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Abstract: This study uses numerical thermal simulation to investigate the potential use of 

building geometry to eliminate or reduce current and future thermal discomfort overheating 

risk in UK Passivhaus dwellings. The study focused on the optimum inclination of a south 

façade to make use of the building shape to self-protect itself. Dynamic simulation 

modelling software was used to test a range of different inclined façades with regards to their 

effectiveness in reducing overheating risk. The research found that implementing a tilted 

façade could completely eliminate the risk of overheating for current UK climates, but with 

some consequences for natural ventilation and daylighting. Future overheating was 

significantly reduced by the tilted façade. However, geometric considerations could not 

eradicate completely the risk of thermal discomfort overheating, particularly by the 2080s. 
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1. Introduction 

It has become increasingly evident that buildings contribute significantly to the serious 

environmental problems of the planet, especially in terms of the fossil fuel energy used to service the 

built environment. Consequently, in recent decades greater attention has been paid to reducing energy 

consumption in buildings. EU countries have adapted their building regulations to produce new 

buildings with nearly-zero energy consumption by 2020. One example of the low energy standards was 
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introduced in Germany by Passivhaus Institute. In the UK a zero carbon new buildings target was 

announced by the UK government in December 2006 and a national target was set to reduce 80% of CO2 

emission below 1990 level by 2050 [1]. A number of energy efficient strategies have been employed in 

the UK housing sector to reduce energy consumption for heating demand, including the growing 

implementation of the Passivhaus standard. For the last few decades thermal insulation has been the 

most dominant and frequently used intervention for a range of building types in the UK. Much of the 

focus on the new build and refurbishment in the UK has concentrated on thermal comfort during the 

winter and on the reduction of space heating demand. However, as suggested by UK Climate Projections 

from the Meteorological Office [2] the increase in extreme weather events, such as heat waves, calls for 

the study of overheating risks in the summer period as well. 

Although the majority of energy efficient standards have been successful in terms of reducing heating 

demand, several low-energy buildings have experienced problems with overheating, especially in 

summer time. Most of the interventions on reducing overheating have focused on users living in these 

buildings adapting to a specific behaviour to obtain thermal comfort, such as efficient operation of 

shading blinds or the use of a mechanical ventilation with heat recovery (MVHR) system to enhance 

ventilation. However, some other interventions have focused on the design of the building envelope to 

obtain thermal comfort in warm spells of a year. One of the stimuli for the current research was the 

possibility of using the building’s geometry to be able to passively and consistently obtain thermal 

comfort via robustness of the building design. The research argues that self-shading geometric design of 

the building envelope can possibly recover some of the gap in the overall building performance that is 

created by occupants using overheating controls either incorrectly or not at all. 

1.1. The Passivhaus Standard and Literature Review 

The main concern of the Passivhaus Standard is to substantially reduce the requirements for space 

heating by introducing a “fabric first” approach to the design criteria, i.e., applying high levels of 

insulation and airtightness to the thermal envelope. To obtain Passivhaus certification a building needs 

to meet a few main criteria [3]: 

• Maximum specific space heat demand no more than 15 kWh/m2 of floor area; 

• Overall energy demand (including space heating and cooling) no more than 120 kWh/m2; 

• Airtightness no more than 0.6 h−1 at 50 Pa; 

• For thermal comfort air temperatures in the living areas must not exceed 25 °C for more than 

10% of the hours in a given year. 

There is also a maximum cooling demand for climates where active cooling is needed. However, this 

is for climates where the external air temperature does not drop low enough to create a benefit from night 

time purge ventilation cooling. Therefore, for residual buildings the Passivhaus standard allows an 

annual cooling energy of 15 kWh/m2 to be used [4]. 

For Passivhaus, the U-values of the building’s solid envelope and glazing should be no more than 

0.15 and 0.80 W/m2K, respectively. Passivhaus dwellings benefits from large areas of south-facing 

glazing to capture passive solar gain. The Passivhaus Primer [5] states “In order to benefit from the 

useful solar gains a Passivhaus requires the glazing to be optimised on the south façade with reduced 
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glazing on the (other) façade(s)”. Solar gains make up a significant component of the free heat gains 

available to a Passivhaus during the heating season and large windows themselves become radiators for 

the room to offset some of the energy required for heating [6]. In addition, large windows provide good 

daylight levels and pleasant views for occupants. However, large areas of south-facing glazing, coupled 

with very high levels of thermal insulation and air tightness and the potentially elevated summer 

temperatures of future UK climates, means that the risk of summer overheating needs to be taken into 

consideration for future developments of Passivhaus dwellings. 

Passivhaus designs should employ “professional planning”, such as relevant orientation, shading and 

ventilation, to overcome a summer overheating risk [4]. There are a number of design approaches to 

mitigating the risk of overheating in dwellings, such as shading devices, reflective surfaces and thermal 

mass, that have received a good deal of research attention. For instance, Orme, Palmer and Irving [7] 

concluded that night time purging was the most effective single intervention to reduce overheating. 

Tillson et al. [8] showed that using a combination of window shutters or overhangs and ventilation can 

greatly reduce overheating. Mavrogianni et al. [9] investigated the effectiveness of thermal mass and 

insulation in reducing overheating. Piccolo and Simone [10] used reflective electrochromic glazing to 

minimize the solar heat gain and Robinson and Haldi [11,12] and Bennet et al. [13] focused on 

behavioural interventions to reduce overheating. 

The present study has investigated the less examined arrangement by which dwellings have 

geometric forms that make the south-facing façades self-shading. This paper examines the potential 

benefits of using different self-shading façade geometries to reduce thermal discomfort in Passivhaus 

standard dwellings for current and future UK climate scenarios. 

1.2. Future Climate, UK Passivhaus Dwellings and Overheating Risk 

The probable impact of climate change over the coming decades demands two main responses:  

(i) mitigation of carbon emissions; and (ii) adaptation of buildings to be comfortable in the future  

climate [14] Adapting to the negative impact of climate change is becoming as important as mitigating 

the climate change itself [15]. The Intergovernmental Panel on Climate Change (IPCC) [16] stated that, 

even in the most optimistic projection, the Earth will experience at least 1.8 °C global average surface 

warming by the end of the 21st century. A warmer summer time is estimated to effect energy use 

patterns and comfort conditions in UK dwellings. 

It has been argued that highly insulated and very airtight homes are more prone to overheating than 

older traditional housing [17–19]. Probabilistic climate change data from UK Climate Change 

Projections (UKCP09) [20] suggest that the UK will experience hotter and more extreme summers in the 

coming decades and the risk of buildings overheating may become very significant in future  

climate scenarios. 

1.3. Definition of Thermal Discomfort (Overheating) 

The definition of the term overheating is defined differently by different groups and it remains an area 

of uncertainty. The Housing Health and Safety Rating System from the Housing Act 2004 [21] stated “a 

healthy indoor temperature is around 21 °C. As temperatures rise, thermal stress increases, initially 

triggering the body’s defence mechanisms such as sweating. High temperatures can increase 
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cardiovascular strain and trauma, and where temperatures exceed 25 °C, mortality increases and there 

is an increase in strokes. Dehydration is a problem primarily for the elderly and the very young”. 

As stated in Section 1.1, for the UK climate a Passivhaus is permitted to use 15 kWh/m2 year to 

provide space heating to obtain thermal comfort. However, with the potential growth in summer 

temperature in places like London active cooling may become inevitable to maintain the temperature 

around 25 °C. Bearing in mind that space heating may decrease because of less severe winters, future 

criteria may suggest that the limit of 15 kWh/m2 applies for space conditioning including both heating 

and cooling demand to keep future Passivhaus within the 20–25 °C optimal temperature for a whole 

year. CIBSE Guide A [22] defines summer comfort air temperatures for living rooms and bedrooms in 

UK dwellings as being when indoor temperature are around 23 °C to 25 °C. The Guide noted that the 

quality of sleep begins to deteriorate if indoor bedroom air temperatures much exceed 24 °C. To avoid 

the risk of overheating CIBSE Guide A states that temperature should not exceed 25 °C for more than 

10% of total occupied hours for living spaces. Inside temperature also should not exceed 26 °C for 

bedrooms and 28 °C for living rooms for more than 1% of total occupied hours. However, one 

shortcoming of these so called static criteria is that there is no specific limitation for the severity of 

overheating-for instance, 1 h at 28.1 °C and 1 h at 32 °C is considered as 1 h above 28 °C with the same 

level of overheating discomfort. Another concern over static criteria is that they do not include 

individual adaptation to changing temperatures. Adaptive thermal comfort was developed based on the 

hypothesis that people in different climate zones prefer different indoor temperatures [23]. The 

performance of a Passivhaus design is assessed using the Passive House Planning Package (PHPP), 

which is a set of over 30 linked Excel spreadsheets. In the PHPP spreadsheets overheating hours are 

calculated for the occupied period when in the living areas temperatures exceed 25 °C. The kitchen is 

excluded because of the probability of miscalculation of overheating when catering equipment is being 

operating during occupied periods. Passivhaus tries to keep inside temperatures within the interval of 20 

to 25 °C during whole cycle of the year. There is a limit of 10% occupied hours having temperatures 

above 25 °C. For some other criteria a temperature excess of over 25 °C for up to 5% of the year is 

allowed [24]. 

In reality individuals will adapt to changing climate, therefore, adaptive methods may be more 

applicable for assessing future indoor thermal comfort. However, static criteria are used mainly for 

assessing model prediction and whole years of data [9]. Static criteria are also useful to focus and 

measure one specific parameter or a single design intervention and its impact on indoor thermal 

behaviour and to give a general prediction on the future possibilities. Whereas adaptive methods take 

into account all the individual measures assigned to different persons’ comfort perception, static criteria 

are useful for ranking the occurrence of elevated room temperatures but it cannot clearly indicate 

whether the measured temperature is acceptable or not. People may adapt to the higher temperature 

(acclimatization) or people may expect higher levels of comfort and a cooler summer temperature as a 

result of increasing disposable income and higher life quality expectations. For this study the CIBSE 

Guide A static criteria were used for assessing thermal comfort for alternative climate scenarios. The 

occupant window opening patterns and the amount of natural ventilation was kept constant for current 

and future climate conditions in order to make a valid comparison between the façade alternatives. 

However, it is well understood that occupants will change their behaviour as outside temperatures 

change and adaptive criteria needs to be analysed for assessing overheating risk for future warming 
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climates. However, using constant, i.e., static criteria helped to make a fair comparison to study the 

impact of a single design factor, i.e., façade geometry. 

1.4. Aims and Objectives 

This study set out to investigate the effectiveness of building geometry as an environmental design 

criterion. The first objective was to evaluate the impact of future weather data on the Passivhaus 

structures in order to estimate future overheating risk and rate. The second objective was to introduce 

self-shading façades as one the adaptation strategies for reducing overheating in homes. 

2. Methodology 

The main method used for this study was computer simulation modelling as a substitute for direct 

measurement and experimentation. Software reliability and the accuracy of the model were tested 

against an available real data series. An existing Passivhaus dwelling with available thermal analysis and 

monitoring data was considered as a reference case to validate the software. Thus, a pilot unit was 

modelled using the specifications of the reference case. A sensitivity analysis approach on the pilot model 

was then adopted to assess geometric alterations to the Passivhaus south facade. Eight preliminary steps 

were taken to examine the impact of the tilted south façade on Passivhaus performance and comfort: 

i. Selection of an existing Passivhaus dwelling in the UK 

ii. Modelling and validation of the dwelling’s performance 

iii. Conducting an initial pilot study 

iv. Selecting weather data for simulation 

v. Defining the risk of overheating 

vi. Selecting the effective façade geometry (tilt angle) 

vii. Implementing the effective design to current and future weather conditions 

viii. Assessing the impact of the introduced geometry to future performance of the Passivhaus 

2.1. Reference Case 

An existing nearly zero carbon UK Passivhaus dwelling, Larch House in Ebbw Vale, Wales  

(Figure 1) with a typical cube-shape and large south-facing glazing (55% glazing of the façade area) was 

chosen as the reference case. It achieved an outstanding draught-free construction with an air tightness 

result of 0.2 air changes per hour (ac/h) at 50 Pascal indoor-outdoor pressure difference. The building 

uses external roller blinds to prevent summer overheating. It should be noted that the blinds have been 

assumed to be operated by the occupants in the summer time. 

Occupant Behaviour 

Occupant behaviour, such as operating windows and blinds, can have an influential impact on the 

energy performance of a house [17,25,26]. Findings from the monitored performance of the first London 

Passivhaus dwelling (Camden Passivhaus) [27] reported that occupants did not intend to change their 

window opening and blind operation use in future from the monitored data, which suggested that 

temperatures were above the CIBSE thermal comfort criteria in several periods. It has also been 



Buildings 2015, 5 969 

 

observed that the occupants of Larch House do not use the blinds to their best advantage [28]. Large 

glazing areas could lead to overheating in summer if internal/external blinds are not operated optimally. 

In the majority of Passivhaus dwellings, including Larch House, shading is controlled by internal or 

external blinds, which require occupant attention and understanding. Robinson and Haldi [11,12] 

showed how occupants’ behaviours in terms of controlling windows and blinds can make a difference to 

the frequency of overheating. 

 

Figure 1. Larch House in Ebbw Vale. 

2.2. Modelling and Validation 

The building was modelled using the dynamic thermal simulation package DesignBuilder (integrated 

EnergyPlus engine) version 3.4 [29]. DesignBuilder has been validated by reliable energy calculation 

standards, i.e., EN ISO 13790 Standards [30], ASHRAE [31], and EnergyPlus validation testing  

results [32] that verified the robustness of the software. However, to ensure confidence in the results of 

the DesignBuilder model, it was necessary to compare the simulation data with the values provided by 

the designers. Bere Architects used the steady state Passive House Planning Package (PHPP) for 

simulation of the house. The predicted results from the PHPP file were used to validate the model. 

Monitoring data from the Technology Strategy Board [17] were also used for verifying the simulation 

data and mark out unexpected occupant’s behaviour. 

Post occupancy monitoring and evaluation of a building helps to compare the actual and predicted 

performance and to observe if any significant “performance gap” has been experienced. What is 

significant about monitoring compared to modelling is that unexpected occupant behaviour can be 

identified. Differences between the predicted and actual performance of low energy dwellings can be 

significant in some cases [33]. A comparison of the monitored and modelled data for Larch House (see 

Table 1) showed a small percentage difference for annual heating demand and air tightness. However, 

monitored data highly exceeded the total energy demand calculated by PHPP. Additional energy 

demand to the predictions occurred due to the higher amount of cooking and electricity consumption 

from sockets (appliance consumption type). The typical (conventional) UK domestic electricity 

consumption is around 3300 kWh per annum; for Larch House PHPP predicted an electricity 

consumption of 2209 kWh, whereas the actual monitored data revealed a value of 4495 kWh (see  

Table 2). 
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Table 1. Data comparison between PHPP, monitored data and DesignBuilder simulation results. 

Measures PHPP Monitored data DB.1 DB.2

Annual heating demand (kWh/m2year) 13 9.3 9.1 13.5 
Total Energy requirement including heating (kWh/m2year) 83 189 166 96 

Airtightness (h−1 at 50 Pa) 0.2 0.198 0.2 0.2 
Annual CO2 emission (kg CO2/m2year) 20.1 35.6 34.2 26.2 

Frequency of overheating T > 25 °C, (%) 6% 34.9% 33.1% 17.5%

Table 2. Annual average electricity use from two years of Larch House monitoring. 

Measured (kWh) Larch House 

Lights 245 
Cooking 660 
Sockets 3002 

Total electricity (PV offset not included) 4495 

Data from the monitoring also showed that the house did experience an overheating frequency 

(internal temperature exceeded 25 °C) for over 34% of total occupied hours in the main living space. 

This high percentage of overheating was mainly because occupants did not open the windows in 

summer. The monitoring revealed that in summer the children did not want windows to be open at night 

due to a fear of spiders. Although this could be resolved by fitting insect mesh in the window, the impact 

of summer night purge cooling should be incorporated into calculations by increasing the ventilation  

rate from the monitoring value. There was a small difference between the DesignBuilder model  

(herby referred to as DB.1) and the monitoring data but a much bigger difference with the results from 

the PHPP prediction. After the above mentioned unexpected occupants’ behaviour was resolved and 

explained to the occupants, a second set of simulations (herby referred to as DB.2), with adequate natural 

ventilation and typical electricity use, were conducted. This will help to avoid exaggerated overheating 

in future climate analyses (after installing insect mesh the house continues to be monitored and it is 

expected that the overheating rate of the first two years of monitoring will be reduced [34]). In addition 

to the Passivhaus requirements, Larch House has a photovoltaic PV system installed to meet Level 6 of 

the at-the-time applicable UK Code for Sustainable Homes, i.e., zero carbon emission. PHPP calculated 

20.1 kg/m2 CO2 emissions for the building, with 12.8 kg/m2 CO2 emissions being avoided due to the 

solar system. However, the building did not achieve a truly net zero carbon emission and required a PV 

system of approximately 6 kW peak to meet zero carbon emissions. This study gives the value of the 

building’s total consumption rather that net value of the measures, i.e., this study ignored the CO2 

emission avoided due to the solar panels and electricity usage offset by the solar system. In this way the 

consumption of the dwelling can be assessed based on the building characteristics and not the power of 

the PV system. 

As a result of comparing the Larch House monitored data with DesignBuilder predictions, and then 

fine tuning the DesignBuilder parameters to reflect known conditions in the house, it was felt that a 

satisfactory protocol had been established for using DesignBuilder in the next stage of this study’s 

analysis of façade geometry impacts on overheating. 
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2.3. Pilot Study 

To the best knowledge of the authors, the impact of a tilted façade has not been studied in terms of 

thermal comfort and energy use for a Passivhaus design. In order to gain a better initial understanding of 

the environmental parameters and the impact of the external inclination geometry, the preliminary pilot 

study modelled a simple single thermal zone in the form of a box shape replica of a house. The pilot 

study was, in fact, conducted to examine the effectiveness of the software in response to changing the 

façade inclination. 

A hypothetical Passivhaus standard unit in a suburban exposure was developed to represent a typical 

Passivhaus dwelling (Figure 2). The unit was nine metres long, seven metres wide and three metres high 

and was a stand-alone unit. Construction materials, building specifications and occupancy schedule were 

set to be similar to the Larch House case study. The inclination angle θ of the south facade was 

manipulated to test the effectiveness of the façade inclination at 5° intervals starting from θ = 90°, i.e., a 

vertical façade, to 140°, i.e., 50° beyond the vertical, as shown in Figure 3. The input data such as 

U-values, HVAC system, schedule pattern, and glazing area were chosen based on the original Larch 

House PHPP file [35] to generate the closest interpretable results. Table 3 indicates the building fabric 

thermal characteristics used for the model. The amount of glazing was based on window-to-wall ratio 

(WWR) and was applied to the pilot study model to represent 53%, 11%, 7% and 0% for south, east, 

north and west facing facades respectively. Figure 2 also depicts the amount of south glazing, including 

fixed and opening windows. Similar to the case study, external roller blinds were provided to try and 

prevent summer overheating. 

 

Figure 2. Pilot unit. 

 

Figure 3. Side elevation of different façade inclinations. 
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Table 3. U-Values used in the pilot study model. 

Element U-Value (W/m2K) Thickness (mm) 

Exterior walls 0.095 467 
Flat roof 0.074 578 

Ground floor slab 0.076 800 
Windows 0.860 Triple glazing 13 mm argon-filled 

The HVAC operation template for the thermal simulation was set to mechanical ventilation with heat 

recovery system (MVHR). It must be noted that, similar to the existing reference case, the heat recovery 

system and heating supply were ON for winter time as the Passivhaus provides most of its heating 

demand from the heat recovery system, i.e., heat given off by appliances, occupants and solar gain. 

However, in order to maintain a minimum indoor air temperature of 20 °C on the coldest days a small 

amount of supplementary heating is required, which is provided in the form of a post-air heating unit in 

the MVHR system. Any additional heating is acceptable up to 15 kWh/m2year [5]. For the summer 

period natural ventilation was set to be operating, while the cooling supply was OFF since there is no 

mechanical cooling device used in the reference Passivhaus case. The blind operation schedule was set 

to simulate a typical use where occupants operate the blind based on the UK weekdays, weekends and 

holidays. This was chosen from a compact schedule script in the DesignBuilder library specified for 

living areas, where the fraction of the blind operation is higher during intensive summer sunshine hours. 

However, this does not mean that blinds were always closed during these periods. Natural ventilation 

was assumed to be operating in summer by opening the windows (cross ventilation). The air change rate 

for summer was 0.8 ach. In winter windows were closed and mechanical ventilation with a minimum  

0.3 ach was operating. Heating and cooling set points were 20 and 25 °C respectively and the efficiency 

of heat recovery was set to 87% ηHR. 

2.4. Weather Data for Simulation 

The most recent future climate change predictions for the UK were provided by UK Climate 

Projections in 2009 (UKCP09). The probabilistic weather data presented in UKCP2009 were not in a 

format that could be readily used by building modelling software. Consequently, a study entitled 

PROMETHEUS, based at Exeter University, developed techniques for creating future weather files 

using UKCP09 data but in software-friendly formats, such as in Energy Plus format (.epw) [20].  

These hourly weather data files were available for medium and high emission scenarios with different 

percentile probabilities for both Test Reference Year (TRY) and Design Summer Year (DSY) weather 

data, where DSY tends to give warmer summer days and TRY is more representative of the whole year. 

The majority of the studies to date have used medium or high emission future weather data with the 

central estimate (50%), while some used the worst case scenario of high emission 90% probability, 

where the changes are very unlikely to be greater than the given value. Gupta and Gregg [19] argued that 

the most robust design for future climate should be resilient to a worst case scenario. On the other hand, 

some argue [17,28] that considering extreme worst case scenarios for building design is very costly and 

unnecessary because it is very unlikely to happen. For the modelling in this paper an average pessimistic 

scenario of high emission 50 percentile probability was chosen rather than the low, medium or worst 

case scenario. It must be borne in mind that this study tried to obtain an indication of what may happen 
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and not to find absolute real values. Obviously, the current Ebbw Vale climate was used to validate the 

Larch House modelling case study exercise described previously. However, for assessing overheating 

risk the DesignBuilder modelling used weather files relating to future scenarios in London because 

London is projected to experience the greatest future external air temperature rises in the UK as a result 

of both climate change and urban heat island impacts [36]. 

3. Results and Discussion 

3.1. Overheating Risk for the Pilot Study Unit in Current and Future Climates in London 

Figure 4 gives current and future data concerning the consequence of predicted future temperatures 

on the thermal comfort inside the pilot unit with the typical vertical south façade. The bar chart depicts 

average monthly outside dry-bulb temperature over a year for current and future climates London. The 

data illustrate the predictions of possible future temperatures in London under high emission  

50 percentile tested reference year (A1Fi 50%_TRY) for 2030, 2050 and 2080. The horizontal band 

across Figure 4 shows the range of comfort temperatures. 

 

Figure 4. Monthly outdoor dry bulb air and average indoor operative temperature (°C) in the 

pilot study unit for current and future weather conditions (London). 

It is clear from Figure 4 that temperatures will raise over the whole 12 month cycle of the year in 

future. However, the increases are more significant for the summer time, especially in June and July. The 

increase in average dry bulb air temperature in summer time is double the temperature rise for winter. 

The highest average dry bulb temperature for the current CIBSE file London climate is around 17.5 °C, 

while the value for 2080 shows a dramatic increase to over 23 °C. This will clearly cause an increase in 

operative temperatures inside the building. The curves in Figure 4 represent the indication of possible 

future overheating risk for London which needs to be taken into consideration at the early design stage. 

The mean value for indoor operative temperature never dropped below 20 °C whilst space heating 

demand was kept within the limit of the Passivhaus standards for current and future climate. This 

showed the robust performance of the Passivhaus structure for the heating period. However, the 
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temperatures increase to just over the comfort zone in June and July for current weather data. For the 

current climate the indoor temperature of the super insulated pilot unit is close to an average of 26 °C in 

July. However, the future temperatures show a trend of thermal discomfort during summer, where inside 

temperatures for the hottest month of the year in 2080 may rise up to 31 °C if no additional adaptation 

strategies (apart from blinds) were implemented in the Passivhaus design. It should be noted that the 

window opening pattern and the amount of natural ventilation were kept constant for current and future 

climate conditions in order to make a valid comparison between the façade alternatives. However, it is 

accepted that occupants will change their behaviour as outside temperatures change and interiors 

become more uncomfortable. 

3.2. Effect for the Pilot Study Unit of the Inclined Façade on Heating and Cooling Demand 

Next, the study examined the impact that different façade geometries would have on the energy 

required (supplementary heating and cooling) to provide the minimum indoor temperature of 20 °C in 

winter and a maximum indoor temperature of 25 °C in summer. The MVHR heating option remained 

ON, based on a set point of 20 °C. Natural ventilation was operating and the cooling option was switched 

ON in order to supply cool air when the temperature rose above the cooling set point of 25 °C. Figure 5 

demonstrates the amount of energy, including heating and cooling, that the pilot unit required to keep the 

temperature within the interval of 20–25 °C for the London climate under current and future weather 

conditions. It should be noted that the required supplementary cooling in summer was provided by an 

air-conditioning system running on electricity. 

Results from the pilot study analysis (see Figure 5) showed that the façade inclination angle had a 

noticeable impact on both annual cooling and heating demand for the Passivhaus pilot unit in London for 

current and future weather scenarios. The curves compare the heating load for different south façade 

inclinations. As expected, for the heating demand there was an upward trend as the inclination angle 

grew. For all climate periods a steeper upward trend was observed when the inclination angle went 

beyond 115°. The reason for that is, perhaps, that there is some overshadowing during the winter. 

 

Figure 5. Annual energy demand of the pilot study unit for different façade geometries 

under four climate scenarios. 
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The vertical bars in Figure 5 show current and future data concerning the additional cooling load 

energy to maintain the maximum set point temperature of 25 °C during the summer. In contrast to the 

heating demand, the cooling load decreases as the inclination angle increases away from the vertical. 

However, the inclination stops having much effect when the angle reaches 120°. What is surprising is 

that when the angle increases from 130° to 140° the cooling demand starts to rise marginally. This might 

be because the windows on that façade will then receive more reflected radiation from the ground.  

The software has a surface solar reflectance (albedo) that can be modified between 0 and 1. In this study 

the default value of 0.3 was modelled as this value represents a typical average albedo for grass and soil. 

It can be seen that there is a modest cooling demand for the current London climate, which can be 

eliminated by implementing an angled façade (details of corresponding indoor temperature can be found 

later in Figure 8a). It is clear from the data that the cooling demand will raise significantly by the second 

half of the century, when the self-shading strategy promises a substantial drop in overheating risk for 

future climates in London. However, a data analysis of all aspects of energy consumption is required to 

determine the design of the envelope shape that provides solar access in winter while acting as a  

self-shading facade in the summer. 

The pilot study unit was also tested in a free-running mode, when both cooling and heating were 

unavailable for simulations. January and July were chosen as being representative of cold and hot 

months. Figure 6 shows the average operative temperature within the unit for January and July. It is 

observed that applying the 115° inclined angle produced an average of 0.5 °C lower indoor temperature 

in January while the temperature dropped by an average of 2 °C in July. 

 

Figure 6. Average indoor operative temperatures for free-running Passivhaus pilot unit in 

January and July. 

3.3. Overheating Frequency for the Pilot Study Unit 

As mentioned above this study adopted the CIBSE Guide A static criteria on overheating (i.e., 

temperatures exceeding 25 °C for more than 10% and 28 °C for more than 1% of total occupied hours) to 

assess the frequency of overheating in the pilot study unit. Figure 7 shows annual overheating rates for the 

four climate periods based on the number of hours at which the interior air temperature exceeded 28 °C. 
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Applying an inclined facade should be precisely calculated to avoid overshading. The curves in  

Figure 5 showed that, upon implementing a tilted façade, the heating demand increased as a consequence 

of reduced direct solar radiation gain. According to the data, applying a tilted wall could be beneficial in 

reducing the potential overheating for current and future climates. Figures 5–7 suggest that in order to 

eliminate current overheating and reduce future overheating without greatly compromising the space 

heating demand then a reasonable inclination angle for the façade would be around 115°. 

 

Figure 7. Frequency of overheating in the pilot study unit percentage of occupied hours the 

indoor operative temperatures exceeds 28 °C. 

3.4. Implementing for the Pilot Study Unit the Effective Façade Geometry to Current and  

Future Conditions 

Following on from the data analysis on the pilot study, the vertical south façade of the pilot study unit 

was replaced by a tilted façade with a 115° inclination. The simulations were carried out using the 

London future weather files. As the modelled data showed, there was a significant drop in summer 

operative temperature when using a 115° tilted wall, whereas the operative temperature did not 

significantly drop in winter. The implementation of a steeper façade, on the other hand, will block the 

required solar gain in winter while an angle around 115° will guarantee solar heat in winter and obstruct 

the high solar irradiation on hot summer days. Figures 8 and 9 indicate the annual monthly mean 

operative temperatures for heating (Figure 8) and cooling (Figure 9) demand when comparing the 

vertical (θ = 90°) and the suggested tilted façade (θ = 115°). The line graphs indicate operative 

temperature of the pilot unit with vertical and tilted south façades for current and future climate 

predictions. The bar charts indicate the amount of heating and cooling needed to provide comfortable 

temperature, i.e., indoor temperatures between 20 and 25 °C. As mentioned earlier, Passivhaus, due to its 

super insulation, is capable of maintaining an internal temperature of 20 °C. The heat recovery system 

also operates by utilizing the heat given off by appliances, occupants and solar gain. However, a small 

amount of supplementary heating was required during the coldest period of the year (Figure 8). With the 

vertical glazed façade in the south elevation the pilot study unit experienced a marginal summer 

overheating rate under current climate conditions. Therefore, to ensure a comfortable indoor 

environment, the unit required a small proportion of supplementary cooling. This need was eliminated 
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by implementing the tilted façade of 115° (Figure 9a). For the climate periods of the 2030s and 2050s the 

building experienced over 9% and 11% overheating respectively, exceeding significantly the 1% 

benchmark limit. This was reduced by the self-shading façade to just over 2% and 3% for the 2030s and 

2050s climate periods respectively (Figure 9b,c). By the end of the century overheating is expected to 

occur in shoulder seasons, when high indoor temperatures could be seen from May up to September in 

the 2080s. Supplementary cooling for the Passivhaus pilot study unit with a vertical, highly glazed 

façade leapt to the point where the electricity consumption for summer cooling just surpassed the energy 

demand for space heating. Introducing an angled façade, however, cut the amount of supplementary 

cooling by up to 50% (Figure 9d), whereas the energy consumption for heating climbed only marginally, 

ensuring it did not exceed the maximum energy demand requirement of the Passivhaus standards. 

Overall, the current climate overheating risk of 3.2% was eliminated to below the benchmark number of 

1%. For future weather projections the overheating rate was significantly reduced by the angled façade. 

However, the angled facade did not completely eliminate the potential overheating risk, especially for 

the climate of the 2080s. 

4. Effect of the Inclined Façade on Daylighting 

While shading strategies are among the tools to reduce overheating and glare discomfort, they can 

form as an obstacle to prevent good daylighting. The optimal design of any shading system requires an 

adequate trade-off between visual and thermal comfort. Much has been written about optimizing the 

functionality of external shading devices from different viewpoint [37–39], but none of them analyzed 

the impact of the façade inclination on the indoor illuminance for a relatively small house. This study 

was not focused on the daylighting performance of a Passivhaus. However, it is interesting to understand 

the consequence of the façade inclination and so a simplified numerical analysis was undertaken to show 

the effect inclination has on overall daylighting illuminance. The DesignBuilder package includes the 

advanced lighting simulation software Radiance, which provides the detailed calculation of illuminance 

data, including average daylight factor for each zone. Due to the large number of variables a relatively 

simple daylighting analysis on the pilot unit with different façade alternatives was examined. The results 

were generated based on BREEAM credit HEA1 with CIE overcast day (10,000 Lux). The maximum 

grid size and complexity of the chosen template type will significantly affect the time taken for the 

calculations. Therefore, a template type of “Good” with no interpolation (refer to [40]) with the default 

grid size was chosen. Since the pilot study was not divided into different zones by internal partitions the 

results may vary noticeably compared with actual cases. However, this analysis was not trying to obtain 

the accurate values of illuminance in the unit but attempting to understand the significance of  

inclination on daylighting illuminance. Figure 10 reveals the consequence of a tilted façade on the 

average daylight factor in a zone. Using a tilted façade of 115° will reduce the daylight factor by 

approximately 44% considering the current London climate. It may also increase the need for artificial 

lighting. It is worth mentioning that some of the decrease might be of benefit for visual comfort by 

blocking some of the direct glare. In addition, other, more traditional shading strategies are also likely to 

decrease daylighting levels. 

 



Buildings 2015, 5 978 

 

 

  

  

Figure 8. Indoor temperature and monthly supplementary heating required for the unit with vertical and tilt facade under four climatic periods. 
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Figure 9. Monthly cooling required for the unit with vertical and tilted facade under four climatic periods. 
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Figure 10. Average daylight factor in the whole unit with different façade inclinations. 

5. Discussion and Future Studies 

This is clear that when building a house with an angled facade there are some consequences in terms 

of structure, ventilation, daylighting and overall cost of the building. However any intervention will have 

a particular consequence on these issues. The cost of interventions will vary significantly. There is not a 

clear fixed price source to provide information that covers all the studied interventions. However, a report 

from Energy Saving Trust [41] estimated the cost of some intervention. Envelope insulation is by far the 

highest cost among the interventions. Triple windows and external shutters, internal blinds and fixed 

shading devise were the medium cost options. Night ventilation was among the cheapest interventions to 

tackle overheating in the UK. However, this will require the window security upgrade [42]. 

When the façade inclination increases the total surface area increases. This will increase the surface 

area exposed to outdoor temperature and consequently increase the heat loss. On the other hand the 

volume of the interior expands but the land cover will remain the same as a vertical façade and the  

extra overhang space can be used as a balcony for the upper floor without increasing the footprint of  

the property. 

The effect of self-shading facade on the wind flow pattern around and inside the building also will 

vary from the vertical wall or having other shading devices such as overhang. This will be studied in a 

separate paper to provide detailed information about the fluid dynamics of the air movement and the 

amount of natural ventilation will be investigated respectively. Although the impact of the tilt facade on 

daylighting was briefly mentioned, a detailed analysis on the illuminance levels for different facade 

inclinations and also other shading devices will be conducted in a separate paper. Another issue which is 

worth investigating is the geography. Assuming a tilted wall in London could minimize overheating for 

future climates, but not eradicate totally the overheating, it would be interesting to know if the same 

façade tilt angle could completely remove overheating in future climates or if a steep angle would 

increase heating demand in a cooler climate at a different location and latitude. 

6. Conclusions 

The study has investigated the overheating risk in a UK Passivhaus and examined a novel way to 

reduce that risk for future climate scenarios. The study tested the high medium scenario (still not the 

0

1

2

3

4

5

6

7

90° 95° 100° 105° 110° 115° 120° 125° 130° 135° 140°

Av
er

ag
e 

DF
 (%

)

Tilt



Buildings 2015, 5 981 

 

 

worst case scenario), and the risk of overheating appeared to be significant. Some good examples of 

adaptive innervations were reviewed within the literature of the study and a proposed strategy was tested 

to define whether this can be counted as a successful intervention towards reducing the negative impact 

of the warming climate. 

Some shading strategies addressed in the literature have limitations-for instance, occupants may not 

use blinds in the optimum way, thus reducing their effectiveness in combating overheating. This paper 

presented dynamic thermal simulations on a pilot study Passivhaus detached house unit. The study 

summarised how one factor could be considered in design stage to be best adapted to reduce future 

negative impacts of climate change and withstand current requirements. It was concluded that  

geometric considerations would help to improve the resilience of the London domestic stock to a 

warming climate and reduce reliance on the potential installation of air conditioning systems. It was 

found that a self-shading strategy via a 115° tilted south façade in London could eliminate the current 

climate overheating risk and mitigate greatly the future overheating risk. However, it was found that 

further interventions, like enhancing natural ventilation, will be necessary to minimize discomfort 

thermal condition within a Passivhaus dwelling. However, the proposed method tries to demote the 

overheating risk from high to medium or slight risk. Further energy efficiency programmes need to 

include adaptation if the adverse effects of summer overheating are to be avoided in the future.  

The results tend to emphasize the effectiveness of a good shading strategy in adapting dwellings to 

higher summer temperatures. Although London was chosen for the detailed analysis, the proposed 

approach could be applied to other locations to test how latitude and climate impact on the preferred 

façade tilt angle. 
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