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Abstract

Ensuring that autonomous systems work ethically is both
complex and difficult. However, the idea of having an ad-
ditional ‘governor’ that assesses options the system has, and
prunes them to select the most ethical choices is well under-
stood. Recent work has produced such a governor consisting
of a ‘consequence engine’ that assesses the likely future out-
comes of actions then applies a Safety/Ethical logic to select
actions. Although this is appealing, it is impossible to be cer-
tain that the most ethical options are actually taken. In this
paper we extend and apply a well-known agent verification
approach to our consequence engine, allowing us to verify
the correctness of its ethical decision-making.

Introduction
It is widely recognised that autonomous systems will need
to conform to legal, practical and ethical specifications. For
instance, during normal operation, we expect such systems
to fulfill their goals within a prescribed legal or professional
framework of rules and protocols. However, in exceptional
circumstances, the autonomous system may choose to ig-
nore its basic goals or break legal or professional rules in
order to act in an ethical fashion, e.g., to save a human
life. But, we need to be sure that the system will only
break rules for justifiably ethical reasons and so we are
here concerned with the verification of autonomous systems
and, more broadly, with the development of verifiable au-
tonomous systems.

This paper considers a technique for developing verifiable
ethical components for autonomous systems, and we specif-
ically consider the consequence engine proposed by (Win-
field, Blum, and Liu 2014). This consequence engine is a
discrete component of an autonomous system that integrates
together with methods for action selection in the robotic con-
troller. It evaluates the outcomes of actions using simulation
and prediction, and selects the most ethical option using a
safety/ethical logic. In Winfield et al. (2014), an example of
such a system is implemented using a high-level Python pro-
gram to control the operation of an e-puck robot (Mondada
et al. 2009) tracked with a VICON system. This approach
tightly couples the ethical reasoning with the use of standard
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criteria for action selection and the implementation was val-
idated using empirical testing.

In addition, given the move towards configurable,
component-based plug-and-play platforms for robotics and
autonomous systems, e.g. (Verfaillie and Charmeau 2006;
Dennis et al. 2014b; Quigley et al. 2009), we are interested
in decoupling the ethical reasoning from the rest of the robot
control so it appears as a distinct component. We would like
to do this in a way that allows the consequence engine to be
verifiable in a straightforward manner.

This paper describes the first steps towards this. It devel-
ops a declarative language for specifying such consequence
engines as agents implemented within the agent infrastruc-
ture layer toolkit (AIL). Systems developed using the AIL
are verifiable in the AJPF model-checker (Dennis et al.
2012) and can integrate with external systems such as Mat-
Lab simulations (Lincoln et al. 2013), and Robotic Operat-
ing System (ROS) nodes (Dennis 2014). Having developed
the language, we then reimplement a version of the case
study reported in Winfield et al. (2014) as an agent and show
how the operation of the consequence engine can be verified
in the AJPF model checker. We also use recently devel-
oped techniques to show how further investigations of the
system behaviour can be undertaken by exporting a model
from AJPF to the PRISM probabilistic model checker.

Background
An Internal Model Based Architecture
Winfield et al. (2014) describe both the abstract architec-
ture and concrete implementation of a robot that contains a
consequence engine. The engine utilises an internal model
of the robot itself and its environment in order to predict
the outcomes of actions and make ethical and safety choices
based on those predictions. The architecture for this system
is shown in Figure 1. In this architecture, the consequence
engine intercepts the robot’s own action selection mecha-
nism. It runs a simulation of all available actions and notes
the outcomes of the simulation. These outcomes are evalu-
ated and selected using a Safety/Ethical Logic layer (SEL).

Winfield et al. (2014) consider a simple scenario in which
a human is approaching a hole. In normal operation the
robot should select actions which avoid colliding with the
human but, if the robot’s inference suggests the human will
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Fig. 1. Internal-model based architecture. Robot control data flows are shown in red
(darker shaded); the Internal Model data flows in blue (lighter shaded).

3.1 Towards an Ethical Robot

Consider the scenario illustrated in Fig. 2. Here there are two actors: our self-
aware robot and a human. The environment also contains a hole in the ground,
of su�cient size and depth that it poses a serious hazard to both the robot
and the human. For simplicity let us assume the robot has four possible next
actions, each of which is simulated. Let us output all safety outcomes, and in the
AE assign to these a numerical value which represents the estimated degree of
danger. Thus 0 indicates ‘safe’ and (say) 10 ‘fatal’. An intermediate value, say 4,
might be given for a low-speed collision: unsafe but probably low-risk, whereas
‘likely to fall into a hole’ would merit the highest danger rating of 10. Secondly,
we also output, to the AE, the same safety consequence of the other actor(s) in
the environment - noting that the way we have specified the CE and its inputs,
means that the CE is equally capable of modelling the e↵ect of hazards on all
dynamic actors in the environment, including itself. The ability to model and
hence anticipate the consequences of another dynamic actor’s actions means that
the CE arguably provides the robot with a very simple artificial theory of mind
for that actor. If the actor is a human then we now see the possibility of the
robot choosing to execute an unsafe action in order to prevent that human from
coming to harm.

Tab. 1 shows the safety outcome values that might be generated by the AE
for each of the four possible next actions of the robot, for both the robot and
human actors in this scenario. From the robot’s perspective, 2 of the 4 actions
are safe: Ahead Left means the robot avoids the hole, and Stand Still means the
robot also remains safe. Both of the other actions are unsafe for the robot, but
Ahead is clearly the most dangerous, as it will result in the robot falling into the

Figure 1: Internal-model based architecture. Robot control
data flows are shown in red (darker shaded); the Internal
Model data flows in blue (lighter shaded).

fall in the hole then it may opt to collide with the human.
While this is “against the rules”, it is a more ethical option
as it avoids the greater harm of the human falling into the
hole. In order to do this, the paper suggests scoring the out-
comes of the actions for each of the actors (the human and
the robot) – e.g., 0 if the actor is safe, 4 if the actor is in-
volved in a collision and 10 if the actor falls in the hole. It
then recommends a simple if-then logic for selecting actions
based on these values.

IF f o r a l l robot act ions ,
the human i s equa l l y safe

THEN (∗ d e f a u l t safe ac t ions ∗ )
ou tput safe ac t ions

ELSE (∗ e t h i c a l ac t i on ∗ )
ou tput ac t i on ( s ) f o r

l e a s t unsafe human outcome ( s )

A version of this architecture was implemented on e-pucks
(small, relatively simple, robots). The basic activity is for
the robot to attempt to reach some target location while
avoiding a hole in the ground. Two humans (actually sim-
ulated by additional e-pucks in this experiment) were also
programmed to move towards the hole and then the robot
could choose to move towards these in an attempt to get
them to divert using their own inbuilt avoidance mechanisms
in order to prevent them falling into the hole. A number
of experiments were carried out. In all situations the robot
avoided falling into the hole itself. When there was a sin-
gle other robot (representing the human that is in danger)
it successfully managed to divert the “human” on all occa-
sions. When a third robot (representing a second human)
was introduced into the problem, the robot rescued at least
one “human” in about 58% of runs and rescued both in 9%
of runs. These outcomes depended upon both noise and the
starting conditions effecting which additional robot moved
first and whether the e-puck had time to reach both of them.

The actual implementation of the basic ethical action se-
lection in this system was based on potential functions. Each
action was assigned a score based upon the weighted sum of
how close it took the e-puck to the goal position, whether

the e-puck was placed in danger, whether one of the other
“humans” was placed in danger, and how close the action
would take the e-puck to the “humans”. The system then
simply selected the action with the highest score.

Verifying Autonomous Systems using AJPF
Formal verification is essentially the process of assessing
whether a specification, given in formal logic, is true of
the system in question. For a specific logical property, ϕ,
there are many different approaches to achieving this (Fetzer
1988; DeMillo, Lipton, and Perlis 1979; Boyer and Moore
1981), ranging from deductive verification against a log-
ical description of the system ψS (i.e., ` ψS ⇒ ϕ) to
the algorithmic verification of the property against a for-
mal model of the system, M (i.e., M |= ϕ). The latter
has been extremely successful in Computer Science and Ar-
tificial Intelligence, primarily through the model checking
approach (Clarke, Grumberg, and Peled 1999). This takes
an executable model of the system in question, defining all
the system’s possible executions, and then checks a logical
property against this model (and, hence, against all possible
executions).

Whereas model checking involves assessing a logical
specification against all executions of a model of the sys-
tem, an alternative approach is to check a logical property
directly against all actual executions of the system. This is
termed the model checking of programs (Visser et al. 2003)
and crucially depends on being able to determine all execu-
tions of the actual program. In the case of Java, this is feasi-
ble since a modified virtual machine can be used to manipu-
late the program executions. The Java Pathfinder (JPF) sys-
tem carries out formal verification of Java programs in this
way by analysing all the possible execution paths (Visser et
al. 2003). This avoids the need for an extra level of mod-
elling and ensures that the verification results truly apply to
the real system.

In the examples discussed later in this paper we use the
MCAPL framework which includes a model checker for
agent programs built on top of JPF. As this framework is
described in detail in (Dennis et al. 2012), we only pro-
vide a brief overview here. MCAPL has two main sub-
components: the AIL-toolkit for implementing interpreters
for belief-desire-intention (BDI) agent programming lan-
guages and the AJPF model checker.

Interpreters for BDI languages are programmed by instan-
tiating the Java-based AIL toolkit (Dennis et al. 2008). Here,
an agent system can be programmed in the normal way for
the programming language but then runs in the AIL inter-
preter which in turn runs on top of the Java Pathfinder (JPF)
virtual machine.

Agent JPF (AJPF) is a customisation of JPF that is
specifically optimised for AIL-based language interpreters.
Agents programmed in languages that are implemented us-
ing the AIL-toolkit can thus be formally verified via AJPF.
Furthermore if they run in an environment programmed
in Java, then the whole agent-environment system can be
model checked. Common to all language interpreters im-
plemented using the AIL are the AIL-agent data structures
for beliefs, intentions, goals, etc., which are subsequently

46



accessed by the model checker and on which the logical
modalities of a property specification language are defined.

The system described in Winfield et al. (2014) is not ex-
plicitly a BDI system or even an agent system, yet it is
based on the concept of a software system that forms some
component in a wider environment and there was a moder-
ately clear, if informal, semantics describing its operation,
both of which are key assumptions underlying the MCAPL
framework. We therefore targeted AJPF as a preliminary
tool for exploring how such a consequence engine might be
built in a verifiable fashion, especially as simple decision-
making within the safety/ethical logic could be straightfor-
wardly captured within an agent.

Modelling a Consequence Engine for AJPF
Since AJPF is specifically designed to model check systems
implemented using Java it was necessary to re-implement
the consequence engine and case study described in Winfield
et al. (2014).

We implemented a declarative consequence engine in the
AIL as a simple language governed by two operational se-
mantic rules, called Model Applicable Actions and Evaluat-
ing Outcomes. Semantically, a consequence engine is repre-
sented as a tuple 〈ce, ag, ξ, A,An, SA,EP, fES〉 where:

• ce and ag are the names of the consequence engine and
the agent it is linked to;

• ξ is an external environment (either the real world, a sim-
ulation or a combination of the two);

• A is a list of ag’s actions that are currently applicable;

• An is a list of such actions annotated with outcomes;

• SA is a filtered list of the applicable actions, indicating
the ones the engine believes to be the most ethical in the
current situation;

• EP is a precedence order over the actors in the environ-
ment dictating which one gets priority in terms of ethical
outcomes; and

• fES is a map from outcomes to an integer indicating their
ethical severity.

An′ = {〈a, os〉 | a ∈ A ∧ os = ξ.model(a)}
〈ce, ag, ξ, A,An, SA,EP, fES〉 →
〈ce, ag, ξ, A,An′, SA,EP, fES〉

(1)

The operational rule for Model Applicable Actions is shown
in (1). This invokes some model or simulation in the en-
vironment (ξ.model(a)) that simulates the effects of ag
taking each applicable action a and returns these as a list
of tuples, os, indicating the outcome for each actor, e.g.,
〈human, hole〉 to indicate that a human has fallen into a
hole. The consequence engine replaces its set of annotated
actions with this new information.

SA′ = fep(EP,An, fES , A)

〈ce, ag, ξ, A,An, SA,EP, fES〉 →
〈ce, ag, ξ, A,An, SA′, EP, fES〉

(2)

The operational rule for Evaluating Outcomes, specifically
of the ethical actions, is shown in (2). It uses the function fep
to select a subset of the agent’s applicable actions using the
annotated actions, the precedence order and an evaluation
map as follows:

fep([], An, fES , SA) = SA (3)

fep(h :: T,An, fES , SA) =

fep(T,An, fES , fme(h,An, fES , SA)) (4)

fep recurses over a precedence list of actors (where [] indi-
cates the empty list and h :: T is element h in front of a
list T ). It’s purpose is to filter the set of actions down just
to those that are best, ethically, for the first actor in the list
(i.e., the one whose well-being has the highest priority) and
then further filter the actions for the next actor in the list and
so on. The filtering of actions for each individual actor is
performed by fme.

fme(h,An, fES , A) =

{a | a ∈ A ∧ ∀a′ 6= a ∈ A.∑
〈a,〈h,out〉〉∈An

fES(out) ≤
∑

〈a′,〈h,out′〉〉∈An

fES(out
′)}

(5)

fme sums the outcomes for actor, h given some action a ∈ A
and returns the set of those where the sum has the lowest
value. For instance if all actions are safe for actor h we can
assume that fES maps them all to some equal (low) value
(say 0) and so fme will return all actions. If some are unsafe
for h then fES will map them to a higher value (say 4) and
these will be excluded from the return set.

We sum over the outcomes for a given actor because either
there may be multiple unethical outcomes and we may wish
to account for all of them, or there may be multiple actors of
a given type in the precedence order (e.g., several humans)
and we want to minimize the number of people harmed by
the robot’s actions.

It should be noted that this implementation of a conse-
quence engine is closer in nature to the abstract descrip-
tion from Winfield et al. (2014) than to the implementation
where potential functions are used to evaluate and order the
outcomes of actions. This allows certain actions to be ve-
toed simply because they are bad for some agent high in
the precedence order even if they have very good outcomes
lower in the order. However, this behaviour can be also be
reproduced by choosing suitable weights for the sum of the
potential functions (and, indeed, this is what was done in the
implementation in (2014)).

It should also be noted (as hinted in our discussion of fme)
that we assume a precedence order over types of agents,
rather than individual agents and that our model outputs out-
comes for types of agents rather than individuals. In our case
study we consider only outcomes for humans and robots
rather than distinguishing between the two humans. Impor-
tantly, nothing in the implementation prevents an individual
being treated as a type that contains only one object.

47



Consequence Engine

Model Applicable 
Outcomes

Evaluate Outcomes

Environment

Select Action

Model Outcomes

Ethical Filter

Choose Using Metric

Simple Agent

Select Action

Execute ActionSimulate

Figure 2: Architecture for testing the AIL Version of the Consequence Engine

Our consequence engine language can be used to filter a
set of actions in any environment that can provide a suitable
modelling capability.

Implementing a Robot In order to test the operation of
consequence engines such as this, we also created a very
simple agent language in which agents can have beliefs, a
single goal and a number of actions. Each agent invokes
an external selectAction function to pick an action from the
set of those applicable (given the agent’s beliefs). Once the
goal is achieved then the agent stops. In our case we embed-
ded the consequence engine within the call to selectAction .
First, the consequence engine would filter the available ac-
tions down to those it considered most ethical and then se-
lectAction would use a metric (in this example, distance) to
choose the action which would bring the agent closest to its
goal.

This simple architecture is shown in Figure 2. Here, ar-
rows are used to indicate flow of control. In the simple agent
first an action is selected and then it is executed. Select-
ing this action invokes the selectAction method in the en-
vironment which invokes first the consequence engine and
then a metric-based selection before returning an action to
the agent. (The two rules in the consequence engine are
shown.) Execution of the action by the agent also invokes
the environment which computes the appropriate changes to
the agents’ perceptions.

Note that our implementation of the consequence engine
is independent of this particular architecture. In fact it
would desirable to have the consequence engine as a sub-
component of some agent rather than as a separate entity
interacting with the environment, as is the case in Winfield
et al. (2014). However this simple architecture allowed for
quick and easy prototyping of our ideas 1

Reproducing the Case Study
We reproduced the case study described in Winfield et
al. (2014). Since all parts of the system involved in the veri-
fication needed to exist as Java code, we created a very sim-
ple simulated environment consisting of a 5x5 grid. Note
that we could not reproduce the case study with full fidelity

1Indeed the entire prototype system took less than a week to
produce.

H1

H2

R G

Figure 3: Initial State of the Case Study Environment

since we required a finite state space and the original case
study took place in the potentially infinite state space of the
physical world. The grid had a hole in its centre and a robot
and two humans represented in a column along one side.
At each time step the robot could move to any square while
there was a 50% chance that each of the humans would move
towards the hole. The initial state is shown in Figure 3. The
robot, R, can not reach the goal, G, in a single move and
so will move to one side or the other. At the same time the
humans, H1 and H2, may move towards the hole (central
square).

The agent representing the consequence engine is shown
in code listing 1. Lines 6-7 define the map of outcomes to
values fES and line 12 gives the precedence ordering.

Code Listing 1 Ethical Governor

1: name : e t h i c a l g
2: agent : robot
3
4: Outcome Scores :
5
6safe = 0
7c o l l i s i o n = 4
8hole = 10
9
10: Ethical Precedence :
11
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H1

H2

R

G

Figure 4: Situation where the Robot can not save the Human

12human > robot

The actions available to the simple agent were all of the form
moveTo(X, Y) where X and Y were coordinates on the grid.
A Breseham based super-cover line algorithm (Dedu 2001)
was used to calculate all the grid squares that would be tra-
versed between the robot’s current position and the new one.
If these included either the hole or one of the “humans” then
the outcomes 〈robot, hole〉 and 〈robot, collision〉 together
with 〈human, collision〉 were generated as appropriate. If
either of the “humans” occupied a square adjacent to the
hole then the outcome 〈human, hole〉 was also generated.

Results
We were able to model check the combined program in
AJPF and so formally verify that the agent always reached
its target. However, we were not able to verify that the “hu-
mans” never fell into the hole because in several situations
the hole came between the agent and the human. One such
situation is shown in Figure 4. Here, Human H2 will fall
into the hole when it takes its next step but the robot R can-
not reach it in a single straight line without itself falling into
the hole before it reaches the human.

Since we were particularly interested in verifying the per-
formance of the consequence engine we adapted the mod-
elling method in the environment to assert percepts (declar-
ative statements the robot could perceive) whenever one of
the humans was in danger and whenever there was a safe
path for the robot to reach a human. These percepts had
no effect on the execution of the program but their exis-
tence could be checked by AJPF’s property specification
language. Using these percepts we were able to verify (6)
where 2 is the linear temporal operator meaning “always”
andB(r, p) means that “robot r believes p to be true”. So (6)
reads that it is always the case that if the robot believes h1 is
in danger and it can find a safe path to h1 then it will always
be the case that the robot never believes h1 has fallen in the
hole. We also proved the equivalent property for h2.

It should be noted that we would not necessarily expect
both the above to be the case because, in the situation where
both H1 and H2 move simultaneously towards the hole, the
robot would have to choose which to rescue and leave one

at risk. In reality it turned out that whenever this occurred
the hole was between the robot and human 2 (as in figure 4).
This was an artifact of the fact that the humans had to make
at least one move before the robot could tell they were in
danger. The robot’s first move was always to the far corner
since this represented a point on the grid closest to the goal
that the robot could safely reach. The outcome would have
been different if action selection had been set up to pick at
random from all the points the robot could safely reach that
were equidistant from the hole.

We were also able to export our program model to the
probabilistic PRISM model checker, as described in (Den-
nis, Fisher, and Webster 2013), in order to obtain probabilis-
tic results. These tell us that human 1 never falls in the hole
while human 2 falls in the hole with a probability of 0.71875
(71.8% of the time). The high chance of human 2 falling in
the hole is caused by the robot’s behaviour, moving into the
far corner, as described above. These probabilities are very
different from those reported in Winfield et al’s experimen-
tal set up. This is primarily because the environment used
here is considerably cruder, with the robot able to reach any
point in the grid in a single time step. The behaviour of
the humans is also different to that implemented in (2014)
where the H robots proceeded steadily towards the hole and
the differences in behaviour were determined by small varia-
tions in the precise start up time and direction of each robot.

Verifying the Consequence Engine in Isolation
Following the methodology from (Dennis et al. 2014c) we
also investigated verifying the consequence engine in isola-
tion without any specific environment. To do this we had
to extend the implementation of our declarative language to
allow the consequence engine to have mental states which
could be examined by AJPF’s property specification lan-
guage. In particular we extended the operational semantics
so that information about the outcomes of all actions were
stored as beliefs in the consequence engine, and so that the
final set of selected actions were also stored as beliefs in the
consequence engine. We were then able to prove theorems
about these beliefs.

We developed a special verification environment for the
engine. This environment called the engine to select
from four abstract actions, a1, a2, a3 and a4. When
the consequence engine invoked the environment to model
the outcomes of these four actions then four possible
outcomes were returned 〈human, hole〉, 〈robot, hole〉,
〈human, collision〉 and 〈robot, collision〉. Each of these
four outcomes was chosen independently and at random —
i.e., the action was returned with a random selection of out-
comes attached. AJPF then explored all possible combina-
tions of the four outcomes for each of the four actions.

Results
Model-checking the consequence engine in listing 1 with the
addition of beliefs and placed in in this new environment we
were able to prove (7): it is always the case that if a1 is a
selected action and its outcome is predicted to be that the
human has fallen in the hole, then all the other actions are
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2(B(r, danger(h1)) ∧B(r, path to(h1)))→ 2¬B(r, h1(hole)) (6)

2(B(ce, sel(a1)) ∧B(ce, outcome(a1, human(hole))))→
B(ce, outcome(a2, human(hole))) ∧B(ce, outcome(a3, human(hole))) ∧B(ce, outcome(a4, human(hole))) (7)

2(B(ce, sel(a1)) ∧B(ce, outcome(a1, robot(hole))))→
(B(ce, outcome(a2, human(hole))) ∨B(ce, outcome(a2, robot(hole))) ∨B(ce, outcome(a2, human(collision))))∧
(B(ce, outcome(a3, human(hole))) ∨B(ce, outcome(a3, robot(hole))) ∨B(ce, outcome(a3, human(collision))))∧
(B(ce, outcome(a4, human(hole))) ∨B(ce, outcome(a4, robot(hole))) ∨B(ce, outcome(a4, human(collision)))) (8)

also predicted to result in the human in the hole — i.e., all
other actions are equally bad.

We could prove similar theorems for the other outcomes,
e.g. (8) which states that if a1 is the selected action and it
results in the robot falling in the hole, then the other actions
either result in the human in the hole, the robot in the hole,
or the human colliding with something.

In this way we could verify that the consequence engine
indeed captured the order of priorities that we intended.

Related Work
The idea of a distinct entity, be it software or hardware, that
can be attached to an existing autonomous machine in order
to constrain its behaviour is very appealing. Particularly so
if the constraints ensure that the machine conforms to recog-
nised ethical principles. Arkin (2012) introduced this idea of
an ethical governor to autonomous system, using it to evalu-
ate the “ethical appropriateness” of a plan of the system prior
to its execution. The ethical governor prohibits plans it finds
to be in violation with some prescribed ethical constraint.

Also of relevance Anderson and Anderson’s approach,
where machine learning is used to ‘discover’ ethical prin-
ciples, which then guide the system’s behaviour, as exhib-
ited by their humanoid robot that “takes ethical concerns into
consideration when reminding a patient when to take med-
ication” (Anderson and Anderson 2008). A range of other
work, for example in (Anderson and Anderson 2011; Powers
2006), also aims to construct software entities (‘agents’) able
to form ethical rules of behaviour and solve ethical dilem-
mas based on these. The work of (Wiegel and van den Berg
2009) provides a logical framework for moral reasoning,
though it is not clear whether this is used to modify prac-
tical system behaviour.

Work by one of the authors of this paper (Winfield) has
involved developing and extending a generalised methodol-
ogy for safe and ethical robotic interaction, comprising both
physical and ethical behaviours. To address the former, a
safety protection system, serves as a high-level safety en-
forcer by governing the actions of the robot and preventing it
from performing unsafe operations (Woodman et al. 2012).
To address the latter, the ethical consequence engine studied
here has been developed (Winfield, Blum, and Liu 2014).

There has been little direct work on the formal verification
of ethical principles in practical autonomous systems. Work
of the first two authors has considered the formal verifica-

tion of ethical principles in autonomous systems, in partic-
ular autonomous vehicles (Dennis et al. 2014a). In that pa-
per, we propose and implement a framework for constrain-
ing the plan selection of the rational agent controlling the
autonomous vehicle with respect to ethical principles. We
then formally verify the ethical extent of the agent, proving
that the agent never executes a plan that it knows is ‘uneth-
ical’, unless it does not have any ethical plan to choose. If
all plan options are such that some ethical principles are vi-
olated, it was also proved that the agent choose to execute
the “least unethical” plan it had available.

Further Work
We believe that there is a value in the existence of a declar-
ative language for describing consequence engines and that
the AIL-based implementation used in this verification lays
the groundwork for such a language. We would be interested
in combining this language, which is structured towards the
ethical evaluation of actions, with a language geared towards
the ethical evaluation of plans for BDI systems, such as is
discussed in (Dennis et al. 2014a).

While using AJPF allowed us to very rapidly implement
and verify a consequence engine in a scenario broadly simi-
lar to that reported in Winfield et al. (2014) there were obvi-
ous issues trying to adapt an approach intended for use with
BDI agent languages to this new setting.

In order to verify the consequence engine in a more gen-
eral, abstract, scenario we had to endow it with mental states
and it may be appropriate to pursue this direction in order
to move our declarative consequence engine language into
the sphere of BDI languages. An alternative would have
been to equip AJPF with a richer property specification lan-
guage able to detect features of interest in the ethical selec-
tion of actions. At present it is unclear what such an ex-
tended property specification language should include, but it
is likely that as the work on extending the declarative conse-
quence engine language progresses the nature of the declar-
ative properties to be checked will become clearer. It may
be that ultimately we will need to add BDI-like features to
the declarative consequence engine and extend the property
specification language.

We would also like to incorporate the experimental valida-
tion approach into our system by using the MCAPL frame-
work’s ability to integrate with the Robot Operating Sys-
tem (Dennis 2014) in order to use our new ethical conse-
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quence engine to govern actual physical robots in order to
explore how formal verification and experimental validation
can complement each other.

Conclusion
In this paper we have constructed an executable model of an
ethical consequence engine described in (Winfield, Blum,
and Liu 2014) and then verified that this model embodies
the ethical principles we expect. Namely that it pro-actively
selects actions which will keep humans out of harms way,
if it can do so. In the course of developing this model we
have laid the foundation for a declarative language for ex-
pressing ethical consequence engines. This language is ex-
ecutable and exists within a framework that can interface
with a number of external robotic systems while allowing el-
ements within the framework to be verified by model check-
ing.

At present the language is very simple relying on prioriti-
sation first over individuals and then over outcomes. It can
not, for instance, express that while, in general, outcomes for
individuals of some type (e.g., humans) are more important
than those for another (e.g., the robot) there may be some
particularly bad outcomes for the robot that should be priori-
tised over less severe outcomes for the humans (for instance
it may be acceptable for a robot to move “too close” to a
human if that prevents the robot’s own destruction). Nor, at
present, does the language have any ability to distinguish be-
tween different contexts and so an outcome is judged equally
bad no matter what the circumstances. This will be too sim-
ple for many situations – especially those involving the com-
peting requirements of privacy and reporting that arise in
many scenarios involving robots in the home. The language
is also tied to the existence of an engine that is capable of
simulating the outcomes of events and so the performance of
a system involving such a consequence engine is necessarily
limited by the capabilities of such a simulator. This simula-
tion is tied to a single robot action and so, again, the system
has no capability for reasoning that some action may lead it
into a situation where the only available subsequent actions
are unethical. Lastly the language presumes that suitable
ethical priorities have already been externally decided and
has no capability for determining ethical actions by reason-
ing from first principles.

Nevertheless we believe that the work reported here opens
the path to a system for implementing verifiable ethical
consequence engines which may be interfaced to arbitrary
robotic systems.

Software Archiving
The system described in this paper is available as a recom-
putable virtual machine on request from the first author and
will be archived at recomputation.org in due course. It can
also be found on branch ethical governor of the git
repository at mcapl.sourceforge.net.
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