binary Data)
• Description - (Binary Data)
• PeakVirtualMemorySize64 - (Variable Data)
• TotalProcessorTime - (Variable Data)
• PeakWorkingSet64 - (Variable Data)
• PrivateMemorySize64 - (Variable Data)
• WorkingSet64 - (Variable Data)
• Path - (Binary Data)

From these features those in bold were later also identified
as a root node decision points during the decision-specific
phase.

B. Decision Specific Data

Given the difficulty in interpreting the raw data NODENS
was modified to output the decision from each decision tree
and subsequent nodes. This is an iterative process run at
the point of classification that provides output specific to
the end users requirements. Initially output was a CSV file
showing which decision trees had classified a process as
either malware or benignware, dependent on the end users
selection, this included the nodes within those trees and their
decision thresholds (see Figure 5). The capability to output a
.json files was then included, with each .json file representing
a specific decision tree and children nodes, as this allowed
for a greater range of graphical uses and presentation options.
Finally an option to output both a .png and .dot file (see
Figure 6) were included. This provided the greatest use of
visual interpretation.

Fig. 5. Original interpretable output was in CSV form, showing the trees that
had classified a process as malware and the relevant decision nodes

In this way an end user is able to see why a process has been
classified as malware, or not, through an easily understandable

Fig. 6. Output from a .dot file, showing the decision path through a malware
node

and interrogatable output. This allows an end user to develop
an understanding of the process life-cycle of a malware sample
individually, or as part of a larger malware family, including
common features shared between different malware samples
or types.

VI. RESULTS

A. Raw Binary Data

Data was organised based on the values of the binary data
features, in this way a comparison could be more easily drawn
between them. In general the output of benignware processes
were set to either true or false for all binary features. By
comparison malware processes showed a significant range,
with multiple combinations of binary values being presented
by different processes, as illustrated in Table VI.

B. Raw Variable Data

Variable data consisted of integer and float type parameters
and the output score that each process was given by the system.
A comparison of the variable data showed that benignware
processes had on average a higher score, as shown in Ta-
ble VII.

Malware
Process
Name

Path Company Description Has
Exited

Processor
Affinity

bot 1 0 0 0 1
webpos 1 0 0 1 0
p.tmp 1 0 1 -1 1
re1608 1 1 1 -1 1

TABLE VI
VARIANCE IN BINARY FEATURES DISPLAYED BY MALWARE PROCESSES



Total output score Lowest Highest Average
Malware 27,321,331 554,336,342 196,841,342

Legitimate 184,082,529 816,992,765 377,574,468

TABLE VII
OUTPUT SCORES FOR MALWARE AND BENIGNWARE PROCESSES

However it was difficult to identify a threshold for distinc-
tion through manual inspection of the output data, as there are
instances where the scores for malware processes and benign-
ware processes were within the same score bracket (between
the lowest or highest score for correctly identified benignware
processes, hereafter referred to as a score bracket), yet being
correctly identified as malware. To research this further data
from malware processes that were correctly identified, yet
whose output scores put them inside the benignware output
scores bracket was compared to benignware processes that
they were scored between or closely to.

There was no immediate distinction between them, with
neither binary nor variable data showing a clear pattern. The
variable data parameters were then individually compared
to see if a differential in values would establish a pattern
of identification. This showed that the differential between
(Peak)WorkingSet64 and PrivateMemorySet64 was negative
for some malware processes, but no benignware processes.
This showed that malware processes had (on average) a higher
amount of private data than shared, something that was not
found in the benignware samples tested.

C. Decision Specific Data

The decision specific data allowed the confirmation of
conclusions and assessments drawn from manual inspection
of raw data, as well as providing greater and more accurate
analysis of which features were key in the identification of
malware, particularly the thresholds and their frequency as
decision points.

The decision specific data was collated together and the
common features compared. As would be expected compar-
ison of entire random tree decision paths across multiple
malware processes was impossible, and decision trees were
only comparable to others from different process cycles of
the same malware, from within the same run. Therefore
comparison was limited to the initial decision points (referred
to as root nodes) for each decision tree, as these were the
only consistent features across multiple outputs and different
malware processes. As shown in Table VIII, 15 root node
features and thresholds were identified, though out of these 2
are duplicated features with different thresholds (Paged System
Memory Size64 and Handle Count), of these 7 features had
been previously identified as key through feature selection and
manual inspection of the raw data. These same features were
also used throughout the decision trees as later nodes, however
the thresholds were varied. Though it is important to note that
these root nodes remained unchanged after multiple re-fittings.
It was only when altering the value for n_estimators were any
changes noted in the root nodes, these primarily being the

threshold values with minimal to no changes in the features
used.

Root Node Feature Threshold Frequency
Processor Affinity 0.5 20%

Total Processor Time 0.675971984863 16%
User Processor Time 0.625900030136 16%

Handle 186 13%
Path 0.5 12%

Product 0.5 10%
Privileged Processor Time 0.00500719994307 3%

Paged System Memory Size64 100756.0 2%
Peak Virtual Memory Size64 53284864.0 2%

Handle Count 231.5 1%
Virtual Memory Size64 51525632.0 1%

Paged System Memory Size64 100692.0 <1%
Handles 231.5 <1%

Handle Count 204.5 <1%
Working Set 64 19572736.0 < 1%

TABLE VIII
ROOT NODE FEATURES, THEIR THRESHOLDS (AS ROOT NODES) AND

FREQUENCY OF USE THROUGHOUT THE TESTING OF NODENS

The inclusion of multiple memory orientated features adds
weight to previous assessments regarding the unique memory
usage foot print that malware process create. Though the
private memory feature is not included as a root node, it is
used in other nodes as a decision point, which indicates that
there are other memory traits beyond the imbalance between
private and shared memory which are used to identify the
memory footprint of a malware process.

These features are also used infrequently as root nodes,
suggesting that the classifier uses other metrics in favour of
memory analysis, most common being the malware process
affinity and the amount of time it spends running. It is the
authors assessment that these features are used due to the
number of malware processes which will run for a short period
of time before either injecting themselves into a new or already
existing process, or removing themselves completely from the
system, in an attempt to avoid detection by decreasing their
run time and the window of opportunity for current anti-
malware systems to detect them. This assessment is backed
up by the inclusion and high frequency of the path feature,
as such malware processes commonly remove the file used to
launch them.

While these behaviours are not universal across all malware,
either those seen by NODENS or in general, it does provide
an ‘easy win’ for the classifier as these behaviours are not
exhibited by benignware processes, which in the authors
opinion explains their frequent use as root nodes.

D. Refitting

The success of the refitting has two key implications: The
first being that NODENS is agile and has the ability to
adapt to new and previously unseen threats, a key design
parameter in the building of the system. The second is that it
reinforces the understanding that there are clear and (machine)
understandable links between malware processes. This can
be confidently assessed by NODENS ability to successfully
identify previously undetectable malware, through the use of



already detectable malware process signatures. By incorpo-
rating what it had been able to detect and understood to be
malicious into the classifier it was able to further increase
accuracy and understanding of what a malicious process is,
which would not be possible if there were no common links
between the behaviour of malware processes overall.

VII. LIMITATIONS AND FUTURE WORK

The biggest limitation for NODENS is the size of the
dataset used to date, which is small, consisting of 146 malware
samples in total, including the training dataset. This can only
be solved though continuous testing of the systems against
malware samples or through bulk malware data collection.
However it is the authors opinion that the number of process
details generated per sample helps offset this limitation.

Another limitation is that all of the training and testing
malware samples were run in a virtualised environment, mean-
ing that it was not possible to train the system against ‘VM
aware’ malware. Whilst a more sophisticated environment
could be developed to fool the malware via networking checks,
a genuine physical networking environment is required to fully
test against VM aware malware.

The current systems use of shared folders for process output
and system input would need to be improved upon in future
work to make NODENS more robust and remove the current
race condition that it faces with ransomware.

VIII. CONCLUSION

The NODENS system has shown that it is possible to
create lightweight, accurate and most importantly, interpretable
automated malware detection systems.

While the dataset used in the training and testing of both
systems are comparatively small, the current accuracy of
NODENS and proven ability to refit and identify previously
undetected malware processes, shows that the system can
remain at the forefront of malware detection and is highly
adaptable, a key consideration in the ever changing threat
landscape of cyber security.

The in-depth, decision specific interpretability that
NODENS offers added weight to assessments drawn from
analysis of raw data and makes it easier for future analytical
work to be carried out, using easily understandable output
formats. This will help increase awareness of both what a
malware process is doing on a system and aid in the creation
of a generalised malware model for further malware orientated
research. Such knowledge will aid in the accuracy of anti-
malware systems, allowing both researchers and commercial
vendors to hone in on malware specific signatures, such as the
potentially unique memory foot print of malware processes
identified through NODENS, making it harder for malicious
agents to create undetectable malware.

Three metrics for malware distinction were identified, al-
lowing for the creation of a malware process model:

• Binary values, particularly the company and
description features, were shown to be a reliable
metric as they are rarely populated in malware.

However this could change if these features are
populated in more malware samples.

• The output score and differential between
(Peak)WorkingSet64 and PrivateMemorySet64
were negative for the majority of the malware
processes and none of the legitimate processes,
as such this could also be used to identify
malware processes.

• A comparison between process run time and
changes in certain binary values, such as path,
provide a clear pattern of behaviour that is
not seen in benignware processes, such as the
trend for malware processes to remove their own
binary files as previously mentioned.

However it is worth noting that none of the above metrics
were 100% accurate in isolation. As such an approach that
utilises multiple methods of distinction is considered best. It
is also the authors opinion that further research is required in
the area of machine learning malware detection, with a focus
on the identification and distinction features that are used to
classify and separate processes.

REFERENCES

[1] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning
techniques for malware analysis,” Computers & Security, vol. 81, pp.
123–147, 2019.

[2] “Machine learning for malware detection,” Kaspersky Enterprise Cyber-
security, Tech. Rep., 2017.

[3] I. Firdausi, C. Lim, A. Erwin, and S. N. Anto, “Analysis of machine
learning techniques used in behavior-based malware detection,” in 2010
Second International Conference on Advances in Computing, Control,
and Telecommunication Technologies, 2010, pp. 201–203.

[4] R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware
from cleanware using behavioural analysis,” in 2010 5th International
Conference on Malicious and Unwanted Software, 2010, pp. 23–30.

[5] S. S. Hansen, T. M. T. Larsen, M. Stevanovic, and J. M. Pedersen, “An
approach for detection and family classification of malware based on
behavioral analysis,” in 2016 International Conference on Computing,
Networking and Communications (ICNC), Workshop on Computing,
Networking and Communications (CNC), 2016, pp. 1–5.

[6] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagiup,
“Malware detection with deep neural network using process behavior,”
in 2016 IEEE 40th Annual Computer Software and Applications Con-
ference, 2016, pp. 577–582.

[7] M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction
using recurrent neural networks,” Computers & Security, vol. 77, pp.
578–594, 2018.

[8] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada, “Efficient
dynamic malware analysis based on network behavior using deep learn-
ing,” in 2016 IEEE Global Communications Conference (GLOBECOM),
2016.

[9] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE),
2015.

[10] R. Pascanu, J. W. Stokest, H. Sanossian, and A. T. Mady Marinescu,
“Malware classification with recurrent networks,” in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 1916–1920.

[11] E. M. Smith, J. Smith, P. Legg, and S. Francis, “Visualising state space
representations of lstm networks,” in Workshop on Visualization for AI
Explainability, Berlin, Germany, 2018.


