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Abstract

The use of high-fidelity computational simulations promises to enable high-throughput

hypothesis testing and optimisation of cancer therapies. However, increasing realism

comes at the cost of increasing computational requirements. This article explores the

use of surrogate-assisted evolutionary algorithms to optimise the targeted delivery of a

therapeutic compound to cancerous tumour cells with the multicellular simulator, Physi-

Cell. The use of both Gaussian process models and multi-layer perceptron neural network

surrogate models are investigated. We find that evolutionary algorithms are able to ef-

fectively explore the parameter space of biophysical properties within the agent-based

simulations, minimising the resulting number of cancerous cells after a period of sim-

ulated treatment. Both model-assisted algorithms are found to outperform a standard

evolutionary algorithm, demonstrating their ability to perform a more effective search

within the very small evaluation budget. This represents the first use of efficient evolu-

tionary algorithms within a high-throughput multicellular computing approach to find

therapeutic design optima that maximise tumour regression.
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high-throughput computing, surrogate modelling

1. Introduction

PhysiCell (Ghaffarizadeh et al., 2018) is an open source1 multicellular simulator based

on the biotransport solver, BioFVM (Ghaffarizadeh et al., 2016). BioFVM simulates
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substrate secretion, diffusion, uptake, and decay; while PhysiCell models the emergent

tissue-scale behaviour by simulating cell cycling, death, volume, mechanics, and motility.

PhysiCell enables the simulation of new environmental substrates, cell types, and systems

of cells, providing a general-purpose toolkit for exploring multicellular systems.

Norton et al. (2019) present a review of agent-based models used to study cancer-

immune interaction and immunotherapy; and Metzcar et al. (2019) provide a more gen-

eral overview of cell-based computational modelling in cancer biology. Many proposed

cancer therapies attempt to target malignant cells by finding specific surfaces or molecules

in order that drugs can be conjugated to custom antibodies or encapsulated in custom

nanoparticles. Ghaffarizadeh et al. (2018) introduced the agent-based PhysiCell 2-D

anti-cancer biorobots simulation. This began the design of cell-cell interaction rules to

create a multicellular cargo delivery system that actively delivers a cancer therapeutic

beyond regular drug transport limits to hypoxic cancer regions. These model rules were

manually tuned to achieve this (as yet unoptimised) design objective, requiring weeks of

people-hours to configure, code, test, visualise, and evaluate (Ozik et al., 2018).

Ghaffarizadeh et al. (2018) also presented 3-D simulations of cancer immunotherapy.

Using this simulator, Ozik et al. (2018) performed a human-selected parameter sweep (27

parameter sets; each set sampled 10 times) with each simulation requiring ≈ 2 days to

complete. The results provided insights into therapeutic failure, thus demonstrating the

potential of high-throughput computing to investigate high dimensional cancer simulator

parameter spaces. High-throughput model investigation and hypothesis testing provides

a new paradigm for solving complex problems, gaining new insights, and improving cancer

treatment strategies (Ozik et al., 2018).

Surrogate model-based optimisation has long been used in applications requiring ex-

pensive parameter evaluations, whether via simulated or physical testing (Sacks et al.,

1989; Jones et al., 1998; Settles, 2010). In this article, we explore the use of surrogate-

assisted evolutionary algorithms (EAs) to sequentially optimise the targeted delivery of a

therapeutic compound to cancerous tumour cells with the multicellular simulator, Physi-

Cell. This represents the first use of efficient EAs within a high-throughput multicellular

computing approach to find therapeutic design optima that maximise tumour regression.
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2. Background

The use of surrogate models to reduce the number of costly EA fitness evaluations

can be traced back to the origins of the discipline (Dunham et al., 1963). Jin et al. (2018)

present an overview of the process: first the variables to optimise are chosen; some initial

parameters are then evaluated; a surrogate (regression) model is selected and used to

build a model of the evaluated parameters; followed by a search of the model to identify

new parameter values to evaluate; and the newly evaluated parameters added to the

existing data. The process loops via continued iterations of model building, searching,

and evaluation of selected parameters.

Many regression models have been used as a surrogate for the real fitness function, in-

cluding multi-layer perceptron (MLP) based artificial neural networks (e.g., Bull, 1997),

Gaussian processes (GP; also known as Kriging; e.g., Liu et al., 2014), radial basis func-

tions (RBF; e.g., Regis, 2014), support vector regression (e.g., Yun et al., 2009), particle

swarm optimisation (e.g., Wang et al., 2017), Markov networks (e.g., Brownlee et al.,

2013), and coevolved fitness predictors (Schmidt and Lipson, 2008). Many ensembles

have also been explored (e.g., Wang et al., 2018). Probabilistic models such as GP are

perhaps the most widely used surrogate since they provide a measure of confidence that

can be used to efficiently select samples for evaluation (Jin et al., 2018). Preen and Bull

(2016) showed that with very small and noisy samples there is little difference between

the modelling approaches, with MLPs appearing to be a robust approach capable of

capturing the underlying structure of the search space.

The computational complexity of model building relative to the sampling expense is a

key consideration, particularly in the case where large archive sets are used for training;

for example, the computation time for GP training increases in cubic with the number

of training data (Shahriari et al., 2016). MLP models are typically adopted when there

are a large number of decision variables and/or training data (Chugh et al., 2017). This

leads to a further key consideration, which is whether to use the full archive set for

model training. It may be necessary to restrict the number of samples for use with a

computationally complex model such as GP when there is a large archive set (Jin et al.,

2018). Additionally, if there are any significant temporal affects, issues surround how

best to select the subset for training (Preen and Bull, 2017).

3



The task of selecting which samples to evaluate is analogous with the problem of

active learning wherein the algorithm is able to interactively query an oracle (e.g., a

user) to obtain the output at a given data point (Settles, 2010). For online data-driven

optimisation, initial data collection is often simply performed via random selection or

a design of experiments technique such as Latin hypercube sampling (Jin et al., 2018).

Subsequent samples are selected through the use of an acquisition function (also known

as the infill sampling criteria) which rates the expected utility of evaluating a candidate

solution (Shahriari et al., 2016). The most commonly used acquisition functions are

the mean of model prediction, and the expected improvement (EI; Jiao et al., 2019).

Acquisition functions typically aggregate the model predicted fitness (e.g., mean) and

estimated confidence (e.g., standard deviation) to explore regions of both high promise

and high uncertainty. In addition to variance-based sampling, query-by-committee, cross-

validation, and gradient-based methods also exist (Liu et al., 2018).

The use of the acquisition function is performed within an overall model management.

Jin (2011) categorised approaches to model management as generational, individual, or

population-based, depending upon whether whole generations, samples of individuals

within a generation, or sub-populations are evaluated. The pre-selection approach (Em-

merich et al., 2002) uses the model to rate M number of offspring and the best of these

are chosen for evaluation on the real fitness function. As highlighted by Jin (2011),

the main difference between individual-based strategies and pre-selection is that the real

fitness value is always used for selection, whereas in individual-based methods selection

may be based on fitness values from the surrogate. This potentially makes the approach

more robust to noise. Pre-selection has previously been shown effective for the evolution

of (noisy) physical systems in which each design is physically instantiated and evaluated

for fitness (Preen and Bull, 2015, 2016, 2017).

Four main categories of uncertainty (or noise) are frequently encountered in real-world

optimisation problems (Jin and Branke, 2005):

1. Uncertainty in the objective function evaluation. This is common in stochastic

simulations and physical systems where evaluations with the same parameters pro-

duce different results, e.g., by sensory measurement errors. Efficiently reducing the

objective function error requires optimally selecting how many samples to perform
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for a given parameter set. Issues such as how best to aggregate the results, e.g., by

mean or median may also affect convergence.

2. The objective function is approximated by a surrogate model. Efficiently reducing

the model error requires optimally selecting which samples to evaluate with the

real objective function to provide new training data and avoidance of over-fitting

through validation (Bischl et al., 2012). Approximated objective values are also

encountered where the function evaluations take place over time and partial fitness

scores can be observed by early termination (Park et al., 2013). Approximation er-

ror can be beneficial to the search process by aiding the escape of local optima (Lim

et al., 2010).

3. Dynamic optimisation wherein the objectives change over time (e.g., Chen et al.,

2018). In these scenarios, population diversity and memory mechanisms are essen-

tial.

4. Robust optimisation (e.g., Yu and Suprayitno, 2017) which seeks solutions that are

less sensitive to small parameter perturbations, e.g., due to manufacturing toler-

ances. This typically involves a trade-off between solution quality and robustness.

Rakshit et al. (2017) present an overview on techniques for dealing with noisy evo-

lutionary optimisation. Uncertainty in the objective function can be addressed via the

explicit averaging of resampled parameters or implicit averaging using a large population

size. The evolutionary selection mechanism may also be modified to account for noisy

evaluations; for example, by only accepting offspring with observed fitness greater than

the parent’s plus some threshold. Repeated sampling is typically more effective for noise

handling than parent populations and threshold selection, resulting in an exponential

speed-up for noisy evolutionary optimisation in some cases (Qian et al., 2018). The

number of samples to perform for a given parameter set can either remain fixed (static)

for all candidate solutions or be dynamically allocated to each, e.g., based on the sample

variance (Siegmund et al., 2013).
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3. Physics-based Multicellular Simulations

3.1. Methodology

Here we use the PhysiCell 2-D anti-cancer biorobots simulator (Ghaffarizadeh et al.,

2018). This performs a multicellular simulation of targeted drug delivery by modelling

three types of cells:

� Oxygen consuming cancer cells that generate a chemoattractant c1 forming an

oxygen gradient which can be used to guide worker cells.

� Worker cells that may adhere to cargo cells. Each cell has a persistence time,

migration speed, migration direction, and migration bias. Worker cells perform a

biased random migration towards cancer cells when adhered to cargo, and a biased

random migration towards cargo cells when unadhered. Migration biases range [0,1]

with 0 representing Brownian motion and 1 deterministic motion. The motility of

unadhered worker cells is disabled if c1 falls below a threshold.

� Cargo cells that secrete a diffusible chemoattractant c2 used to guide worker cells.

Adhered cargo cells detach from worker cells and secrete a therapeutic compound

that induces apoptosis in nearby tumour cells when oxygenation falls below the

cargo release o2 threshold.

Each simulation is initialised with a 200 micron radius tumour. After 7 simulated

days of tumour growth, 500 cells are “injected” near the tumour: 10% worker cells and

90% cargo cells. The simulation subsequently continues for 3 additional days of cancer

therapy. A single simulation requires ≈ 5 minutes of wall-clock time on an Intel® Xeon®

CPU E5-2650 v4 @ 2.20GHz with 64GB RAM using half of the 48 cores. Here we search

the N = 6 parameters specifying worker agent characteristics and cargo properties with

the goal of minimising the resulting number of cancer cells after a period of simulated

treatment. All other parameters remain at their original values as shown in Table 1.

In particular, we explore the attached worker migration bias [0,1]; the unattached

worker migration bias [0,1]; worker relative adhesion [0,10]; worker relative repulsion

[0,10]; worker motility persistence time (minutes) [0,10]; and the cargo release o2 thresh-

old (mmHg) [0,20]. We adopt the surrogate-assisted pre-selection approach (and pa-
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Table 1: Default multicellular simulation parameters.

Maximum attachment distance 18 microns

Minimum attachment distance 14 microns

Worker apoptosis rate 0 minutes−1

Worker migration speed 2 microns/minute

Worker o2 relative uptake 0.1 minutes−1

Cargo o2 relative uptake 0.1 minutes−1

Cargo apoptosis rate 4.065e-5 minutes−1

Cargo relative adhesion 0

Cargo relative repulsion 5

Damage rate 0.03333 minutes−1

Repair rate 0.004167 minutes−1

Drug death rate 0.004167 minutes−1

Maximum relative cell adhesion distance 1.25

Elastic coefficient 0.05 minutes−1

Maximum elastic displacement 50 microns

Motility shutdown detection threshold 0.001

Attachment receptor threshold 0.1

rameter values) previously used successfully to perform physical test-driven optimisa-

tion (Preen and Bull, 2017). As benchmark, a steady-state genetic algorithm (GA) with

population size P = 20 is used; tournament size T = 3 for both selection and replacement;

uniform crossover is performed with X = 80% probability; and a per allele mutation rate

µ = 1/N with a uniform random step size s = [−5, 5]%. A static sampling approach is

used wherein k simulation runs are performed for each candidate solution before assign-

ing the fitness as the mean number of remaining cells after 7 simulated days of tumour

growth plus 3 days of targeted drug delivery.

For the surrogate-assisted GA, all individuals in the initial population are evaluated

and a regression model fit. Subsequently, evolution proceeds by iteratively selecting 2

parents via tournament and then creating and evaluating M = 1000 offspring with the

model via an acquisition function. The most promising of these is then selected for
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evaluation by the multicellular simulator and replaces an individual in the population

selected via a negative tournament. Finally, the evaluated archive set is updated and

the model retrained. The full archive set is used for training since there are no temporal

affects on sampling, the time required to fit the model is insignificant in comparison with

the sample evaluation time, and only a few decision variables are optimised. Algorithm 1

provides an outline of the surrogate-assisted GA with static sampling.

Since MLPs are extrapolative and GPs are interpolative, here we employ both ap-

proaches to model building and observe their effects on the evolved biophysical parame-

ters. Here, the GP model (Rasmussen and Williams, 2006) uses an RBF kernel function

and the MLP uses H = 10 rectified linear units in the hidden layer. Both models are

trained using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-

Newton optimisation algorithm (Byrd et al., 1995). As the GP model provides a measure

of confidence (i.e., standard deviation) for each prediction, the EI is used as the acquisi-

tion (rating) function to select the next offspring; whereas the MLP does not provide a

measure of confidence and so the best predicted fitness is used in this case. Algorithm 2

shows the EI rating function used for the GP model. For the MLP model, Rating() in

Algorithm 1 returns the model predicted fitness. All experiments are initialised with the

same randomly generated population.

3.2. Results

Since each simulation run is costly, we initially explored the case with k = 1. However,

after 400 evaluations/simulations, the performance of the fittest individual discovered by

the GA was not significantly different than the fittest individual in the initial population,

p > 0.05 using a Wilcoxon rank-sums test, showing that the GA is severely misled by

the significant variance in simulation runs with the same parameter set.

Figure 1 shows the mean number of cells resulting from the fittest individual discov-

ered for each algorithm with k = 10. After evaluating 200 candidates (2000 simulations),

the best GP-assisted solution (mean = 852.10, SD = 40.43, samples = 10, min = 773,

median = 870, kurtosis = -0.89) and the best MLP-assisted solution (mean = 852.20, SD

= 39.84, samples = 10, min = 791, median = 853, kurtosis = -0.74) are significantly less

than the best GA solution without surrogate assistance (mean = 889.30, SD = 32.75,

samples = 10, min = 831, median = 898, kurtosis = -0.83), p ≤ 0.05 using a Wilcoxon
8



rank-sums test. There is no significant difference between the surrogate models. All

algorithms found solutions with a significantly lower mean number of cells than the best

individual in the initial population (mean = 953.50, SD = 41.59, samples = 10, min =

887, median = 947, kurtosis = -1.10), p ≤ 0.05.

Figure 2 shows scatter plots of all evaluated individuals for each evolved parameter.

As can be seen, both surrogate-assisted EAs identified best solutions with a mean of 852

cells and these solutions have similar values for 4 of the parameters: ≈ 0.5 unattached

worker migration bias; ≈ 6 worker relative adhesion; ≈ 10 worker motility persistence

time; and ≈ 11 cargo release o2 threshold. However, the MLP-assisted model achieved

this with an attached worker migration bias of 0.89, whereas the GP-assisted solution

was 0.29. Additionally, the worker relative repulsion was 5.9, compared with 1.13 for the

GP-assisted model.

There appears to be a clear funnel with a minimum at ≈ 11 for the cargo release

o2 threshold, suggesting that this is the global optima for the parameter. Ghaffarizadeh

et al. (2018) used an initial cargo release o2 threshold of 10, finding that “once enough

cancer cells were killed, hypoxia was reduced so that worker cells clustered near the

oxygen minimum, but no longer released their cargo”. Increasing the threshold to 15

“reduced but did not eliminate this behaviour”. The results of these simulations suggest

that using a threshold of 11 results in the best performance. As Ghaffarizadeh et al.

(2018) note, “the cargo release rules need to be carefully engineered. Such a system

could potentially activate and deactivate to keep a tumour cell population in control,

and to reduce hypoxia [which is known to drive cancer cell adaptation to more aggressive

phenotypes (Wilson and Hay, 2011; Eales et al., 2016)]”.

An example run of the fittest evolved individual with the GP-surrogate model is shown

in Figure 3, showing that the worker cells appear to disperse evenly and effectively deliver

the cargo to the tumour.

4. Conclusions

This article has shown that EAs are able to effectively explore the parameter space

of biophysical properties within the agent-based multicellular simulator, PhysiCell. EAs

successfully minimised the number of cancerous cells after a period of simulated treat-

9



ment. Both surrogate-assisted algorithms were found to outperform the standard GA,

thereby reducing the number of expensive simulations required. No significant difference

in the resulting number of cancerous cells was observed between the models, showing

the robustness of the overall pre-selection with static sampling approach employed. By

exploring both surrogate models that extrapolate and models that interpolate, we were

able to identify different parameter sets that achieved similar reductions in cancerous

cells. Thus, we have demonstrated the use of efficient EAs within a high-throughput

computing approach to find therapeutic design optima that maximise tumour regression.
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Algorithm 1: Surrogate-assisted GA with pre-selection and static sampling

1 N = 6, P = 20, k = 10, M = 1000, X = 0.8, µ = 1/N , s = 0.1, T = 3

2 Initialise population Pop = {~x1, . . . , ~xP } // ~x normalised [-1,1]

3 Evaluate Pop with the real objective function k times and add to archive A

4 while evaluation budget not exhausted do

/* build surrogate model */

5 Fit regression model R using A

/* pre-select offspring */

6 Parent p1 ← TournamentSelection(Pop, T )

7 Parent p2 ← TournamentSelection(Pop, T )

8 for M number of offspring do

9 Offspring a← p1

/* crossover */

10 if Random(0,1) < X then

11 Perform uniform crossover with a and p2

/* mutation */

12 for each parameter x in a do

13 if Random(0,1) < µ then

14 x← x+Random(−s, s)

/* evaluate offspring with surrogate model */

15 a.utility ← Rating(R, a,A)

/* select, evaluate, and add the most promising offspring */

16 Evaluate the best utility offspring with the real objective function k times

17 Add offspring to A

18 r ← NegativeTournamentSelection(Pop, T )

19 Replace r with offspring
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Algorithm 2: Expected improvement rating function

1 Input: fitted regression model R, candidate a, evaluated archive A

2 Output: model expected improvement of a

3 ei← 0

4 mean, std←R.predict(a)

5 if std != 0 then

6 imp← BestF itness(A)−mean // minimising

7 z ← imp/std

/* cdf() is the standard normal cumulative distribution function */

/* pdf() is the standard normal probability density function */

8 ei← imp× cdf(z) + std× pdf(z)

9 return ei
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Figure 1: Fittest individuals on the PhysiCell anti-cancer biorobots simulator. GA (triangle), GP-

assisted GA (circle), and MLP-assisted GA (square).
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Figure 2: Scatter plot of all evaluated individuals on the PhysiCell anti-cancer biorobots simulator.
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(a) Day 7 (b) Day 8

(c) Day 9 (d) Day 10

Figure 3: Example run of the fittest evolved individual with the GP-surrogate model on the PhysiCell

anti-cancer biorobots simulator after 200 candidate evaluations (2000 simulations.) Shown are the worker

cells (red), cargo cells (blue), and tumour cells (green) after 7 days of tumour growth and each subsequent

day of treatment. Attached worker migration bias = 0.29; unattached worker migration bias = 0.55;

worker relative adhesion = 6.24; worker relative repulsion = 1.13; worker motility persistence time =

9.26; cargo release o2 threshold = 10.94. Mean number of cells after 10 simulated days = 852.
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