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Abstract 

A continuous stirred tank reactor (CSTR) is a typical example of chemical industrial equipment, whose 

dynamics represent an extensive class of second order nonlinear systems. It has been witnessed that designing a 

good control algorithm for the CSTR is very challenging due to the high complexity. The two difficult issues in 

CSTR control are state estimation and external disturbance attenuation. In general, in industrial process control a 

fast and robust response is essential. Driven by these challenging issues and desired performance, this paper 

proposes an output feedback terminal sliding mode control (TSMC) framework which is developed for CSTR, and 

can estimate the system states and stabilize the system output tracking error to zero in a finite time. The 

corresponding stability analysis is presented in terms of the Lyapunov method. Illustrative examples are 

demonstrated by using Matlab simulations to validate the effectiveness of the proposed approach.  
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1 Introduction 

CSTR is one of the most common used equipment in the process industries. It can convert reactants into 

products, and therefore plays a primary role in many chemical processes
1-4

. In general, CSTRs are operated 

around a certain equilibrium point linked to the optimal output or optimal productivity of a process to pursue a 

high conversion rate and maximize economic benefits. In the view of control, CSTRs are highly nonlinear and 

dynamic. They have some notable features, such as one relative degree, unmeasured states and zero dynamics. 

These features make the controller design very challenging, especially in the presence of the external disturbance 

and/or system uncertainty
5-8

. In a wider sense, the investigations on the control solutions for the CSTRs can be 

extended to other processes by slight modifications.  

There has been much effort in the design of controlling CSTRs. By using Taylor-linearization for the dynamic 

models with bounded uncertainty, linear controllers have been presented
9-10

. However, the global stability may be 

lost while using the local linear approximation
11

. In the light of full state feedback and coordinate transformation, 

robust control approaches have been developed to achieve the disturbance attenuation performance
12-13

.
 
Note that 

it is very difficult to measure the concentration of the reactant directly online in practice. Hence full state feedback 

control is not practical in applications. However, it has been found that input/output (I/O) feedback linearization is 
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a practical control approach. Nevertheless, it still requires knowledge of the unmeasured states by the I/O 

feedback
7
. To resolve this issue, some observer based nonlinear control approaches have been presented

14-20
. 

Some advanced industrial applications, e.g. alkylation of benzene with ethylene process, expect high performance 

such as, strong robustness and fast response. Even the above mentioned observer based control approaches can in 

practice only achieve (asymptotical) stability, when high gain control is applied. Such high gain control may lead 

to control input saturation, particularly in the instance of the large initial track error
21-22

. If there exist external 

disturbances, it is very challenging to design observers and output feedback controllers for CSTRs. 

A nonlinear sliding mode (SM) control approach named terminal sliding mode (TSM) has been proposed for 

the nonlinear system control. It has some important advantages such as fast converging speed, strong robustness to 

system uncertainty, external disturbance and finite time stability
23-29

 without requiring high control gains. Recently, 

such superior control method has been successfully used in industrial processes
30

, which provides a good 

illustration of how TSMC can be utilized in process industry. Note that, the TSMC approach was developed in [30] 

for a plate heat exchanger
30

, which can be linearized by state feedback. Due to the properties such as relative 

degree one, unmeasured states and zero dynamics of the CSTRs, the method developed in [30] cannot be applied 

to CSTR directly. Note that sliding mode observers have strong ability to estimate system states, external 

disturbances, whose principle will be used to design a finite time stability observer in this paper. The sliding state 

observer is strongly robust and fast converging which is a good choice for observer based controller design
31-32

. 

Note that most of the existing sliding mode observers are asymptotically stable which cannot be used in the finite 

time stability control. 

The purpose of this study is to design a novel output feedback TSMC for a class of CSTRs, which have stable 

zero dynamics. In practical situations, external disturbances will be presented and affect the CSTR dynamics, 

which enhances the difficulties of controller design. First, a finite time stability state observer is proposed to 

estimate the unmeasured states online. Then, a TSMC is developed for CSTRs. The novelty of this paper is that it 

focuses on the finite time stability of the temperature loop in the presence of an external disturbance in the 

concentration loop. Compared with the existing sliding mode control approaches for CSTR
7, 33-34

, the proposed 

approach has a much stronger robustness and faster converging speed without requiring high control gain.  

The rest of this paper is organized as follows: The dynamic equations of a CSTR and some indispensable 

preliminary knowledge are presented in Section 2. Output feedback TSMC and the corresponding stability 

analysis are given in Section 3. Illustrative examples are used to validate the effectiveness of the proposed 

approaches in Section 4. Finally, concluding remarks are given in Section 5. 
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2 Problem formulation and preliminaries 

2.1 Dynamic equation of a CSTR 

Here we consider a CSTR as an exothermic, first order, irreversible reaction with the following two 

assumptions  

Assumption 1: The temperature is uniformly distributed due to perfect mixing in the reactor. The reacting 

materials have constant density and capacity. 

 

Figure 1 CSTR diagrammatic sketch 

Therefore, a dimensionless dynamic equation of the CSTR (as shown in Figure 1) can be used to describe the 

exothermic, first order, irreversible reaction
7
: 

 

   

     
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2 2

1

1 1 1 1

1

2 2 1 2 2 2

2

1

1

x x

a

x x

a c

x x D x e d

x x BD x e x x u d

y x




 





    

       



 (1) 

where 1 2,x x R  are the states, y is the system output which represents the dimensionless temperature, 

1 2,d d R  are external disturbances in the inlet concentration and temperature respectively. The details of the 

dimensionless parameters of this dynamic equation are given in Table 1 with references to the literature 7. 

Remark 1: For interested control, dimensionless temperature is selected as the system output for the following 

two reasons (1) Concentration measurement is very expensive in general; (2) To avoid secondary reactions, the 

reactor temperature has a maximum restriction
7
.  

CSTR 
Pump 

Coolant outlet 

Coolant inlet 

Reactor feed 

Reactor product 
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Property 1: The dynamic equation (1) has a relative degree one. 

Property 2:    2 2 1

1 1 1 11
x x

ax x D x e d
 

      is zero dynamics. 

Assumption 2: 1 1d c , 1 0c  . 2d  is a measurable disturbance that is bounded. 

Assumption 3: The control input  u t  belongs to the extended pL  space denoted as pL . That is, any 

truncation of  u t  to a finite time interval is essentially bounded
35

.  

Remark 2: Assumptions 2 and 3 are realistic. Because 2d  denotes a feed temperature disturbance it can be 

measured by using thermocouples. A properly designed control algorithm must lead to a bounded controller 

output, otherwise saturation or limit effects will degrade the control performance, and may even cause instability. 

Remark 3: According to Properties 1-2 and Assumptions 2 and 3, the zero dynamics of (1) must be stable. An 

output feedback controller can guarantee the whole system to be stable.  

The control objective of this paper is summarized as: Design a finite time stable observer to estimate system 

states. Then develop an output feedback terminal sliding mode control algorithm with the estimated states. It can 

drive the system output to its desired operation point while guaranteeing the concentration to be stable.  

Table 1 Dimensionless parameters for the CSTR model 

Activation energy  0E RT    

Adiabatic temperature rise  
0 0Af p fB H c c T    

Damkohler number  0 expaD k V V    

Heat transfer coefficient 0phA c f    

Dimensionless time  0t t F V   

Dimensionless composition  
0 01 Af A Afx c c c    

Dimensionless temperature  
0 02 f fx T T T    

Dimensionless control input  
0 0c c fu T T T   

Feed composition disturbance   
0 01 Af Af Afd c c c   

Feed temperature disturbance   
0 02 f f fd T T T   

2.2. Integral terminal sliding mode control 

Consider a nonlinear system as follows: 

    x f x g x u   , (2) 
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where x R ,  f x R ,  g x R  and  1g x R   exists and is bounded.  

Two integral TSM were presented in Ref. [23]: 

A. Sign integral terminal sliding mode  

 
     

        sgn 0 0

I

I I

s t x t x t

x t x t x x





 

  
  (3) 

where 0  ,  0x  is the initial value of  x t . According to the principle of sliding mode control
36

,  x t  

will be always kept on  s t . If  s t  is always zero,  x t  will converge to zero in a finite time 

 0sT e  . 

B. Fraction integral terminal sliding mode 

 
     

          sgn 0 0

I

q p

I I

s t x t x t

x t x t x t x x





 

  
  (4) 

where , 0p q   are odd integers. In light of the definition of a TSM
23

,  x t  will be zero in a finite time

   
1

0 1
q p

sT e q p


  . 

By using (3), TSMC can be designed for (2): 

         1 sgn sgnu g x f x x s       (5) 

By using (4), TSMC can be designed for (2): 

         1 sgn sgn
q p

u g x f x x x s       (6) 

Control laws (5) and (6) can force  x t  to remain in the TSM, consequently it will converge to zero in finite 

time along TSM.  

3 Output feedback TSMC for CSTR 

Because 1x  cannot be measured, full state feedback control is not feasible for (1). Though there have been 

designed many observers for CSTRs by means of asymptotical stability or practical stability, if used in TSMC, 

finite time stability will be lost. Accordingly, a finite time stable observer should be designed first.  
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3.1 Finite time stability observer 

Design the following finite time stability observer: 

 
     

       

2 2

2 2

ˆ ˆ 1

1 1 1 1 1 1

ˆ ˆ 1

2 2 1 2 2 2 2 2

ˆ ˆ ˆ ˆ1 sgn

ˆ ˆ ˆ ˆ ˆ1 sgn

x x

a

x x

a c

x x D x e x x

x x BD x e x x u d y x







  





     

         
  (7) 

where 1 2
ˆ ˆ,x x R  are estimated states for 1x  and 2x , 1 2, 0    are positive numbers. Let 

 2 2 1x x
M e

 
  

and 
 2 2ˆ ˆ 1ˆ x x

M e
 

 , then 1x  is defined as: 

   1 1 2 2
ˆˆ ˆsgn aeq

x x y x BD M     (8) 

Define the estimating error as: 

 
1 1 1

2 2 2

ˆ

ˆ

x x x

x x x

 

 
 (9) 

According to (9): 

 
     

       

1 1 1 1 1 1 1 1

2 2 1 1 2 2

ˆ ˆ ˆ1 1 sgn

ˆ ˆ ˆ1 1 1 sgn

a a

a a

x x D M x D M x d x x

x x BD M x BD M x y x



 

        

        
  (10) 

where   2 2
ˆsgn

eq
y x   is the equivalent output injection of  2 2

ˆsgn y x  . It can be obtained by passing 

the signal through a low pass filter
37

. 

Theorem 1: Under Assumptions 1-3, observer (7) can be used to estimate system states 1x  and 2x  in a finite 

time, that is, 1x  and 2x  tend to zero in a finite time. 

Proof: 

Choose a Lyapunov function for the temperature estimating loop as follows: 

 
2

2 2

1

2
V x   (11) 

By differentiating (11) with respect to time along the temperature estimating loop yields: 

 

     

     

      

2 2 2 2 2 1 2 1 2 2

2 2 2 2 1 2 1

2 2 2 1 2 1

ˆ ˆ1 1 1

ˆ ˆ1 1 1

ˆ ˆ1 1 1

a a

a a

a a

V x x x x BD M x x BD M x x

x x x BD M x x BD M x

x x BD M x x BD M x

 

 

 

         
 

        

       

  (12) 

If we choose 2  large enough, that is      2 2 1 2 1
ˆ ˆ1 1 1a ax BD M x x BD M x        , 2x  and 

2x  will converge to zero in finite time
36

. Note that, as 2 0x   and 2 0x  ,   1 2 2
ˆ ˆsgna eq

BD Mx y x   . 
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By using a low pass filter
37

, one can obtain the equivalent output of  2 2
ˆsgn y x  . 

Consider 2 0x   in finite time, (8) can be written as: 

  1 1 1 1 1 1 1
ˆ ˆsgnax x D Mx d x x       (13) 

If we choose a Lyapunov function for concentration estimating loop as follows: 

 
2

1 1

1

2
V x   (14) 

By differentiating (14) with respect to time along the concentration estimating loop, it will be: 

 

      

 

 

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

ˆ ˆ ˆ1 1 sgn

ˆ

ˆ

ˆ

a a

a

a

a

V x x

x x D M x D M x d x x

x x x D Mx d

x x x D Mx d

x x D Mx d











        

    

    

    

  (15) 

If one chooses 1  is large enough, 1 1 1 1
ˆ 0ax D Mx d     , 1x  and 1x  will converge to zero in finite 

time
36

. 

3.2 Output feedback TSMC design for CSTR 

Suppose the desired trajectory of system output as: 

 
 2

2

2 1

1 2 2

1
k t

r s

k t

r s

y x k e

y k k x e





 


  (16) 

where 1 2, 0k k   are positive constants that depend on the practical restrictions. 2sx  is the desired steady state 

value of 2x , which should be bounded. 

Define the tracking error of system output as: 

 2 re x y    (17) 

The estimated tracking error should be: 

 
     

2

2 1 2 2 2 2 2

ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ1 sgn

r

a c r

e x y

e x BD x M x x u d y x y  

 

          
  (18) 

A. Sign integral terminal sliding mode control 

For (18), the estimated sign integral terminal sliding mode is: 
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     

ˆ ˆ ˆ

ˆ ˆ ˆ ˆsgn 0 0

I

I I

s e e

e e e e





 

  
  (19) 

The terminal sliding mode can be re-written as: 

   
0

ˆ ˆ ˆsgn
t

s e e d       (20) 

If ê  reaches ŝ  it will converge to zero in a finite time  0sT e  . 

The derivative of ŝ  is: 

  ˆ ˆ ˆsgns e e    (21) 

Let ˆ 0s  , one can get the equivalent control as: 

 
     

   

2 2ˆ ˆ 11

2 1 2 2

2 2 2

ˆ ˆ ˆ1

ˆ ˆsgn sgn

x x

eq a c

r

u x BD x e x x

d y x y e


 

 

    

    
  (22) 

Design the reaching law as: 

  ˆsgnsu K s    (23) 

where 0K   is a positive number. 

The terminal sliding mode controller is designed as: 

 eq su u u    (24) 

Theorem 2: Under Assumptions 1-3 and Properties 1-2, the sign integral TSMC (24) yields convergence of ê  

and ê  to 0 in finite time, and hence 2x  will track to ry  in finite time and 1x  is asymptotically stable.  

Proof: 

Choose Lyapunov function as: 

 
2

1

1
ˆ

2
V s   (25) 

Differentiate (25) with respect to time along (18): 

    
   

1

2 1 2 2

2 2 2

ˆˆ

ˆˆ ˆ ˆ ˆ1

ˆ ˆsgn sgn

a c

r

V ss

s x BD x M x x

u d y x y e



 



     

     

  (26) 

Substituting (24) into (26): 

 1
ˆV K s    (27) 
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According to the sliding condition
36

, ê  is kept on TSM (20) all the time. From Theorem 1, it converges to zero 

in finite time. 

Note that after the after 1x̂  and 2x̂  converge to 1x  and 2x , the control law should be: 

 
     

   

2 2 1

2 1 2 2 2

2 2

1

sgn sgn

x x

eq a c

r

u x BD x e x x d

y x y e




 


     

   
  (28) 

The reaching law is 

  sgnsu K s    (29) 

The real sign integral TSMC should be: 

 eq su u u    (30) 

where re y y  , Is e e  ,      sgn 0 0I Ie e e e    . Substitute (29) into (1): 

  sgne e    (31) 

It is obvious that e  and e  converge to zero in finite time.  

After 2x  converge to 2sx , the concentration loop should be: 

    2 2 1

1 1 1 11 s sx x

ax x D x e d
 

       (32) 

Because 2sx  is bounded 
 2 2 1s sx x

e
 

 must be bounded. Note that 1 1d c , hence 

   2 2 1

1 11 s sx x

aD x e d
 

   must be bounded. Let    2 2 1

1 1 11 s sx x

aD x e d





   , then (32) can be written 

as: 

 1 1 1x x      (33) 

Solving the ordinary differential equation (33), gives: 

     1 1 1 10 tx t x e      (34) 

where  1 0x  is the initial value of  1x t . It is obvious that  1 1lim
t

x t 


 . Hence,  1x t  is asymptotically 

stable. 

B. Fraction integral terminal sliding mode control 

For (18), the estimated fraction integral terminal sliding mode is: 

 
     

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆsgn 0 0

I

q p

I I

s e e

e e e e e





 

  
  (35) 
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The fraction integral terminal sliding mode control law can be designed as follows: 

 

     

   

2 2ˆ ˆ 11

2 1 2 2

2 2 2

ˆ ˆ ˆ1

ˆ ˆ ˆsgn sgn

x x

eq a c

q p

r

u x BD x e x x

d y x y e e


 

 

    

    
  (36) 

  ˆsgnsu K s    (37) 

 eq su u u    (38) 

where the control parameters are same as those of (24). 

Theorem 3: Under Assumptions 1-3 and Properties 1-2, fraction integral TSMC (38) yields convergence of ê  

and ê  to 0 in finite time, implying 2x  will track to ry  in finite time and 1x  is asymptotically stable.  

Proof: The proof is similar to that of Theorem 2 and is omitted here.  

Remark 4: It is important to find appropriate 1  and 2  in the controller design. In practice, trial and error 

method can be used to find these two parameters. First, a large enough 2  should be used to test the proposed 

control approach. Then, according to the control performance, one should increase/reduce 2  until an acceptable 

control performance is obtained. If 2  is well designed, 1  can be designed by using the same method. 

Remark 5: Because 1x  is not measurable, an external disturbance observer was designed in Ref. 7 to estimate 

1x  online. Refs. [33] and [34] use uncertainty observers to estimate 1x . The proposed approach develops a 

robust finite time observer, which can estimate 1x  online directly. The proposed observer is simpler and more 

effective than the existing approaches
7, 33-34

. Compared with these existing sliding mode control algorithms of 

CSTR, the proposed control approach has a faster converging speed and stronger robustness, which is beneficial 

in industry  

Remark 6: Note that if 1q p  , the fraction integral terminal sliding mode will be an asymptotical stable 

integral sliding mode control with a finite time stable observer, which is a special case of the proposed approach. 

 
   

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ0 0

I

I I

s e e

e e e e





 

  
  (39) 

 
     

  

2 2ˆ ˆ 11

2 1 2 2

2 2 2

ˆ ˆ ˆ1

ˆ ˆsgn

x x

eq a c

r

u x BD x e x x

d y x y e


 

 

    

    
  (40) 
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  ˆsgnsu K s    (41) 

 
eq su u u    (42) 

4 Simulation results 

A CSTR was investigated in this section, whose dynamics was described by (1). Its parameters were set as

8B  , 0.3  , 20  , 0.078aD  , 2 0cx  . The desired trajectory of system output was designed as: 

 2

2 11
k t

r sy x k e


   

where 2 2.7517sx  , 1 1k  , 2 1k  . 

In this section, three types of control algorithms were tested in the absence of an external disturbance and in the 

presence of external disturbance, respectively. All the controllers’ parameters were set to be the same to facilitate 

comparison. The controllers’ parameters are listed in Table 2.  

Table 2 The controllers’ parameters 

Control algorithm  Controller’s parameters 

Sign integral terminal sliding mode control (SITSMC) 
1 0.5  , 2 0.5  , 0.2K  , 0.2  , 

0.05   

Fraction integral terminal sliding mode control 

(FITSMC) 

1 0.5  , 2 0.5  , 0.2K  , 0.2  , 

0.05  , 7q  , 11p    

Integral sliding mode control (ISMC) 
1 0.5  , 2 0.5  , 0.2K  , 0.2  , 

0.05   

Figure 2 shows the performance of SITSMC and FITSMC without using a smooth technique. In (a) and (d) 1x  

and its estimation 1x̂  are shown . In (b) and (e) 2x  and its estimation 2x̂  are plotted. The control input is 

displayed in (c) and (f). From Figure 2, it can be seen that the estimated states converge to the real ones in the 

finite time. The system output 2x  can also converge to the desired trajectory ry  in finite time. However, the 

control input is non-smooth as the sign control rather than the smooth control given by (39) is implemented. This 

phenomenon is called chattering. The chattering may wear and tear the actuators such as regulating valves. Figure 

3 shows the performance of SITSMC, FITSMC and ISMC by using the smooth technique, in which the sign 

function is replaced by  z z  , 0   is a small positive number. Comparing Figure 2 and 3, one can see 
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the performances of these two approaches are very similar. Figure 3 shows that the chattering is eliminated 

effectively by using the smooth technique. Note that the performances of these approaches are very similar. This is 

because there are no external disturbances. If there are some disturbances, the control performances of these 

approaches will be very different. To further test the proposed approaches, external disturbance were added to the 

CSTR. They are step signals, 1 0.1d  , 2 0.1d  . Figure 4 shows the tracking performances of system output. 

In (a) 2x̂ , 2x  and ry  of the SITSMC with using the smooth technique are shown. In (b) 2x̂ , 2x  and ry  of 

the FITSMC with using smooth technique are presented and in (c) 2x̂ , 2x  and ry  of the ISMC with a smooth 

technique are shown. It is obvious from Figure 4 that SITSMC gives the best results and ISMC gives the worst 

results. 

 

Figure 2 The performance of SITSMC and FITSMC (Non-smooth) 
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Figure 3 The performance of SITSMC, FITSMC (Smooth) 

 

Figure 4 The performance of SITSMC, FITSMC and ISMC subjected to external disturbance (Smooth) 

To show the performances of these three control approaches, time integrals multiplied by the error squared 

(ITSE) are given in Table 3. It illustrates again that the performance of SITSMC is the best. Although the smooth 

technique may degrade the control performance and lead to practical stability, the performances of the proposed 

controls are still acceptable for many practical purposes. This in contrast to the performance of the conventional 

sliding mode control which deteriorates heavily. The simulation results confirm the effectiveness of the proposed 

approaches. 
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Table 3 Integral of time multiplied by squared error (ITSE) 

Control approach ITSE 

SITSMC (Non-smooth) 1.0926 

FITSMC (Non-smooth) 1.0926 

SITSMC (Smooth) 1.1118 

FITSMC (Smooth) 1.1249 

ISMC (Smooth) 1.1318 

SITSMC under external disturbance (Smooth) 1.5782 

FITSMC under external disturbance (Smooth) 1.6366 

ISMC under external disturbance f(Smooth) 2.2128 

To further test the proposed approaches, they were compared with the ones of Ref. [33, 34]. Figure 5 shows the 

temperature track performances. From these results, one can see that the proposed approached is rapidly 

converging which is required in the practice.  

 

Figure 5 The comparison with Ref. [33, 34] 
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Figure 6 The performance of SITSMC, FITSMC under the sine disturbance (Smooth) 

 

Figure 7 The performance of SITSMC, FITSMC under the Gaussian noise (Smooth) 

To test the performance under rapid fluctuation disturbances, sine disturbance    1 0.1sin 0.1d t t  and 

   2 0.1sin 0.1d t t  are added to the system. Figure 6 shows the control performance. Gaussian noise 

disturbances with the similar amplitude are also added to the control system. Figure 7 shows the control 

performance. It is obvious that the designed observers can filter the rapid fluctuation disturbance and the designed 

terminal sliding mode controllers can obtain the acceptable control performance. Though the smooth technique is 

used in the controller design the control inputs are unsmooth due to the fluctuation disturbance.  
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5 Conclusions 

In this paper, TSMC approaches are initially developed for CSTR. By using sliding mode principles, a finite 

time stability observer is first designed to estimate the un-measurable states. Then, two novel output integral 

TSMC approaches, that is, SITSMC and FITSMC are developed for CSTR. Compared with existing linear 

integral sliding mode control, the proposed approaches have stronger robustness to external disturbances and can 

drive the tracking error to zero with faster converging speed. The corresponding stability analysis is presented to 

lay a theoretical foundation and a safe operation reference for potential applications. The effectiveness of the 

proposed approaches is validated through detailed numerical simulations. The presented approaches provide a 

more effective solution to CSTR. They have potential applications to other nonlinear process with relative degree 

one and stable zero dynamics. The immediate future work will be applying these new schemes to real CSTR 

experiments. 
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