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1 Introduction 

Robotic manipulators have been extensively used in civilian 

industry (Brogrådh, 2007) and aerospace industry (Li et al., 

2010; Muelaner et al., 2011). In these applications, robot 

control has become a key challenging issue (Hacioglu et al., 

2011; Hu et al., 2012; Spong et al., 2006). In regarding to 

the tracking error, it is only an ideal case to it to converge to 

zero. As a matter of fact, the request for a zero tracking 

error is unnecessary and unachievable. For example, most of 

robot control algorithms are asymptotically stable, which 

need infinite-time to stabilize tracking error to zero. In 

industrial applications, it is enough to stabilize tracking 

errors within a desired residual interval around zero in 

finite-time, which is called “practical stability” (Khalil, 

2002). With the continuous improvements of industrial 

production, high precision control of robots requires smaller 

residual set and shorter settling time. 

In a realistic scenario, perfect knowledge of dynamic 

model of manipulator can never ever be assumed. Indeed, 

model uncertainties are frequently encountered in robot 

control, such as unknown or changing payload, friction, 

backlash, flexible joints or robot parts for which only 

simplified dynamical models are available (Abdallah et al., 

1991). In general, neglecting the mentioned model 

uncertainties may cause significant performance 

degradation in terms of tracking accuracy and attainable 

velocity (Sage et al., 1999; Umar et al., 2014; Wang et al., 

2014; Xiao et al., 2013). Consequently robust control has 

been brought in to deal with the uncertainties. Robust 

control has a fixed controller structure and is simple to 

implement. By using minimal information about the system 

such as bounds of uncertainty, robust control can deal with 

almost all of the mentioned uncertainties effectively (De 

Persis, 2009; Fiacchini et al., 2010; Xu et al., 2009). There 

have been many achievements on robust control for robotic 

manipulators (Spong et al., 1987; Spong, 1992; Chiu et al., 

2004; Mauder, 2008; Bascetta et al., 2010).  

In general, robust control of robots is composed of three 

basic protocols. One is the nominal control, which is used to 

eliminate the known dynamics of robotic manipulators. The 

second is PD or PD like feedback control, which is used to 

stabilize the robot systems. And the third is a discontinuous 

control, which is used to cope with system uncertainty. 

Practically, the implementation of discontinuous controllers 

is characterized by the phenomenon of chattering. An 

effective method to avoid chattering is to approximate the 

discontinuous control law by a continuous one. This 

controller design philosophy is called Lyapunov redesign 

(Khalil, 2002). Due to the approximation, practical stability 

can be achieved instead of asymptotical stability. In 

conventional robot robust control, linear feedback control 

and/or linear general error are employed to design controller 

(Spong, 1992; Kim et al., 2005). Though these algorithms 

can obtain satisfactory performance to some extent, high 

control gains are needed for high precision and fast 

convergence. High-gain control action of these classical 

controllers may deteriorate the performance in the presence 

of actuator saturations and neglected resonant dynamics. 

Non-smooth control such as sliding mode control (Utkin 

et al., 2009; Zhao et al., 2009) and finite time control (Du et 

al., 2011; Li et al., 2011; Ou et al., 2012; Zhao et al., 2010) 

have strong robustness. In light of Lyapunov redesign and 

non-smooth control principles, a new robot non-smooth 

robust control is proposed in this paper. Compared with 

existing robust control of robots (Spong et al., 1987; Spong, 

1992; Chiu et al., 2004; Mauder, 2008; Bascetta et al., 

2010), the new approach can achieve smaller residual set 

and faster converging speed. The estimating method for 

residual set and settling time are initially presented with 

stability analysis. 

The reset of this paper is organized as follows. In Section 

2, the robotic manipulator dynamic model and its properties 

are presented for subsequent development. In Section 3, the 

main results of this paper are presented with corresponding 

theoretical analysis. In Section 4, illustrative examples are 

presented to validate the effectiveness of the proposed 

approach. Finally, in Section 5, some concluding remarks 

are given. 

 

2 Robotic manipulator dynamic model 

Consider a general n-link rigid robotic manipulator dynamic 

equation: 

       ,M q q C q q q Fq G q d t      (1) 

where , , nq q q R  are the joint position, velocity and 

acceleration vectors, respectively,   n nM q R   is the 

inertia matrix,  , n nC q q R   is the Coriolis and centrifugal 

matrix, n nF R   is the diagonal matrix of viscous friction 

coefficients,   n nG q R   is the gravity torque vector, 

  nd t R  is the external disturbance vector, nR   is the 

control input vector. 

Property 1: For all q , matrix  M q  is symmetric and 

positive definite and satisfies:   MM q  , 

 m MI M q I   , I  is an identity matrix with 

appropriate dimension, , , 0M m M    . 

Property 2: For all q  and q ,  , cC q q q , 0c  . 

Property 3: For all q ,   gG q  , 0g  . 

Property 4: For all q  and q , matrix    2 ,M q C q q  is 

always skew symmetric, that is, for a vector nx R , there 

must be     2 , 0Tx M q C q q x  . 

In this study,   denotes Euclidean norm for vectors and 

induced norm for matrices.  min max A   denotes 

minimum/maximum eigenvalue for matrix n nA  . 

Assumption 1: Dynamic equation (1) includes known parts 

and unknown parts, the following equations are satisfied: 

     0M q M q M q   

     0, , ,C q q C q q C q q   

0F F F   
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     0G q G q G q   

By using Assumption 1, dynamic equation (1) can be 

rewritten as: 

       0 0 0 0,M q q C q q q F q G q t       (2) 

where   nt R  denotes system uncertainty, which is 

expressed as follows: 

          ,t M q q C q q q Fq G q d t         

 

3 Non-smooth robust control 

Let ,d d nq q R  be the desired joint position and velocity 

vectors, respectively. Define position error and velocity 

error as: 

d

d

e q q

e q q

  


 
 (3) 

Before defining command vector, we introduce the 

following notation: 

 r

i i ie e sign e


  (4) 

1
if 0

0 if 0

r i i i
i

i

e e e
e

e




 
 



 (5) 

where 0 1  , 0   is a small positive number, 

1, ,i n .  

With reference to (3)-(5), command vector and its 

derivative are defined as: 

r d r

r d r

q q e

q q e

  


 
 (6) 

where  is diagonal positive definite matrices, 

1 , ,
T

r r r

ne e e    , 1 , ,
T

r r r

ne e e    . 

Then, general error vector and its derivative are defined 

as: 

r

r

r q q

r q q

  


 
 (7) 

Remark 1: The proposed general error is different from 

conventional linear general error, which is defined as 

r̂ e e  . Due to decimal power rule, it has terminal 

converging ability. Note that (5) is singular free (Man et al., 

1997). 

In terms of definitions (6) and (7), dynamic equation (2) 

can be rewritten as: 

       0 0 0, , , ,r rM q r C q q r h q q q q t      (8) 

where  0 , , ,r rh q q q q  represents the known parts of system 

dynamics, which is expressed as follows: 

       0 0 0 0 0, , , ,r r r rh q q q q M q q C q q q F q G q      

For dynamic equation (8), robot robust control algorithms 

can be designed. For example, by re-structuring the 

representation of robot model uncertainty, a robust 

controller is designed by using linear PD feedback control 

law (Bascetta et al., 2010; Kim et al., 2005). However, high 

gains are required to achieve high control precision and fast 

convergence in these approaches. 

Assumption 2: The desired joint position trajectory dq  and 

its time derivatives dq , dq  are bounded smooth signals. 

Assumption 3: External disturbance d  is bounded by 

d D , 0D  . 

Assumption 4: Suppose control input is v   .   is a 

polynomial type control law. v  is a saturation type control 

law. They will be designed in the following. 

Assumption 5:   can be bounded by the following 

polynomial: 

2

0 1 2c c q c q      

where 
0 1 2, , 0c c c   are positive real numbers. 

Lemma 1: Consider the n-link rigid robotic manipulator in 

equation (1), if the control system uses a polynomial-type of 

controller, then system uncertainty can be bounded by the 

following inequality (Man et al., 1997). 

2

0 1 2b b q b q      

where 0 1 2, , 0b b b   are positive real numbers. 

Assumption 6: According to Property 1-5 and Assumption 

1-5, the following assumption is made: 

 ,q q v      

where  
2

0 1 2,q q b b q b q     and 0 1  . 

In light Lemma 1 and using Assumption 1-5, one can 

make Assumption 6 easily. It is applicable for most of robot 

control systems. Although the aforementioned assumptions 

show that the bound of system uncertainty   is control 

input related, only the controller structures are required in a 

priori. It will be validated in the stability analysis and 

simulation studies. 

The non-smooth robust controller is designed as: 

v    (9) 

   0 1 2, , ,r rh q q q q K r K sig r


      (9a) 

 

 2

,
if

1

,
if

1

q q r
r

r
v

q q r
r









 


 


 

 



 (9b) 

where 1 2, n nK K R   are diagonal positive definite matrices, 

0 1  , 0   is a small positive number. 

For a vector nx R ,  sig x


 is defined as follows 

(Haimo, 1986): 
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     1 1 , ,
T

n nsig x x sign x x sign x
   

 
 

In control law (9),  0 , , ,r rh q q q q  is nominal control 

used to eliminate known dynamic part of robotic 

manipulator,  1 2K r K sig r


   is non-smooth feedback 

control used to stabilize the system, v  is saturation control 

used to cope with system uncertainty. 

Remark 2: Because decimal power rule is employed by 

general error r  and feedback control law 

 1 2K r K sig r


  , the non-smooth robust control has 

strong terminal converging ability, that is, it can achieve 

higher precision and faster convergence speed. 

The following two Lemmas are used in stability analysis 

(Yu et al., 2005): 

Lemma 2: Assume 
1 0a  , 

2 0a 
 

and 0 1c  , the 

following inequality holds: 

 1 2 1 2

c c ca a a a     

Lemma 3: Suppose 
1 2, , , na a a  and 0 2p   are all 

positive numbers, then the following inequality holds: 

   
2

2 2 2

1 2 1 2

p
p p p

n na a a a a a         

Theorem 1: For n-link rigid robotic manipulator (1), if 

general error is defined as (7) and control law is designed as 

(9), the closed loop system will be practically stable, that is, 

position error and velocity error will converge to the 

following residual sets in finite time T : 

2

3

min

,
4

M

r

m

r r
k

 




 

  
       

  
 

  

 
1

e i i ie e 
 

    
 

  

 2e i ie e      

2

0 3

2
min

2

4

ml
T t

k


 





    

where 0t  is the initial time, i  is the ith diagonal element of 

 , 1, ,i n . 

Proof: Consider the following Lyapunov function: 

 
1

2

TV r M q r  (10) 

According to Property 1, V  satisfies the following 

inequality: 

   1 2r V r    (11) 

where  
2

1

1

2
mr r  ,  

2

2

1

2
Mr r  . It is 

obvious that  1 r  and  2 r  are class K  functions.  

Differentiating V  with respect to time along closed loop 

equation (8) gives rise to: 

    

   

0

0

, , ,

1
,

2

T r r

T T

V r h q q q q t

r M q r r C q q r

   

 
 (12) 

By using Property 4 and substituting   into (12), one can 

get: 

   1 2

T T T TV r K r r K sig r r v r t


      (13) 

 
12

1 2
1 1

n n
T T

i i i i
i i

V k r k r r v r t





 

       (14) 

where 
1ik  and 

2ik , 1, ,i n , are ith diagonal elements of 

1K  and 
2K , respectively. 

When r  , substituting control law v  into (14) leads 

to: 

 
 

12

1 2
1 1

,

1

n n
T

i i i i
i i

r q q
V k r k r r t

 






 

     


 (15) 

 
 

12

1 2
1 1

,

1

n n

i i i i
i i

r q q
V k r k r r t

 






 

     


 (16) 

Consider Assumption 6 we have: 

12

1 2
1 1

n n

i i i i
i i

V k r k r
 

 

     (17) 

Let  1min min 1k K  and  2min min 2k K , then define 

 min 1min 2minmin ,k k k . The following inequality holds: 

 12

min
1 1

n n

i i
i i

V k r r
 

 

     (18) 

In light of Lemma 2 and Lemma 3, one can get the 

following inequality: 

 2 1

minV k r r
 

    (19) 

Note that inequality 
3

2 1
22r r r







   holds for all r . 

Accordingly, the following intquality is satified: 

3

2
min2V k r

 

   (20) 

Let  
3

2
3 min2r k r






 . It is obvious that  3 r  is a 

class K  function. Appearantly, as r  : 

 3 0V r    (21) 

When r  , substitute control law v  into (14), it 

yields: 

 
 

22

3

,

1

rq q
V r r


 

 
   


 (22) 

By taking into consideration Assumption 6, the following 

inequality is obtained: 
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 
2 2

3

r
V r r


 


     (23) 

Note that the term 
2 2r r     attains a maximum 

value 4  at 2r   . Therefore: 

 3
4

V r


    (24) 

Inequality (24) is held whenever r  . On the other 

hand, when r  , V  satisfies: 

   3 3
4

V r r


       (25) 

Thus inequality (24) is satisfied irrespective of the value 

of r . Take 0l  , choose    1

3 2 12 l     and 

    1 1

3 2 12 l       . According to Lyapunov 

redesign method (Khalil, 2002), there must be: 

 3

1

2
V r  , r l    (26) 

Choose       1

0 2 1r t l     ,  0r t  is the initial 

value of  r t  at time 
0t , settling time and bounds of  r t  

can be estimated as T  and 
r , respectively. 

If r   , the following equation holds: 

 i i i i ie e sign e


   , i    (27) 

Equation (27) can be further written as follows: 

     0i i i i i i ie e sign e e sign e
 

     (28) 

If   0i i i ie sign e


   , equation (28) is still kept in 

the form of general error (7). Position error will converge to 

the following region: 

 
1

e i i ie e 
 

    
 

 (29) 

According to equation (29), velocity error will converge 

to the following region:  

 2e i ie e     (30) 

Accordingly, position error and velocity error will 

converge to the residual sets e  and e  in a finite time T , 

respectively. 

This completes the proof.   □ 

If we choose 1  , 1  , 1 2K K K  , control law (9) 

will be smooth robust control (Khalil, 2002): 

ˆˆ v̂    (31) 

 0
ˆˆ ˆ ˆ ˆ, , ,r rh q q q q Kr     (31a) 

 

 2

ˆ , ˆ
ˆif

ˆ1
ˆ

ˆ , ˆ
ˆif

1

q q r
r

r
v

q q r
r









 


 


 

 



 (31b) 

where   and   are same as equation (9), ˆ rq , ˆ rq  and r̂  

are defined as: 

ˆ

ˆ

r d

r d

q q e

q q e

  


 

 

ˆ ˆrr q q   

Subject to control law (31), 
ie  and 

ie  will converge to 

the following residual sets in finite-time. 

1

2

ˆ

min

ˆ ˆ ˆˆ ˆ ,
4

M

r

m

r r
k

 



 
  

       
  

 

  

 ˆ
e i i ie e       

 ˆ2e i ie e      

2

0 2

min

2ˆ

4

ml
T t

k

 




    

The stability analysis and estimating methods of control 

law (31) are similar to those of Theorem 1. 

Remark 3: High precision control means smaller residual 

set and shorter settling time. For fair comparison, choose 

dimensionless position error and velocity error. This also 

means that ir , îr  and   far less than 1 in the steady state. 

Because 0 1  , 
2 1

3 2



 and 

3
2

2

 
 , ˆ    and 

r rT T . The above comparisons intuitively show that non-

smooth robust control has smaller residual sets and shorter 

settling time than those of smooth robust control. This will 

be further validated by simulation results.  

The controller design procedure is summarized as: 

Step 1: Define position error, command vector and general 

error according to equation (3)-(7). 

Step 2: Design control law as (9). 

Step 3: Initially choose appropriate controller parameters 

according to the required control precision and settling time. 

Step 4: Slightly retune the controller parameters using a trial 

and error method until the performance is satisfying. 

 

4 Illustrative example 

Two examples are given in this section. One is used to 

illustrate the effectiveness of the non-smooth general error, 

and the other is used to illustrate the effectiveness of the 

proposed non-smooth robust control for robotic 

manipulators. 

4.1 Comparison study for general error 
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Consider a 2-second nonlinear system: 

1 2

2 0.1sin 20

x x

x t u




 
  

Conventional smooth general error is defined as: 

2 1

2 2

r x x

r x x

 


 
  

The non-smooth general error is defined as: 

 2 1 1r x x sign x


    

1

2 1 2 1

2 1

if 0

if 0

x x x x
r

x x




  
 



  

To fairly compare these general errors, a standard smooth 

robust control is designed by using Lyapunov redesign: 

ru x r v      

 

 

0

2

0

,
if

1

,
if

1

t x r
r

r
v

t x s
r









 


 


 

  

  

where 0.02  , 0.01  , 0.12  , 0 0.4  . 

Note that linear PD type feedback control is used here. 

Under this control law, the different performances of two 

types of general errors can be revealed more clearly.  

Figure 1 is the evolution of system state 
1x . Solid line is 

non-smooth general error and dashed line is smooth general 

error. It is obvious that the proposed non-smooth general 

error has faster converging speed and smaller residual set 

than those of smooth general error. Figure 2 shows the 

control input. From the simulation results, we can see that 

the proposed non-smooth general error has terminal 

converging power. This is consistent with the theoretical 

analysis. 

 

 
 

Figure 1 
1x  with respect to time 

 

 
 
Figure 2 Control input u  

 

4.2 Control performance of a robotic manipulator 

 

 
 
Figure 3 2-link robotic manipulator 
 

Consider a 2-link rigid robotic manipulator (see Figure 3). 

Its dynamic equation is given as: 

   

 

   

 

 

 

11 2 12 2 1

12 2 22 2

12 2 1 12 2 1 1 1 1 2

12 2 2 2 2 1 2

1 1

2 2

2 ,

0 ,

a q a q q

a q a q

b q q b q q q c q q
g

b q q q c q q

d

d





   
   

  

     
     

    

   
    
   

  

     2 2

11 2 1 2 1 2 2 2 1 2 2 12 cosa q m m r m r m r r q J       

   2

12 2 2 2 2 1 2 2cosa q m r m r r q    

2

22 2 2 2a m r J    

   12 2 2 1 2 2sinb q m r r q   

       1 1 2 1 2 1 2 2 2 1 2, cos cosc q q m m r q m r q q      

   2 1 2 2 2 1 2, cosc q q m r q q    

The parameter values are chosen as: 1 1mr  , 2 0.8mr  , 

1 5kgmJ  , 2 5kgmJ  , 1 0.5kgm   and 2 1.5kgm  . The 

desired trajectories are given as: 

    4

1 1.25 7 / 5 7 / 20d t tq e e      

  4

2 1.25 1/ 4d t tq e e      
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The initial values of system states are assumed to be: 

 1 0 1.0q  ,  2 0 1.5q  ,  1 0 0q   and  2 0 0q  . 

External disturbances are assumed to be: 

   1 2sin 0.5sin 200d t t    

   2 cos 2 0.5sin 200d t t    

The nominal values of 
1m  and 

2m  are assumed to be 

10 0.4kgm   and 
20 1.2kgm  .  

To validate the effectiveness of the proposed approach, 

non-smooth robust control and smooth control are 

compared. 
 

Table 1   Controller parameters 

 

 
 

Figure 4 Position tracking error (non-smooth 1 3  , 

1 3  ) 

 

 

 

Figure 5 Velocity tracking error (non-smooth 1 3  , 

1 3  ) 

 

 
 

Figure 6 General error (non-smooth 1 3  , 1 3  ) 

 

 
 

Figure 7 Control input (non-smooth 1 3  , 1 3  ) 

 

 
 

Figure 8 Position tracking error (smooth 1  , 1  ) 

 

 
 

Figure 9 Velocity tracking error (smooth 1  , 1  ) 

 

Controller Parameters 

Non-

smooth 

robust 

control 

 1,1diag  , 1 3  , 0.01  , 

 1 2 2.5,2.5K K diag  , 1 3  , 

0.02  , 0.4  , 
0 1.5b  , 

1 1b  , 

2 1b   

Smooth 

robust 

control 

 1,1diag  , 1  , 0.01  , 

 1 2 2.5,2.5K K diag  , 1  , 

0.02  , 0.4  , 
0 1.5b  , 

1 1b  , 

2 1b   
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Figure 10 General error (smooth 1  , 1  ) 

 

 
 

Figure 11 Control input (smooth 1  , 1  ) 

 

Table 2 Residual set and settling time 

 

From Table 1, one can see that all the parameters of 

smooth robust controller are same as non-smooth robust 

controller except that 1   and 1  . This shows that the 

comparisons are fair. 

Figure 4-Figure 7 are the performance of non-smooth 

robust controller. Figure 4 is the position tracking error. 

Figure 5 is the velocity tracking error. Figure 6 is the 

general error. Figure 7 the is control input (joint torque). 

From these simulation results, it can be seen that position 

error and velocity error can converge to a small residual set 

in finite-time. The control input is bounded and continuous. 

This validates the effectiveness of the proposed approach. 

Figure 8-Figure 11 show the performance of smooth robust 

controller. To further compare these two approaches, Table 

2 lists the residual sets of position errors, velocity errors and 

general errors with corresponding settling times of non-

smooth robust controller and smooth robust controller, 

respectively. From Table 2, one can see that the proposed 

approach has smaller residual sets and shorter settling times. 

Note that Figure 5 and Figure 9 are control inputs of non-

smooth and smooth robust control, respectively. From these 

two Figure s, we can see that the control inputs of these two 

approaches are similar. It means that non-smooth robust 

control can achieve higher precision with fast convergence 

speed without using high control gains. This is attributed to 

the non-smooth general error and feedback control. 
 

5 Conclusions 

Facing the challenging issue on dealing with uncertainty 

encountered in robotic manipulator systems. This paper has 

developed a new non-smooth robust control algorithm. The 

associated questions on stability analysis, estimating 

residual set and settling time have been properly addressed 

by using Lyapunov redesign method.  

It is worthwhile noting that the paper has provided new 

solutions to robust control of robot. Compared with exist-

ing smooth robust algorithms, the proposed approach can 

stabilize robot tracking error into a smaller residual interval 

with a faster convergence speed. Hence, it can achieve high 

precision practical stability control. 
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