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ABSTRACT 

 

Chronic Lymphocytic Leukaemia (CLL) is the most common form of Leukaemia in 

the Western world and has a highly variable clinical course. Continuing advances in 

the range of therapeutic options available to clinicians require reliable prognostic 

indicators that can be used to group patients accurately according to their risk of 

disease progression, thereby allowing meaningful comparisons of treatments. 

 

The expression of Toll-Like Receptors (TLR) on cells involved with the disease 

process in CLL was studied to establish links between levels of expression and the 

disease process. The expression levels of 5 different TLR were measured on a variety 

of haemic cells and compared with the TLR expression levels seen on their normal 

counterparts. 

 

Flow cytometric analysis was used to establish the expression levels of TLR 1,2,3,4, 

and 9 on peripheral blood Monocytes, T Lymphocytes and B Lymphocytes from 129 

patients. These results were compared with the TLR expression on corresponding 

cells from an equal number of age and sex matched controls. Further studies were 

performed which established the detrimental effect that storage of samples has on 

TLR expression, and also to compare TLR expression in patients who exhibited a 

positive Direct Antiglobulin Test (DAGT), with those that were negative for the 

DAGT. 

 

Results from the study show that both T and B lymphocytes from CLL patients 

showed statistically significantly different levels of TLR expression when compared 



with lymphocytes from age and sex matched controls. TLR expression levels on 

monocytes were similar in both patient and control groups.  When comparing TLR 

expression between patients who were DAGT positive and those that were negative, a 

statistically significant difference was found in TLR9 expression on T lymphocytes. 

 

These findings have established that that there are statistically significant differences 

in TLR expression on lymphocytes when comparing CLL patients with age and sex 

matched controls. It also establishes the differences in TLR expression levels seen in 

DAGT positive and DAGT negative patients. From findings made during this study, it 

is hypothesised that there may be a link between differential TLR expression and the 

autoimmune disease frequently reported in CLL. 
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1 Background 

 

Chronic Lymphocytic Leukaemia (CLL) is the most common form of leukaemia 

worldwide and has been recognised as a distinct clinical entity for over 100 years 

(Perez and Winer 2011; Linet et al. 2007). The disease has an age adjusted rate in the 

UK of 4.2 per 100,000 per year (Oscier et al. 2012), has the strongest familial 

tendency of any malignancy (Goldin and Caporaso 2007) and has an extremely 

variable clinical course, with survival from months to decades (Rožková et al. 2010). 

For many years CLL was regarded as an incurable disease of the elderly, worthy only 

of symptom palliation (Tam and Keating 2010), however, new therapies and the 

possibility of stem cell transplantation have led to a resurgence of interest in 

reassessing the value of early intervention in high risk patients. Therapeutic 

interventions in those patients most at risk of progression at an early stage may have a 

positive impact on survival, particularly in younger patients who are more able to 

tolerate intensive treatment (Tam et al. 2008). The current standard of care is to 

initiate treatment when a patient has progressive or symptomatic disease (Hallek 

2008). Continuing advances in the range of therapeutic options available to clinicians 

requires reliable prognostic indicators that can be used to group patients accurately 

according to their risk of disease progression, thereby allowing meaningful 

comparisons of treatments (Oscier, Fegan and Hillmen 2004). There remains however 

much about the disease to be discovered and evaluated (Hallek 2008). 
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1.1 Leukaemia 

Leukaemia is a disease that results from the neoplastic proliferation of haemopoietic 

myeloid or lymphoid cells. It arises from a mutation in a single stem cell, the progeny 

of which form a clone of leukaemic cells.  Leukaemias are broadly divided into i) 

acute leukaemias, which, if untreated lead to death in weeks or months and ii) chronic 

leukaemias, which, if untreated, lead to death in months or years. They are further 

subdivided into lymphoid, myeloid and biphenotypic leukaemias, the latter showing 

both lymphoid and myeloid differentiation (Bain 2010). Leukaemias are classified 

according to World Health Organisation (WHO) schemes laid down in the WHO 

classification of Tumours of Haematopoietic and Lymphoid tissues guide (Swerdlow 

et al. 2008). A simplified table of this classification system, showing the cellular 

origins of leukaemic cells is shown in table 1.  

 

Type of Leukaemia Cellular origin 

Common acute lymphoblastic leukaemia 

(c-ALL) 

Lymphoid progenitor cell 

Pre-B acute lymphoblastic leukaemia 

(pre B-ALL) 

Pre-B cell 

B-cell acute lymphoblastic leukaemia  

(B-ALL) 

B cell 

Acute myeloid leukaemia 

 (AML) 

Myeloid precursor cell 

Chronic lymphocytic leukaemia 

 (CLL) 

Mantle cell/follicular/mature B cell 

Chronic myeloid leukaemia 

(CML) 

Myeloid progenitor cell 

Multiple myeloma 

 (MM) 

Plasma cell 

Hairy cell leukaemia 

(HCL) 

Mature B cell 

 

Table1: Leukaemia classification and cellular origin (Taken from Bain 2010) 
 
 

Acute leukaemias are characterised by a defect in maturation, which leads to an 

imbalance between proliferation and maturation. This in turn leads to a continuing 
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expansion of the clone where immature cells predominate. Chronic leukaemias by 

comparison are characterised by an expanding pool of proliferating cells that retain 

their capacity to differentiate to maturity (Greaves 1997; Bain 2010). 

 

 
 

 

1.2 Chronic Lymphocytic Leukaemia (CLL) 

CLL has been recognised as a distinct clinical entity for over 100 years. Originally 

identified by Turk in 1903, a fuller clinical description did not appear for some years 

after when it was cited as being an accumulative disease of immunologically 

incompetent lymphocytes (Dameshek 1967).  Disease classification systems did not 

however begin to systematically distinguish between different forms of leukaemia 

until the late 1960’s (Linet et al. 2007). 

 

1.2.1 Aetiology of CLL 

CLL is the most common form of leukaemia worldwide (Parker and Strout 2011). The 

incidence is 4.2 per 100,000 per year, with this incidence increasing to >30 per 

100,000 at an age >80 years, with 2,750 new diagnoses per year in the United 

Kingdom (Eichhorst et al. 2011).  The disease has a male to female ratio of 2:1 and is 

primarily a disease of the elderly, with a median age at presentation of 72 years; 

approximately 11% of patients are less than 55 years old at diagnosis (Howlader et al. 

2012). Survival time is extremely variable and ranges from 2 to 20 years from 

diagnosis, with a median survival of 10 years (Ghobrial et al. 2004). An intriguing 

feature of the disease is whilst some patients can survive for decades without the 

requirement for treatment; others can die within a year or two of presentation from a 

drug resistant form of the disease (Lin et al. 2002). There are dramatic differences in 

the prevalence of CLL in different ethnic groups, it being virtually absent in Japan 
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and Africa, whist those of Jewish origin show a two-fold greater risk of developing 

the disease over those from other western countries (Caligaris-Cappio and Hamblin 

1999; Landgren and Kyle 2007). 

 

There is much speculation as to a link between certain occupations and the risk of 

developing CLL, in particular exposure to ionising radiation has long been thought to 

have no link to disease development (UNSCEAR 2008), but more recent studies have 

challenged this position (Rericha et al. 2006; Silver et al. 2007; Schubauer-Berigan et 

al. 2007). For reasons that remain unclear, an increased incidence of CLL is seen in 

farmers, rubber manufacturing workers and individuals working with asbestos (Linet 

et al. 2007).  CLL has also been linked to occupational exposure to a number of 

chemical agents such as butadiene (Graff et al. 2005), carbon tetrachloride and 

chlorinated hydrocarbons (Seidler et al. 2007) and occupations where contact with 

such chemical is commonplace, such as drycleaners (Ji and Hemminki 2006), 

cleaners/janitors (Blair et al. 2000) and woodworkers (Flodin et al. 1988). Some 

studies have shown an association between tobacco smoking and CLL (Brown et al. 

1990), although this is disputed by other workers who report no overall increase in 

risk for cigarette smoking and CLL (Morton et al. 2005).  

 

A family history of CLL is one of the strongest risk factors for disease development 

(Goldin et al. 2004), CLL exhibiting one of the strongest familial tendencies of any 

malignancy (Goldin and Caporaso 2007).  The genetic predisposition towards familial 

CLL is poorly understood but is the subject of intense research (Caporaso et al. 2007). 
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1.2.2 Clinical course 

CLL follows an extremely variable clinical course with overall survival times ranging 

from months to decades (Abbot 2006).  At least 20% of patients have either no or 

minimal signs and symptoms during their entire clinical course and have a survival 

similar to age-matched controls (Byrd, Stilgenbauer and Flinn 2004). Other patients 

show rapidly deteriorating blood cell counts and organomegaly and as such suffer 

from symptoms either at, or soon after diagnosis. The most common symptoms at 

diagnosis include anaemia, lymphadenopathy, hepatomegaly, splenomegaly and 

thrombocytopenia (Montserrat et al. 2006).  Early stage CLL is generally not treated, 

as initiation of therapy for early stage patients has not been shown to prolong survival 

(Dighiero, Maloum and Bichoffe 1998; Parker and Strout 2011), whilst late stage 

disease is treated with chemotherapy and the use of pharmacologically active agents 

attached to monoclonal antibodies. Patients with slowly progressing disease may 

require no treatment during the course of their lives (Chiorazzi, Rai and Ferrarini 

2005).  More recently however highly effective and potentially curative approaches, 

such as allogeneic stem cell transplantation have been developed. The therapeutic 

options available to clinicians vary markedly with regard to efficacy, toxicity and cost 

and risk stratified algorithms of therapy are becoming increasingly necessary (Byrd, 

Stilgenbauer and Flinn 2004; Oscier et al. 2012). 

 

1.2.3 Laboratory diagnosis of CLL 

Most patients are diagnosed with CLL as an incidental finding following a routine full 

blood count that returns an elevated white cell count and/or a persistent 

lymphocytosis. Morphological examination of a blood film invariably reveals the 

presence of characteristic ‘smear’ or ‘smudge’ cells, as shown in figure 1; these are 
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clonal B cells that have altered morphology as a consequence of cellular fragility. 

Immunophenotyping of the mononuclear cell population will reveal a characteristic 

phenotype and can yield useful information for prognosis and on which to base 

treatment options (Bain 2010). 

 

Figure 1: Rowmanowsky stained Peripheral blood film magnified x600 showing characteristic ‘smear’ 

cells (arrowed).  

 

WHO classification state that a formal diagnosis of CLL is reached based on the 

combination of lymphocyte morphology, the presence of >5 x10
9
/l circulating clonal 

B cells persisting for >3 months and a characteristic immunophenotype as described 

below (Swerdlow et al. 2008, Bene et al. 2011; Oscier et al. 2012): 

i) Surface immunoglobulin expression of low intensity IgM or IgM/IgD, with either 

Kappa or Lambda light chain restriction. 

ii) Expression of pan B-cell antigens CD19, CD20 and CD23 

iii) Co-expression of CD5 on B cell clone  
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Depending on stage of disease at diagnosis the patient may at this point undergo bone 

marrow biopsy and cytogenetic testing. Bone marrow biopsy sampling is infrequently 

performed and although not required by British Committee for Standadisation in 

Haematology guidelines, some workers maintain that since it allows for the degree of 

marrow infiltration by the malignant clone to be assessed, it can be of use as an 

indicator of survival and disease prognosis (Cheson et al. 1996). Whilst bone marrow 

biopsy is not essential for the diagnosis of CLL it is sometimes used to define 

complete response and is also indicated in determining the cause of cytopenias pre-

treatment (Oscier et al. 2012). The four patterns of marrow infiltration found in CLL 

are summarised in table 2: 

 

 

Pattern of infiltration Degree of marrow infiltration 

Interstitial 

 

33% of patients: normal haemopoietic cells are 

replaced in small quantities by mature 

lymphocytes but fat cells and bone marrow 

structure are preserved 

Nodular 10% of patients: nodules of mature lymphocytes 

lacking clear centres are present in the bone 

marrow in greater quantities than normal 

lymphoid follicles. Fat cells still present 

Mixed interstitial/nodular 

 

25% of patients: a combination of both interstitial 

and nodular patterns of infiltration 

Diffuse 

 

25% of patients: a diffuse lymphoid infiltration is 

seen with massive replacement of normal 

haemopoietic cells and fat cells 

 

Table 2: Bone marrow infiltration patterns identified in CLL patients with relative proportions of 

patients with corresponding degree of infiltration at diagnosis. (After Bain 2010) 
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1.2.4 Genetic changes 

Clonal chromosomal changes are detected in up to 80% of patients with CLL 

(Dierlamm et al. 1997; Parker and Strout 2011), the most common being an 

interstitial deletion in 13q14, which is seen in approximately 50% of cases, followed 

by del 11q22 (20%), trisomy 12 (15%), del 6q21 (10%) and del 17p13 (5-10%) 

(Stilenbauer et al. 1993: Nguyen-Khan 2010).  Despite extensive work over the past 

few years the relationship between many of these aberrations and disease activity is 

incompletely understood. The observation that the most common (13q14) 

chromosome abnormality observed in CLL is associated with a favourable prognosis, 

whilst the less common abnormalities result in adverse clinical outcomes, is similarly 

poorly understood (Dohner et al. 2000; Parker and Strout 2011).  

Mutations in the gene controlling the production of the variable region of the 

immunoglobulin heavy chain (VH) are of particular interest as up to 50% of CLL 

patients display (VH) gene mutations. In normal B cell development the variable 

regions of both immunoglobulin heavy and light chains undergo somatic 

hypermutation as they pass through germinal centres. Studies on the (VH) genes in 

CLL suggest that patients with unmutated (VH) genes tend to have advanced stage 

disease and an unfavourable prognosis. Since the assessment of (VH) mutation status 

is technically complex, there is much interest in the detection of surrogate markers 

such as ZAP-70 for this phenomenon (Parker and Strout 2011).  ZAP-70 has been 

demonstrated to be an independent predictor of outcome and may be a better predictor 

of time to treatment initiation than immunoglobulin heavy chain mutation status 

(Rassenti et al. 2008). 
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1.2.5 Biology of CLL 

The CLL B cell clone is an accumulation of mature long-lived B cells, which express 

a variety of surface markers which distinguish them from normal B cells (Caligaris-

Cappio and Hamblin 1996, Nordgren and Joshi 2010). It is thought likely that these 

cells have arisen from one progenitor cell, as indicated by the presence of identical 

key markers, but uncertainty remains as to the genetic origin of the clone. Whilst 

many clonal cells express genetic abnormalities, phenotypically identical leukaemic 

cells are found with different genotypes in the same patient (Jurlander 1998; Nordgren 

and Joshi 2010). These genetic abnormalities may be pathogenic or purely secondary 

phenomena. Of equal importance to disease development is the potential loss of 

homeostasis in B cell ontogeny which may not be related to specific genetic 

abnormalities. It is therefore important to have an appreciation of normal B cell 

development in order to understand the possible ways in which malignancy may arise. 

 

1.2.6 B cell development 

B cell development begins when lymphoid stem cells in the bone marrow differentiate 

into the earliest distinctive B-Cell lineage, the progenitor B cell (pro B cell). Each 

stage in the development of B cells is accompanied, and often defined by, 

rearrangements of the B cell immunoglobulin (Ig) genes and is under the tight control 

of cytokines and the developmental microenvironment. 

 

Pro B cells 

Pro B cells are the most primitive recognisable cells in the B cell lineage (Stiles, Terr 

and Parslow  1997; LeBien and Tedder 2008). They express the surface proteins 

CD10 and CD19 and the nuclear proteins terminal deoxynucleotidyl transferase (TdT) 
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and recombinant activating genes 1 and 2 (RAG-1 and RAG-2) (Oettenger et al. 

1990; Nordgren and Joshi 2010). Both RAG-1 and RAG-2 play an important role in 

immunoglobulin gene rearrangement as they have the ability to recognise and cleave 

DNA at specific sequences. Antibody diversity is further increased by the insertion of 

N regions, by TdT, at the point of joining between variable (V), diversity (D) and 

joining (J) segments (Spanopoulou et al. 1995, Montecino-Rodriguez and Dorshkind 

2012).  The first immunoglobulin rearrangements in the B cell take place in the heavy 

chain genes, once these have occurred the cell can be classified as a pre B cell; Pro B 

cells which fail to fail to make a functional VDJH rearrangement undergo apoptosis 

(LeBien 2008). 

The bone marrow stromal environment plays a critical role in the development of pro 

B cells to pre B cells (Ansel and Cyster 2001). Pro B cells are able to bind to stromal 

cells through very late antigen 4 (VLA-4), which binds with vascular cell adhesion 

molecule 1 (VCAM-1/CD106) on the stromal cell. This interaction promotes the 

binding of another receptor pair, c-Kit on the pro B cell with stem cell factor, which in 

turn triggers the expression of interleukin 7 (IL-7) receptors on the pro B cell surface. 

IL-7 released by the stromal cells binds to the IL-7 receptors (IL-7R), inducing the 

pro B cell to mature into a pre B cell. Experimental models with mice bred with 

disruptions in the genes controlling IL-7 production show severe impairment of B cell 

development (Van Freeden-Jeffry et al. 1995).  

 

Pre B cells 

Pre B cells are found almost exclusively in the bone marrow and are representative of 

a transient phase in B cell development that lasts approximately 2 days (Stiles, Terr 

and Parslow. 1997; Montecino-Rodriguez and Dorshkind 2012). IL-7 secreted by 
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stromal cells, drive the maturation process by inducing down-regulation of the 

adhesion marker VLA-4 (Cd49d/CD29) on the pre B cell surface. The pre B cell can 

now detach from the stromal cell as direct contact is no longer required for growth. 

However, IL-7 released from the stromal cells is still required for growth and 

maturation. Rearrangement of the light chain genes begins in the pre B cell once 

heavy chain rearrangements are complete (Levine et al. 2000). TdT is no longer 

expressed and as a result there is no insertion of N regions into light chain genes (Le 

Bien 2000). Rearrangement continues until a functional light chain (either kappa or 

lambda) is produced. Once produced, the light chain associates with the existing 

heavy chain unit and together they are transported to the cell surface and membrane 

bound immunoglobulin. Expression of RAG-1 and RAG-2 is downregulated and the 

cell therefore loses the capacity for further light chain rearrangement. Successful 

assembly of one heavy and one light chain prevents any further gene rearrangements. 

This process, termed allelic exclusion, gives rise to the phenomenon of clonal 

restriction. Further division of the lymphocyte after this stage results in daughter cells 

which all express identical heavy and light chains, giving rise to a population of 

clonal B cells with specificity for a particular antigen. 

 

Immature B lymphocytes 

Once the B cell starts to express surface immunoglobulin, with functional heavy and 

light chains expressing B cell receptors (BCR), it is classified as an immature B 

lymphocyte. At this stage it will stay in the bone marrow for up to 3 days. At this 

point the immature B cell undergoes negative selection. B cells that can cross-link 

IgM receptors or bind to self antigen on the cell surface will undergo apoptosis. A 

large number of B cells are also lost at this stage owing to non-functional 
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immunoglobulin production (Thompson 1998; LeBien and Tedder 2008). It has been 

estimated that of the 2 x10
7 

B cells that are developed each day, only 1-3% will enter 

the mature B cell pool. This fail safe mechanism is essential for the deletion of self 

reactive clones, which would otherwise recognise self proteins as foreign and increase 

the risk of autoimmune disease. Cells which remain following this checking phase 

will undergo further re-arrangement of heavy chain genes, which results in expression 

of IgD, at which point they are regarded as fully mature and enter the peripheral blood 

stream (Levine et al. 2000). 

 

Mature B cells 

Mature B cells express a number of surface antigens such as CD23, lymphocyte 

function associated antigen-1 (LFA-1) intracellular adhesion molecule-1 (ICAM-

1/CD54) and major histocompatbility antigen complex II (MHC II) amongst others. 

Expression of these key surface antigens allows for interaction with antigen 

presenting cells such as dendritic cells and T lymphocytes. This interaction is of 

paramount importance in the generation of the immune response (Nordgren and Joshi 

2010). The key stages in B cell development are summarised in figure 2 below. 
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Figure 2: B cell development From: Kuby Immunology, 7/e, by Judy Owen (Haverford College) , Jenni Punt (Haverford 

College) , Sharon Stranford (Mount Holyoke College),  Copyright 2013  by W.H. Freeman and Company. Used by Permission of 

the publisher.   

 

1.2.7 Origins of the CLL cell 

CLL B cells have a number of features that are unique to the malignant cell and some 

which they share with normal B cells in the developmental pathway. CLL B cells 

have low or undetectable levels of surface immunoglobulin, which are polyreactive 

and show autoreactive antibody activity, often acting as a rheumatoid factor (RF), 

specifically recognising the Fc region of IgG class immunoglobulin (Parham 2000; 

Seifert et al. 2012).  

Autoantibody activity may also be directed against haemopoietic antigens expressed 

on the surface of red blood cells and platelets, which can lead to autoimmune 

haemolytic anaemia (AIHA) and autoimmune thrombocytopenic purpura (AITP) 

respectively (Caligaris-Cappio and Hamblin 1996; Dearden et al. 2008). 

 



Page | 14 

 

CLL B cells accumulate in the peripheral blood and bone marrow in the G0 phase of 

the  cell cycle, these apparently resting cells express membrane makers of cellular 

activation, such as CD80 and CD86 which are normally expressed by activated 

normal B cells (Caligaris-Cappio el at 2001; Seifert et al. 2012). Under normal 

conditions CLL B cells appear to be anergic and have a reduced capacity to act as 

APC’s, whilst normal B cells are highly effective at this role (Caligaris-Cappio and 

Hamblin 1996). If, however, the CLL B cells are stimulated using monoclonal 

antibodies directed at activation ligands such as CD40, they can differentiate into 

effective APC’s, suggesting a restricted dialogue between CLL B and functional T 

cells during an normal immune response (Scrivener et al. 2003). 

 

The cell surface marker CD5 is expressed on almost all malignant CLL B cells, but is 

also expressed on normal T cells and a subset of normal B cells (Lydyard et al. 1999, 

Nordgren and Joshi 2010). Normal B cells that express CD5 are termed B1 cells, and 

represent the most prominent B cells found in early foetal life, the numbers of these 

cells decreasing with age. In the adult, circulating B1 cells are normally found in the 

follicular mantle zone of the lymph nodes, but a limited number are also found in the 

bone marrow. Normal B1 cells produce polyreactive autoantibodies, including those 

directed against blood group antigens and are also the main source of IgM derived 

autoantibodies (Lydyard et al. 1999; Nordgreand Joshi 2010). Patients with 

Rheumatoid Arthritis have been found to have increased levels of B1 cells (Plater-

Zyberk et al. 1985). It is unclear what controls the levels of normal B1 cells in the 

peripheral blood, but children with DiGeorge syndrome, i.e. those lacking a functional 

thymus, have decreased levels of B1 cells, suggesting a role for the thymus in 

maintaining B1 cell numbers in the periphery (Kourtis et al. 1997). Early studies on Ig 
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VH  genes in CLL suggested that most malignant B cells had unmutated VH  genes 

(Kipps et al. 1989), later studies on larger groups of patients however reported that up 

to 50% of CLL patients VH  genes were in fact mutated, indicating that they would 

have passed through the germinal centre (Caligaris-Cappio 2001; Nordgren and Joshi 

2010,). As the nature of the B cell has become clearer, attempts to identify its origin 

have combined the evidence outlined above. Initially, much work focused on the 

similarities between the CLL CD5+ B cell and the normal CD5+ B1 cell, these are 

summarised in table 3. 

 

Feature CD5+ B cell CD5+ normal B1 cell 

Polyreactive 

autoantibodies 

Yes Yes 

Somatic hypermutation 

 

Yes/No (50% of patients) No 

Formation of mouse 

erythrocyte rosettes 

Yes Yes 

Bc1-2 expression 

 

Yes No 

Low surface 

immunoglobulin 

expression 

Yes No 

  

Table 3: The similarities and differences between CD5+ CLL B cells and the normal subset of B cells 

that naturally express CD5 
 

A number of cellular and molecular similarities between the two cell lines have 

emerged. CLL CD5+ B cells and normal B1 cells both produce polyreactive IgM 

autoantibodies directed against RF and haemopoietic cell antigens (Caligaris-Cappio 

1996; Montecino-Rodriguez and Dorshkind 2012). Both are able to produce these 

antibodies in the absence of somatic mutation, suggesting that neither subset has 

passed through the germinal centre. In addition, both lines express the surface marker 

CD20 and both are able to form rosettes with mouse erythrocytes. The normal B1 B 
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cell is considered as a possible candidate for the origin of the CLL clone. Since 

normal CD5+ B1 cells are located in the mantle zone of the secondary lymphoid 

follicles, it is suggested that it is from here that CLL B cells may arise (Soderberg 

1998). One possible theory suggests that CLL is a malignancy of a mantle based 

subpopulation of anergic self reactive CD5+ B cells devoted to the production of 

naturally occurring polyreactive autoantibody (Caligaris-Cappio 2001). 

 

There are however striking differences between the 2 cell types. Whilst CLL B cells 

express low to undetectable levels of surface immunoglobulin, normal B1 cells 

express normal levels. CLL B lymphocytes appear to be stuck in the G0 phase of the 

cell cycle and yet are able to express cell surface markers and cytokines that are 

indicative of an activated B cell. B1 cells do not follow this pattern. The B1 cell cycle 

correlates with expression of cell surface markers and there is no difference between 

their activated and resting states. Normal B1 cells express low levels of Bcl-2, whilst 

CLL B cells express high levels. Normal B1 cells do not demonstrate somatic 

hypermutation, yet 50 % of CLL B cells do (Hamblin et al. 1999). Additionally, the 

production of autoantibodies in CLL is believed to result from the residual normal B 

cell population (Oscier 1999; Zent and Kay 2010). 

 

Attempts to identify a normal cellular counterpart for the CLL B cell have so far 

failed. Such a counterpart would need to encompass all aspects of the disease, such as 

autoimmunity, hypogammaglobulinaemia, low surface immunoglobulin expression, 

CD5 expression and dysregulation of T cell function (Scrivener et al. 2003). 

 

1.2.8 Morphology of CLL cells 
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CLL B cells appear as small, mature, unstimulated peripheral blood lymphocytes, 

which are easily damaged on preparation of a blood film, giving rise to the 

characteristic ‘smear’ or ‘smudge’ cell frequently observed during morphological 

examination (Hamblin et al. 1999). On examination of peripheral blood films, the 

malignant cells can be distinguished by their heavily clumped basophilic chromatin 

within the nucleus and the presence of a small agranular pale blue cytoplasm 

(Dierlamm et al. 1997). Approximately 15% of patients have larger B cells with a 

more prominent nucleolus, cleaved nucleus or lymphoplasmaytoid features. 

Examination of peripheral blood and bone marrow aspirate from the same CLL 

patient identifies an identical infiltrating population from both sources (Oscier 1999).  

 

1.2.9 Immunophenotype 

Morphological examination by itself is insufficient to make a laboratory diagnosis of 

CLL, and the detection of cell surface marker antigens by flow cytometry is 

considered essential (Bain 2010).  One of the key distinguishing features of the CLL 

cell is low to undetectable levels of surface immunoglobulin ( Dohner and 

Stilgenbauer 2001). In the majority of cases of CLL the surface immunoglobulin that 

is expressed is either class IgM, IgD or both. There is invariably restricted expression 

of either Kappa or Lambda light chains, this being indicative of the clonal nature of 

the malignant cell population (Jurlander 1998). CLL B cells have been shown to 

express the interaction and activation markers CD80 and CD86 (Caligaris-Cappio 

2001). Expression of the B cell receptor (BCR) is altered in CLL patients. The BCR 

consists of surface immunoglobulin, non-covalently linked with CD79, CD79b and 

CD5. In most cases of CLL the extracellular domain CD79b is absent (Alfarano et al. 

1999). However, CD79b has been shown to be functionally normal in CLL patients, 
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regardless of whether it is expressed at the cell surface or not (Rassenti and Kipps 

2000). Normal B cells utilise CD7b expression, post activation, to downregulate BCR 

expression, suggesting that CLL B cells may be activated in some way (Scrivener at 

al 2002). There is a characteristic expression of a number of surface markers in CLL 

which are summarised in table 4. 

 

Marker Molecular 

weight 

Normal expression Role Expression 

on CLL 

cells 

CD5 67kDa T cells, B1 B cells BCR activation 

and 

differentiation 

 

+ 

CD19 95kDa B cells T/B cell 

interaction 

+ 

CD20 33-37kDa B cells B cell 

activation and 

signal 

transduction 

 

+ 

CD21 145kDa Mature B and T cells 

(Low) 

Immature T cells (high) 

Antigen 

presentation 

 

+ 

CD22 135kDa B cells Accessory 

signalling 

through BCR 

 

- 

CD23 45kDa B cell, 

macrophage/monocytes) 

B cell 

activation 

marker 

 

+ 

CD79b 33-40kDa B cells Downregulation 

of BCR 

- 

CD80/CD86 60kDa/80kDa B cells, dendritic cells, 

some T cells 

T/B cell 

interaction 

+ 

Surface 

Immunoglobulin 

Highly 

variable 

B cells Antigen 

binding 

+/- 

Bcl-2 25kDa Apoptosis-protected 

cells 

Protection 

against 

apoptosis 

 

+ 

 

 

Table 4: Key features of B cell antigens and differential expression on CLL B cells 

 

 

 

 

1.3 Disease classification 
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1.3.1 Classification of disease stage and prognosis 

The aim of any pathological classification system is to group cases that have 

fundamental similarities and are likely to have some common causational feature and 

pathogenesis. The French, American, British (FAB) classification of acute leukaemias 

was first published in 1976 in the hope of providing a universal system of 

classification for leukaemias which would in turn improve the accuracy of diagnosis 

(Bennett et al. 1976). The classification was subsequently expanded, modified and 

clarified over the next 15 years (Bain 2010).  The FAB group also published during 

this time a classification for chronic lymphoid leukaemias (Bennett et al. 1989).  

 

The classification systems for haematological malignancies have changed 

dramatically over the years (Smith et al. 2011). The currently used system is the 

WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4
th

 edition 

(Swerdlow et al. 2008), which was established by the WHO in 2001 and was 

modified in collaboration with the European Association for Haematopathology and 

the Society for Hematopathology in 2008 (Vardiman et al. 2009). The aim of this 

system is to separate and characterize leukaemias and lymphomas into clinically and 

biologically relevant entities, it also includes genetic, cytochemical, 

immunophenotypic and clinical information which assist in the construction of 

diagnostic algorithms. 

 

There are presently two staging methods for CLL available to clinicians, the Rai 

system and the Binet system, which may be used alone or in conjunction with one 

another. The Rai staging system incorporates a grading of clinical signs and 
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laboratory findings at the time of diagnosis, which segregates patients into five stages 

(0 – IV). The system is summarised in table 5. 

CLINICAL 

STAGING 

CLASSIFICATION MEAN SURVIVAL 

(MONTHS) 

STAGE 0 Peripheral blood  and marrow 

lymphocytosis (absolute blood 

lymphocyte count ≥ 15 x10
9
/l, 40% or 

more lymphocytes in marrow) 

 

>120 

STAGE I Peripheral blood and marrow 

lymphocytosis with lymph node 

enlargement) 

                 

               95 

 

STAGE II 

Peripheral blood and marrow 

lymphocytosis with splenomegaly 

and/or hepatomegaly (with or without 

lymph node enlargement) 

 

72 

STAGE III Peripheral blood and marrow 

lymphocytosis with haemoglobin 

<110g/l (unless haemolytic anaemia 

present) with or without lymph node, 

spleen or liver enlargement) 

 

 

30 

STAGE IV Peripheral blood and bone marrow 

lymphocytosis with platelet count <100 

x10
9
/l (with or without lymph node, 

spleen and liver enlargement) 

 

                30 

 

Table 5: The Rai-Binet staging system showing the clinical stage of CLL and classification of 

symptoms at each stage as defined by Rai (Rai et al. 1975) 

 

Rai’s staging system identifies patients at stage 0 of the disease who do not receive 

chemo or radio-therapeutic treatment, but have regular monitoring of disease 

progression. In stages I and II, treatment is not generally required unless there are 

significant symptoms relating to advancing disease, and in whom a reduction in 

tumour mass may be clinically indicated.  Patients with stage III or IV disease receive 

treatment aimed at achieving complete remission, or if this is not possible, a good 

partial remission. Rai showed that patients who present with more severe symptoms 

and a higher lymphocyte count at time of diagnosis tend to have a poorer prognosis, 
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with those patients presenting with stage 0 – II disease living longer than those with 

stage III or IV disease (Rai et al. 1975). 

 

A modified staging system was proposed by Binet in 1981 in which more emphasis is 

placed on isolating patients defined as ‘high risk’ by the presence of anaemia or 

thrombocytopenia. Binets system is summarised in table 4. 

 

CLINCIAL STAGING CLASSIFICATION MEAN SURVIVAL 

(MONTHS) 

STAGE A Haemoglobin ≥100g/l. 

Platelets ≥ 100 x10
9
/l

 

Less than 3 enlarged 

areas* 

 

>120 

STAGE B Haemoglobin ≥100g/l. 

Platelets ≥ 100 x10
9
/l

 

3 or more enlarged areas* 

 

61 

STAGE C Haemoglobin < 100g/l 

and/or platelets < 100 

x10
9
/l. Any number of 

enlarged areas* 

 

32 

 
* incorporating cervical, axillary, inguinal lymph nodes, spleen and liver 

 
Table 6 The modified Binet staging system showing clinical stage of CLL and classification of 

symptoms at each stage as defined by Binet (Binet et al. 1981) 

 

It was postulated by Binet that it is possible to combine the two systems of 

classification, Rai stages 0 – III being assigned to Binet stage A, Rai stage IV being 

grouped with Binet stage C and the remaining patients from Rai stage II being 

separated into stag A or B depending on physical signs and symptoms (Binet et al. 

1981).  

 

Binets staging system has been subsequently modified with stage A disease being 

further sub-divided into stage A' and stage A" (Digheiro et al. 1991). Stage A' is 
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characterised by a lymphocyte count < 30 x10
9
/l and a haemoglobin >120g/l. 

Approximately 80% of stage A patients fall into this category. Stage A" is categorised 

by either a lymphocyte count of > 30 x10
9
/l or a haemoglobin < 120g/l.  The 

remaining 20% of stage A patients falling into this category. 

 

The use of these staging systems has helped simplify the classification of CLL 

patients by separating them into low, intermediate and high risk (Rai et al. 1975). 

Whilst both the Rai and Binet systems are the mainstay of staging there has always 

been controversy as to their usefulness in identifying groups of patients who may or 

may not benefit from therapy (Hallek 2008), and interest has focused on alternative, 

independent prognostic factors and indicators for the need for treatment (Shanafelt et 

al. 2009).  The search for alternate staging systems lead to the publication of a CLL 

scoring system where points are allocated to patients dependant on the expression of 

key immunological markers associated with CLL, the final score indicating the 

likelihood of a positive diagnosis (Matutes et al. 1994). The Matutes scoring system 

for the diagnosis of CLL is based on the common marker profile of the strong 

expression of CD5 and CD23, negativity of FMC7, the weak to moderate expression 

of surface immunoglobulin and the negative or weak expression of CD79b. A score of 

4/5 or 5/5 is strongly supportive of a diagnosis of CLL; if the score falls below this 

the diagnosis is less certain (Oscier et al. 2012). This scoring system is summarised in 

table 7. 
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0 points 1 point  Membrane marker 

 

Moderate/Strong 

 

 

Weak 

 

 

Surface Immunoglobulin 

expression strength 

 

Negative 

 

Positive 

 

 

CD5 expression 

 

Negative 

 

 

Positive 

 

 

 

CD23 expression 

 

 

Positive 

 

Negative 

 

FMC7 expression 

 

 

Moderate/Strong 

 

Weak/Negative 

 

CD79b expression 

 

 

 

Score 4-5: Typical CLL 

Score 3-4: Atypical CLL 

Score <3:  Non-CLL 

 
Table 7: The scoring system for CLL. Points are allocated to patients depending on presence or absence 

of surface antigens on malignant cell population. Total score aids in differentiation between typical 

CLL, atypical CLL and other forms of leukaemia (Matutes et al. 1994). 

 

  
 

1.3.2 Newer prognostic factors 

Although the use of these staging and scoring systems for the classification of CLL is 

now well established, they are not completely satisfactory and have been subject to 

regular modification (Chiorassi, Rai and Ferrarini 2005).  Consideration of clinical 

and therapeutic factors, notably performance status and presence of adverse 

prognostic factors, is assuming increasing importance in the development of staging 

systems (Auer, Gribben and Cotter 2007).  

 

Progress in the identification of molecular and cellular markers that have value in 

predicting disease progression and detection of minimal residual disease after therapy 

has lead to the discovery of a number of potential markers of prognostic importance 
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such as CD38 and the 70kDa Zeta associated protein (ZAP-70) (Razzenti, Lang-

Huynh and Toy 2004, Razzenti et al. 2008; Parker and Strout 2011). This is 

important, as more than 80% of cases of CLL are diagnosed at early disease stage. 

These developments have however created uncertainty for clinicians who hope to 

incorporate the use of these markers into standard clinical practice (Binet, Caligaris-

Cappio and Catovsky 2006). It is recognised that further research is needed to better 

understand if intrinsic differences in cell biology and analysis of the expression of 

molecular and cellular markers in CLL can be of prognostic use (Montserrat et al. 

2006; Parker and Strout 2011). 

 

There is also a need in the field of CLL treatment to identify factors that define 

outcome and refine disease categories (Caporaso et al. 2007). The Rai and Binet 

clinical staging systems are used to define disease extent and prognosis but new 

biological prognostic factors have become increasingly important, especially in early 

stage CLL. New prognostic factors continue to appear in the literature i.e. smudge 

cells, CAT scan abnormalities and new molecular and genetic markers (Nowakowski 

et al. 2007; Halek 2008). Any new prognostic information that can be proven to be of 

worth will independently add information to the many other traditional factors that are 

documented to influence CLL prognosis such as morphology, cytogenetics, 

lymphocyte doubling time and serum markers of rapid cell turnover, including 

elevated thymidine kinase and β-2 microglobulin (Binet, Caligaris-Cappio and 

Catovsky 2006). 

 

 CLL is a heterogeneous disease, which may change both within the individual and 

amongst the population; it can also however assume a steady state and remain 
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unchanged until death. A comparison between patients diagnosed with CLL in the 

period 1960 – 1979 against those diagnosed 1980 – 1989 shows significant 

differences. In the later cohort of patients, diagnosis was made at a later age, more 

patients were diagnosed in low risk groups and survival time was more than double 

(Rozman, Bosch and Montserrat 1997). As newer diagnostic tools have become 

available, their application has greatly influenced changes in both the accuracy and 

the speed of diagnosis. In particular the increased use of molecular techniques has 

introduced an opportunity to study the disease and its prognosis. It has been 

demonstrated that telomerase, an enzyme that mediates the repair and preservation of 

telomeres within chromosomes and thus prevent the ageing process normal in somatic 

cells, has significantly higher activity in B cells in CLL patients compared to normal 

controls. This enhances the ability of CLL cells to survive longer and continually 

repair DNA, not only by preventing the erosion of telomeres, but by actually restoring 

telomere length (Bechter et al. 1998).  It is envisioned that the measurement of 

telomerase activity may in the future become and important variable in the new 

generation of prognostic factors, allowing for better and more accurate diagnosis and 

prognosis. 

 

1.4 Toll Like Receptors 

 

In the 1980’s researchers in Germany working on the development of the fruit fly 

Drosophila found that the fly could not develop correct dorsal-ventral axis without the 

protein Toll, which is a trans-membrane signal receptor protein. The word Toll 

(meaning ‘weird’, ‘odd’ or ‘really good’ in German slang) refers to the bizarrely 

scrambled anatomy which results from the absence of this protein. In humans there 

are homologous proteins which appear to perform a vital role in innate immunity; 
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hence these became known as ‘Toll like receptors’ (Werling and Jungi 2003, Zhang 

and Ghosh 2001).   

Toll like receptors (TLR) are pattern recognition receptors that trigger innate 

immunity, signalling via TLR playing a critical role in defence against pathogens and 

innate activation of the adaptive immune response (Akira and Takeda 2004). 

TLR are membrane spanning proteins that consist of an exterior region, a membrane 

spanning region and an interior domain. To date 13 TLR have been discovered in 

humans and functions determined for 11 of them (Lu 2010). The current information 

relating to TLR is summarised in table 8. Each TLR detects a distinct repertoire of 

highly conserved pathogen molecules; the complete set can detect a broad variety of 

viruses, bacteria, protozoa and fungi. The ligands that bind to TLR’s are invariably an 

indispensable component of the pathogen in question, thus pathogens do not have the 

option of mutating to forms that lack the essential building blocks recognised by TLR. 

When a pathogen activates a TLR by binding to the extracellular domain a signal 

transduction pathway is activated which results in the induction of an innate immune 

response. This response includes promotion of the expression of genes that contribute 

to inflammation, induction of changes to antigen presenting cells (APC) to make them 

more efficient at antigen presentation and it also causes the synthesis and export of 

extracellular signalling molecules that affect a variety of cells involved with the 

immune response such as leucocytes (Underhill 2003). Activated pathways involved 

in this response include the NF-κB pathway (IκBα phosphorylation, translocation of 

NF-κB p65 to the nucleus), mitogen activated protein kinases p38, Jun-N-terminal 

kinase (JNK), and the interferon pathway, these pathways are summarised in figure 3: 
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Figure 3: TLR structure showing signal transduction pathway From: Kuby Immunology, 7/e, by Judy 

Owen (Haverford College) , Jenni Punt (Haverford College) , Sharon Stranford (Mount Holyoke 

College),  Copyright 2013  by W.H. Freeman and Company. Used by Permission of the publisher.  
 

1.4.1 TLR function 

 

The 13 different TLR currently identified in humans share similarities in their 

structure and function but respond differently to microbial components ((Kawai  and 

Akira 2011) 

Bacterial cell wall components are recognised by five TLR (1,2,4,5 and 6) and are 

termed extracellular TLR due to their expression on the cell surface and their 

extracellular domain, by contrast, TLR 3,7,8 and 9 are located in the cytoplasm and 

depend on the capacity of pathogens to penetrate the cell membrane . These internal 

TLR recognise both double and single stranded RNA, unmethylated DNA sequences 

and other motifs found predominantly in the bacterial genome. Together the 

extracellular and intracellular TLR’s confer a germ line-encoded repertoire specific 

for ligands of bacterial and viral origin. 

 



Page | 28 

 

The TLR signalling pathway consists of a myeloid differentiation factor 88 (MyD88) 

dependant pathway which is common to all TLR and a MyD88 independent pathway 

selective to TLR 3 and 4. 

 

Activation of MyD88 initiates a signalling cascade, which leads to the downstream 

activation of kinases and the translocation of the central transcription factors (NF)-kB 

and interferon regulatory factor (IRF)-3. Following this, MyD88 associates with 

Toll/interleukin (IL)-1 receptor (TIR) domain-containing adapter protein to form a 

complex that then recruits IL-1 receptor-associated kinase and subsequently tumor 

necrosis factor (TNF) receptor associated factor (TRAF)-6.  This results in activation 

of the ikB kinase (IKK) complex.  

 

In MyD88-independent signalling, the adaptor molecule TIR domain-containing 

adaptor-inducing interferon (TRIF) is recruited to the intracellular part of TLR3 

directly or to TLR4 via TRIF-related adaptor molecule (TRAM), which consequently 

leads to activation of both tank-binding kinase 1 (TBK-1) and TRAF-6, this being a 

crucial checkpoint for the induction of a NF-kB controlled immune response or an 

IRF-3 controlled response with thyp 1 IFN activation pattern.  

 

Activation of NF-kB is then one of the central signalling pathways after recognition 

of TLR ligands. This activation promotes phagocytosis of pathogens and 

inflammatory responses to phagosome contents. Additionally TLR 2 and 4 are able to 

interact directly with phagosomes and thus become activated at a very early stage of 

pathogen contact. In addition to triggering phagocytic and maturation signals, 
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activation of TLR also enhances co-stimulatory expression of accessory molecules 

such as CD80 and CD86 which provides a second signal for a full immune response. 

 

 

Receptor Ligand(s) Ligand 

location 

Location Cell types 

TLR1 Lipopeptides, 

soluble factors 

 

Bacteria, 

mycobacteria 

Cell surface Monocytes, T & B 

lymphocytes, 

dendritic cells 

TLR2 Glycolipids, 

lipoproteins, 

peptidoglycans 

Gram positive 

bacteria, fungi 

Cell surface Monocytes, T & B 

lymphocytes, 

dendritic cells, 

mast cells 

TLR3 Double stranded 

RNA 

Viruses Cell 

compartment 

B lymphocytes, 

monocytes, 

dendritic cells 

TLR4 Lipopolysacchride, 

heat shock protein, 

fibrinogen 

Gram negative 

bacteria 

Cell surface Monocytes, T 

lymphocytes, 

dendritic cells, 

mast cells, 

intestitial 

epithelium 

TLR5 Flagellin Bacteria Cell surface Monocytes, 

dendritic cells, 

intestinal 

epithelium 

TLR6 Diacyl lipopeptides Gram positive 

bacteria, fungi 

Cell surface Monocytes, mast 

cells 

TLR7 Single stranded 

RNA 

Viruses, 

synthetic 

compounds 

Cell 

compartment 

Monocytes, 

dendritic cells, B 

lymphocytes 

TLR8 Single stranded 

RNA 

Viruses, 

synthetic 

compounds 

Cell 

compartment 

Monocytes, 

dendritic cells, B 

lymphocytes 

TLR9 CpG-containing 

DNA 

Bacteria Cell 

compartment 

Monocytes, 

dendritic cells,  

T&B lymphocytes 

TLR10 Not determined Unknown Cell Surface Monocytes, B cells 

TLR11 Profilin Uropathogenic 

bacteria 

Unknown Monocytes, 

liver/kidney cells, 

bladder epithelium 

TLR12 Not determined Unknown Unknown Unknown 

TLR13 Not determined Unknown  Unknown 
 

Table 8: Human TLR distribution, specificity and function (adapted from Kingston & Mills 2011) 
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TLR control the activation of innate immunity through the induction of antimicrobial 

activity and the production of inflammatory cytokines (Yamamoto et al. 2002). They 

also control the generation of adaptive immunity through the induction of antigen-

presenting (MHC class II) and co-stimulatory molecules such as CD80 and CD86 and 

specific cytokines such as Interleukin 6, on APC (Pasare and Medzhitov 2005). Gene 

targeting studies examining TLR and their cognate downstream signalling molecules 

provides evidence that the expression and activation of TLR in vivo contributes to 

host defence and the generation of specific antibodies following vaccination (Krutzik 

et al. 2005). 

 

Despite the advances in understanding of the role TLR plays in host defence and the 

specific signalling events initiated following TLR activation, factors that regulate 

TLR expression and function are poorly understood (Lancaster et al. 2005). However 

a number of specific molecules are known to be involved in the TLR signalling 

pathway. These include adapter molecules such as MyD88, MyD88 adapter-like 

(Mal), also known as Toll/IL-1R (TIR) domain-containing adaptor protein (TIRAP), 

and TIR domain-containing adapter inducing interferon (TRIF), also known as 

TICAM1. Other key signalling proteins include IL-1 receptor associated kinases 

(IRAKs) such as IRAK1, 2, and 4, transforming growth factor kinase (TAK-1), IκB 

kinases (IKKs), and TRAFs (TNF receptor associated factors) (Zhang et al. 2004). 

 

It is also believed that cytokines exert influence over the development of host 

immunity and have been shown to modulate the expression and activation of TLR. 

Viral infection of human macrophages for example induces expression of a number of  



Page | 31 

 

TLR, a process which is dependant on the production of type 1 interferons (Miettinen 

2001). Other studies have shown that differential TLR expression and activation is 

regulated by activation via type 1 and type 2 cytokines (Krutzik et al. 2005).  

 

Three key discoveries have confirmed the central role that TLR perform in innate 

immunity. Firstly the observation that the mutations in Toll which play a role in fly 

development also make the fly highly susceptible to lethal pathogens. This discovery 

demonstrates the importance of pathogen triggered immune response in invertebrate 

organisms. 

Secondly it was discovered that human proteins with cytoplasmic domain homology 

with Toll activated the expression of immune response genes when transfected into a 

human experimental cell line. This demonstrated conservation of an immune response 

pathway between invertebrates and humans. And thirdly, studies with mutant mice 

homozygous for the lps locus were resistant to lipopolysacchride (LPS) also known as 

endotoxin, which is found in the cell walls of gram negative bacteria. Mutant strains 

of mice were susceptible to septic shock from endotoxins released from gram negative 

bacteria, the mouse lps gene encodes for a TLR, thus providing unequivocal evidence 

that TLR’s play a central role in normal immunophysiology (Salaun, Romero and 

Lebecque 2007). 

 

1.4.2  Toll like receptors and CLL 

A rapid cellular response to pathogenic organisms is central to the maintenance of a 

fully functional immune system, this role is carried out by pathogen associated pattern 

recognition receptors (PAMP’s), amongst which group the TLR have been identified 

as having prime importance (Akira, Uematsu and Takeuchi 2006). 
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TLR signalling plays an important role in the biology of B cells. It is postulated that 

they may be involved in the regulation of the B cell differentiation process (Hayashi, 

Akira and Nobrega 2005).  TLR stimulation is also required as signal for the 

activation of naïve B cells (Ruprecht and Lanzavecchia 2006). In naïve B cells, TLR 

are expressed at low levels, but the expression of some TLR is induced upon BCR 

triggering, the effect of which is that some memory B cells express TLR at high 

levels. It has been suggested that TLR expression by memory B cells is crucial for the 

maintenance of long lived memory B cells (Bernasconi, Traggiai and Lanzaveccia 

2002).  TLR have also been reported to induce BCR independent B cell activation, 

and increase the immunogenicity of B cells by upregulating costimulatory molecules 

(Mansson et al. 2006). A role has also been identified for TLR in T lymphocyte 

function in the T helper cell related control of inflammation (McGettrick and O’Neill 

2007).  

 

Given that B CLL cells share some of the characteristics of their normal counterparts, 

investigation of TLR expression on the two groups of cells and possible links to 

prognosis and autoimmune phenomena is of great interest. The possibility of using 

TLR for targeted drug delivery has been proposed. CLL is especially amenable to 

TLR agonist therapy, as it is an immunologically susceptible tumour with strong TLR 

expression (Kanzler et al. 2007). It has also been suggested that the stimulation of 

TLR differentially expressed on B CLL cells could increase immunogenicity of 

tumour cells and thus potentially contribute to the induction of a leukaemia-specific 

immune response, which in turn would have great significance for possible 

therapeutic advances (Spaner and Masellis 2007). Interest in the role of TLR in CLL 

therapy has generated interest in their expression in both normal and malignant cell 
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populations; studies have indicated that B CLL cells display similar patterns of TLR 

as normal B cells but with different levels of expression (Grandjenette et al. 2007). To 

date however, there has not been a concise study of TLR expression patterns 

comparing B CLL and normal B cells (Rožková et al. 2010). 

 

1.5 Project aims and hypothesis 

It has long been accepted that improved understanding of prognostic factors in CLL 

should accelerate the development of risk adapted treatment strategies that also take 

into account more traditional prognostic indicators (Montserrat 2002, Parker 2011). A 

major review of the aetiology of CLL in 2007 concluded that the timely assessment of 

new leads in the study of the disease was due (Linet et al. 2007).  

 

Chronic lymphocytic leukaemia is frequently associated with immune disturbances ( 

Hodgson et al. 2011), the pathogenesis of the disease  appearing to involve 

dysfunctional regulation of humoral and cellular immunology with subsequent 

development of genetic aberrations (Dearden et al. 2008). Since TLR are thought to 

bridge these two elements of the immune system, the aim of the project was to collect 

data on the expression of TLR on a variety of cells in CLL patients and age/gender 

matched controls, in an attempt to establish links between TLR expression and 

autoimmune involvement.  

 

The hypothesis of this study is that there is a link between TLR expression levels on 

lymphocytes & monocytes and the disease process in CLL. In particular it is 

hypothesised that the development of autoimmunity in CLL is directly attributable to 
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TLR function and as such there will be a differential expression of TLR between 

patient and age/sex matched controls. 

 

This hypothesis will be tested by assessing the expression of TLR on leucocyte 

subtypes in both patient and matched control groups to compare differences; this will 

be followed by a comparison of TLR expression patterns in patients exhibiting traits 

of autoimmunity, as demonstrated by a positive direct antiglobulin test (DAG). From 

these studies it is expected that a TLR based mechanism for autoimmunity in CLL 

will be revealed. 
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2 Materials 

 

All flow cytometric consumables including flow sample tubes, sheath reagent and 

wash/dilution fluids were obtained from Becton Dickinson (Oxford UK). Blood 

collection equipment, including needles and Vacutainer brand sample tubes were also 

obtained from BD. 

 

All monoclonal antibodies used in the first line diagnostic CLL panel were obtained 

from Dako (Cambridge UK), as were the fixation and permeability solutions and the 

Isotype negative controls. 

 

The anti-TLR monoclonal antibodies were sourced from the following companies: 

Anti-TLR 1, 3 and 4 from RandD systems (Minneapolis USA), Anti TLR 2 and 9 

from Insight Biotechnology (Wembley UK).  

 

Patient and control samples were obtained from blood samples collected at the Royal 

Cornwall Hospital Haematology (RCH) outpatients department. Between January 

2007 and May 2010 a total of 129 patients (82 males, 47 females), age 50-94 years, 

(mean age 71.5 years) with newly diagnosed CLL presenting at the Haematology 

department of the RCH, were recruited for the study. None of the study group had any 

history of malignancy prior to presentation. An equal number of age and sex matched 

case controls, with no previous history or current evidence of haematological 

malignancy, were recruited from patients presenting at RCH for pre-operative or 

general health screening during the same time frame. All controls were screened using 

the same diagnostic tests as the patient group, in order to be included in the study they 
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were required to have normal blood film morphology and Immunophenotyping (i.e. a 

Matutes CLL score of 0). 

 

Only patients with a confirmed diagnosis of B-CLL, determined by morphology and 

immunophenotype, and having a Matutes CLL score of 3-5 were included in the 

study. The data from those patients subsequently found to fall outside these diagnostic 

criteria were excluded from further analysis. 

 

A summary of key demographic details are attached as appendix i and summarised in 

table 9. 

 

Demographic factor Results from this study National average figures 

for CLL   

Average age 71.5 (Range 50-94) 72 

Male: female ratio 1.75:1 (82♂:47♀) 2:1 

Patients <55 years old 6.2% 11% 
 

Table 9: Summary of key patient demographic data (National average figures from Oscier et al 

2012) 

 

 

All peripheral blood samples were collected by experienced phlebotomy or medical 

staff, using a standardised procedure. 4ml of peripheral blood was drawn from veins 

in the antecubital area of the forearm using Vacutainer evacuated blood collection 

tubes, containing the anticoagulant Di-potassium ethylenediamine tetra acetic acid. 

Samples were transported to the laboratory at room temperature and prepared for flow 

cytometry within 2 hours of phlebotomy. 
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3 Methods 

The methods used in the study are detailed below; these were adopted following an 

extensive developmental period, details of which are recorded in the method 

development chapter. 

 

3.1 Sample analysis 

Patients were routinely diagnosed with CLL by the Haematology laboratory at RCH 

using the series of diagnostic tests described below, a diagnosis of CLL being based 

on a combination of lymphocyte morphology, the presence of >5 x10
9
/l circulating 

clonal B cells and a characteristic immunophenotype (Eichhorst et al. 2011; Oscier  et 

al. 2012) 

 

3.1.1 Full blood count  

A full blood count (FBC) was produced using the Advia 2010 automated blood count 

system (Bayer, New York, USA), which enumerates a number of parameters 

associated with the cellular components of the subjects peripheral blood including 

white blood cell count (WBC), haemoglobin (Hb), platelet count (Plt) and the 

numbers and proportions of white cells to produce a differential count (Dif). Other 

parameters were also simultaneously measured using this test, such as red cell and 

platelet volume, concentration and distribution. Commercial controls were used at 

regular intervals to ensure the accuracy and precision of the results and there was 

participation in a formal national external quality assurance scheme throughout the 

study. Samples with FBC parameters falling outside of normal ranges were referred 

for manual blood film analysis under a light microscope. If blood film analysis 

revealed the presence of characteristic ‘smear’ cells or pleomorphic lymphocytes, 
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suggesting the presence of a malignant haematological clone, the sample was referred 

for confirmatory testing by Immunophenotyping using multiparametric flow 

cytometry. 

3.1.2 Immunophenotyping 

A panel of monoclonal antibodies (shown in table 10 below) was used on samples and 

the matched control to confirm a diagnosis of CLL and to provide information to 

generate a CLL score. The panel of antibodies was chosen to allow assessment of 

disease stage and included markers to allow exclusion of other lymphoid 

malignancies such as Hairy cell leukaemia (CD25 and CD103), acute lymphoblastic 

leukaemia (CD10) and B cell lymphomas (FMC7).  
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Monoclonal 

antibody 

Antigen description Clinical utility Expression in 

B-CLL 

CD45 Leucocyte common antigen.  

180-220 kDa antigen expressed 

at variable strength on all 

haemopoietic cells 

Useful in distinguishing 

mature lymphoid 

neoplasms from acute 

Leukaemias and normal 

cell populations 

Strong 

expression on 

malignant B 

lymphocyte 

clone 

CD19 Pan B cell antigen.  >120 kDa 

involved in B cell development, 

activation and differentiation 

Indicates B cell lineage.  

May demonstrate 

abnormal intensity in B 

cell neoplasms 

Strong 

expression on B 

lymphocyte 

clone 

CD79b Expressed with variable 

strength on mature B cells.  33-

45 kDa receptor, expression 

varies with malignant state 

Indicates B cell lineage.  

Intensity differs between 

subtypes of mature B 

cell neoplasms 

Negative or 

weak expression 

in typical CLL 

FMC7 Expressed with variable 

strength on mature B cells.  105 

kDa B cell antigen 

Strength of expression 

useful in distinguishing 

CLL from lymphoma 

Negative or 

weak expression 

in typical CLL 

CD3 Pan T cell antigen.  25 -28 kDa 

antigen involved in TCR signal 

transduction 

Distinguishing T cell 

population 

Negative on B 

lymphocyte 

clone 

CD38 B cell prognostic marker.  45 

kDa cell adhesion regulator 

Poor prognostic indicator 

in CLL.  Bright intensity 

staining indicates 

plasmacytic 

differentiation 

Positivity on B 

lymphocyte 

clone associated 

with poor 

prognosis 

CD5 Pan T cell antigen co-expressed 

on malignant B cells.  58 kDa 

receptor involved in T/B cell 

receptor signalling 

Expressed on malignant 

B cells in conjunction 

with pan B cell markers.  

Useful in identifying 

malignant B cells 

Positive on 

malignant B cell 

clone 

CD10 Common acute lymphoblastic 

antigen.  100 kDa membrane 

bound peptide cleaving 

metallopeptidase. 

Frequently present in 

ALL.  Distinguishes 

acute from chronic B cell 

neoplasms 

Negative  

CD23 45 kDa B cell antigen expressed 

on B CLL lymphocytes 

Distinguishes CD5+ B 

cell lymphoid neoplasms 

Positive on B 

cell clone in 

typical CLL 

CD103 150 kDa antigen expressed in 

Hairy Cell Leukaemia 

Characterises Hairy Cell 

Leukaemia and Marginal 

Zone Lymphoma 

Negative 

CD25 55 kDa IL-2 receptor expressed 

on activated T and B 

lymphocytes.   

Present in Hairy Cell 

Leukaemia  

Negative 

Anti 

Kappa/Anti 

Lambda light 

chains 

Light chains associated with 

surface immunoglobulins of B 

cells.  Strength of expression 

weaker on B CLL lymphocytes 

Establishes light chain 

restriction and clonal 

nature of B cell 

neoplasms.  Strength of 

expression useful in 

scoring CLL 

Weak expression 

in typical CLL. 

Restricted to one 

light chain in 

CLL. 

 

Table 10: Diagnostic monoclonal antibody panel used to confirm diagnosis of CLL and construct 

CLL score. Modified from Craig and Foon, 2008 
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Following a diagnosis of CLL being made using the above criteria a number of 

additional investigations were routinely performed on each patient including bone 

marrow biopsy (where appropriate) to assess degree of infiltration, cytogenetic 

analysis to identify common risk factors and histology which is considered important 

to obtain a definitive diagnosis (Dronca et al. 2010). Bone marrow biopsy and 

histology were performed locally and analysed by the hospital histopathology 

department and cytogenetic analysis was performed by a regional cytogenetics centre 

at Bristol. These investigations did not form part of the study and were performed as 

part of a standard diagnostic protocol. The results of these investigations were 

however used to confirm a diagnosis of CLL. Additionally a direct antiglobulin test 

(DAG) was performed as part of the study to assess autoimmune status, this test also 

being one of those recommended in diagnostic guidelines (Oscier et al. 2012). The 

DAG results were recorded and analysed as part of the study. 

 

Using the results of tests detailed above, coupled with physical findings on 

examination by a medical consultant, a diagnosis of either typical or atypical CLL 

was made for each patient and a CLL stage value assigned based on the surface 

antigen expression criteria summarised in table 7 (page 23).  Patients with a CLL 

score 3-5 and co-expression of CD5 and CD19 on the B lymphocytes were included 

in the study, any patients who did not satisfy the criteria for a diagnosis of CLL were 

withdrawn from the study at this stage, and all associated sample data disregarded. All 

matched control subjects were also tested with this panel of monoclonal antibodies to 

exclude any that had an incidental diagnosis of CLL. Only control subjects with a 0 
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CLL score and no evidence of a CD5/CD19 co-positive B cell population were 

included in the study. 

The distribution of CLL scores among the patient group are summarised below (full 

results attached as appendix i),  

 

CLL Score Number of patients Classification 

5 62 Typical CLL 

4 59 Typical CLL 

3 8 Atypical CLL 

Table 11:  Distribution of CLL scores amongst patient group in this study 

 

 

3.1.3 Toll like receptor analysis 

The TLR chosen for analysis in this study were selected to represent those commonly 

found on T and B lymphocytes on both cell membrane (TLR 1,2 and 4) and those 

expressed in the internal compartment (TLR 3 and 9). The TLR chosen for 

investigation was restricted to those for which a commercial antibody was readily 

available.  The presence and importance of expression of these particular TLR on 

lymphocytes has been previously reported (Rožková et al. 2010) although on a 

limited number of subjects. All patient and matched control samples were stained 

using a panel of TLR antibodies in association with key lymphocyte and monocyte 

lineage markers (CD3, CD14 and CD19) which were used to identify target cell 

populations. 
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3.1.4 Flow cytometry protocol (CLL phenotype) 

Samples of EDTA anticoagulated whole blood were manually aliquoted into 100 

microlitre volumes and stained with a 10 microlitres mixture of appropriate directly 

conjugated monoclonal antibody (as detailed in table 12) and incubated for 15 

minutes in the dark at room temperature. All monoclonal antibodies used in the 

diagnostic panel had previously been titred to find the optimal concentration for flow 

cytometric analysis and the volume adjusted to allow for a standard volume of 10 

microlitres of each monoclonal antibody to be used in each test. 

 

Tube number Monoclonal antibody combination 

1 CD14 (FITC) CD45 (PE) 

2 CD5 (PE) CD19 (FITC), CD10 (APC) 

3 CD5 (PE) CD19 FITC, CD79b (APC) 

4 CD23 (PE),CD19 (FITC), FMC7 (APC) 

5 CD3 (PE), CD4 (FITC), CD8 (APC) 

6 CD25 (FITC),CD103 (PE) 

7 CD38 (FITC), CD19 (PE) 

8 Kappa (FITC), Lambda (PE), CD19 (APC) 

 
Table 12: Diagnostic flow cytometry panel (flourochrome conjugates shown in parentheses) 

 

Following  this incubation step the red cells in each sample were lysed by the manual 

addition of 2ml of a lysing solution comprising of 16% Ammonium chloride per tube, 

the resultant solution was hand mixed and incubated for a further 15 minutes at room 

temperature in the dark to prevent flourochrome quenching.  Samples were finally 

manually washed by the addition of 2 mls of a Phosphate Buffered solution of 
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isotonic saline (pH 7.4) to remove the lysing solution, red cell debris and any unbound 

antibody, the supernatant was removed following centrifugation at 320g for 45 

seconds, and the remaining cells resuspended in 2 ml of BD Facsflow flow cytometry 

fluid (pH  7.2) prior to immediate analysis using a FACSCalibur (BD New York, 

USA).  

For each sample, a standard 50,000 events were collected.  The flow speed of the 

instrument was set to a low rate to avoid the false positive events that are frequently 

associated with high cell count samples (Bartle 2011).   

Standard CD45 vs. side scatter/CD14 gating strategies were employed to identify the 

lymphocyte and monocyte populations in each sample in preparation for analysis, an 

isotype negative control was also analysed alongside each sample in line with 

international guidelines (Béné et al. 2011). For all monoclonal antibodies, both the 

percent positive cells and the mean fluorescent intensity were recorded to allow 

enumeration of cell subsets and strength of antigen expression per cell. 

 

3.1.5 Flow cytometry protocol (TLR phenotype) 

Since TLR 1, 2 and 4 monoclonal antibodies were available as pre-conjugated 

reagents and the target antigen in each case was expressed on the cell surface, the 

protocol for sample preparation was identical to that used for the CLL phenotype 

described in section 3.1.4. The antibody and flourochrome combinations used in this 

portion of the study are summarised in table 13. 

 

Preparation of cells for the analysis of TLR 9 required an additional fixation and 

permeabalization stage as the target antigen is expressed intracellularly. 
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The Intracellular Fixation & Permeabalization technique is designed for use in 

intracellular staining and flow cytometric analysis and has been formulated to reduce 

non-specific staining of fluorochrome-labelled antibodies and increase fluorescence 

signal to noise ratios. In the first step live cells are fixed with a fixation Buffer, 

containing a 4% solution of formaldehyde which cross- links proteins. The second 

step uses a permeabalization Buffer which contains 0.1% saponin, which creates holes 

in the membrane thereby allowing the intracellular staining antibodies to enter the cell 

effectively. 

 

 In order to prepare cells for analysis, 100 microlitres aliquots of EDTA 

anticoagulated whole blood were pre-treated with Dako intrastain (Dako, Cambridge 

UK).  100 microlitres of intrastain solution A (containing formaldehyde) was added to 

the cells followed by a 15 minute incubation in the dark at room temperature. This 

step allowed for stabilisation of the cell membrane and was followed by the addition 

of 2mls of PBS (to quench the reaction), centrifugation at 320g for 5 minutes and 

discard of the supernatant containing the excess solution A. At this stage there 

followed the addition of 100 microlitres intrastain solution B (containing saponin) to 

the centrifuged cells, along with the appropriate monoclonal antibody mix. 

Subsequent incubation washing and analysis was the same in every respect to the 

protocol used for the analysis of the CLL phenotype described in section 3.1.4. 

 

The protocol for the preparation of cells for the analysis of TLR 3 was similar to that 

used for TLR 9 but with the inclusion of an additional flourochrome conjugation 

stage, as anti TLR 3 was only available as an unconjugated monoclonal antibody. 

Following incubation with solution A, in addition to the anti TLR 3 monoclonal, 10 
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microlitres of anti-mouse FITC flourochrome (R &D systems Minneapolis USA), was 

included. Subsequent preparation was the same as that used in the TLR 9 preparation 

protocol described above.  

 

3.1.6 Detailed protocols for preparation of TLR panel 

Protocol 1: Preparation for TLR 1, 2 & 4 analysis 

 

For each TLR, 3 tubes were prepared for each patient and control, into each was 

placed 100 microlitres of fresh whole blood collected in EDTA. 

10 microlitres of the appropriate pre-conjugated anti TLR monoclonal antibody was 

added to the each tube and mixed well by gentle vortexing.  

 

To the first tube 10 microlitres of pre-conjugated CD3 was added. 

To the second tube 10 microlitres of pre-conjugated CD19 was added. 

 

In each case the flourochrome conjugate of the second antibody added was different 

to that on the anti-TLR antibody. 

 

Samples were incubated for 15 minutes in the dark at room temperature. 

After this incubation step 2ml of a lysing solution comprising of 16% Ammonium 

chloride was added to each tube and the mixture was incubated for a further 15 

minutes at room temperature in the dark. 

 

Following this preparation the samples were analysed using a multiparametric 

fluorescent activated cytometer. 
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Protocol 2: Preparation for TLR 9 analysis 

2 tubes were prepared for each patient and control, into each was placed 100 

microlitres of fresh whole blood collected into EDTA. To this blood 100 microlitres 

of DAKO intrastain fixation solution A (DAKO, Ely, UK) was added and the sample 

left to incubate in the dark at room temperature for 15 minutes. The cells were then 

washed twice using 2ml of isotonic Phosphate Buffered Saline (PBS pH 7.2) and 

centrifuged at 320g for 5 minutes. 

 

Following this fixation step, 10 microlitres of pre-conjugated anti TLR 9 monoclonal 

antibody and 100 microlitres of intrastain permeabalization solution B (DAKO) were 

added. 

 

At this point to the first tube 10 microlitres of pre-conjugated CD3 was added. 

To the second tube 10 microlitres of pre-conjugated CD19 was added. 

 

In each case the flourochrome of the second antibody added was different to that on 

the anti TLR antibody. 

 

The solutions were then incubated for a further 15 minutes in the dark at room 

temperature. Cells were then washed twice in 2 ml PBS pH 7.2 and centrifuged at 

320g for 5 minutes, following which they were resuspended in 1ml PBS pH 7.2. 

Following this preparation the samples were analysed using a multiparametric 

fluorescent activated cytometer. 
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Protocol 3: Preparation for TLR 3 analysis 

 

2 tubes were prepared for each patient and control, into each was placed 100 

microlitres of fresh whole blood collected into EDTA. To this blood 100 microlitres 

of intrastain fixation solution A (DAKO) was added and the sample left to incubate in 

the dark at room temperature for 15 minutes. The cells were then washed twice using 

2ml of Phosphate Buffered Saline (PBS) and centrifuged at 320g for 5 minutes. 

 

Following this fixation step, 10 microlitres of unconjugated anti TLR 3 monoclonal 

antibody, 10 microlitres of anti-goat FITC flourochrome (R&D Systems, Oxford UK) 

and 100 microlitres of intrastain permeabalization solution B (DAKO) were added. 

 

At this point to the first tube 10 microlitres of pre-conjugated CD3 was added. 

To the second tube 10 microlitres of pre-conjugated CD19 was added. 

 

In each case the flourochrome of the second antibody added was different to that on 

the anti TLR antibody. 

The solutions were then incubated for a further 15 minutes in the dark at room 

temperature. Cells were then washed twice in 2 ml PBS pH 7.2 and centrifuged at 

320g for 5 minutes, following which they were resuspended in 1ml PBS pH 7.2. 

Following this preparation the samples were analysed using a multiparametric 

fluorescent activated cytometer. 
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Thus for each patient and matched control a total of twenty tubes were prepared and 

analysed using a multiparametric fluorescent activated cytometer. 

 

 

Tube number TLR monoclonal 

antibody 

T/B lymphocyte 

monoclonal antibody 

1 TLR1 (PE) CD3 (FITC) 

2 TLR 2 (PE) CD3 (FITC) 

3 TLR 3 (FITC) CD3 (PE) 

4 TLR 4 (FITC) CD3 (PE) 

5 TLR 9 (PE) CD3 (FITC) 

6 TLR1 (PE) CD19 (FITC) 

7 TLR 2 (PE) CD19 (FITC) 

8 TLR3 (FITC) CD19 (PE) 

9 TLR 4 (FITC) CD19 (PE) 

10 TLR 9 (PE) CD19 (FITC) 

 
Table 13: TLR flow cytometry panel (flourochrome conjugates shown in parentheses). 

 

 

For each sample and matched control blood, the following data was recorded 

i) % positivity for each TLR 

ii) % co-positivity with T lymphocytes (expressing CD3) for each TLR  

iii) % co-positivity with B lymphocytes (expressing CD19)  for each TLR 

iv) % co-positivity with monocytes for each TLR (using  CD14 gated population data 

from CLL Immunophenotyping protocol) 
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3.1.7 Choice of flourochromes 

 

A range of fluorescent molecules are available to label monoclonal antibodies and the 

choice of flourochrome for these experiments was made with due regard to 

standardisation and performance. The 2 flourochromes used were Fluorescein 

isothiocyanate (FITC) and R-phycoerythrin (PE).  FITC has the major advantage that 

it has a high extinction coefficient and quantum efficiency and an absorption 

maximum very close to the emission lines from a 488 nanometre Argon-ion laser, 

such as the main laser fitted to the FACSCalibur. The emission line from activated 

FITC is around 520nm in the green spectrum. FITC is also widely available linked to 

a variety of monoclonal antibodies and other probes. For the second label, PE was the 

obvious choice as it too is excited at 488 nm, meaning that only one laser is required 

for analysing the cell populations. The emission line for PE is at 576nm in the orange 

spectrum, meaning that it can be easily distinguished from both the laser source and 

the green fluorescence of FITC. 

 

Instrument standardisation was performed prior to analysis of each batch of samples 

by running commercial calibration beads (Calibrite beads, Becton Dickinson, New 

York) with known ranges of size, granularity and fluorescence characteristics for each 

flourochrome used in the experiment. The standardisation procedure was carried out 

to confirm that the instrument was operating under standard parameters and that it met 

minimum performance requirements with respect to optics (including light-scatter and 
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fluorescent detectors) and electronics, as well as expected fluorescence staining 

patterns.  

 

 

3.2 Gating strategy 

As with the CLL flow cytometry protocol described earlier, samples were gated using 

a forward scatter (FSC) vs. side scatter (SSC) strategy to identify the monocyte and 

lymphocyte populations as appropriate. When evaluating cells in this way the 

Forward scatter axis provides information about the size of the cell, the degree of 

scatter being directly proportional to the size of the cell. The Side scatter axis 

provides information about the degree of complexity of the inner aspect of the cell 

such as the shape of the nucleus or the presence of cytoplasmic granules. This 

information is used to identify cell populations of interest and electronically ‘gate’ the 

cell population pending further investigation. Lymphocytes typically have low 

forward light scatter and low side scatter whereas monocytes form a discreet 

population on the scattergram due to the fact that they have a larger forward light and 

side scatter characteristic. These characteristics are summarised in figure 2: 

 

                      

Figure 4: Cell population discrimination using physical parameters 
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The lymphocyte and monocyte populations identified by this strategy were checked 

for purity by backgating to the CD45 vs. CD14 tube used in the CLL 

Immunophenotyping panel.   

 

 

 

 

3.3 TLR expression Data analysis 

 

For each sample analysed, 3 separate graphs were generated in order to enumerate the 

TLR expression on the different cell populations of interest. The TLR expression on 

the monocytes was calculated by separating the monocyte population of the FSC vs. 

SSC dot plot by addition of on electronic gate. This gated region (R1) was then 

analysed and a histogram generated that showed positivity for the particular TLR. A 

second electronic gate was applied to the positive population on this histogram to 

allow accurate measurement of the positive population and assessment of the intensity 

of fluorescence. 

 

TLR expression on the lymphocyte sub-populations involved firstly applying an 

electronic gate to the entire lymphocyte population and analysing this data on a 2 way 

dot-plot, plotting the TLR activity on one axis and the CD3 or CD19 activity, as 

appropriate, on the other axis. In this way co-positivity for TLR expression on the 

appropriate lymphocyte population could be accurately measured. 

 



Page | 52 

 

The process of identifying, gating and analysing the cell population of interest is 

demonstrated best via specific examples.  Figure 5a shows an example of the dot plot 

obtained by plotting the side scatter characteristics of the leucocytes against the 

forward scatter attributes. In this example the lymphocyte population has been 

identified by the physical characteristics of their small size and lack of complexity of 

internal architecture, relative to the other leucocytes present in the sample. An 

electronic gate (labelled as R1) has been applied to this population and all subsequent 

analysis would be carried out exclusively on this population of cells. Due to the fact 

that the monocyte population can display similar physical characteristics to larger and 

more granular lymphocytes, the target population was analysed to ensure that the cells 

contained within this gate did not express any CD14 activity, CD14 is a marker 

specific for monocytes and aids in the gating process as it gives confidence that no 

monocytes were included in the gated population. 

 

Having successfully isolated the lymphocyte population, the next stage was to identify 

the T and B lymphocyte populations in order to assess TLR expression on both 

separately. In order to achieve this, each TLR was analysed in conjunction with CD3 

(a pan T cell marker) and CD19 (a pan B cell marker). Figure 5b shows an example of 

a dot plot that shows CD3 expression against TLR 4. In this example, the dot plot is 

divided into quadrants that indicate positivity or co-expression for each marker. In 

this way it is possible to identify and electronically gate, cells that are co-positive for 

CD3, indicating that they are T cells, and also positive for the TLR being investigated.  

 

The electronically gated region can now be analysed for TLR expression via a 

histogram plot which will yield information regarding the mean (or median) 
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fluorescent intensity as shown in figure 5c. In this example the TLR being studied 

(TLR3) is being expressed at a relatively low MFI compared with the isotype negative 

control (shown as an overlay on the histogram).  

 

The same process of identification, isolation and analysis is applied to the study of the 

B cell population. Figure 5d shows the identification of the B cell population 

(following separation of the total lymphocyte population as described above). In this 

example the B cells are identified due to the expression of CD19 on their cell surface. 

The dot plot shows this expression again that of TLR2, an electronic gate was then 

placed around the CD19/TLR2 co-expressing cell population. 

 

The final stage in the process is to display level of TLR expression on the gated B cell 

population via a histogram as shown in figure 5e. 

 

It is useful to note the stronger expression levels of TLR in this example, reflected in 

a high MFI, when compared with those obtained in figure 5c. 

 

Just as it is important to exclude any monocyte data from the lymphocyte gate, it is 

equally important to ensure that the monocyte population is identified and isolated 

efficiently. This was achieved in a manner similar to that used for the lymphocytes, in 

that the leucocyte population for each sample was analysed using forward and size 

scatter characteristics. Using this physical information a gate was placed around those 

cells that showed characteristics consistent with monocytes, this approximates to a 

population of cells that are slightly larger than the lymphocytes  but with a similarly 

low granularity. An example of this gating is shown in figure 5f. 
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In this example the monocyte population is gated as region 1. The next stage is to 

check that this population represents the monocyte population exclusively; this is 

achieved by analysing the expression of the pan-monocyte marker CD14 on these 

cells surface. This is best achieved by plotting the CD14 expression of these cells 

against the pan leucocyte marker CD45 since leucocyte populations show differential 

expression of CD45. The resultant dot plot clearly identifies the strongly CD14 

positive monocyte population, allowing a second gate (R2) to be applied which 

uniquely isolates the monocyte population as shown in figure 5g. 

 

This pure monocyte population can then be analysed to show individual TLR 

expression on a histogram, as shown in figure 5h which illustrates TLR9 expression 

on the monocyte population isolated by the above method. 
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a: Gated lymphocyte population (R1)                 b: CD3/TLR4 co-positive population 

                      
c: TLR3 fluorescence intensity                           d: CD19/TLR2 co-positive population 

                
e: TLR2 fluorescence intensity                             f: Gated monocyte population (R1) 

                
g: Dot plot showing CD14 population (R2)        h: CD14/TLR9 co-positive population 

 
Figure 5a-h: Representative dot plots, histograms and gating strategies used to identify target 

population for TLR quantification 
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3.4 Preparation and analysis of time delay study samples 

In order to determine the effect of sample storage prior to staining and analysis, 

samples of EDTA anticoagulated whole blood from 5 patients and matched controls 

were stored after the initial staining and analysis. Initial staining and analysis was 

carried out as soon as possible after the patient was bled, this sample analysis was 

recorded as having taken place at time 0. A fresh aliquot was removed from the blood 

collection tube at 4h, 8h, 12h and 24h post collection. Upon removal each aliquot was 

stained and analysed immediately. Samples were stored at room temperature in the 

dark between testing and in each case the preparation and testing protocols were 

identical to those described for all other patients and controls. 

 

3.5 Direct antiglobulin test (DAGT) 

The direct antiglobulin test is used to test for the presence of IgG autoantibodies that 

can specifically bind to antigen on red blood cells. In the presence of such 

autoantibodies the patients RBC’s become coated with IgG autoantibodies with 

subsequent binding of compliment proteins which leads to RBC destruction.  The 

DAGT is used to detect the presence of IgG autoantibodies bound to the RBC surface. 

Washed RBC’s are incubated with anti-human globulin, if Immunoglobulin or 

compliment factors have been fixed onto the RBC surface in-vivo then the anti-human 

globulin will agglutinate the RBC’s by binding onto the RBC surface and bridging the 

gap between adjacent cells causing them to clump together, this agglutination is 

macroscopically visible. 

 

A 100 microlitre aliquot of well mixed EDTA anticoagulated whole blood was added 

to a sterile 15ml glass test tube (Elkay, Coventry UK) containing 2 mls of PBS (PH 
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7.6). This mixture was capped and thoroughly mixed by gentle inversion. The sample 

was then centrifuged at 320g for 60 seconds using a Centra CE4 benchtop centrifuge 

(Centra corp, Baltimore USA). Following centrifugation the supernatant was aspirated 

and the cell pellet resuspended by gentle mechanical disruption. 1 ml of PBS (PH 7.6) 

was added to the cells to produce an approximately 3% cell suspension. From this cell 

suspension a 100 microlitre aliquot was pipetted into a sterile 15ml glass tube and one 

drop of anti-human globulin solution (NBS reagents, Bristol UK) was added. This 

mixture was gently agitated by hand for 10 seconds to ensure thorough mixing of cells 

and reagent. The sample was then centrifuged at 320g for 15 seconds to produce a 

loose pellet of cells. This pellet was dispersed by gentle agitation of the tube, 

following which the contents were visually inspected to assess the degree of red cell 

agglutination as shown in figure 6. Samples which exhibited agglutination of the 

RBC’S as seen by macroscopic examination were recorded as having a positive DAG. 

 

 

 
Figure 6: Positive and negative agglutination in a DAG test 

 

 

 

 

 

  POS            NEG 
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3.6 Statistical analysis of TLR data 

In order to compare the expression of TLR on CLL patients and matched controls, 

statistical analysis was carried out, however in order to apply the appropriate 

statistical testing the data was assessed for parametric/non-parametric distribution 

using Levene’s test. 

The two sets of data were firstly analysed using the t-test to compare the mean 

expression of TLR in the two groups. This test is however only accurate if it can be 

assumed that the data is both continuous and parametric (i.e., normally distributed). 

Whilst it was reasonable to assume that the data was indeed continuous, simple 

inspection of a bar chart of the TLR distribution results showed that in some instances 

that data was non-parametric. In order to quantify this phenomenon a statistical test of 

the parametric nature of the data needed to be applied. 

3.6.1 Student t-test 

This test compares the TLR expression in the two groups in order to check if there is a 

significant difference in the mean values. In statistical terms the test checks the 

probability that the two sets of data could have come from the same population  

In order to achieve a check of the homogeneity of the variance, Levene’s test was 

applied to the data as part of the t-test. This normality check looks at both the 

skewness and kurtosis of the data in order to check if the data is normally distributed 

and produces a numerical value which indicates the degree of departure from 

normality and from which a decision can be made as to the appropriateness of using 

the t-test. 

An important part of Levene’s testing is the facility to produce bar chart histograms; 

these have been used to display graphically the levels of TLR expression against 

frequency with which that level is expressed within the group. These graphs provide 
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an excellent visual check for skewness and kurtosis and can be used to confirm the 

validity of employing the t-test. As an example, the histograms for TLR 2 expression 

on B cells are shown in figure 7 below. In this instance the histogram was deemed by 

the SPSS software to show normal distribution, and a simple visual appreciation of 

the chart confirms this.  Conversely the data for TLR 3 were deemed by the SPSS 

software to not meet normality distribution criteria and as such the t-test was not 

applied to this set. Inspection of the histogram chart shown in figure 5 below confirms 

that the data is indeed heavily skewed and therefore not normally distributed. 

 

 

             

 
 

Figure 7: Normal parametric distribution of TLR 2 expression on B cells in control samples vs. 

non-parametric distribution of TLR 3 on B cells in control samples (n=129). TLR expression 

measured using flow cytometry on PBMC’s co-stained with CD19. 

  

3.6.2 Mann-Whitney U test 

Where the Levene’s test shows a violation of the assumption of homogeneity and 

variance, meaning that the t-test was not reliable, an alternative test (Mann-Whitney U 

test) was applied. This technique is used to test for differences between the two 

groups on a continuous measure, but instead of comparing the means of the two 

groups, as in the t-test, the Mann-Whitney U test compares medians. Levels of TLR 
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expression are converted to ranks across the two groups of data and the test evaluates 

whether the ranks for the two groups differ significantly. Since the expression levels 

are converted to ranks, the actual distribution of the levels does not matter. This test 

produces two important figures, the P value which determines the significance of the 

difference between the two groups and the Z value which is a measure of the 

difference between the two groups. The P value can be interpreted to relate to 

different degrees of significance, ranging from significant, through highly significant 

to very highly significant. The Z value increases proportionally to the difference 

between the two groups, hence a larger Z value is more likely to equate to a greater 

significant difference. 

3.6.3 The p value 

The p value generated as part of both the Student and Mann-Whitney tests in this 

study is used in the context of null hypothesis testing in order to quantify the 

statistical significance of the data. In this setting the null hypothesis has been 

constructed to assume that there is no difference in TLR expression between patient 

and age/sex matched control groups or between DAG positive and DAG negative 

patients. In essence, the null hypothesis is assumed true until statistical evidence 

proves otherwise, the p value giving a measure of the significance of differences 

between the two groups being compared. The smaller the p value, the larger the 

significance of the differences between the 2 groups will be as p value decreases 

proportionate to the likelihood that the null hypothesis is incorrect (Pezzullo 2013) 

 

For the purposes of this study standard significance levels were adopted, the 

significance level being set at 5%, thus p values were set as follows: 

p ˃ 0.05 = Not significant (i.e. no presumption against null hypothesis) 
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p < 0.05 = Significant 

p <  0.01 =  Highly significant 

p < 0.001 = Very highly significant 
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4 Technique development 

 
 

4.1 Study design 

 

A prospective observational cohort study of 129 patients with newly diagnosed CLL 

were analysed for expression of TLR 1, 2, 3, 4 and 9 using flow cytometry. 

Expression levels of TLR on three cell types (T lymphocytes, B lymphocytes and 

monocytes) were compared with age and sex matched controls. TLR expression levels 

on the different cell populations were also compared between those patients who 

exhibited signs of autoimmunity and those that did not. 

 

 4.2 Ethics and governance 

Research and audit within the National Health Service is covered by the provisions of 

the National Information Governance Board (NIGB), which all laboratory staff are 

required to adhere to as a requirement of ongoing state registration. This legislation 

arose from section 251 of the NHS act 2006 and was originally enacted under section 

60 of the health and social care act 2001 (NIGB 2012). 

Care was taken in the study design to ensure that all patient and control identifiable 

information was link anonomised with the data key being held by an impartial third 

party individual. Patient care was in no way compromised and all tests were 

performed on residual clinical material destined for discard. The data collection, 

confidentiality and consent issued were specifically addressed in the governance 

process. 

Approval was sought and granted from the Local Research Ethics Committee (REC 

reference 71.6.06) and from the University ethics committee. Approval was also 

sought and granted from the Royal Cornwall Hospital (RCH) Research and 
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Development directorate (R and D reference SPE.HAE.05). Throughout the study 6 

monthly submissions were made to the National Research Register and annually to 

the Department of Health via the hospital annual research report. As a requirement of 

R and D approval, Good Clinical Practice (GCP) training was undertaken to ensure a 

good understanding of research governance issues and to comply with the Department 

of Health research governance framework for health and social care (2005). All 

paperwork pertaining to ethical and governance approval is attached as appendix ii 

 

 

 4.3 Reagent and technique development 

 

Multiparametric flow cytometry is the most commonly used technique for diagnosis 

and monitoring of haematological malignancies, in particular the leukaemias (Béné et 

al. 2011; Peters and Ansari 2011) and was therefore the technique of choice. One of 

the primary considerations of the study was to develop a protocol that could be 

adopted using available instrumentation and commercially available reagents. At the 

start of the study the only anti-TLR antibodies available on the open market were 

those directed against TLR 1,2,3,4 and 9. It was recognised that analysis of these 

markers represented a restricted panel of the known TLR but since there was little 

published data at the time on their expression in CLL it was felt that it was still 

worthwhile investigating their distribution in the disease and control groups.  

 

Although well established protocols were in use for the CLL diagnostic flow 

cytometry panel, the TLR analysis protocols were developed for exclusive use in this 

study.  Since two of the TLR being investigated (TLR3 and TLR9) were expressed 

intracellularly, a fixation and permeabalization stage was added to the analysis 

protocol. Additionally, anti TLR3 antibody was only commercially available 
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unconjugated which necessitated the development of an indirect staining protocol to 

allow the addition of a flourochrome conjugate. 

 

Analysis of a preliminary sample group (n=10) demonstrated broad heterogeneity of 

TLR expression, therefore co-staining with additional monoclonal antibodies to 

identify the monocyte and lymphocyte sub-populations was introduced in order to 

examine the differential TLR expression on these cell types. The value of this step is 

confirmed by works reporting a central role for the T cell in B cell malignancies 

(Scrivener et al. 2002). 

 

The effect of sample storage on TLR expression was also investigated to establish if it 

were possible to collect and store samples to enable batch analysis. To assess the 

impact of storage prior to staining and analysis, EDTA anticoagulated whole blood 

samples were stored at room temperature in the dark following initial analysis and 

removed for retesting at 4, 8, 12 and 24 hours post collection. 

 

4.4  Time delayed analysis results 

The level of B cell expression of TLR1 was measured at 5 different time intervals on 

5 patients and their matched controls and the difference in expression recorded.  

The data from the time delay analysis studies are attached as appendix iii and 

summarised in figure 8 below. 
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Figure 8: Effect of storage on B cell TLR 1 expression in patient and age/sex matched controls. 

Data represents mean  TLR1 expression (n=5 patients, n=5 controls). Results were obtained using flow 

cytometric analysis of PBMCs co-stained and gated on CD19 positive B cells. Error bar represent 

standard error of mean. T-test results show significance of loss of expression relative to time 0: 

 * p <0.05, ** p <0.01, *** p <0.000 

 

 

4.5 Summary of time delayed analysis results 

In both the patient and control groups there was a significant change in the level of 

TLR expression over the 24 hour period. In all but one instance this change 

manifested as a fall in expression levels. 

 

Statistical analysis of the significance of the change in TLR expression relative to 

time 0 was carried out using the Student t test, the results of this analysis are included 

in figure 8 above. Examination of this data revealed that there was a significant loss of 

TLR activity after 4 hours storage in the patient group, the loss of activity in the 

control group was more pronounced and was statistically highly significant within the 

same time period, the effect being more noticeable owing to the higher levels of 

TLR1 expression in the control group. After 8 hours storage the loss of TLR activity 

was more pronounced again and statistically highly significant in both patient and 
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control groups. Loss of TLR activity continued over the remainder of the time-delay 

study and after 12 hours of storage the loss of TLR activity relative to time 0 was 

statistically very highly significant for both patient and control groups. It was 

therefore concluded that there was significant loss of TLR activity on both patient and 

control groups after relatively short periods of storage. 

 

 This being the case, all subsequent analysis was carried out immediately on receipt of 

the sample (time 0) in order to standardise the measurement of expression levels. The 

time delay data beyond time 0 for patients 1-5 and their matched controls was not 

included in the study, only the time 0 data was used. 

 

 

 

4.6 Flow cytometry 

Since the analysis of TLR was a novel application for the instrument being used, 

standardised procedures were used in order to ensure robust and reproducible data. 

Accordingly, instrument standardisation was performed each day to confirm that the 

flow cytometer was operating under standard parameters and that it met minimum 

performance requirements. This standardisation included checks on the optics 

(including light-scatter detectors and fluorescence detectors) as well as the electronics 

(including the photomultiplier tube voltages and spectral compensation) as well as 

expected staining patterns of the monoclonal antibody reagents being used. The flow 

cytometer was aligned and calibrated using a commercial calibration check bead 

solution (BD Facscomp) at the start of each day. 
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To ensure all required parameters on the target cell population would be detected and 

recorded, the detectors recording physical data (i.e. cell size and granularity) and 

fluorescence activity were checked daily. In order to achieve this detector, voltages 

were set using unstained lysed blood samples collected and stored in identical 

conditions to the test bloods. Gates and gain settings were set using single stained 

controls for each flourochrome. In order to establish if samples obtained from the 

patient group and those from the control group required different set-up 

characteristics, unstained cell samples were prepared from the preliminary sample 

group (n=10) and their matched controls. From this it was established that while 

absolute cell numbers differed between patient and control groups, the physical 

characteristics were essentially similar. This is not an unexpected finding since B-

CLL is essentially a disease of morphologically mature lymphocytes (Cheson et al. 

1996, Bain 2010). 

Subsequent to this initial set up, the instrument was checked on a daily basis by 

running a commercial standard calibration material (BD Facscomp) which allowed for 

adjustment of minor changes in electronic settings. The adjustments made as a result 

of running this standard were typically very minor and were achieved by altering the 

voltage applied to the photomultiplier tubes which detect fluorescence on the target 

cell. 

 

Isotype controls were also performed to establish background levels of non-specific 

staining for each isotype and antibody flourochrome and to define the position of 

negatively staining cells by setting cut off points for the fluorescence markers. Mouse 

Immunoglobulin IgG1 and IgG2 conjugated with the flourochromes Fluorescein 
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isothiocyanate (FITC), Phycoerythrin (PE) and Allophycocyanin (APC) as 

appropriate were used. 

 

No data on TLR antigen distribution on monocytes or lymphocytes was readily 

available at the start of the study (in 2006). Accordingly a series of test protocols were 

run to match antigen to appropriate flourochrome. Antibody staining combinations 

were optimised so that the least abundant antigen in each sample was paired with the 

brightest staining flourochrome. The effect of the fixation and permeabalization stage 

(necessary for TLR 3 and TLR9 analysis), on prior staining of surface antigens CD3 

and CD19 was also assessed, different flourochromes being used to establish optimal 

pairings. 

 

Experimentation with both patient and control samples established what was believed 

to be optimal antibody/flurochrome pairings for both intracellular and extracellular 

TLR antigen identification and quantification. Antigen and flourochrome 

combinations are summarised in table 12 of the methods section (page 45). As there 

was very limited published information on analysis of TLR by flow cytometry, TLR 

expression was assessed using single anti-TLR antibody in each tube to simplify the 

process. 

 

4.7 Antibody titration 

Titration of all anti TLR monoclonal antibody reagents was undertaken to allow for 

optimal separation between positive and negative data using the minimum of reagent. 

The lymphocyte population was chosen as the target cell population for titration 

studies as it could be easily identified using physical data (FSC vs. SSC) and there 
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was good evidence to suggest that lymphocytes would express TLR antigen at a 

reasonably high level (Rožková et al. 2010).  As no recommended antibody 

concentration was provided with the TLR reagents, a high concentration was chosen 

as the start point (10μg of antibody added to 100 microlitres of whole blood adjusted 

to contain approximately 500,000 cells) and dilutions made from this point. Threefold 

serial dilutions were made from the starting point of 10μg down to 0.005μg of 

antibody and these were added to cell count adjusted whole blood samples from the 

control group. Each sample was then analysed using flow cytometry and the mean 

geometric staining intensity calculated for each dilution, these were then compared 

and the optimal dilution ascertained by choosing the one that exhibited best separation 

between positive and negative populations. This process is illustrated in figure 9 

which summarises the titration process undertaken to ascertain optimal dilution of 

TLR1. During the course of the study it became necessary to use a number of 

different batches of each reagent and on each occasion a new batch was started the 

optimal antibody titre was calculated, although in these instances a dilution 

approximating to that optimal for the previous batch was chosen as the starting point 

to prevent unnecessary reagent wastage. 
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a)                      b) 

 

         

c)      d) 

 

 

Figures 9a-9d:  Histograms to demonstrate effect of serial dilution of TLR1 antibody used to 

obtain optimal staining of target antigen. TLR1 expression shown as solid purple histogram and 

isotype control as open blue histogram. TLR1 monoclonal antibody was titrated as follows:  

a)100μl, b)10μl, c 5μl, d)1μl 
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5 Results 

5.1 CLL diagnosis 

Representative flow cytometry data from a patient with typical B-CLL (with a CLL 

score of 5), a patient with non-typical B-CLL (with a CLL score of 3) and a patient 

with Non-CLL (with a CLL score of 0) is shown in figures 10-12 below. Only 

patients with a confirmed diagnosis of B-CLL, with a CLL score of 3-5 were included 

in the study. 

 

Over the course of the study 312 potential subjects with suspected CLL were screened 

for inclusion, of these 183 were rejected from the study as they did not meet inclusion 

criteria. The main reasons for rejection included: diagnosis of CLL not made, 

insufficient sample retrieved for analysis and inability to find a matched control in a 

timely fashion. 
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Figure 10. Representative flow cytometry data showing typical CLL phenotype, with CLL score of 5 

based on CD5/19 co-positivity, CD23 positivity, weak CD79b expression, negative FMC7 expression 

and kappa light chain restriction with weak expression. Dot plots constructed from flow cytometric 

analysis of peripheral blood following preparation and staining with a standard panel of monoclonal 

antibodies.  
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 Figure 11. Representative flow cytometry data showing atypical CLL phenotype, with CLL score of 3 

based on CD5/19 co-positivity, weak FMC7 expression and kappa light chain restriction with weak 

expression. Dot plots constructed from flow cytometric analysis of peripheral blood following 

preparation and staining with a standard panel of monoclonal antibodies. 
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Figure 12. Representative flow cytometry data showing non-CLL phenotype, with CLL score of 0. Dot 

plots constructed from flow cytometric analysis of peripheral blood following preparation and staining 

with a standard panel of monoclonal antibodies. 
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5.2 TLR expression 

5.2.1 TLR expression results figures 

Patient demographics, diagnostic flow cytometric data, CLL score, DAG status and 

TLR expression levels on B lymphocytes, T lymphocytes and monocytes for both the 

patient and control groups are listed in appendix i. 

 

In all instances the percentage positivity for each TLR is quoted, this figure was 

derived as an assessment of the number of cells that showed a significant change in 

geometric median fluorescent intensity (GMFI) between the TLR and the Isotype 

control. This method of recording and displaying results was decided upon as it 

corresponded to recent international guidelines on the publishing of flow cytometry 

data (Alvarez et al. 2010). 

 

Figures 13-15 below summarise in the form of bar charts, the mean expression for 

each of the TLR measured in both groups, this information is displayed graphically to 

allow visual comparison of expression in the two groups, the standard error for both 

patient and control groups is shown as a Y error bar, the p values are also shown. 

 

Figures 16-18 display the same data in the form of box and whisker plots. These plots 

show a better representation of the spread of the degree of TLR expression. 

 

 A more detailed breakdown of the results is given in table 14 which also lists the 

standard deviation, median levels and 95% confidence intervals calculated from the 

mean for each TLR in the two groups. 
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Figure 13: TLR expression on B cells in patient and age/sex matched controls. Data represents 

mean ±SEM TLR expression (n=129 patients, n=129 controls). Results were obtained using flow 

cytometric analysis of PBMCs co-stained and gated on CD19 positive B cells. T-test results show 

significance of difference between patient and control groups, *** p <0.005 
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Figure 14: TLR expression on T cells in patient and age/sex matched controls. Data represents 

mean ±SEM TLR expression (n=129 patients, n=129 controls). Results were obtained using flow 

cytometric analysis of PBMCs co-stained and gated on CD3 positive T cells. T-test results show 

significance of difference between patient and control groups, *** p <0.005 
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Figure 15: TLR expression on Monocytes in patient and age/sex matched controls. Data represents 

mean ±SEM TLR expression (n=129 patients, n=129 controls). Results were obtained using flow 

cytometric analysis of PBMCs co-stained and gated on CD14 positive monocytes.  (* p=<0.05) 
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Figure 16: Box and whisker plot showing TLR expression on B cells.  Data represents TLR 

expression (n=129 patients, n=129 controls).  Results were obtained using flow cytometric analysis of 

PBMCs co-stained and gated on CD19 positive B cells. 
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Figure 17: Box and whisker plot showing TLR expression on T cells.  Data represents TLR 

expression (n=129 patients, n=129 controls). Results were obtained using flow cytometric analysis of 

PBMCs co-stained and gated on CD3 positive T cells. 
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Figure 18: Box and whisker plot showing TLR expression on Monocytes.  Data represents TLR 

expression (n=129 patients, n=129 controls. Results were obtained using flow cytometric analysis of 

PBMCs co-stained and gated on CD14 positive monocytes. 
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Table 14: Statistical descriptives table for TLR expression in patient and control groups  (95% 

confidence interval calculated from mean level of TLR expression) 

 

5.2.2 Visual analysis of results charts 

The results bar charts give an excellent visual representation of the difference in TLR 

expression between the patient and control groups. This is most strikingly apparent in 

the T cell expression chart, where it is immediately apparent that all TLR are 

expressed at higher levels on cells from the patient group than on those from the 

control group. Examination of the differences in expression within the groups reveals 

an equally striking difference, with TLR 9 being expressed at a level over ten times 

greater than that shown by the weaker expressed TLR. The results for the monocyte 

TLR expression are by contrast broadly similar in the patient and control groups with 

the patient group showing slightly higher expression for three of the TLR and slightly 

lower levels for the remaining two. 
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 Examination of the standard error bars for Monocyte TLR expression shows a tight 

clustering of results, indicating that there is a reasonably small amount of intra-sample 

variation in the levels of TLR expression. Overall, the level of TLR expression in the 

Monocyte groups are statistically significantly higher than those seen on T cells, the 

highest level of TLR expression on the monocytes (TLR9) being 5 times higher than 

that seen on the highest expressing T cells.  The chart for B cell TLR expression 

reveals the greatest variation in TLR expression, both within, and between, the two 

groups. The most striking difference is seen in TLR3 and TLR4 expression which are 

virtually absent in the control groups but show enhances expression in the patient 

group. Overall expression levels for TLR1 and 9 on B cells mimic those seen on the 

monocytes in that they are relatively strongly expressed, whereas TLR 2, 3 and 4 are 

expressed at levels closer to those seen on T cells. This is particularly noticeable in 

TLR 3 and 4 which are virtually absent on both T and B cells in the control group but 

are statistically significantly raised on patient group cells. 

 

 

5.2.3 SPSS statistical analysis of TLR expression 

Data was analysed used SPSS version 19 software (IBM Corporation) for both t-test 

and Mann-Whitney U test, as appropriate. The results from this analysis are attached 

as appendix viii. 

 

5.2.4 Summary of results of t-test statistical analysis 

Table 15 below lists the statistical test results from the data sets that satisfied the tests 

of normality applied during t-test analysis and were therefore analysed using this 

technique. 
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TLR/Cell type T-test Degrees of 

freedom 

P Value Significance 

TLR 1 B cell 13.979 216.53 <0.005 Very high 

TLR 2 B cell 12.781 186.07 <0.005 Very high 

TLR 9 T cell -14.109 231.03 <0.005 Very high 

TLR 1 Mono -1.236 241.08 0.217 Not significant 

TLR 3 Mono -1.894 249.70 0.059 Not significant 

TLR 4 Mono -1.249 256 0.213 Not significant 

 

Table 15: Summary of results of statistical analysis using t-testing 

 

5.2.5 Summary of results of Mann-Whitney U test statistical analysis 

The data sets that did not satisfy the tests of normality applied as part of the t-testing 

were analysed by the Mann-Whitney U test, the results are summarised in table 16 

below. 

TLR/Cell type Z-test P Value Significance 

TLR 3 B cell -14.270 <0.005 Very high 

TLR 4 B cell -14.270 <0.005 Very high 

TLR 9 B cell -5.322 <0.005 Very high 

TLR 1 T cell -11.763 <0.005 Very high 

TLR 2 T cell -13.597 <0.005 Very high 

TLR 3 T cell -13.707 <0.005 Very high 

TLR 4 T cell -13.884 <0.005 Very high 

TLR 2 Mono -1.695 0.090 Not significant 

TLR 9 Mono -3.620 0.072 Not significant 

 

Table 16: Summary of results of statistical analysis using Mann-Whitney U testing 
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5.2.6 Summary of results of statistical analysis 

The statistical methods employed to analyse test data revealed that in the case of both 

T and B lymphocytes, for each of the TLR investigated there was a very highly 

significant statistical difference between the level of expression on the patient and 

control groups (P=<0.005 in all instances).  

 

In the case of monocytes however, none of the TLR showed a statistically significant 

difference between the two groups, (P range = 0.059 – 0.217). 

 

5.2.7 Summary of B cell TLR expression 

 Whilst the P values obtained from the two statistical methods applied to the data 

show that all of the TLR expressions were very highly statistically significantly 

different between the groups, examination of the T-test value for the normally 

distributed data and the Z value for the non-normally distributed data, reveals the 

magnitude of these differences. In the case of the B cells the most striking difference 

is in the expression of TLR 3 and 4 (Z test statistic for both = -14.270), this is borne 

out by comparing the means of the patient group (TLR 3 = 9.68%, TLR 4 = 6.81%), 

with those of the control groups (TLR 3 = 0.05%, TLR 4 0.06%). In both instances, 

TLR 3 and 4 are virtually absent in control subjects but show significant expression in 

the patient group. This finding is mirrored in TLR 9 expression, which is also 

significantly raised in the patient group (Z test statistic = -5.322). Conversely TLR 1 

and 2 are expressed at a significantly lower level in the patient group.  

 

 

 



Page | 83 

 

5.2.8 Summary of T cell TLR expression 

Examination of the T test (applied for TLR 9) and Z test (applied for TLR 1, 2, 3 and 

4), figures reveal that there is a large magnitude of difference in each case. This 

difference is reflected in a universal increase in TLR expression in the patient group 

compared to the control group. Once again TLR 3 and 4 show the greatest difference 

between the two groups (Z values -13.707 and -13.884 respectively), with TLR 9 

showing a broadly similar magnitude of difference (T-test statistic = -14.109). 

 

5.2.9 Summary of monocyte TLR expression 

Neither TLR 1, 2, 3 or 4 showed any statistically significant difference in expression 

levels between the two groups, TLR 2 being expressed at a slightly lower (though not 

significant) level in the patient group and TLR 1, 3 and 4 being slightly (though again 

not significantly) raised in the patient group. 

 

TLR9 in contrast was expressed at a statistically significantly lower level in the 

patient group, the Z statistic value (-3.620) does however indicate that the magnitude 

of this difference is not as large as those seen in the T and B cell TLR 9 increases in 

the patient group. 

 

5.3 TLR expression vs. other parameters 

 

The relationship between TLR expression and a number of other measured 

haematological parameters was investigated to establish if there was any correlation 

between expression levels and the parameter in question.  In order to achieve this 

scatter plots were created which provided a simple graphical model comparing the 
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expression of the each of the 5 TLR on T cells, B cells and monocytes against the 

following:  

i) Total white cell count 

ii) % co-positive CD5/CD19 cells 

iii) CLL score 

iv) Absolute lymphocyte count 

v) % lymphocytes 

 

Plots were prepared comparing each TLR, on B cells, T cells and Monocytes against 

each of the parameters listed above. It was not considered necessary to reproduce each 

of these plots and accordingly representative plots for each of these graphs are shown 

below. 
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Figure 19: TLR1 expression on B cells in patient group vs. WBC. Data represents individual patient 

TLR1 expression (n=129) vs. patient WBC. Results for TLR expression obtained using flow cytometric 

analysis of PBMCs co-stained and gated on CD19 positive B cells, WBC obtained from Advia 2120 

analyser. Trendline analysis shows poor correlation between parameters. 
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Figure 20: TLR2 expression on B cells in patient group vs. CD5/19 co-positive cell percentages. 

Data represents individual patient TLR2 expression (n=129) vs. % CD5/19 co-positive cells. Results 

for TLR expression obtained using flow cytometric analysis of PBMCs co-stained and gated on CD19 

positive B cells. Results for CD5/19 co-positive cells obtained using flow cytometric analysis of 

PBMCs. Trendline analysis shows poor correlation between parameters. 

 

 

 
 

 
Figure 21: TLR4 expression on T cells in patient group vs. CLL score. Data represents individual 

patient TLR4 expression (n=129) vs. CLL score. Results for TLR expression obtained using flow 

cytometric analysis of PBMCs co-stained and gated on CD3 positive T cells. Trendline analysis shows 

poor correlation between parameters. 
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Figure 22: TLR3 expression on T cells in patient group vs. absolute lymphocyte count. Data 

represents individual patient TLR3 expression (n=129) vs. absolute lymphocyte count. Results for TLR 

expression obtained using flow cytometric analysis of PBMCs co-stained and gated on CD3 positive T 

cells. Trendline analysis shows poor correlation between parameters. 
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Figure 23: TLR9 expression on monocytes in patient group vs. % lymphocyte count. Data 

represents individual patient TLR9 expression (n=129) vs. % lymphocyte count. Results for TLR 

expression obtained using flow cytometric analysis of PBMCs co-stained and gated on CD14 positive 

monocytes. Trendline analysis shows poor correlation between parameters. 

 

 

5.3.1 Summary of results of TLR expression vs. other parameters 

Visual inspection of the scatter plots for each of the parameters displayed above failed 

to identify any obvious correlation between TLR expression and the various 
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parameters investigated. Furthermore the trendline analysis for each of these plots 

showed poor correlation in each instance. 

 

 

 

5.4 Direct antiglobulin test results 

Of the 129 patients included in the study, 28 (21.7%) had a positive DAG when 

presentation bloods were tested. In the matched control group only 2 patients had a 

weakly positive DAG. It was therefore decided that whilst further statistical analysis 

of the control group was unnecessary it would be useful to further investigate the 

patient group to see if there was any association between DAG positivity and TLR 

expression.  

 

In order to achieve this comparison, those patients with a positive DAG were listed 

along with the levels of expression for each individual TLR, these expression levels 

were then compared with the expression levels in the DAG negative patient group and 

analysed statistically to see if there were any significant differences between TLR 

expression in the DAG positive and DAG negative groups. It was deemed prudent to 

examine individual TLR expression levels between the two groups since the earlier 

parts of the study revealed statistically significant variation in individual levels of 

TLR expression. Additionally the data was separated to show differences in TLR 

expression between leucocyte sub-populations. A further advantage of studying the 

data in this way was that DAG positivity was compared to individual TLR expression 

within lymphocyte sub-populations. In this manner it was hoped that a link to disease 

state may be found, thus providing a possible mechanism for the autoimmune 

phenomena frequently observed in CLL. 
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The results of the comparison of TLR expression between DAG positive and DAG 

negative patients for each of the leucocyte sub-populations are shown in figures 24-26  

below. As with the previously displayed comparison bar charts standard error bars 

and p values where applicable are shown.  

 

Figures 27-29 display the same data in the form of box and whisker plots. These plots 

show a better representation of the spread of the degree of TLR expression. 

 

 

 

 

 
 
Figure 24: TLR expression on B cells comparing DAG positive and DAG negative patients. Data 

represents mean ±SEM TLR expression (n=28 patients, n=28 controls). Results were obtained using 

flow cytometric analysis of PBMCs co-stained and gated on CD19 positive B cells. 
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Figure 25: TLR expression on monocytes comparing DAG positive and DAG negative patients. 

Data represents mean ±SEM TLR expression (n=28 patients, n=28 controls). Results were obtained 

using flow cytometric analysis of PBMCs co-stained and gated on CD14 positive monocytes.  
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Figure 26: TLR expression on T cells comparing DAG positive and DAG negative patients. Data 

represents mean ±SEM TLR expression (n=28 patients, n=28 controls). Results were obtained using 

flow cytometric analysis of PBMCs co-stained and gated on CD3 positive T cells. Z test results show 

significance of difference between patient and control groups, ***p <0.00 
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Figure 27: TLR expression on B cells comparing DAG positive and DAG negative patients. (n=28 

patients, n=28 controls). Results were obtained using flow cytometric analysis of PBMCs co-stained 

and gated on CD19 positive B cells 
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Figure 28: TLR expression on Monocytes comparing DAG positive and DAG negative patients. 

(n=28 patients, n=28 controls).  Results were obtained using flow cytometric analysis of PBMCs co-

stained and gated on CD14 positive monocytes.  
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Figure 29: TLR expression on T cells comparing DAG positive and DAG negative patients.  
(n=28 patients, n=28 controls).  Results were obtained using flow cytometric analysis of PBMCs co-

stained and gated on CD3 positive T cells. 

 

 

Visual inspection of these charts show that for the main part there is little or no 

appreciable difference in TLR expression between the DAG and the DAG negative 

patients on the B cells and monocytes. There does however appear to be some 

differences in expression levels on the T cells, this is most pronounced in TLR 9 

which seems to be expressed a good deal stronger on the DAG positive patients. In 

order to establish the significance of this difference, further statistical analysis was 

carried out as detailed in the following section. 

 

5.4.1 Statistical analysis of DAG results 

In order to compare the expression of TLR on DAG positive and DAG negative 

patients statistical analysis was carried out using the t-test and where appropriate the 

Mann-Whitney U test.  
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Levine’s test was once again applied to the data as part of the t test as a normality 

check and where there was a violation of the assumption of homogeneity and variance 

then the Mann-Whitney U test was applied.  

Data was analysed using SPSS version 19 software for both t-test and Mann Whitney 

U test, as appropriate. The results from this analysis are attached as appendix iv and 

summarised in table 17 below. 

Type of Cell Normality 

Y/N 

T-Test Degrees of 

Freedom 

Z Test P Value 

TRL1 B Cells Y 0.397 127 - 0.692 

TRL2 B Cells N - - -1.466 0.143 

TRL3 B Cells N - - -0.331 0.740 

TRL4 B Cells Y 0.227 127 - 0.821 

TRL9 B Cells N - - -1.046 0.296 

TRL1 T Cells N - - -0.975 0.329 

TRL2 T Cells Y -1.555 127 - 0.122 

TRL3 T Cells N - - -0.884 0.377 

TRL4 T Cells N - - -1.309 0.191 

TRL9 T Cells N - - -5.872      0.000*** 

TRL1 Mono Y -0.503 127 - 0.616 

TRL2 Mono N - - -.209 0.835 

TRL3 Mono Y 1.368 127 - 0.174 

TRL4 Mono N - - -0.303 0.762 

TRL9 Mono N - - -0.266 0.790 

*** Denotes significance <0.000. 

Table 17: Comparison of DAG positive vs. DAG negative patient TLR expression 
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5.4.2 Summary of results of statistical analysis of DAG results 

It is immediately apparent when studying the above data that the only notable 

difference in TLR expression between DAG positive and DAG negative patients is in 

TLR 9 expression on T cells. The DAG positive patient group have been shown to 

have a statistically very highly significant greater level of TLR 9 expression on T cells 

when compared to the DAG negative patient group. 
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6 Discussion 

 

The TLR expression patterns observed in this study in both patient and control groups 

are in broad concordance with previously published data (Babu et al. 2006, Rožková 

et al. 2010, Muzio, Fonte and Caligaris-Cappio 2012) the exception being the 

increased expression of TLR 3 and 4 observed in the patient group, this finding being 

in contradiction to that reported elsewhere (Grandjenette et al. 2007). The incidence 

of DAG positivity in the patient group of this study (21.7%) is higher than that 

reported in a large prospective trial of CLL patients (14% in UK LRF CLL4 trial) 

(Dearden et al. 2008). Direct comparisons of the data generated in this study and 

previously reported data are not however straightforward, as techniques, data set size 

and participant inclusion criteria vary greatly between studies. 

 

The results of this study suggest that there is a statistically significant difference in 

TLR expression on both T and B lymphocytes between CLL patients and matched 

controls.  

 

Given the well established role of the TLR as sensors of pathogen presence and 

triggers for antigen presenting cell (APC) maturation, it should be possible to link 

these changes to the role the lymphocytes play in the CLL disease process.  

 

6.1 Patient demographics 

One hundred and twenty nine patients with a confirmed diagnosis of CLL presenting 

at the Haematology department at the Royal Cornwall Hospital between January 2007 

and July 2010 were included in the study. The age of the patients ranged from 50 -94 
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years with an average age of 71.5 years.  There were 47 female patients in the study 

(36.4%) and 82 males (63.6%), a ratio of 1.75: 1. These figures compare favourably 

with published data which suggests a median age at presentation of 72 years and a 

male to female ratio of 2:1 (Howlander et al. 2012, Oscier et al. 2012).  25.6% of 

patients included in the study were less than 60 years old at diagnosis; this is slightly 

lower than the national average, of approximately 30% and probably reflects the 

population demographics of the patient group in Cornwall which has an over 60’s 

population of 29.8% of the total population compared with the national average of 

20.7% (Cornwall County Council demographic data). 

 

The absolute leucocyte count of patients at presentation ranged from 5.8 x10
9
/L to 

400.5 x10
9
/L and the percentage of cells co-expressing the surface antigens CD5 and 

CD19 which are characteristic of the disease, ranged from 16% to 98%. Of the 129 

patients included in the study 28 had a positive DAG at presentation (21.7%). These 

results reflect the extremely variable nature of the disease and underline the 

importance of continued research to assist in an understanding of the disease process 

and the development of treatment strategies.  

 

6.2 Role of T cells in B CLL 

Activated APC’s are known to stimulate naïve T cells, thus providing a role for TLR 

in forming a bridge between innate and adaptive immunity, it has also been reported 

that TLR play a pivotal role in the stimulation and maturation of B cells, which in turn 

leads to cell activation and the maintenance of serological memory (Bernasconi, 

Traggiai and Lanzaveccia 2002). 
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However, given the statistically significant differences observed during this study in 

TLR expression in the T cells, it is worth considering their role in what had 

traditionally been regarded as a predominantly B cell disease. A number of previous 

studies have focused on the role of the T cell in B CLL (Caligaris-Cappio and 

Hamblin 1999, Bannerji 2000, Caligaris-Cappio 2001). Since the immune system 

relies on a wide array of specific and critical interactions between many different cell 

types (including T and B lymphocytes), it is entirely possible that dysfunction in one 

cell type may play an important contributory role in the development and progression 

of B CLL (Robey and Allison 1995). The T cell undergoes a large number of 

interactions with the B cell both during lymphocyte development and in the immune 

response, the two are therefore intrinsically linked, dysfunction of the one potentially 

affecting development and response of the other. Previous studies have concluded that 

neither T or B lymphocytes can respond effectively without the full functional co-

operation of the other (Scrivener et al. 2001). It can therefore be implied that in B 

CLL, a disease caused by uncontrolled B cell proliferation, T cell dysfunction may 

play some role. 

 

Research into the role of the T cell in B CLL has focused primarily on 5 key areas: 

1) CD4 and CD8 subpopulations and total T cell numbers 

2) T cell responses to mitogen 

3) T cell colony formation 

4) T cell cytokine expression 

5) T cell phenotype alteration and functional abnormalities. 
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6.2.1 CD4 and CD8 subpopulations and total T cell numbers 

Whilst B cell numbers are by definition raised in B CLL, it is noteworthy that T cell 

numbers are invariably raised as well (Zaknoen and Kay 1990). Additionally, the ratio 

between CD4 positive T helper cells and CD8 positive T Supressor/cytotoxic cells is 

altered, with an absolute increase in CD8 positive cells being previously reported 

(Porakishvili et al. 2001). It is thought that this increase in linked to disease stage as 

the CD8 count rises as the disease progresses (Herrman et al. 1982). There are also 

differences in the expression of CD4 and CD8 antigen on the T cell surface of B CLL 

patients when compared to normal controls, CLL patients showing lower levels of 

both on individual T cells (Huang and Crispe 1992).  Of particular relevance to this 

study is the finding that these low expression CD4 CD8 cells (termed CD4
lo 

CD8
lo 

cells) are also found as expanded populations in both human and murine autoimmune 

diseases (Huang and Crispe 1992). Similar work has suggested that such cells may 

show specificity for self antigens and may derive from a unique T cell lineage that is 

independent of clonal selection and which therefore escapes the mechanism 

responsible for the deletion of auto-reactive cell lines (von Boehmer 1992).   

 

6.2.2 T cell response to mitogen 

Studies investigating T cell responses to common mitogens such as 

phytohaemaggutinin (PHA) and pokeweek mitogen (PWM) have shown that there is a 

reduced proliferation and activation response by T cells in B CLL patients (Zaknoen 

and Kay 1990, Prieto et al. 1993). T cells recovered from B CLL patients also show a 

reduced ability to co-operate in the production of Immunoglobulin when cultured with 

normal B cells. (Callery et al. 1980). This suggests that there is an intrinsic T cell 

dysfunction which persists after removal of the malignant B cells and cannot be 
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corrected by normal B cells. Further studies found that the converse situation also 

held true, in that normal B cells are found to be unable to differentiate when cultured 

with T cells recovered from T CLL patients (Lauria et al. 1983).  

 

Several theories have been postulated to explain the phenomenon of reduced T cell 

response to mitogen in B CLL, the most plausible of which predicts the presence of a 

soluble factor present in the serum of CLL patients which affects T cell response, to 

date however there is conflicting evidence, with no clearly defined mechanism 

(Scrivener et al. 2003).   

 

6.2.3 T cell colony formation 

T cells from CLL patients have been shown to form colonies in vitro less efficiently 

that those from normal subjects (Jehn et al. 1990).  This abnormality correlates with 

disease stage, with T cells from recovered from stage 0 patients showing a greater 

degree of colony formation that those from later stage patients (Foa and Lauria 1982).  

 

CLL T cells also show a reduced response in xenogenic graft-host transplantation 

reactions (Stark et al. 1999). In these experiments T cells were isolated from both 

CLL patients and normal controls and introduced to immunosupressed rats, the 

reaction to the injection was assessed after 4 days by measuring the size of the lesion 

at the injection site. T cells from normal control were found to cause a measurable 

rejection reaction in 97% of the tests. By comparison only 37.1% of T cells recovered 

from early stage CLL patients and 13.3% of T cells recovered from patients with 

advanced stage CLL caused a reaction, implying a dysfunctional T cell status in B 

CLL which worsens with advancing disease. 
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6.2.4 T cell cytokine secretion 

Several studies have demonstrated that T cells from CLL patients show a reduced 

normal cytokine expression, in particular marked decreases in IL-4 and IL-2,  after 

PHA and PWM stimulation have been described (Hill et al. 1999, Kay et al. 2001).  

Whilst the significance of these findings is debatable, it is interesting to note that B 

cells from CLL patients have been shown to have both increased numbers of IL-2 

receptors on their cell surface and also the ability to secrete high levels of soluble IL-2 

receptor into the serum (Zaknoen and Kay 1990).  It has also been reported that T 

cells from CLL patients produced increased levels of Interferon-γ (IFN-γ), and that 

this increase could contribute to the survival of CLL B cells, which in turn have been 

shown to have an increased expression of IFN-γ receptors on their cell surface. It is 

thought that the increased uptake of these cytokines prolong survival of the CLL B 

cells by inhibiting apoptosis (Zaki et al. 2000). 

 

6.2.5 T cell surface antigen expression 

Studies on the phenotypic expression of cell surface antigens on T cells in B CLL 

have reported a significant number of differences when compared to T cells from 

control subjects (Scrivener et al. 2001, Johnstone 2013). There is also evidence to 

suggest that there may be a degree of host response by T cells against specific 

leukaemic antigens expressed on the malignant B cells (Porakishvili et al. 2001) and  

also that these T cells exhibit arrested development in the mid to late G1 phase of the 

cell cycle (Zaki et al. 2000).   
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6.2.6 Summary of role of T cell in B CLL 

From the above it is clear that there is strong evidence to suggest that there is 

profound T cell dysfunction and dysregulation in B CLL. There are two theories to 

explain these findings, the first is immunosenescence and the second is anergy.  

 

Immunosenescence, also termed replicative senescence, is described as a generalised, 

age related decline in immune responses found primarily in the elderly (Globerson 

and Effros 2000). This phenomenon leads to an increased susceptibility to infectious 

disease, cancer and autoimmunity (Hodgson et al. 2011). As lymphocytes age, they 

reach a point at which they cannot replicate and as a result their immune responses 

begin to diminish, this effect is however accompanied by restructuring of the immune 

system to enhance functionality in other areas (Globerson and Effros 2000). As CLL 

is typically a disease of the elderly, changes in T cell function and marker expression 

would not be unexpected. 

 

The second theory to explain T cell dysregulation concerns clonal anergy. Complete 

activation of T cells requires 2 separate signals, one received through the T cell 

receptor as antigen in bound and the second through a costimulatory signal as the T 

cell interacts with the cell presenting the antigen (Lechler et al. 2001).  If this second 

signal is missing or reduced, the T cell is only able to make a partial response and 

enters a state of unresponsiveness known as clonal anergy. Experimental evidence 

suggests that the first signal (caused by TCR engagement by antigen), leads to 

progression of the cell cycle into G1  at which point further cell cycle progression can 

be blocked by cell cycle inhibitors. There is evidence to suggest that the critical 

second signal is transduced via a specific T cell surface antigen (CD28), which reacts 
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with co-receptors expressed on B cells (CD80 and CD86) to up-regulate interleukin 2 

production, which in turn downregulates cell cycle inhibitors so the T cell can 

progress through the rest of the cycle. If the CD80 and CD86 co-receptors expressed 

on B cells are missing or reduced, the second signal is not received and the T cell 

remains in a partially activated state, unable to respond to further signals, and hence 

anergy ensues (Jenkins and Schwartz 1987).  Given the differential expression of TLR 

on B cells in CLL, is it not unreasonable to assume this is a possible mechanism for T 

cell anergy in the disease.  

 

Other evidence suggests that at some point in the development of the disease there 

may be a host T cell response directed against leukaemia-related antigens, 

demonstrated by the presence of clonal T cells (Serrano et al. 1997). These clonal T 

cells may have arisen from early T cells that attempted to respond to the malignant 

clone, leading to continuous low grade T cell activation with resultant anergy. 

 

There is also experimental evidence to suggest that malignant B cells may have an 

immunosuppressive effect on the normal T cell complement (Scrivener et al. 2001). 

In a normally functioning immune system, T cells are more abundant than B cells, 

whereas in B-CLL, the number of B cells is dramatically increased which leads to a 

relative dilution of T cell numbers. When T cells are cultured with CLL B cells in 

vitro, the T cells show a reduced ability to co-operate in the production of 

immunoglobulins, this provides a possible explanation for the 

hypogammaglobulinaemia observed in many CLL patients (Callery et al. 1980). 
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It has also been reported that B cells may suppress T cell function in CLL by 

absorbing or utilising the cytokines essential for T cell function, suggesting reversed 

immune control (Zaknoen and Kay 1990). 

 

Of particular relevance to this study however is the evidence that CLL B cells have 

the ability to force T cells to up-regulate surface markers that are not normally 

expressed (Cerutti et al. 2001). Experimental evidence suggesting that the 

upregulation of T cell markers caused by CLL B cells actively induces migration of T 

cells towards malignant B cell clones, where the T cells induce the B cells to 

proliferate further via chemokine production. This mechanism would induce a cycle 

of attraction and proliferation that would allow the clone to accumulate (Ghia et al. 

2002). 

 

There is then, much evidence to suggest that in B CLL the T cells express abnormal 

surface markers that may in fact contribute to the promulgation of the disease and 

explain some of the commonly found clinical phenomena. These differences result in 

a T cell population that do not respond to stimulation in the same way as normal T 

cells and which fail to interact normally with B cells. Since effective T/B cell 

interaction is central to immune function, this presents major problems for 

maintaining a functional immune response. 

 

The findings of this study support this evidence, in that TLR expression is similarly 

disordered in the disease state.  
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6.3 Role of TLR in T cells 

The role of TLR in the induction of an innate immune response (and subsequent 

induction of an adaptive response) via direct TLR activation on antigen presenting 

cells, has been well documented.  (Muzio et al. 2009, Gonzalez-Navajas et al. 2010). 

 

There is however an accumulation of evidence that suggests that T cell activation via 

TLR stimulation can lead to direct initiation of an adaptive immune response. This 

mechanism is distinct from the APC activation pathway (Macleod and Wetzler 2007). 

Much work in this field has centred on the role of T regulatory cells (Tregs), which 

are naturally arising T cells involved in the maintenance of immunological self 

tolerance. Tregs inhibit the proliferation of other T cell populations and as such play 

an important role in the inhibition of the development of autoimmune disease (Paust 

and Cantor 2005). 

 

Tregs express TLR at levels similar to those seen on other T cells, although Tregs 

have been shown to express a wider range of TLR (Dai, Liu and Li 2009) and are 

thought to control inflammatory reactions to bacteria and opportunistic pathogens via 

upregulation of activation markers to enhance survival and proliferation. They 

perform this role independent of APC’s (Carmalho et al. 2003).  Tregs also play a 

pivotal role in the maintenance of self tolerance (Nyirenda et al. 2009). Autoreactive 

T cells are present in the normal T cell repertoire; these are however usually 

suppressed by the presence of Tregs. It has been postulated that Tregs become 

ineffective in CLL and this may result in activation of autoreactive T cells and the 

development of the autoimmune phenomena frequently seen in CLL patients 

(Hodgson et al. 2011). 
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Activation of TLR expressed on Tregs has been found to have a profound influence 

on cellular activity, and can either enhance or diminish their suppressive activity. This 

may influence a number of processes such as response to infection, immune 

surveillance, transplant rejection or (of particular relevance to this study), the 

induction of autoimmunity (Nyirenda et al. 2009). Work on mouse models has also 

shown that activation of TLR expressed on T helper (Th) cells can affect the cells 

phenotype and their ability to provoke inflammatory responses (Sun et al. 2011). 

Other workers have also reported that inflammatory mediators can directly regulate 

TLR expression on T cells, which impacts directly on the role of the T cell in 

activation of the innate response (Flo et al. 2001) and that TLR signalling directly 

affects Treg expansion and function (Van Maren et al. 2008). 

 

 

TLR activation can also affect cytotoxic T cell (Tc) responses following vaccination. 

Experimental evidence suggests that vaccination with virus like particle agonists 

produces a variety of responses dependant on the TLR targeted. It was found that 

stimulation of TLR 2 and 4 did not appreciably increase Tc response, whereas 

stimulation of TLR 3, 5 and 7 induced a moderate response. TLR 9 stimulation by 

comparison was found to induce a dramatically increased Tc response (Schwarz et al. 

2003).  

 

The most compelling evidence of the importance of differential TLR expression on T 

cells and the impact that this has on the immune response comes from studies on 

individuals infected with parasitic filariasis. An impaired T and B cell response has 
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been reported to be characteristic of filarial infection (Nutman and Kumaraswami 

2001), this is the result of the development of an immune system evasion strategy by 

the parasite and plays a central role in the establishment of parasitic infection 

(Maizels et al. 2004). Studies on the effect on T cell TLR expression following 

infection by the filarial parasite Wuchereria bancrofti revealed that expression of TLR 

1, 2 and 4 was significantly lower in infected patients compared with uninfected 

individuals. Interestingly, the level of TLR 9 expression remained unchanged by 

infection (Babu et al. 2006). It has been postulated that down regulation of TLR 

allows the parasite to become established in the host, as crucial host inflammatory 

responses are prevented from occurring. It had been previously thought that 

monocytes were responsible for the majority of inflammatory responses in filarial 

infection (Taylor et al. 2001), but there is an accumulation of evidence that T cells 

may also play a significant role (Babu et al. 2006). Although Filariasis and CLL are 

two very different clinical conditions, the fact that there is an alteration of TLR 

expression on T cells in both disease states highlights the important role TLR play in 

maintaining normal T cell function. Loss of T cell function, whether due to parasitic 

infection or by development of a malignancy, leads in each case to impairment of the 

immune response. 

 

There is then an important role for the TLR in T cell function, particularly in the 

induction of inflammatory responses and the immune response to invading pathogens 

(McGettrick and O’Neill 2007). Given that the expression of TLR varies greatly 

between CLL patient and matched control groups, and that differential TLR 

expression has been shown to directly translate to functional differences, it is 

reasonable to assume that T cell responses in CLL may be significantly altered. 
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6.4 Role of B cells in CLL 

The pathogenesis of B-CLL appears to involve dysfunctional regulation of both 

humoral and cellular immunity with subsequent development of genetic abnormalities 

(Shim et al. 2007).  The CLL B cell originates in the bone marrow, where it is 

believed to originate from a single progenitor cell which becomes malignant when its 

replication and survival escape from normal regulatory mechanisms via a resistance to 

the normal processes of cell death and apoptosis. Leukaemic cell accumulation 

therefore appears to be the result of defective apoptosis rather than uncontrolled 

proliferation (Caligaris-Cappio 1996). The anti-apoptotic protein Bcl-2 is over 

expressed in 90% of the B cells from CLL patients (Faderl et al. 2002) and it has been 

suggested that this not only inhibits apoptosis and prolong survival, but that it also 

leads to an accumulation of malignant cells stuck in the G0 phase of the cell cycle. 

Various other Interleukins and cell surface antigens such as IL-10 and CD6 have also 

been shown to accumulate on the surface of CLL B cells and it is thought that their 

presence may also contribute to protection from apoptosis (Osorio, Jondal and 

Aguilar-Santelise 1998). 

 

As the leukaemic clone grows within the bone marrow, normal marrow function 

becomes compromised, although due to the insidious nature of the disease this may 

occur very slowly. With clonal expansion, normal haemopoiesis is compromised as 

the clone takes up an increasing amount of pace in the marrow, this leads to the 

cytopenias which manifest as the characteristic presenting signs and symptoms of 

CLL. Reduced erythrocyte production, coupled with the autoimmune haemolysis 

commonly associated with CLL, results in anaemia, decreased levels of functional 
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leucocytes and immunoglobulin leads to recurrent infections and thrombocytopenia 

increases the risk of bruising and bleeding (Caligaris-Cappio and Hamblin 1999). 

 

B cells perform a number of functions that are crucial to the efficient functioning of 

the immune system namely: antibody production, expression of costimulatory 

molecules, production of inflammatory cytokines and secretion of microbial 

destruction factors (Cascalho and Platt 2006, Rožková et al. 2010).  B-CLL is often 

accompanied by a multitude of immune system abnormalities, which when combined 

constitute a significant immunodeficiency for the patient. These dysfunctions can be 

directly related to the presence of clonal B cells, which are produced at the expense of 

their normally functioning counterparts (Bartik, Welker and Kay 1998). 

 

Gene profiling studies comparing B cells from CLL patients with those from normal 

controls have found a large number of genes are differentially expressed (Kienle et al. 

2005). In particular genes which encoded for proteins known to be involved in both 

the innate and the adaptive immune response appear to be significantly down 

regulated, whilst those involved in intracellular processing and response to 

interleukins were upregulated. Based on these expression patterns it is surmised that 

these are mechanisms for the prolongation of survival and evasion of the normal 

immune response. There is also evidence to suggest that CLL B cells have down 

regulated surface molecules that are critical to T cell interaction, thus precluding a 

normal immune response and providing further opportunity for prolonged B cell 

survival (Novak et al. 2002). 
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6.5 Role of TLR in B cells 

B cell TLR activation results in the up-regulation of activation markers, proliferation, 

cytokine secretion, terminal differentiation and immunoglobulin secretion 

(Bekeredjian-Ding and Jego 2009).  Engagement of TLR results in the activation of a 

number of pathways such as myeloid differentiation primary response protein 88 

(myD88) activation of nuclear-factor kB (NF-kB), mitogen-activated protein kinase 

and protein kinase B (PKB) and Toll/Interleukin-1 receptor mediated interferon β 

production (Muzio, Fonte and Caligaris-Cappio 2012).  

 

When a naïve B cell first encounters a pathogen it responds by secretion of both 

antigen specific and non-specific Immunoglobulin of the class IgM. It has been 

reported that TLR engagement in B cells could be instrumental in the initiation and 

amplification of this response (Chiron et al. 2008). The endosomal location of TLR 9 

means that the pathogen must be disintegrated and endocytosed prior to being 

presented to this TLR. This raises the issue of spatial and temporal segregation of 

TLR ligand availability, which directly translates into different levels of B cell 

activation. This mechanism has been shown to be dependant of the presence of a co-

stimulus, such as B cell receptor ligation with anti-human immunoglobulin or 

pathogen surface proteins (Bekeredjan-Ding and Jego 2009).  

 

 

TLR-mediated B cell activation is limited in some degree by the nature of naïve B 

cells, as they are quite difficult to stimulate, TLR stimulation alone only inducing 

limited activation (Jiang, Lederman and Harding 2007).  Full activation of B cells 

requires a combination of 3 signals; BCR triggering, T cell assistance and TLR 
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stimulation (Ruprecht and Lanzavecchia 2006). The absence of TLR stimulation has 

been shown to prevent strong activation and plasma cell differentiation.  Further 

studies have indicated that co-operating immune cells provide co-stimulatory signals 

to B cells that enhance TLR signalling, dendritic cells in particular help control the 

humoral memory response to viruses through TLR expression and subsequent 

secretion of Interferons. TLR activation can therefore regulate the humoral response 

at several points (Jego et al. 2003). 

 

It has also been reported that in naïve B cells, most TLR are expressed at low levels 

but their expression increases after BCR triggering and memory B cells acquire the 

capacity to respond to specific TLR agonists. Thus, BCR-independent stimulation of 

TLR-expressing B cells leads to the polyclonal activation of the memory B cells pool 

and contributes to the maintenance of serological memory (Bernasconi, Traggiai and 

Lanzavecchia 2002).  In vitro studies have also confirmed that direct activation of B 

cell TLR induces proliferation of memory B cells (Ruprecht and Lanzavecchia 2006). 

 

The expression of TLR on B cells has been shown to be shaped by the local 

environment, TLR 2, 3 and 9 expression and responsiveness to their respective 

ligands being increased in B cells isolated from tonsils when compared with those 

isolated from peripheral blood. According to one study, Naïve B cells are barely 

responsive to TLR stimulation and express low levels of TLR, whereas memory B 

cells are more reactive and more prone to proliferate and differentiate upon TLR 

activation (Poeck et al. 2004). 
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Further evidence of the important role that TLR play in antibody responses come 

from studies on immunodeficiency disorders that are the result of impaired TLR 

signalling (Picard, Casanova and Puel 2011, Warner and Núñez 2013) The disorders 

in question are: 

 

(i) Interleukin-1 receptor-associated kinase 4 (IRAK4) deficiency 

(ii) MyD88 deficiency 

(iii) NF-kB essential modulator (NEMO) deficiency 

 

Clinically these immunodeficiencies are mainly associated with severe, childhood 

infections with gram positive bacteria such as S. aureus and S. pneumoniae.  Clinical 

case studies on these conditions describe humoral immune defects with defective 

antibody responses to certain vaccines and a failure to maintain protective levels of 

antigen specific antibody titres (Ku, Picard and Erdos 2007).   

 

CLL is characterised by constitutive activation of the B-cell receptor (BCR) signalling 

pathway which is aberrantly active in the disease, leading to increased cell survival 

and proliferation (Woyach et al. 2014). Several mechanisms have been reported to 

provide CLL cells with a survival advantage; one such mechanism involves the 

activation of NF-κB (Nuclear factor kappa light chain enhancer of activated B cells) 

which plays an important role in the survival and proliferation of both normal and 

neoplastic B cells (Liu et al. 2011). A broad array of, mostly extracellular, stimuli 

have been reported to activate NF-κB to various degrees in CLL (Gilmore 2006). 

These stimuli bind to cell surface receptors, including TLR, causing downstream 

activation of NF-κB which enters the nuclei to activate target genes (Liu et al. 2011).  
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Since signalling through the BCR appears to be a major contributor to the 

pathogenesis of CLL, it is relevant to this study that TLR act as co-stimulatory signals 

for B cells. TLR dependent signals may be implicated in the regulation of B cell 

immune responses, either by inducing TLR tolerance or by subverting the 

mechanisms that silence autoreactive B cells, thus promoting autoreactivity (Arvaniti, 

Ntoufa and Papakonstantinou 2011). CLL cells are known to express a similar profile 

of TLR to that seen on activated B cells (Rožková et al. 2010).The vast majority of 

adaptors and effectors of the NF-κB pathway are intermediately to highly expressed, 

whilst inhibitors of the TLR pathway are generally low to undetectable, indicating 

that the TLR signalling framework is competent in CLL (Arvaniti, Ntoufa and 

Papakonstantinou 2011).  

 

TLR mediated stimulation is therefore relevant to CLL development and evolution 

and has been implicated in malignant transformation, tumour progression and immune 

evasion processes (Isaza-Correa et al. 2014). It is reasonable then to infer that TLR 

are important regulators of a broad variety of B cell functions and play distinct roles 

in different B cell subsets, at different stages of differentiation or depending of 

distribution within the body. TLR can therefore be thought of as controlling differing 

roles depending on the immunological context in which they are employed. 

(Bekeredjian-Ding and Jego 2009). In the context of CLL this is particularly relevant, 

as it has been suggested that TLR stimulation of B cells increases the immunogenicity 

of tumour cells and potentially contributes to the induction of a leukaemia-specific 

immune response, which is distinct from the normal immune response observed in 

healthy donors (Grandjenette et al. 2007). There is also evidence to suggest that direct 
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TLR activation decreases the viability of B-CLL cells and increases their 

susceptibility to apoptosis in culture (Jahrsdorfer et al. 2005). 

 

 

6.6 Autoimmunity in CLL 

The two major disease-specific complications of CLL are infection and 

autoimmunity. Both of these can be related to underlying alterations in immune 

function, since the disease is characterised by a dysregulated immune system, as 

discussed in the preceding sections. The introduction of new therapeutic regimens 

have lead to improved overall survival for CLL and since patients live longer, disease-

specific complications become more common (Dearden et al. 2008). It has also been 

suggested that more intensive treatment regimens and the use of immunosuppressive 

drugs contribute towards the increased incidence of autoimmunity seen in CLL (Diehl 

and Ketchum 2008). 

  

Autoimmune complications are common in CLL, occurring in between 10 and 25% of 

patients at some time during their disease course (Hamblin 2006), and manifest in 

three distinct autoimmune diseases: Warm autoimmune haemolytic anaemia (AIHA), 

which occurs in 11% of patients, Idiopathic thrombocytopenic purpura (ITP), which is 

found in 2-3% of patients and Pure red cell aplasia (PRA), found in 6% of patients 

(Diehl 1998).  More recent reviews of a large group of CLL patients have established 

that approximately 50% of patients exhibit autoimmune disease during or 

immediately after therapy (Hodgson et al. 2011, Zent and Kay 2010). Additional 

studies concluded that autoimmunity is associated with advanced clinical stage, high 

lymphocyte count and short lymphocyte doubling time. There was however no 
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significant differences found between overall survival times of those patients with and 

those without autoimmune disease (Moreno et al. 2010).  

 

The autoantibodies found in the serum of CLL patients are largely polyclonal in 

nature and are invariably different in both specificity and isotype from those secreted 

directly by the malignant cell population. It is therefore reasonable to infer that the 

residual non-malignant B cell population must be responsible for autoantibody 

production; this is in contrast to other haematological malignancy conditions such as 

lymphoma where autoantibodies are produced by the malignant cells (Hodgson et al. 

2011).   A possible mechanism to explain this phenomenon is aberrant antigen 

expression by the malignant B cell population, it is thought that they may well express 

cryptic antigens to which the immune system is not normally exposed and for which 

there is no immunological tolerance. Since these cryptic antigens are essentially 

recognised by the immune system as ‘foreign’ an immune response will be initiated 

which manifests as an autoimmune condition (Hall et al. 2007).   

 

Given the dramatic differences seen in TLR expression on both T and B cells between 

the patient and control groups in this study, it is important to consider the role of both 

T and B lymphocytes cell in autoimmune disease. 

 

 

6.6.1 T cell induced autoimmunity 

Within the T cell compartment, tolerance is maintained by the deletion of immature T 

cells that recognise self-antigens. This mechanism for removal of potentially self 

reactive cells occurs primarily in the thymus, although several accessory mechanisms 
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are also operative in the peripheral blood system, including induction of functional 

anergy, deletion by apoptosis and the suppressive actions of Tregs (Abbas et al. 

2004).  T cell derived autoimmunity is thought to be caused by germ line mutations or 

targeted deletions of genes which disrupts one or other of the pathways of tolerance, 

deletion or mutation of the growth factor IL-2 for example interferes with the 

generation of CD4 positive Treg which is key to the induction of T cell anergy, 

absence of these Tregs is directly attributable to autoimmune disease (Refaeli et al. 

1998).  

 

The fact that there are multiple mechanisms for removal of self-reactive T cells 

suggests that there is a high degree of co-operation between them to maintain self 

tolerance and any disruption may alter the balance between tolerance and 

autoimmunity (Abbas et al. 2004). As previously discussed, the differential 

expression of TLR can be linked to functional differences in cells of the immune 

system. These differences may provide a possible explanation for the high incidence 

of autoimmune disease seen in the patient group. 

 

6.7 Role of B cells in autoimmunity 

TLR signalling in B cells has been shown to exert a regulatory function that 

suppresses autoreactive T cells and can help self limit autoimmune disease 

(Lampropoulou et al. 2010).  However, it has also been reported that inappropriate 

engagement of TLR on B cells can trigger an autoimmune response (Pasare and 

Menzhitov 2005). One of the major mechanisms that contributes towards 

autoimmunity in CLL is that B CLL cells will often act as aberrant antigen presenting 

cells (APC), which is linked to the development of AIHA (Galleti et al. 2008). The 
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mechanism responsible for this phenomenon is that CD5 positive B cells in CLL 

patients will process and present Rhesus (Rh) antigen to Th cells. It has been found 

that CLL patients with AIHA have a discreet population of activated Th cells that 

react specifically with Rhesus (Rh) blood group system epitopes on red blood cells. 

Positive selection of CD5 positive CLL B cells proved that it was these malignant 

cells that process and present purified Rh protein to the autoreactive Th cells (Hall et 

al. 2005).  The leukaemic clone of B cells found in CLL commonly express IgM class 

antibodies on their surface; AIHA is however typically mediated by IgG class 

autoantibodies, suggesting that the control of self reactive immunoglobulin production 

is lost in CLL, as the majority of IgM produced will be of malignant clonal origin. It 

has been proved experimentally that the self-reactive repertoires of class IgM and IgA 

antibody are indeed disturbed by the production of monoclonal immunoglobulin 

produced by CLL B cells with the resultant production of autoimmune disease (Stahl 

et al. 2001).  Thus the autoantibodies responsible for autoimmune disease in CLL 

appear to be produced by polyclonal ‘bystander’ B lymphocytes as a consequence of 

immune dysregulation associated with the malignant cell clone (Barcellini et al. 

2002). 

 

It has been suggested that some of the T cell defects found in CLL may be caused by 

immuosupression by the B cells (Scrivener et al. 2003). In a normally functioning 

immune system, T cells are more numerous than B cells, particularly in the peripheral 

blood. In B-CLL the number of B cells increases dramatically which has a relative 

dilution effect on the T cell compartment. As a result on this increase in B cell 

numbers, there is a corresponding increase in the markers expressed on their surface 

and factors secreted by them. These can have both direct and indirect effects on T cell 
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function, and may well account for the T cell dysfunction well described in the 

disease, in particular, there appears to be a reduced cooperation between the 2 cell 

types in immunoglobulin production which results in the hypogammaglobulinaemia 

commonly seen in CLL patients (Scrivener et al. 2003).  B cells may also suppress T 

cells by either absorbing or utilising cytokines essential for T cell function. In 

particular IL2 levels are reduced in CLL, suggesting a reduced immune control by B 

cells over T cells (Zaknoen and Kay 1990). Other methods of immune control by the 

B cells include an ability to force T cells to upregulate surface markers to levels not 

normally expressed, for example experimental culturing of T cells in the presence of 

CLL B cells caused the T cells to upregulate the surface protein CD30, which in turn 

prevents the upregulation of another surface protein (CD40) on the surface of non-

malignant B cells, the expression of which prevents immunoglobulin production 

(Cerutti et al. 2001). 

 

 There is then an accumulation of evidence that suggests that the differences in the 

surface expression of TLR on the T cells in B CLL may be a functional consequence 

of the malignant B cell clone itself, which may in turn affect non-malignant B cells. 

 

 

6.8 Non haematological autoimmunity 

There are also reports of autoimmune conditions associated with CLL that affect non-

haematological tissues, in one study up to 16% of CLL patients had a positive marker 

for non-haematological autoimmune disease, such as a positive anti nuclear antibody 

or rheumatoid factor. These are however comparatively rare and in the majority of 

instances are thought to have been precipitated by therapy (Barcellini et al. 2006).   
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6.9 Role of TLR in autoimmunity  

TLR have the capacity to stimulate both innate and adaptive immunity, they also have 

the potential to break immunological tolerance and induce autoimmune disease such 

as arthritis and diabetes (Lang et al. 2005).  This is however balanced by the fact that 

TLR stimulation can also suppress autoimmune pathogenesis, indicating a dual role 

for TLR in autoimmune diseases (Lampropoulou et al. 2008).  Studies on TLR 9 have 

indicated that polymorphisms leading to reduced TLR 9 expression increases 

predisposition to the autoimmune condition Systemic Lupus Erythematosus (SLE) 

(Tao et al. 2007).  

 

In addition to their role in pathogen recognition, TLR also recognise a number of self 

proteins and endogenous nucleic acids. It has been suggested that inappropriate 

activation of TLR may lead to tissue injury and autoimmune disease (Papadimitraki, 

Bertsias and Boumpas 2007). There is also evidence that B cells can under certain 

conditions promote autoimmune disease by the production of autoantibodies, and as 

has been discussed above, by serving as antigen presenting cells for autoreactive T 

cells. Most normal individuals have a number of autoreactive B cells, these are 

however tolerant of self-antigens, and additional events must be initiated in order to 

promote alteration or loss of this tolerance with resultant initiation of autoimmune 

disease.  Experimental evidence shows that TLR mediated signalling can indeed 

directly break B cell tolerance to self antigens and lead to overt autoimmune disease 

(Meyer-Bahlburg and Rawlings 2008). 
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Compelling evidence of a role for TLR in the development of autoimmune disease 

has come from studies on patients with SLE. In these patients anti-nuclear antibodies 

are a typical clinical feature and are considered a central diagnostic criterion (Terhorst 

et al. 2010).  It has been postulated that recognition of nuclear components may 

contribute to the origin and perpetuation of the disease and that these substrates may 

also act as TLR stimulators that in turn activate autoreactive B cells (Ding et al. 2006, 

Giltiay, Chappell and Clark 2014). Interestingly much of the research in this field has 

focused on the role of TLR 9, there being a body of evidence that suggests 

polymorphisms in TLR 9 correlate well with the incidence of lupus in some 

populations (Tao et al. 2007, Klonowska-Szymczyk et al. 2014).  Other workers 

investigating the role individual TLR play in the development of SLE have however 

reported that under different circumstances TLR signalling may either exacerbate or 

protect against SLE associated pathology (Rahman and Isenberg 2008).  

 

Given that there is a well established link between TLR signalling and autoimmunity 

in SLE, it is postulated that a similar mechanism may be responsible for the 

autoimmune phenomena associated with CLL. 
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6.10 TLR9 expression and autoimmunity 

Studies on TLR 9 function have determined that it recognises unmethylated CpG 

oligodeoxynucleotides, which are short single stranded DNA molecules that contain a 

cytosine base followed by a guanine base (the p referring to the phosphodiester 

backbone of DNA). Unmethylated CpG motifs have been shown to act as 

immunostimulants (Weiner et al. 1997), and are abundant in microbial genomes but 

rare in vertebrates (Bauer and Wagner 2002).  

TLR-9 activation leads to a pro-inflammatory reaction which results in the production 

of cytokines including IFN-1 and IL-12.  It is however hypothesised that TLR 9 can 

also bind to the body’s own DNA and RNA from apoptotic cells initiating an immune 

response. Since this material is intracellular it is hypothesised that they become 

visible to the immune system when accumulate in the plasma membrane during 

apoptotic cell death (Casciola-Rosen, Anhalt and Rosen 1994, Graham and Utz 2005), 

subsequent uptake and processing by antigen presenting cells (APC’s) leading to a 

loss of tolerance. Self ligands that can inappropriately stimulate TLR have been 

termed damage associated molecular patterns (DAMP) and are recognised to have the 

potential to activate self reactive lymphocytes and induce an autoimmune state. 

However it is thought that in an intact immune system, TLR stimulation alone will not 

be sufficient to overcome self-tolerance (Fischer and Ehlers 2008). There is then in 

patients with a compromised immune system, as is the case with those with B-CLL, 

the potential for autoimmunity. 

 

In order for an autoimmune state to exist it is necessary that immune complexes form 

in the body and for this to happen it is necessary to have both autoantigens and 

autoantibodies present. The autoantigens as already premised, are released from 
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apoptotic cells and the autoantibodies are probably produced by self-reactive B cells, 

which constitute a reasonably proportion of the naïve B cell repertoire in most 

individuals (Wardermann et al. 2003). Defects in early B cell tolerance may lead to an 

even greater percentage of self-reactive B cells in patients prone to development of 

autoimmune disease (Yurasov et al. 2005), patients with B-CLL would fit into this 

category for reasons already discussed. The role of TLR 9 stimulation and 

autoantibody production in other disease such as SLE has been well documented 

(Christensen et al. 2006), the importance of TLR 9 expression being demonstrated by 

the apparent inability of TLR 9-deficient animal models to generate anti DNA 

antibodies. 

 

Studies on individuals infected with helminthic parasites have determined that TLR 9 

expression on T cells correlates with cell activation and that low TLR 9 expression 

prevents polyclonal activation during primary immune responses, conversely a high 

level of TLR 9 expression was found to facilitate polyclonal activation of the immune 

system (Ayash-Rashkovsky, Bentwich and Borkow 2005). This finding is significant 

to this study as it provides a link with autoimmunity since the potential for immune 

complex formation, and hence an autoimmune condition, is higher in individuals with 

increased TLR 9 expression. There are a number of other risk factors for the 

development of autoimmunity, such as genetic predisposition, environmental factors 

and compromised tolerance checkpoints (Fischer and Ehlers 2008), all of which are 

also implicated in the disease process in B-CLL. It is therefore likely that both B-CLL 

and autoimmunity may be linked by both the disease process and common risk 

factors. 
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6.11 The role of TLR in CLL 

In the body the local environment seems to shape the TLR repertoire expressed on 

cells, TLR 2, 3 and 9 expression and responsiveness to their respective ligands is 

increased in B cells isolated from tonsils when compared with those isolated from 

peripheral blood. According to one study, Naïve B cells are barely responsive to TLR 

stimulation and express low levels of TLR, whereas memory B cells are more reactive 

and more prone to proliferate and differentiate upon TLR activation (Poeck et al. 

2004). 

 

The role of TLR in triggering an immediate immune response following direct 

recognition of molecular patterns found in microbial components is well documented 

(Akira, Uematsu and Takeuchi 2006, Kawai and Akira 2011), as it their role in 

bridging the innate and adaptive immune systems by acting as costimulatory signals 

for B cells to induce maturation, proliferation and antibody production after pathogen 

recognition (Pasare and Medzhitov 2005, Lanzavecchia and Sallusto 2007).  However 

there is little published information on which TLR are expressed by CLL cells and 

relatively little is known regarding their function in the disease (Muzio et al. 2009).  

 

Those studies that have set out to characterise TLR expression on CLL B cells have 

concluded that they are expressed in a similar pattern to that found in memory B cells 

(Ruprecht and Lanzavecchia 2006), and that their expression appears to be unrelated 

to disease stage or other prognostic factors (Muzio et al. 2009). Other workers have 

also reported that TLR are expressed at low levels on naïve B cells and are 

upregulated upon BCR triggering (Rožková et al. 2010). There is however growing 

evidence that TLR 9 shows the greatest variation in expression between CLL and 
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healthy individuals (Longo et al. 2007, Muzio et al. 2009). Given that TLR 9 has been 

reported to be upregulated upon antigen stimulation of normal B cells (Isaza-Correa et 

al. 2014) this provides evidence for a link between upregulation of TLR 9 and clonal 

stimulation of both normal B cells and malignant clones. It has also been suggested 

that enhanced expression of TLR 9 on memory cells allows for polyclonal activation 

of the entire pool of memory cells allowing the maintenance of serological memory 

and also the increase of the immunogenicity of B cells via the upregulation of 

costimulatory molecules (Rožková et al. 2010). 

 

Given that TLR plays such a crucial role in the homeostasis of B cells, the differential 

expression of TLR on CLL cells compared to their normal counterparts may help 

explain the complex changes seen in the characteristics and function of leukaemic 

cells. 

 

6.12 Limitations of study 

 

This study is limited, of necessity in a number of areas, notably those relating to 

subject group, techniques and overall scope. 

 

 As with any research project, the sample size is governed by the availability of 

suitable candidates for inclusion, the time scale over which data is collected and the 

resources available for analysis. Over the course of the study a reasonable proportion 

of prospective candidates were rejected as they did not meet the criteria for inclusion 

i.e. a confirmed diagnosis of CLL and availability of age/gender matched control. 

Although strict inclusion criteria excluded participants, it is believed that this has 
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contributed to the robust nature of the study and by extension adds value to any 

conclusions drawn from it. With hindsight it may have been prudent to collect 

additional data from rejected candidates, as without a clear idea of what the results 

would show, valuable information may have been missed. When performing the 

statistical analysis of the data it also become evident that it would have been prudent 

to calculate the optimal sample size by performing some basic statistical power 

calculations, prior to commencing the study, as the adopted strategy of simply 

collecting as many samples as possible over a set time period lacks subtlety and 

weakens the project with respect to statistical robustness.  

 

With respect to the techniques used to analyse the test subjects it is somewhat 

simplistic to have used a single analytical strategy. Confirmatory analysis using 

different techniques would have given a greater degree of confidence in the results 

generated and may have circumvented some of the technical difficulties encountered 

in the early stages of project development. This potential weakness is noted in 

particular with respect to the studies on the DAG testing phase of the investigation. 

DAG positivity is a relatively blunt tool with which to investigate the phenomena of 

autoimmunity and it is realised that thoroughness is lacking in this element of the 

study. The study as it stands only provides a snapshot of TLR expression in newly 

diagnosed CLL patients; it would perhaps have been prudent to plan to extend the 

study longitudinally. In particular it would have been beneficial to perform a serial 

study of TLR expression in a cohort of B CLL patients from diagnosis, through 

treatment and on to eventual outcome. This would have yielded valuable information 

on the change in TLR expression related to therapy and disease progression and 



Page | 124 

 

would also allow retrospective comparisons to be made between the pattern of 

expression at diagnosis and in a variety of outcomes. 

 

The scope of this study is also limited, in that it is restricted to CLL. Given that over 

the course of the investigation a large number of patients presented with a plethora of 

other haematological malignancies, it may have been reasonable to investigate TLR 

expression on patients with a range of conditions or from different demographic 

groups. 

 

Notwithstanding the above, the study although limited, has established ranges for 

TLR expression in a reasonable sample size of both patients and age/sex matched 

control. Statistically significant differences have been found between these 2 groups 

and also between patients expressing evidence of autoimmune disease and those that 

did not. Given the original hypothesis that there will be differential expression of TLR 

between patient and control groups, it is fair to say that this has been proven. What is 

however less certain is the contention in the original hypothesis that there is a link 

between TLR expression and the disease process in CLL. Whilst it has been 

established that DAG positivity and a high degree of TLR 9 expression are linked, 

there is insufficient evidence to conclude that TLR9 is directly responsible for this 

phenomenon; hence although there is a proven association, this element of the 

hypothesis remains unproven.  
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  7 Future developments 

 

There remain a number of additional studies that would compliment and enhance this 

project, as financial and ethical restrictions have meant that not all of the promising 

avenues of research could be investigated. In particular it would be beneficial to 

perform a serial study of TLR expression in a cohort of B CLL patients from 

diagnosis, through treatment and on to eventual outcome. This would yield valuable 

information on the change in TLR expression related to therapy and disease 

progression and would also allow retrospective comparisons to be made between the 

pattern of expression at diagnosis and a variety of outcomes. This latter area of study 

may prove beneficial to researchers involved in the search for newer prognostic 

factors, there being obvious clinical applications for such markers. 

 

During the course of the study a number of additional anti TLR monoclonal 

antibodies have become commercially available, future studies would be well served 

by including these in a panel of reagents as they may well yield additional diagnostic 

and prognostic information.  It would also be instructive to perform cell culture and 

stimulation studies on purified B cell populations from both patient and control 

groups in an attempt to explore the dynamics of TLR expression under a variety of 

conditions. 

 

Although this study was restricted to patient groups with B CLL, the techniques that 

have been developed for elucidation of TLR expression and the gating strategies 

employed could equally be applied to the study of many different malignant 

haematological diseases, the acute leukaemias being an obvious choice, there are 
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however a potentially huge number of disease states that would bear close 

examination using this model. 

 

The increasing use of monoclonal antibodies as therapeutic agents means that 

differential expression of cell surface antigens, such as TLR, will have to be 

monitored to establish the appropriateness and efficacy of such treatments. A natural 

extension to this study would involve investigation of patients on anti TLR drugs in 

order to monitor disease progression and provide a method for assessing areas of 

interest such as minimal residual disease and the risk of disease relapse when patients 

are in remission. 

 

Although all of the above areas would require significant development of the 

techniques described in this study, the basic principles employed are sound and 

provide a robust foundation on which future studies can be based. 
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Name 
Patient 

No. DOB Gender WBC 
CD5/19 

% Score 
Abs 

lymph 
Lymph 

% DAG 

EL 1 23/07/1926 MALE 90.7 94 4 77.6 86 N 

MT 2 02/09/1937 MALE 12 82 5 8.1 67.1 P 

RH 3 30/08/1949 MALE 22.6 88 5 15.1 67 P 

UB 4 15/04/1930 FEMALE 14.6 50 5 8.47 58 N 

CC 5 16/09/1941 MALE 24.2 87 5 22.3 92 N 

JD 6 31/03/1934 MALE 28.4 84 5 19.7 69.4 P 

PM 7 05/09/1944 MALE 14.8 56 4 7.6 51 P 

DB 8 22/03/1940 FEMALE 19.9 65 4 15.6 78.3 N 

GB 9 08/12/1951 MALE 23.6 81 4 19.8 84 N 

MH 10 28/09/1938 MALE 54.9 97 5 33.77 61.5 N 

JW 11 12/03/1946 MALE 10 61 5 5.76 57.5 P 

JM 12 08/11/1936 FEMALE 130.6 84 3 157.89 95 N 

DR 13 01/03/1934 FEMALE 9.7 49 4 5.48 56.3 N 

DD 14 31/07/1941 MALE 9.1 81 4 4.73 52.3 N 

AL 15 15/03/1946 FEMALE 17.2 58 4 10.18 59.3 N 

LB 16 06/06/1926 MALE 35.7 93 5 29.5 82.8 P 

JR 17 01/11/1945 MALE 12.7 70 5 7.9 62.2 N 

BL 18 24/11/1943 MALE 16.4 76 5 10.3 63 N 

AS 19 16/04/1940 FEMALE 19.3 58 5 14.67 76 P 

JT 20 21/05/1942 MALE 13.6 51 4 5.03 37 N 

CS 21 20/05/1941 FEMALE 66.4 91 4 61.75 93 N 

WS 22 08/03/1935 MALE 32.5 88 5 68.3 71 N 

SJ 23 13/06/1936 FEMALE 9.4 16 5 4.87 51.6 N 

WH 24 01/03/1938 FEMALE 23.4 51 5 18.87 80.7 N 

IB 25 27/09/1960 MALE 15.3 65 4 9.66 62.9 P 

JA 26 21/06/1932 FEMALE 16.8 42 4 10.49 62.6 N 

MY 27 27/01/1940 MALE 65.7 94 5 58.44 89 P 

ST 28 19/07/1953 MALE 17 71 5 11.67 68.6 P 

JL 29 23/06/1930 FEMALE 13.5 57 5 6.38 47.2 P 

GH 30 04/04/1938 MALE 12.9 57 4 6.08 47 N 

JS 31 15/02/1934 MALE 42.7 92 4 39.71 93 N 

JB 32 14/10/1943 MALE 14.7 80 5 9.88 67.4 N 

CB 33 28/12/1927 FEMALE 28.9 88 5 27.1 93.8 N 

JS 34 22/09/1922 FEMALE 6.6 58 5 2.75 41.9 N 

WD 35 25/08/1925 MALE 76.9 91 5 74.3 96.6 P 

PT 36 13/12/1948 MALE 28.9 86 4 22.6 78.4 P 

LC 37 06/04/1939 FEMALE 6.6 81 5 1.13 17.2 P 

HP 38 19/02/1944 MALE 80.9 95 5 77.7 96 N 

JB 39 17/07/1930 FEMALE 16.4 33 4 9382 60.1 N 

MW 40 21/09/1939 MALE 12.9 65 4 6.63 51.2 N 

WS 41 13/02/1943 MALE 47.4 89 5 43.6 92 N 

GL 42 12/05/1932 MALE 19.6 91 5 15.37 78.3 N 

DH 43 11/02/1938 MALE 21.4 85 4 14.94 69.6 P 

AK 44 23/03/1939 MALE 66.3 97 3 60 91 N 

TM 45 09/03/1935 MALE 44.1 90 5 35.69 80.9 N 

MB 46 23/08/1925 MALE 13.8 76 5 10.21 74 N 
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CM 47 01/06/1932 MALE 14 85 4 8.44 75.8 N 

LW 48 01/05/1943 FEMALE 247.8 89 5 237.89 96 N 

BP 49 02/02/1947 MALE 116.5 96 5 104.85 90 N 

BB 50 10/11/1929 FEMALE 18.3 79 4 11.16 60.4 N 

JB 51 09/11/1938 MALE 12.8 23 4 7.03 54.9 N 

DJ 52 11/02/1930 MALE 9.4 29 4 6.49 68.7 P 

MK 53 05/03/1941 FEMALE 341.4 97 5 331.16 97 N 

NS 54 26/06/1931 MALE 9.1 72 5 4.39 48.4 P 

ZR 55 14/10/1938 FEMALE 10.5 19 5 5.87 56.2 N 

PR 56 05/08/1944 FEMALE 11.1 82 3 7.33 65.9 N 

SB 57 04/10/1916 FEMALE 10.8 71 4 6.36 58.9 N 

CV 58 05/05/1941 MALE 75.4 95 4 66.35 88 N 

CN 59 02/05/1950 MALE 5.8 86 5 2.12 56.3 N 

TC 60 27/11/1951 MALE 33.3 91 5 25.96 77.9 N 

OF 61 10/04/1954 MALE 8.2 46 5 4.86 59.2 N 

JNF 62 05/07/1937 FEMALE 277 83 4 268.69 97 N 

SH 63 26/07/1956 FEMALE 13.6 44 4 7.83 58.1 P 

KV 64 12/08/1930 MALE 9.5 36 4 1.7 18 N 

AW 65 26/07/1921 FEMALE 91.4 81 5 83.16 91 P 

MD 66 30/04/1941 FEMALE 8.4 45 5 10.28 74.8 N 

PW 67 26/03/1930 FEMALE 17.6 77 3 8.65 49.2 N 

MB 68 29/11/1917 MALE 9.8 60 5 4.01 41 N 

CM 69 06/07/1934 MALE 59.3 95 5 52.16 88 N 

AS 70 03/05/1924 MALE 10.8 30 4 1.7 38.7 N 

JH 71 01/11/1932 FEMALE 13.2 66 4 7.69 58.2 N 

GH 72 16/11/1942 MALE 15.6 85 4 8.25 52.9 N 

DW 73 04/02/1928 MALE 17.7 78 5 11.08 62.7 N 

JM 74 19/04/1960 FEMALE 18.3 70 5 13.16 71.8 N 

KP 75 10/04/1951 FEMALE 15.8 66 4 11.46 72.8 N 

SW 76 17/05/1930 MALE 20.1 71 4 13.49 67.2 N 

SF 77 06/07/1945 FEMALE 22.3 86 5 16.56 74.1 P 

PK 78 18/05/1951 MALE 11.9 71 4 7.24 60.7 N 

PD 79 15/09/1944 MALE 29.4 94 4 27.55 93.8 N 

JT 80 05/03/1940 FEMALE 11.2 49 4 6.67 59.5 N 

NR 81 25/02/1943 MALE 49.6 93 3 41.48 83.7 N 

TT 82 11/09/1928 FEMALE 7.6 29 5 4.03 53.2 P 

MC 83 12/12/1923 FEMALE 11.6 63 4 6.44 55.5 P 

JB 84 03/07/1942 MALE 159.2 59 4 154.42 97 N 

CE 85 06/04/1959 FEMALE 85.1 87 5 76.17 89.5 N 

MY 86 25/01/1940 MALE 5.9 80 4 0.79 20.6 N 

JR 87 29/09/1946 MALE 33.4 86 4 33.03 83 N 

MH 88 06/04/1948 MALE 27.4 80 5 29.92 85 N 

SH 89 14/04/1936 FEMALE 64.5 90 4 54.83 85 N 

DR 90 01/03/1934 FEMALE 9.8 40 4 5.2 53.1 N 

JJ 91 02/05/1947 FEMALE 14.2 23 5 1.4 26 N 

FT 92 01/09/1937 MALE 10.2 64 5 5.31 52.1 N 

JS 93 19/06/1959 FEMALE 7.5 17 5 2.97 39.6 N 

EW 94 19/04/1936 FEMALE 19 54 4 10.39 54.7 N 

DB 95 04/01/1946 MALE 14.7 73 4 7.14 48.6 N 

FH 96 01/11/1920 MALE 25.3 87 4 12.47 49.3 N 

PT 97 13/12/1948 MALE 85.9 92 4 85.9 100 N 

BM 98 01/03/1952 MALE 15 74 3 9.36 62.4 P 

JP 99 24/06/1938 FEMALE 12 50 4 5.87 48.9 N 

PE 100 01/04/1948 MALE 21.8 88 5 13.04 59.8 P 
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AG 101 28/11/1948 MALE 33.4 85 5 29.06 87 N 

MJ 102 17/11/1935 FEMALE 58.5 93 4 52.65 90 P 

JF 103 19/03/1943 MALE 26.7 85 4 20.32 76.1 N 

EB 104 15/11/1944 FEMALE 145.3 97 4 140.94 97 N 

AE 105 14/09/1924 MALE 26.7 81 5 19.28 72.2 N 

MR 106 18/03/1933 MALE 41.3 62 4 36.8 89.1 N 

JH 107 14/02/1945 FEMALE 125.4 95 3 110.35 88 N 

JN  108 19/08/1941 MALE 13.9 62 5 9.81 70.6 N 

SP 109 17/02/1982 MALE 44.2 82 5 41.5 93.9 N 

HS 110 24/08/1929 MALE 14.1 75 4 9.94 70.5 N 

MM 11 27/02/1937 MALE 14.9 85 4 11.13 74.7 N 

WK 112 19/06/1921 MALE 39.6 98 5 32.79 82.8 N 

EW 113 20/01/1941 MALE 23.8 92 5 19.4 81.5 N 

MM 114 16/04/1947 MALE 68.8 95 4 67.42 98 N 

MS 115 17/12/1942 MALE 30.9 76 5 23.18 75 N 

DB 116 10/10/1934 MALE 14.1 79 4 9.35 66.3 N 

WM 117 23/09/1931 MALE 21.1 93 5 20.13 95.4 N 

EB 118 24/10/1949 MALE 15.5 79 4 8.93 57.6 P 

SC 119 19/03/1945 MALE 12.3 84 4 8.27 67.2 N 

RR 120 30/12/1926 MALE 95.8 97 4 90.05 94 N 

DT 121 29/06/1943 MALE 21 67 3 16.49 78.5 N 

DD 122 05/10/1926 MALE 59.2 94 5 52.87 89.3 N 

VW 123 11/01/1943 FEMALE 34.3 70 5 28.74 83.8 N 

AP 124 29/08/1954 MALE 22.7 76 4 16.34 72 P 

FH 125 16/05/1933 FEMALE 17.7 83 5 10.85 61.3 N 

AH 126 30/04/1929 MALE 15.1 63 5 13.74 91 N 

RH 127 30/12/1938 FEMALE 20.7 92 4 16.39 79.2 N 

DT 128 22/03/1928 MALE 15.5 53 4 9.13 58.9 N 

JB 129 15/12/1926 FEMALE 47.1 78 5 46.21 98.1 P 
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 0 hours 4 hours 8 hours 12 hours 24 hours 
patient 

1 52.7 52.2 50.4 48.9 45.5 
patient 

2 46.8 46.6 45.3 44.5 42.6 
patient 

3 51.1 51.3 50.6 49.5 46.4 
patient 

4 54.4 53.7 52.4 50.2 48.6 
patient 

5 67.3 66.4 64.4 63.2 61.1 

MEAN 54.46 54.04 52.62 51.26 48.84 

SEM 3.4 3.3 3.2 3.1 3.2 
control 

1 77.4 75.6 75 72.2 71.8 
control 

2 69.3 68.3 66.7 64.6 64.3 
control 

3 63.5 60.3 58.3 60.3 56.3 
control 

4 79.8 77.2 77.1 75 72.5 
control 

5 81.5 80.4 78.4 76.6 74.4 

MEAN 74.3 72.36 71.1 69.74 67.86 

SEM 3.4 3.6 3.8 3.1 3.4 

      

Appendix 3:Time delay study results   

% TLR 1 expression on B lymphocytes shown   

at time 0 and at 4hrs, 8 hrs, 12 hrs and 24 hrs  

post collection.     
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APPENDIX IV) Statistical analysis of TLR expression data (SPSS 
analysis) 
 

 

 

Case Processing Summary 

 

Control or Patient 

Cases 

 Valid Missing Total 

 N Percent N Percent N Percent 

TLR1Bcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR2Bcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR3Bcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR4Bcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR9Bcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TRL1Tcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR2Tcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR3Tcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR4Tcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR9Tcell Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR1Mono Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR2Mono Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR3Mono Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR4Mono Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 

TLR9Mono Control 129 100.0% 0 .0% 129 100.0% 

Patient 129 100.0% 0 .0% 129 100.0% 
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Descriptives 

 Control or Patient Statistic Std. Error 

TLR1Bcell Control Mean 71.852 .6312 

95% Confidence Interval for 

Mean 

Lower Bound 70.603  

Upper Bound 73.101  

5% Trimmed Mean 71.818  

Median 71.700  

Variance 51.401  

Std. Deviation 7.1694  

Minimum 56.0  

Maximum 89.3  

Range 33.3  

Interquartile Range 10.1  

Skewness .044 .213 

Kurtosis -.546 .423 

Patient Mean 55.367 .9961 

95% Confidence Interval for 

Mean 

Lower Bound 53.397  

Upper Bound 57.338  

5% Trimmed Mean 55.399  

Median 54.400  

Variance 127.984  

Std. Deviation 11.3130  

Minimum 23.2  

Maximum 83.2  

Range 60.0  

Interquartile Range 18.6  

Skewness .008 .213 

Kurtosis -.030 .423 

TLR2Bcell Control Mean 18.118 .2368 

95% Confidence Interval for 

Mean 

Lower Bound 17.649  

Upper Bound 18.586  

5% Trimmed Mean 18.112  

Median 18.300  

Variance 7.236  

Std. Deviation 2.6901  

Minimum 9.7  

Maximum 27.2  

Range 17.5  

Interquartile Range 3.1  
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Skewness .077 .213 

Kurtosis 1.148 .423 

Patient Mean 11.236 .4836 

95% Confidence Interval for 

Mean 

Lower Bound 10.279  

Upper Bound 12.192  

5% Trimmed Mean 11.008  

Median 11.100  

Variance 30.166  

Std. Deviation 5.4923  

Minimum 1.2  

Maximum 32.1  

Range 30.9  

Interquartile Range 7.3  

Skewness .723 .213 

Kurtosis .860 .423 

TLR3Bcell Control Mean .047 .0086 

95% Confidence Interval for 

Mean 

Lower Bound .029  

Upper Bound .064  

5% Trimmed Mean .032  

Median .000  

Variance .010  

Std. Deviation .0977  

Minimum .0  

Maximum .6  

Range .6  

Interquartile Range .1  

Skewness 2.680 .213 

Kurtosis 8.916 .423 

Patient Mean 9.684 .3838 

95% Confidence Interval for 

Mean 

Lower Bound 8.925  

Upper Bound 10.444  

5% Trimmed Mean 9.529  

Median 9.000  

Variance 19.004  

Std. Deviation 4.3593  

Minimum .7  

Maximum 23.2  

Range 22.5  

Interquartile Range 6.3  

Skewness .527 .213 
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Kurtosis .160 .423 

TLR4Bcell Control Mean .055 .0103 

95% Confidence Interval for 

Mean 

Lower Bound .035  

Upper Bound .075  

5% Trimmed Mean .038  

Median .000  

Variance .014  

Std. Deviation .1166  

Minimum .0  

Maximum .5  

Range .5  

Interquartile Range .0  

Skewness 2.176 .213 

Kurtosis 3.992 .423 

Patient Mean 6.815 .3399 

95% Confidence Interval for 

Mean 

Lower Bound 6.142  

Upper Bound 7.487  

5% Trimmed Mean 6.677  

Median 6.600  

Variance 14.907  

Std. Deviation 3.8610  

Minimum .2  

Maximum 17.5  

Range 17.3  

Interquartile Range 4.8  

Skewness .430 .213 

Kurtosis -.089 .423 

TLR9Bcell Control Mean 70.481 1.2331 

95% Confidence Interval for 

Mean 

Lower Bound 68.042  

Upper Bound 72.921  

5% Trimmed Mean 71.292  

Median 72.000  

Variance 196.135  

Std. Deviation 14.0048  

Minimum 23.0  

Maximum 94.4  

Range 71.4  

Interquartile Range 16.9  

Skewness -.931 .213 

Kurtosis 1.312 .423 
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Patient Mean 78.077 1.2534 

95% Confidence Interval for 

Mean 

Lower Bound 75.597  

Upper Bound 80.557  

5% Trimmed Mean 79.757  

Median 81.400  

Variance 202.652  

Std. Deviation 14.2356  

Minimum 23.2  

Maximum 96.4  

Range 73.2  

Interquartile Range 13.8  

Skewness -1.824 .213 

Kurtosis 3.884 .423 

TRL1Tcell Control Mean 1.192 .0645 

95% Confidence Interval for 

Mean 

Lower Bound 1.065  

Upper Bound 1.320  

5% Trimmed Mean 1.135  

Median 1.100  

Variance .537  

Std. Deviation .7328  

Minimum .1  

Maximum 5.5  

Range 5.4  

Interquartile Range .9  

Skewness 2.023 .213 

Kurtosis 8.627 .423 

Patient Mean 2.759 .0786 

95% Confidence Interval for 

Mean 

Lower Bound 2.603  

Upper Bound 2.914  

5% Trimmed Mean 2.744  

Median 2.700  

Variance .796  

Std. Deviation .8924  

Minimum .7  

Maximum 5.2  

Range 4.5  

Interquartile Range 1.2  

Skewness .309 .213 

Kurtosis -.141 .423 

TLR2Tcell Control Mean 1.387 .0655 
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95% Confidence Interval for 

Mean 

Lower Bound 1.257  

Upper Bound 1.517  

5% Trimmed Mean 1.353  

Median 1.200  

Variance .554  

Std. Deviation .7444  

Minimum .2  

Maximum 3.3  

Range 3.1  

Interquartile Range 1.0  

Skewness .649 .213 

Kurtosis -.168 .423 

Patient Mean 8.430 .2426 

95% Confidence Interval for 

Mean 

Lower Bound 7.950  

Upper Bound 8.910  

5% Trimmed Mean 8.459  

Median 8.400  

Variance 7.593  

Std. Deviation 2.7555  

Minimum 1.2  

Maximum 15.3  

Range 14.1  

Interquartile Range 3.1  

Skewness -.231 .213 

Kurtosis .414 .423 

TLR3Tcell Control Mean .184 .0214 

95% Confidence Interval for 

Mean 

Lower Bound .142  

Upper Bound .227  

5% Trimmed Mean .151  

Median .100  

Variance .059  

Std. Deviation .2435  

Minimum .0  

Maximum 1.1  

Range 1.1  

Interquartile Range .3  

Skewness 1.846 .213 

Kurtosis 3.619 .423 

Patient Mean 1.744 .0666 

95% Confidence Interval for Lower Bound 1.612  
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Mean Upper Bound 1.876  

5% Trimmed Mean 1.697  

Median 1.700  

Variance .573  

Std. Deviation .7569  

Minimum .3  

Maximum 6.2  

Range 5.9  

Interquartile Range .7  

Skewness 1.982 .213 

Kurtosis 9.909 .423 

TLR4Tcell Control Mean .591 .0347 

95% Confidence Interval for 

Mean 

Lower Bound .522  

Upper Bound .659  

5% Trimmed Mean .578  

Median .600  

Variance .155  

Std. Deviation .3938  

Minimum .0  

Maximum 1.8  

Range 1.8  

Interquartile Range .6  

Skewness .300 .213 

Kurtosis -.468 .423 

Patient Mean 7.263 .2615 

95% Confidence Interval for 

Mean 

Lower Bound 6.745  

Upper Bound 7.780  

5% Trimmed Mean 7.119  

Median 6.900  

Variance 8.820  

Std. Deviation 2.9699  

Minimum 1.4  

Maximum 24.1  

Range 22.7  

Interquartile Range 3.1  

Skewness 1.457 .213 

Kurtosis 7.304 .423 

TLR9Tcell Control Mean 11.978 .4583 

95% Confidence Interval for 

Mean 

Lower Bound 11.071  

Upper Bound 12.884  
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5% Trimmed Mean 11.856  

Median 12.100  

Variance 27.098  

Std. Deviation 5.2056  

Minimum .6  

Maximum 28.4  

Range 27.8  

Interquartile Range 6.9  

Skewness .422 .213 

Kurtosis .495 .423 

Patient Mean 19.911 .3258 

95% Confidence Interval for 

Mean 

Lower Bound 19.266  

Upper Bound 20.555  

5% Trimmed Mean 20.038  

Median 19.700  

Variance 13.690  

Std. Deviation 3.7000  

Minimum 9.8  

Maximum 27.5  

Range 17.7  

Interquartile Range 4.6  

Skewness -.399 .213 

Kurtosis .289 .423 

TLR1Mono Control Mean 74.126 .8898 

95% Confidence Interval for 

Mean 

Lower Bound 72.365  

Upper Bound 75.886  

5% Trimmed Mean 74.349  

Median 74.700  

Variance 102.135  

Std. Deviation 10.1062  

Minimum 45.8  

Maximum 93.2  

Range 47.4  

Interquartile Range 13.5  

Skewness -.302 .213 

Kurtosis -.284 .423 

Patient Mean 75.518 .6902 

95% Confidence Interval for 

Mean 

Lower Bound 74.152  

Upper Bound 76.883  

5% Trimmed Mean 75.803  
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Median 77.600  

Variance 61.444  

Std. Deviation 7.8386  

Minimum 48.9  

Maximum 92.2  

Range 43.3  

Interquartile Range 9.9  

Skewness -.592 .213 

Kurtosis .493 .423 

TLR2Mono Control Mean 83.772 .6983 

95% Confidence Interval for 

Mean 

Lower Bound 82.390  

Upper Bound 85.154  

5% Trimmed Mean 84.266  

Median 84.800  

Variance 62.899  

Std. Deviation 7.9309  

Minimum 56.9  

Maximum 96.4  

Range 39.5  

Interquartile Range 10.9  

Skewness -.887 .213 

Kurtosis .894 .423 

Patient Mean 81.398 .8878 

95% Confidence Interval for 

Mean 

Lower Bound 79.641  

Upper Bound 83.154  

5% Trimmed Mean 82.238  

Median 84.000  

Variance 101.679  

Std. Deviation 10.0836  

Minimum 45.5  

Maximum 96.4  

Range 50.9  

Interquartile Range 11.0  

Skewness -1.288 .213 

Kurtosis 1.569 .423 

TLR3Mono Control Mean 25.166 .4994 

95% Confidence Interval for 

Mean 

Lower Bound 24.178  

Upper Bound 26.154  

5% Trimmed Mean 25.227  

Median 25.500  
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Variance 32.171  

Std. Deviation 5.6719  

Minimum 9.6  

Maximum 37.2  

Range 27.6  

Interquartile Range 8.9  

Skewness -.160 .213 

Kurtosis -.580 .423 

Patient Mean 26.409 .4255 

95% Confidence Interval for 

Mean 

Lower Bound 25.567  

Upper Bound 27.250  

5% Trimmed Mean 26.530  

Median 27.400  

Variance 23.351  

Std. Deviation 4.8323  

Minimum 13.7  

Maximum 34.7  

Range 21.0  

Interquartile Range 6.4  

Skewness -.511 .213 

Kurtosis -.574 .423 

TLR4Mono Control Mean 67.576 .6841 

95% Confidence Interval for 

Mean 

Lower Bound 66.222  

Upper Bound 68.929  

5% Trimmed Mean 67.470  

Median 67.500  

Variance 60.363  

Std. Deviation 7.7693  

Minimum 45.2  

Maximum 87.5  

Range 42.3  

Interquartile Range 9.4  

Skewness .093 .213 

Kurtosis .055 .423 

Patient Mean 68.744 .6380 

95% Confidence Interval for 

Mean 

Lower Bound 67.482  

Upper Bound 70.007  

5% Trimmed Mean 68.603  

Median 68.500  

Variance 52.510  
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Std. Deviation 7.2464  

Minimum 52.9  

Maximum 91.0  

Range 38.1  

Interquartile Range 8.1  

Skewness .292 .213 

Kurtosis .423 .423 

TLR9Mono Control Mean 92.726 .3504 

95% Confidence Interval for 

Mean 

Lower Bound 92.033  

Upper Bound 93.420  

5% Trimmed Mean 93.070  

Median 93.700  

Variance 15.835  

Std. Deviation 3.9794  

Minimum 75.5  

Maximum 98.5  

Range 23.0  

Interquartile Range 4.2  

Skewness -1.611 .213 

Kurtosis 3.298 .423 

Patient Mean 91.089 .4100 

95% Confidence Interval for 

Mean 

Lower Bound 90.278  

Upper Bound 91.900  

5% Trimmed Mean 91.458  

Median 92.200  

Variance 21.685  

Std. Deviation 4.6568  

Minimum 68.8  

Maximum 98.5  

Range 29.7  

Interquartile Range 4.8  

Skewness -1.574 .213 

Kurtosis 4.208 .423 
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Tests of Normality 

 

Control or Patient 

Kolmogorov-Smirnov
a
 Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

TLR1Bcell Control .044 129 .200
*
 .990 129 .438 

Patient .081 129 .039 .985 129 .158 

TLR2Bcell Control .063 129 .200
*
 .986 129 .229 

Patient .066 129 .200
*
 .967 129 .003 

TLR3Bcell Control .435 129 .000 .546 129 .000 

Patient .081 129 .038 .978 129 .037 

TLR4Bcell Control .457 129 .000 .540 129 .000 

Patient .058 129 .200
*
 .974 129 .015 

TLR9Bcell Control .107 129 .001 .948 129 .000 

Patient .155 129 .000 .829 129 .000 

TRL1Tcell Control .124 129 .000 .864 129 .000 

Patient .099 129 .004 .981 129 .069 

TLR2Tcell Control .126 129 .000 .953 129 .000 

Patient .079 129 .047 .977 129 .030 

TLR3Tcell Control .224 129 .000 .753 129 .000 

Patient .134 129 .000 .861 129 .000 

TLR4Tcell Control .105 129 .001 .960 129 .001 

Patient .092 129 .010 .908 129 .000 

TLR9Tcell Control .051 129 .200
*
 .986 129 .219 

Patient .093 129 .008 .975 129 .016 

TLR1Mono Control .065 129 .200
*
 .984 129 .132 

Patient .109 129 .001 .974 129 .015 

TLR2Mono Control .090 129 .012 .944 129 .000 

Patient .135 129 .000 .895 129 .000 

TLR3Mono Control .067 129 .200
*
 .987 129 .245 

Patient .116 129 .000 .954 129 .000 

TLR4Mono Control .052 129 .200
*
 .991 129 .545 

Patient .079 129 .048 .982 129 .077 

TLR9Mono Control .161 129 .000 .866 129 .000 

Patient .134 129 .000 .892 129 .000 

a. Lilliefors Significance Correction 

*. This is a lower bound of the true significance. 
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Group Statistics 

 Control or Patient N Mean Std. Deviation Std. Error Mean 

TLR1Bcell Control 129 71.852 7.1694 .6312 

Patient 129 55.367 11.3130 .9961 

TLR2Bcell Control 129 18.118 2.6901 .2368 

Patient 129 11.236 5.4923 .4836 

TLR9Tcell Control 129 11.978 5.2056 .4583 

Patient 129 19.911 3.7000 .3258 

TLR1Mono Control 129 74.126 10.1062 .8898 

Patient 129 75.518 7.8386 .6902 

TLR3Mono Control 129 25.166 5.6719 .4994 

Patient 129 26.409 4.8323 .4255 

TLR4Mono Control 129 67.576 7.7693 .6841 

Patient 129 68.744 7.2464 .6380 

 

 

Independent Samples Test 

 

Levene's Test for Equality of 

Variances 

F Sig. 

TLR1Bcell Equal variances assumed 16.391 .000 

Equal variances not 

assumed 
  

TLR2Bcell Equal variances assumed 44.584 .000 

Equal variances not 

assumed 
  

TLR9Tcell Equal variances assumed 11.906 .001 

Equal variances not 

assumed 
  

TLR1Mono Equal variances assumed 9.098 .003 

Equal variances not 

assumed 
  

TLR3Mono Equal variances assumed 4.373 .037 

Equal variances not 

assumed 
  

TLR4Mono Equal variances assumed .918 .339 

Equal variances not 

assumed 
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Independent Samples Test 

 

t-test for Equality of Means 

t df Sig. (2-tailed) 

Mean 

Difference 

TLR1Bcell Equal variances assumed 13.979 256 .000 16.4845 

Equal variances not 

assumed 

13.979 216.534 .000 16.4845 

TLR2Bcell Equal variances assumed 12.781 256 .000 6.8822 

Equal variances not 

assumed 

12.781 186.070 .000 6.8822 

TLR9Tcell Equal variances assumed -14.109 256 .000 -7.9333 

Equal variances not 

assumed 

-14.109 231.033 .000 -7.9333 

TLR1Mono Equal variances assumed -1.236 256 .217 -1.3922 

Equal variances not 

assumed 

-1.236 241.082 .218 -1.3922 

TLR3Mono Equal variances assumed -1.894 256 .059 -1.2426 

Equal variances not 

assumed 

-1.894 249.699 .059 -1.2426 

TLR4Mono Equal variances assumed -1.249 256 .213 -1.1682 

Equal variances not 

assumed 

-1.249 254.767 .213 -1.1682 

 

Independent Samples Test 

 

t-test for Equality of Means 

Std. Error 

Difference 

95% Confidence Interval of the 

Difference 

Lower Upper 

TLR1Bcell Equal variances assumed 1.1792 14.1623 18.8067 

Equal variances not 

assumed 

1.1792 14.1603 18.8087 

TLR2Bcell Equal variances assumed .5385 5.8218 7.9425 

Equal variances not 

assumed 

.5385 5.8199 7.9444 

TLR9Tcell Equal variances assumed .5623 -9.0407 -6.8260 

Equal variances not 

assumed 

.5623 -9.0412 -6.8254 

TLR1Mono Equal variances assumed 1.1261 -3.6098 .8253 
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Equal variances not 

assumed 

1.1261 -3.6105 .8260 

TLR3Mono Equal variances assumed .6560 -2.5346 .0493 

Equal variances not 

assumed 

.6560 -2.5347 .0495 

TLR4Mono Equal variances assumed .9354 -3.0103 .6739 

Equal variances not 

assumed 

.9354 -3.0103 .6739 

 

 
Mann-Whitney Test 

 

Ranks 

 Control or Patient N Mean Rank Sum of Ranks 

TLR3Bcell Control 129 65.00 8385.00 

Patient 129 194.00 25026.00 

Total 258   

TLR4Bcell Control 129 65.17 8407.00 

Patient 129 193.83 25004.00 

Total 258   

TLR9Bcell Control 129 104.78 13516.00 

Patient 129 154.22 19895.00 

Total 258   

TRL1Tcell Control 129 74.89 9660.50 

Patient 129 184.11 23750.50 

Total 258   

TLR2Tcell Control 129 66.34 8558.50 

Patient 129 192.66 24852.50 

Total 258   

TLR3Tcell Control 129 66.19 8538.00 

Patient 129 192.81 24873.00 

Total 258   

TLR4Tcell Control 129 65.04 8390.00 

Patient 129 193.96 25021.00 

Total 258   

TLR2Mono Control 129 137.37 17721.00 

Patient 129 121.63 15690.00 

Total 258   

TLR9Mono Control 129 146.31 18874.50 

Patient 129 112.69 14536.50 
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Ranks 

 Control or Patient N Mean Rank Sum of Ranks 

TLR3Bcell Control 129 65.00 8385.00 

Patient 129 194.00 25026.00 

Total 258   

TLR4Bcell Control 129 65.17 8407.00 

Patient 129 193.83 25004.00 

Total 258   

TLR9Bcell Control 129 104.78 13516.00 

Patient 129 154.22 19895.00 

Total 258   

TRL1Tcell Control 129 74.89 9660.50 

Patient 129 184.11 23750.50 

Total 258   

TLR2Tcell Control 129 66.34 8558.50 

Patient 129 192.66 24852.50 

Total 258   

TLR3Tcell Control 129 66.19 8538.00 

Patient 129 192.81 24873.00 

Total 258   

TLR4Tcell Control 129 65.04 8390.00 

Patient 129 193.96 25021.00 

Total 258   

TLR2Mono Control 129 137.37 17721.00 

Patient 129 121.63 15690.00 

Total 258   

TLR9Mono Control 129 146.31 18874.50 

Patient 129 112.69 14536.50 

Total 258   

 

 

Test Statistics
a
 

 TLR3Bcell TLR4Bcell TLR9Bcell TRL1Tcell TLR2Tcell TLR3Tcell 

Mann-Whitney U .000 22.000 5131.000 1275.500 173.500 153.000 

Wilcoxon W 8385.000 8407.000 13516.000 9660.500 8558.500 8538.000 

Z -14.270 -14.270 -5.322 -11.763 -13.597 -13.707 

Asymp. Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
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Test Statistics
a
 

 TLR4Tcell TLR2Mono TLR9Mono 

Mann-Whitney U 5.000 7305.000 6151.500 

Wilcoxon W 8390.000 15690.000 14536.500 

Z -13.884 -1.695 -3.620 

Asymp. Sig. (2-tailed) .000 .090 .000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


