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ABSTRACT

The giant amoeboid organism true slime mould Physarum polycephalum dynamically
adapts its body plan in response to changing environmental conditions and its proto-
plasmic transport network is used to distribute nutrients within the organism. These
networks are e�cient in terms of network length and network resilience and are parallel
approximations of a range of proximity graphs and plane division problems. The com-
plex parallel distributed computation exhibited by this simple organism has since served
as an inspiration for intensive research into distributed computing and robotics within
the last decade. P. polycephalum may be considered as a spatially represented parallel
unconventional computing substrate, but how can this `computer' be programmed? In
this paper we examine and catalogue individual low-level mechanisms which may be used
to induce network formation and adaptation in a multi-agent model of P. polycephalum.
These mechanisms include those intrinsic to the model (particle sensor angle, rotation
angle, and scaling parameters) and those mediated by the environment (stimulus loca-
tion, distance, angle, concentration, engulfment and consumption of nutrients, and the
presence of simulated light irradiation, repellents and obstacles). The mechanisms in-
duce a concurrent integration of chemoattractant and chemorepellent gradients di�using
within the 2D lattice upon which the agent population resides, stimulating growth, move-
ment, morphological adaptation and network minimisation. Chemoattractant gradients,
and their modulation by the engulfment and consumption of nutrients by the model
population, represent an e�cient outsourcing of spatial computation. The mechanisms
may prove useful in understanding the search strategies and adaptation of distributed
organisms within their environment, in understanding the minimal requirements for com-
plex adaptive behaviours, and in developing methods of spatially programming parallel
unconventional computers and robotic devices.

Keywords: Unconventional Computing, Slime Mould, Morphological Adaptation, Multi-
agent, Material Computation
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1. Introduction

The true slime mould Physarum polycephalum is a single-celled organism with a

very complex life cycle. The plasmodium stage, where a giant syncytium formed

by repeated nuclear division is encompassed within a single membrane, has been

shown to exhibit a complex range of biological and computational behaviours.

The plasmodium of P. polycephalum is a membrane-bound syncytium of nuclei

within a cytoplasm comprised of a complex gel/sol network. The gel phase is com-

posed of a sponge-like matrix of contractile actin and myosin �bres through which

the protoplasmic sol �ows. Local oscillations in the thickness of the plasmodium

spontaneously appear with approximately 2 minutes duration [1]. The spatial and

temporal organisation of the oscillations has been shown to be extremely complex

[2] and a�ects the internal movement of sol through the network by local assembly

and disassembly of the actin-myosin structures. The protoplasm moves backwards

and forwards within the plasmodium in a characteristic manner known as shuttle-

streaming.

The plasmodium is able to sense local concentration gradients and the presence

of nutrient gradients appears to alter the structure of external membrane areas. The

softening of the outer membrane causes a �ux of protoplasm towards the general

direction of the gradient in response to internal pressure changes caused by the

local thickness oscillations. The strong coupling between membrane contraction

and streaming movement is caused by the incompressibility of the �uid requiring

a constant volume - the weakening of the membrane provides an outlet for the

pressure. When the plasmodium has located and engulfed nearby food sources,

protoplasmic veins appear within the plasmodium, connecting the food sources.

The veins transport protoplasm amongst the distributed extremes of the organism.

The relative simplicity of the cell and the distributed nature of its control system

make P. polycephalum a suitable subject for research into distributed computation

substrates. In recent years there have been a large number of studies investigating its

computational abilities, prompted by Nakagaki et al. who reported the ability of P.

polycephalum to solve path planning problems [3]. Subsequent research con�rmed

and broadened the range of abilities to spatial representations of various graph

problems [4, 5, 6], combinatorial optimisation problems [7], construction of logic

gates [8] and logical machines [9], [10], and as a means to achieve distributed robotic

control [11], robotic manipulation [12] and robotic amoeboid movement [13], [14].

From a pattern formation perspective, P. polycephalum can be interpreted as a

complex mechanism of dynamical pattern formation based upon the two require-

ments of e�ciency in foraging behaviour (searching of a maximal area) and e�-

ciency in nutrient transport (minimal transport distance and fault tolerance) [15].

The mechanisms used to ful�l these requirements are growth, movement and area

reduction. During the growth/foraging stage the plasmodium exhibits a `default'

broadly reticulated outward growth pattern - the homogeneity of the growing plas-

modium fragments to form the reticular network [16]. On nutrient rich substrates
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the growth is typically wave-like and expansive but on nutrient poor substrates the

growth is dendritic. There is no strict separation of the two behaviours, however,

and both growth types may be observed experimentally in the same environment

subject to small local di�erences in humidity, substrate hardness, substrate rough-

ness or temperature. The foraging plasmodium forms a protoplasmic tube network

behind the growth front used to transport nutrients within the organism. Once all

nutrients have been located, the topology of the pattern (the protoplasmic tube net-

work) is in�uenced by the nutrient distribution. The tube network evolves to achieve

a compromise between minimal transport costs and fault tolerance [4]. Since the

plasmodium obviously cannot have any global knowledge about the initial or op-

timal topology, the network must evolve by physical forces acting locally on the

protoplasmic transport.

In this paper we give an overview of intrinsic mechanisms (model parameters)

and external mechanisms (environmental in�uences) that can in�uence the be-

haviour and pattern formation properties of a multi-agent model of P. polycephalum.

In Section 2 we give an over view of models of P. polycephalum. In Section 3 we

describe the multi-agent model used in this paper. Intrinsic model parameters af-

fecting network formation are described in Section 4. Environmental mechanisms

a�ecting network formation and adaptation are described in Section 5. In Section 6

we show examples of how such mechanisms can be employed and combined for the

approximation of spatially represented computing problems.

2. Modelling the Behaviour of P. polycephalum

Tero et al. have suggested that protoplasmic �ux through the network veins may be

cause the physical basis for evolution of the transport network: given �ux through

two paths, the shorter path will receive more sol �ux. By generating an autocatalytic

mechanism to reward veins with greater �ux (by thickening/widening them) and to

apply a cost to veins with less �ux (the veins become thinner), shorter veins begin to

predominate as the network evolves. This approach was used for the mathematical

model of P. polycephalum network behaviour to solve path planning problems [17].

This method indirectly supports the reaction-di�usion inspired notions of local ac-

tivation (strengthening of shorter tubes) and lateral inhibition (weakening of longer

tube paths). The starting point for the model of Tero et al. is a randomly connected

protoplasmic tube network, surrounding a number of food sources (network nodes)

which act as sources and sinks of �ux. By beginning with a complete network this

method, although successful in generating impressive solutions to network problems,

sidesteps the issues and mechanisms of initial network formation and adaptation to

a changing nutrient environment.

Gunji et al. introduced a cellular automaton (CA) model which considered both

plasmodial growth and amoeboid movement [18, 15]. The model placed importance

on the transformation of hardness/softness at the membrane and the internal trans-

port of material from the membrane resulting in movement and network adaptation.
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The model was also able to approximate instances of maze path planning and coarse

approximations of the Steiner tree problem.

Takamatsu's hexagonal CA [16] mimics the growth patterns displayed under

di�ering nutrient concentrations and substrate hardness. The patterns re�ect ex-

perimental results well but do not (at least at this stage - oscillatory behaviour is in

development) show morphological adaptation as the plasmodium grows. Hickey and

Noriega adapted a classical ant colony optimisation algorithm to modify a decision

tree in their representation of P. polycephalum behaviour in a simple path planning

problem [19]. Their algorithm (as with many implementations of ant algorithms)

transformed the spatial representation into a graph representation and provided

broadly similar results to path optimisation by P. polycephalum.

P. polycephalum may be interpreted as a spatially represented embodied form

of parallel and distributed unconventional computation. In this form of unconven-

tional � or non-classical � computation, the computation is embodied within, and

performed by, physical processes within living (or indeed non-living [20]) materi-

als [21]. Unlike the symbolic algorithms used to control classical computing devices,

problems and their solutions are represented as spatial patterns. The process of com-

puting the problem is typically performed by propagation of information throughout

the substrate until a �nal or stable state is reached. The distributed control and

the simple parallel nature of its component parts comprising P. polycephalum ren-

der it an attractive candidate material for synthetic collective computation and

soft-robotics applications. In order to utilise this `material' for useful computation

we must �nd mechanisms and methods to induce morphological adaptation. Such

mechanisms will lead to the ability to `program' the material to solve useful prob-

lems. AS P. polycephalum is a living organism, it su�ers from problems of speed,

repeatability, and the unpredictability and relative fragility associated with biolog-

ical systems. A suitable model is required, however one which is also composed

of relatively simple parts, utilises local interactions and demonstrates distributed

control of its behaviour.

3. A Multi-agent Model of P. polycephalum

Although slime mould has enviable computational properties, it also has limita-

tions due to the fact that it is a living organism. Although relatively easy and

inexpensive to culture, slime mould is also relatively slow (certainly compared to

silicon computing substrates) and must be maintained within strict environmental

parameters of temperature, light exposure and humidity. Slime mould may also be

relatively unpredictable in its behaviour. Although the unpredictability is useful in

certain circumstances it can be a hindrance when repeatable measures of its per-

formance are required. We therefore require a synthetic analogue of slime mould.

One technique available is computer modelling, where we attempt to reproduce the

complex patterning of slime mould along with the complex interactions it has with

its environment.
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It is important to note, however, that we are not simply trying to extract the

features of slime mould for classical algorithms. Such an approach may indeed prove

useful for certain tasks, but would not inform us in any way about the distributed

emergent behaviour and control of the organism. Instead what we wish to do is to

construct a virtual material using the same principles (and apparent limitations)

of slime mould. Namely, simple component parts and local interactions. The aim

is to generate collective emergent behaviour utilising self-organisation to yield an

embodied form of material computation which can reproduce the wide range of

complex patterning and environmental responses seen in slime mould.

In [22] we introduced a large population of simple components, mobile agents, (a

schematic view of a single agent is shown in Fig. 1 whose individual behaviour was

coupled to the other agents via a di�usive chemoattractant lattice. A further ex-

tension to the model was presented in [23] which enabled adaptive population sizes,

where the population size adapted automatically to the local availability of nutri-

ents in the environment. Each agent corresponds to a small fragment of plasmodium

gel/sol structure. Agents respond to the concentration of a hypothetical `chemical'

in the lattice, orient themselves towards the locally strongest source and deposit

the same chemical upon making a single step forwards. Although individually the

particle behaviour is very simple, the collective behaviour is emergent and com-

plex, exhibiting self-organised pattern formation. The population represents both

the structure (population global pattern) and �ux (population movement) within

the P. polycephalum plasmodium.

(a) (b)

Fig. 1. Base agent particle morphology and sensory stage algorithm. (a) Illustration of single
agent, showing location `C', o�set sensors `FL',`F',`FR', Sensor Angle `SA' and Sensor O�set
`SO', (b) simpli�ed sensory algorithm.

The collective movement trails left by agent movement spontaneously formed

emergent transport networks which underwent complex evolution, exhibiting emer-

gent minimisation and cohesion e�ects under a range of sensory parameter settings

(Fig. 2). To simulate the presentation of nutrients and repellents to the agent popula-

tion discrete stimuli were projected into the chemoattractant lattice. Positive values
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Fig. 2. Spontaneous formation and evolution of transport networks. Lattice 200×200, 6000 agent
particles, SA 22.5◦, RA 45◦, SO 9.

represented attractant stimuli (i.e. nutrients) and negative values (below zero) rep-

resented repellent stimuli. The e�ect of nutrient stimuli is to attract nearby agents

and the network adaptation is constrained by the attraction to the nutrients. The

resulting network structures (nutrient stimuli representing graph vertices and net-

work trails representing edges) show minimisation behaviour and formed proximity

graphs with the same properties as those observed in P. polycephalum [23] (as an

example see the stabilised networks in Fig. 6). Repellent stimuli cause the networks

formed by the agent population to avoid repellents, with the resultant networks ap-

proximating plane division problems such as Voronoi diagrams [24]. The collective

behaves as a virtual material demonstrating characteristic network evolution motifs

and minimisation phenomena seen in soap �lm evolution, for example the formation

of Plateau angles, T1 and T2 relaxation processes and adherence to von Neumann's

law (Fig. 3).

4. Model Parametric Mechanisms Inducing Changes in

Morphological Adaptation

Di�erent parametric settings within the model (although not changing the under-

lying algorithm for each agent) can a�ect the pattern formation properties of the

model, altering both network structure and the evolution of the networks, even

without the e�ect of external environmental stimuli.

4.1. Variations in Sensory Parameters

Variations of the agent sensor angle and agent rotation angle (See schematic of

a single agent particle in Fig. 1) result in a wide range of reaction-di�usion type

patterns [25] (see Fig. 4 for an overall visualisation of the SA/RA parameter space).

How might these di�erent patterns, all arising from the same particle behaviour,

relate to P. polycephalum? One possible relationship is the di�erent pattern types

seen in P. polycephalum under di�erent environmental conditions, such as substrate

hardness and nutrient concentration which both a�ect the patterning properties of

the organism [16].
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Fig. 3. Material adaptation of the multi-agent model demonstrates T2 and T1 relaxation pro-
cesses (arrowed), Plateau junction angles, and adherence to von Neumann's law. n represents
number of nodes and edges.

At low SA/RA settings (e.g. SA 22.5◦, RA 45◦) the networks continuously form

branching paths from existing edges and recon�gure their structure over time (Fig.

5,a-d). Higher values (e.g. SA 60◦, RA 60◦) result in minimising networks where the

number of cycles and edges are reduced over time (Fig. 5e-h). At higher values (e.g.

SA 90◦, RA 45◦) result in networks disassembling to form discrete island patterns

(Fig. 5i-l).

4.2. Variations in the Scaling Parameter

The e�ect of the sensor scale parameter on graph evolution is also signi�cant. Larger

sensor o�set distance (SO, in pixels) results in thicker network paths, faster network

evolution, and coarse-grained networks, where each edge encompasses many data

points (Fig. 6a). Decreasing the SO parameter results in more �ne-grained graphs

with more edges and cycles connecting nearby data points (Fig. 6b and c).

5. Environmental Mechanisms Inducing Changes in Morphological

Adaptation

Graph transformation in classical computing is typically achieved by changing the

algorithm operating on a set of source data (for example data points representing

graph vertices). Di�erent algorithms operating on the same dataset will construct
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Fig. 4. Parametric mapping of SA and RA sensory parameters yields a wide range of Turing-type
reaction-di�usion patterns.

di�erent graphs, depending on the particular algorithm, resulting in a �nal static

output graph. If the algorithm changes, or if the set of data points changes, the

algorithm must run again to generate a new output graph. Computation by P. poly-

cephalum, however, is a seamless and dynamical response to changing environmental

conditions. These changes are communicated to the organism by means of physical

stimuli. Although these stimuli can take many forms (for example direct physical

stimuli, thermal, optical, gravitational) the most studied are chemoattractant and

chemorepellent stimuli. For this reason the most in�uential cues to stimulate net-

work adaptation in the model are the di�using chemoattractant and chemorepellent

gradients in the model lattice.

5.1. Addition and Removal of Nutrients

The model plasmodium, like the real organism, runs continually and changes to

the spatial con�guration of nutrient data points are propagated throughout the

environment by simulated mechanisms of di�usion. Addition of nutrients adds a new

source of attractant to the lattice. Because the propagation relies upon di�usion,

the speed of network adaptation is limited by the propagation speed.
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(a) t=100 (b) t=1000 (c) t=2000 (d) t=5000

(e) t=100 (f) t=500 (g) t=3000 (h) t=9000

(i) t=100 (j) t=400 (k) t=1000 (l) t=4000

Fig. 5. E�ect of agent sensor angle (SA) and rotation angle (RA) on network type. 6000 parti-
cles inoculated on 200 × 200 lattice with no environmental stimuli and using periodic boundary
conditions. Network evolution proceeds from left to right, a-d) SA 22.5◦, RA 45◦, e-h) SA 60◦,
RA 60◦, i-l) SA 90◦, RA 45◦.

(a) SO 15, 5000 steps (b) SO 10, 5000 steps (c) SO 5, 5000 steps

Fig. 6. E�ect of sensor scale on network structure. particles inoculated at random positions
amongst 100 nodes and �nal pattern recorded after 5000 scheduler steps. a) SO 15 gives very
coarse-grained networks which pass between paths of nearby nodes, b) SO 10 gives thicker paths
and fewer cycles, c) SO 5 results in �ne-grained networks passing through the data points.
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Growth of P. polycephalum is dependent on the availability, concentration and

placement of nutrient sources in the environment. The plasmodium membrane is

sensitive to di�usion gradients and preferentially grows towards nearby sources of

nutrients by extending pseudopodia towards the nutrients. On nutrient poor con-

ditions (damp �lter paper and oat �ake food nodes) P. polycephalum initially con-

structs a spanning tree when inoculated at a single site and constructs networks

relating to the upper ranges of the Toussaint hierarchy of proximity graphs when

inoculated at multiple sites [6]. To assess the e�ect of chemoattractant di�usion,

nutrient concentration and nutrient placement on the growth in the particle model

we inoculated a small population at a simulated food source - a stimulus value

projected onto the di�usion �eld at regular intervals. We assumed (as in [6]) that

any food sources covered by the model plasmodium would suppress the di�usion of

chemoattractant from that source. Fig. 7 shows the e�ects of placing food near the

plasmodium. When the di�using chemoattractant gradient reaches the initial site of

population initialisation, the particles closest to the gradient are attracted towards

the gradient and move towards it. The movement of the population stimulates di-

vision at the periphery of the collective and a pseudopod-like process emerges and

moves towards the source of food. The width of the pseudopodium active region

is dependent on the size of the chemoattractant gradient. When the food source

is reached the engulfment by the particles suppresses the di�usion from the node

and the connection is stabilised and minimised. The adaptation also occurs when

stimuli are removed from the environment by retracting the pseudopodium from

the deleted source and adapting the network shape in response (Fig. 7, bottom row,

deleted node is circled).

5.2. Avoidance of Light Irradiation and Repellents

Avoidance of light irradiation and chemorepellents was implemented in the model

by decreasing the chemoattractant detected by the agent sensors by multiplying by

a weighting factor in areas of the arena exposed to values corresponding to light

exposure (Ld, weight factor from 0 to 1, default of 0.2) and repellents (Rd, weight

factor from 0 to −1, default -0.2) respectively. Fig. 8 illustrates the response of

both �xed and adaptive population sizes to simulated light hazards, in this case

vertically placed bars obstructing a straight path between two nutrient sources. For

�xed populations the population shifts the bulk of its shape away from illuminated

regions (Fig. 8, left). In adaptive populations the model plasmodium curves around

the light obstacles to connect the two nutrient sources at opposite sides of the arena

(Fig. 8, right), thus reproducing the collision-free path planning by P. polycephalum

reported in [26].

When growing in an environment containing both nutrients and repellents the

model avoided the repellent regions (light squares) whilst growing towards and

consuming nutrients (dark squares) in the arena (Fig. 9).
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Fig. 7. Discovery, pseudopod extension, tube network formation, pseudopod retraction and net-
work adaptation in particle model. Population initialised on left-most nutrient source, evolution
proceeds from left to right. Food source on right projects chemoattractant into the di�using gra-
dient �eld. Pseudopod extension observed as particles multiply. Network minimisation continues
once all nodes have been located.

Fig. 8. Avoidance of simulated light hazards in �xed and adaptive populations. Population (par-
ticle positions shown) is initialised in arena with two nutrient sources at either end interrupted by
vertical bars of projected light. Population adapts to avoid migrating onto exposed areas. (left)
�xed population, (right) adaptive population.
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(a) (b) (c) (d)

Fig. 9. Growth towards attractants and avoidance of repellents in the model plasmodium. (a-d)
Growth of model plasmodium (particle positions shown) on simulated nutrient substrate with high
concentration regions indicated by dark grey squares and repellent regions by light grey squares.

5.3. The Presence of Passive Obstacles

In the previous example the removal of a nutrient source occurred in open space

as changes in the di�usive lattice were propagated towards the particle network.

However the retraction of the virtual pseudopodia also occurs when the environment

is patterned with obstacles which cannot be occupied (in P. polycephalum such areas

include agar covered in dry plastic �lm, such as the `dead-ends' in the mazed in [3]).

Even in the presence of obstacles, however, the pseudopodia can retract from areas

devoid of nutrients as demonstrated in Fig. 10 in which the model slime mould is

initialised in a T-shape which contains only two nutrient sources at the extremal

points of two channels. At the other channel the collective forms a pseudopodium

which retracts away from the region devoid of stimuli, following the channel bounded

by the obstacles (Fig. 10,c-d). Eventually this pseudopodium completely retracts

and merges with the stable path connecting the two nutrients (Fig. 10,e).

(a) (b) (c) (d) (e)

Fig. 10. Pseudopodium withdrawal constrained by passive obstacles. (a) model plasmodium is
inoculated in a T shape with two nutrient sources (white discs) and uninhabitable background
(grey) and the initial transport network forms, (b-e) Network adaptation removes smaller chan-
nels and withdraws the pseudopodium from nutrient free areas, leaving only the nutrient sources
connected.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Construction of a spanning tree by model plasmodium. (a) Small population (parti-
cle positions shown) inoculated on lowest node (bottom) growing towards �rst node and engulf-
ing it, reducing chemoattractant projection, (b-d) Model population grows to nearest sources of
chemoattractant completing construction of the spanning tree, (e-h) Visualisation of the changing
chemoattractant gradient as the population engulfs and suppresses nutrient di�usion.

5.4. Dynamical E�ects Caused by the Engulfment of Nutrients

The importance of environmental stimuli must emphasised in the virtual mate-

rial approach. Without any external stimuli the virtual material simply reproduces

dynamical reaction-di�usion patterning. It is the stimuli provided by external at-

tractants or hazards which force the material to adapt its spatial behaviour. The

environmental stimuli are used to specify problem con�guration and the �nal pat-

tern of the material in relation to the stimuli represents the problem solution. The

speci�c mechanism utilised is the di�usion of attractants (or repellents) within the

environment. The presence of these stimuli at the periphery of the material provides

the impetus for its morphological adaptation. The interaction between environment

and the material is two-way, however. When the material migrates towards and

engulfs a nutrient source, the di�usion of nutrients from that source is suppressed.

This changes the local con�guration of chemoattractant gradients (as demonstrated

by the changing concentration gradient pro�les in Fig. 11e-h as a spanning tree is

constructed using the virtual material) which ultimately changes the spatial pat-

tern of stimuli o�ered to the material. This mechanism is an e�cient use of the

environment as a spatial storage medium and `o�oads' some complex computation

to the environment. This may explain the reason why slime mould, and its virtual

material representation, can perform such complex behaviours without requiring

complex nervous system or indeed any neural tissue.
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Fig. 12. Adaptive tube network formation as model plasmodium senses di�using chemoattractant
gradients at increasing distances. Inoculation of particle population at central node. Closest food
source is 50 pixels away. Distances to other nodes are 75, 100 and 125 pixels. Transport network
shape adapts as new food sources are discovered. Final image shows optimised transport network
when foraging is complete.

5.5. Nutrient Distance

As the growing population discovers new food sources the transport network auto-

matically adapts its shape in response to the new nutrient sources. Fig. 12 shows the

network adaptation as information about the food locations (in the form of di�using

chemoattractant gradient �elds) arrives at the inoculation point at di�erent times

due to their increasing distance. The network adapts in response to the changing

environment by extending pseudopodia towards the nutrient sources as they are

encountered and constructing a transport network connecting the nutrients. The

collective then minimises the network distance when all the food is located.

5.6. Nutrient Angle

The attraction of the multi-agent transport networks to discrete stimuli in the lattice

causes the network adaptation to be constrained as the networks are `snagged' at

the stimulus locations. The constraining e�ect is dependent on the angle between

the outer two nutrient points connected to the central nutrient point (Fig. 13). At

large angles, the two �ows connecting the outer points pass through the central

point (Fig. 13, top). As the angle is decreased, however, the two separate particle

�ows become closer to each other (Fig. 13, middle). Eventually the two �ows merge

and, if the attraction of the �ows is greater than the attraction to the central point,

the network detaches partially, in a zipping motif, from the central point [23]. A

new path connects the central point to the zipping paths and a Steiner point is

formed at this new junction (Fig. 13, bottom). The position of this point eventually

stabilises at a location which minimises the distance between all three nodes. Note

that if the Steiner point is still relatively close to the original node, a large increase
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Fig. 13. A critical angle between nutrients a�ects network adaptation. Top: Three nutrient nodes
in a line at 180◦ results in no minimisation, Middle: decreasing the angle θ brings the two �ows
connecting either side of the node closer together, Bottom: a critical angle exists where the two
�ows merge and the network detaches partially from the node, causing the formation of a Steiner
point (a junction where the three paths connect).

in this node concentration can `unzip' the network, removing the Steiner point and

re-attaching the two outer nodes directly to the central node.

The critical angle is dependent on both the Sensor O�set (SO) parameter and the

concentration of the nutrient stimuli. Larger SO parameter values result in thicker

network paths, with the two paths meeting and merging more quickly than narrower

paths. High concentration stimuli causes stronger attraction of the network paths to

the nutrient sources, whereas low concentration stimuli causes less adherence to the

original nutrient locations. Network adaptation caused by this zipping phenomena

is not isolated to single triads of nodes: The detachment by zipping from a node

(and thus changes in neighbouring node path angles) can cause subsequent zipping

of nearby nodes, provoking minimisation of the entire network structure. The min-

imisation of the entire network stabilises when the e�ects of von-Neumann's law

(the number of surrounding nodes in a cycle, see Fig. 3) prevents further network

minimisation.

5.7. Nutrient Size and Concentration

The e�ect of nutrient size and nutrient concentration was studied in the particle

model by inoculating a small population at the centre of a circular arena surrounded

by four food sources at identical distances (Fig. 14). Each image in the �gure shows

the concentration gradients (left side of each image) and the particle positions (right



June 4, 2014 18:9 WSPC/INSTRUCTION FILE
PPL_Adamatzky_JONES

16

Fig. 14. Foraging behaviours a�ected by nutrient concentration and size. Evolution proceeds from
top to bottom. Left of each image shows di�usion gradients, right side shows food and particle
positions, Left: All food is of equal size and concentration, Middle: Food is of equal size but
di�erent concentration, Right: Food is equal concentration but di�erent size.

side). When nutrient sources were the same size and concentration the particle

collective grew by extending pseudopodia towards the food sources at the same time

(Fig. 14, left column). When the pseudopodia reached the nutrients the engulfment

suppressed the projection of nutrients into the arena and reduced the concentration

gradients. When the nutrients were at di�erent concentrations the pseudopodia were

preferentially extended in the direction of the strongest nutrients �rst. Pseudopodia

were only extended to the remaining nutrients (in decreasing order of concentration)

when the gradient of the previous nutrient block was suppressed by engulfment.

When all sources had been located network adaptation took place (Fig. 14, middle

column). When the nutrients varied in size only, the concentration gradients from

the larger nutrient blocks were larger and pseudopodia were again extended to the

nutrients with higher concentrations �rst. After all nutrients had been discovered

the network adapted again to cover the regions of the nutrients but the mass of the

population was shifted towards the position of the largest nutrient block (Fig. 14,

right column, bottom image).
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5.8. Nutrient Concentration and Consumption

The suppression of nutrient concentration gradients represents a complex non-linear

and dynamical environment as the nutrient gradients are in constant �ux. In the

real world the complexity is further compounded by the consumption of nutrients.

Even the quality of the nutrients can a�ect the growth of the plasmodium patterns

[27]. The e�ects of such complex interactions between spatial position, concentration

and consumption in the model are shown in Fig. 15. The examples show an initial

inoculation site at the bottom centre of a circular arena. Above the inoculation site

are three nutrient sources of identical size but potentially di�erent concentration

(pixel intensity 255 or 50). In Fig. 15a) all three nutrients are identical and the

pseudopodium grows towards the closest source and extends further pseudopodia

as the middle nutrient is consumed and gradients from the side nutrients reach

the collective. A similar situation occurs in Fig. 15b) but the migration from the

central nutrient is delayed because the nutrient is of higher concentration than the

outer nodes and its consumption takes longer. In Fig. 15c) both outer nutrients

are of higher concentration and, although the collective initially grows towards the

closer central node, the mass of the collective extends towards the outer nodes as

the gradient is stronger. In example Fig. 15d) the growth of the collective towards

the central nutrient node is waylaid by the stronger attraction towards the left

node. Extension towards the rightmost node only occurs after the majority of the

left node has been consumed. Finally, in Fig. 15e) the collective grows towards the

(closest) central node and then to the leftmost node which is equal in strength.

Growth towards the node on the right only occurs when the other nodes are mostly

depleted.

5.9. Background Substrate Concentration

The emergent transport networks formed by the microscopic interactions of the par-

ticle population with their environment re�ect not only static pattern morphologies

adopted by the P. polycephalum plasmodium, but also the long term network adap-

tation seen in the organism. P. polycephalum morphology, evolution and behaviours

are strongly a�ected by the availability, location and concentration of nutrients. The

organism appears to behave in a manner which initially optimises (maximises) area

exploration and which later adapts its network by optimising (minimising) network

distance and network resiliency to damage. The growth and adaptation morphol-

ogy of P. polycephalum also depends on the nutrient concentration of the growth

substrate itself - rich background environments (for example, oatmeal agar) gen-

erate �orid wave-like radial expansive growth whereas nutrient poor environments

(for example, dampened �lter paper) result in tree-like dendritic growth. Although

attempting to characterise the behaviour of such di�erent growth types runs the

risk of anthropomorphism, the wave-like (nutrient rich) behaviours appear more

aggressive in terms of the apparent speed of growth and rapid area coverage. The

dendritic (nutrient poor) behaviours appear almost tentative in terms of growth
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Fig. 15. E�ect of nutrient concentration and consumption on foraging behaviours. Evolution
proceeds from top to bottom. Left of each image shows di�usion gradients, right side shows food
and particle positions.

speed and area coverage.

The same morphological and apparent behavioural e�ects were observed in the

particle model when background environmental conditions were modi�ed. Fig. 16

and Fig. 17 show the e�ects of high and low concentrations of background nutrient

substrates on the morphology and collective behaviours of the particle population.

The environment is represented by discrete oat �akes (white circles) and nutri-

ent rich oatmeal agar medium background (grey background). In both experiments

identical geometric con�gurations were used in the environment (i.e. the placement

of simulated oat �akes were identical), but the concentrations of the background

substrate were di�erent. In both cases the population grows as the environment is

searched for nutrients. After the search is complete, and background nutrients ex-

hausted, both conditions spontaneously undergo network contraction and minimi-

sation until minimal network con�gurations are achieved. In the high concentration

condition (Fig. 16) the growth is wave-like and expansive and the �nal network

con�guration resembles a relative neighbourhood graph with a number of cycles

in the network. The growth in low concentration background condition (Fig. 17)

shows dendritic growth patterns and the search of the environment is slower. The

�nal network con�guration is also more tree-like with only a small inner cycle.

The cause of the di�erences in growth and adaptation patterns is the background

nutrient concentration. In the high concentration condition, the background presents

a stronger stimulus to the periphery of the model plasmodium and the `pull' of the

environment causes expansive movement outwards and provides space for growth.

As nutrients are depleted by the outwardly moving population, the background stim-

ulus moves further outward from the edge of the collective and the outer regions of
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Fig. 16. Wave-like network expansion and cyclic adaptation con�guration in high background
nutrient concentration. Background nutrient concentration: 0.01, Population initialised at central
node. Images sampled at 11, 110, 213, 327, 487, 1476, 4576, 7004, 11240 and 25000 scheduler steps,
Consumed nutrient indicated by white areas.

Fig. 17. Tree-like network expansion and adaptation with lower background nutrient concen-
tration. Background nutrient concentration: 0.001, Consumed nutrient indicated by black areas,
Population initialised at central node. Images sampled at 116, 566, 1262, 2361, 3636, 4880, 7448,
9640, 17620 and 36708 scheduler steps.

the population move further towards the nutrients. In the low concentration condi-

tion the lower background concentration does not provoke such a strong attraction

to the population because the nutrient gradients are approximately the same as the

background level of chemoattractant �ux. Growth of the population does gradually

occur outwards but this is only when signi�cant di�erences in concentration are

created by the local consumption of nutrients by foraging particles. The e�ect of

nutrient concentration on the particle population size can be observed in Fig. 18

which indicates the rapid expansion in population size under high concentration

conditions (the environmental search is completed at a maximum population size of

21258 at 470 scheduler steps) followed by a rapid initial collapse in population size

as network adaptation continues. The low concentration condition shows a slower

rise in population size (maximum population of 13574 with search completed in

3440 steps) with a slower initial rate of network adaptation. The population size

in both conditions converges within 15,000 steps although the �nal network size
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Fig. 18. Plot of population growth and adaptation at di�erent nutrient strengths. Concentration
0.01 indicated by sharp peak in population size, 0.001 indicated by lighter shade and lower peak
in population size.

of the low concentration condition is slightly smaller than the high concentration

condition due to the reduced number of cyclic regions in the con�guration.

The total number of particles created (during the entire evolution of the ex-

periment) in the high concentration condition (8.7 million) is less than the low

concentration condition (9.4 million), re�ecting the search e�ciency of the radial

expansive growth pattern compared with the dendritic foraging observed in the low

concentration condition. This can be seen in Fig. 17 where the dendritic search often

`misses' nearby food (unconsumed food shown as lighter shade) whereas the high

concentration condition has located all of the food resources during the completion

of network expansion.

When inoculated at a single food source and surrounded by isolated nutrients

� with no stimuli from the background substrate � the behaviour of the model

plasmodium mimics that of the real organism by locating nearby sources of food

as the chemoattractant gradient from each source propagates outwards, surging

towards the nutrients with pseudopodium growth, engul�ng them, and construct-

ing a network which approximates a Steiner tree (Fig. 19, bottom). The foraging

and minimisation behaviour of the model closely approximates the behaviour of P.

polycephalum (as shown in Fig. 19, top).
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(a)

(b)

Fig. 19. Approximation of spanning tree by pseudopod extension in nutrient poor conditions in P.
polycephalum and model. Top: Plasmodium is initialised on circled oat �ake. Pseudopodia extend
from original source towards nearby oat �akes and a protoplasmic tube network connects the food
sources. Arrows show current active growth front for clarity and the image contrast was enhanced
with standard operators to aid viewing of protoplasmic tubes, Bottom: Food nodes indicated as
dots inside circular arena approximating shape of Petri dish. Particles shown as mass of dots,
model plasmodium inoculated on left side (circled node). Images show foraging and engulfment of
nodes projecting di�using chemoattractant gradients. Final network con�guration approximates
the Steiner tree.
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6. From Morphological Induction Mechanisms to Unconventional

Computation

How can the innate pattern formation of the model, and the mechanisms which

in�uence it, be put to use for unconventional computational purposes? We must

select problems which can be presented in terms of spatial patterns. The solution

of the problems can be instigated by using the low-level mechanisms in Sections 4

and 5 to guide the evolution of the particle transport networks towards the desired

outcome. The solution is, in-turn, represented by the persistent global state of the

network.

The low-level mechanisms have been presented in isolation in each section but

they can also be combined (for example combinations of attractants and repellents,

or combinations of high and low concentration stimuli) to give the necessary compu-

tation. The innate pattern formation and in�uencing mechanisms may also require

di�erent initialisation mechanisms and be subject to external control systems in or-

der to guide the evolution towards the desired problem outcome. In this section we

present an overview of example problems that can be approximated by the material

adaptation approach using some of the mechanisms described in Sections 4 and 5.

6.1. Proximity Graph Problems

Approximation of proximity graphs is a natural application of the model, since

P. polycephalum networks approximate these graphs [28, 6]. The model transport

networks also approximate graphs in the Toussaint hierarchy [29], the particular

type depending on nutrient concentration but typically match Relative Neighbour-

hood Graphs [23]. The model may be initialised on a single node, constructing the

graphs as it detects and engulfs the nodes (as in Fig. 11 and Fig. 19). Alternatively

the model may be initialised at random positions. After initialisation a network

self-assembles between the data points and subsequently evolves to minimise the

number of edges (Fig. 20a). When initialised as a solid mass of particles and un-

dergoing gradual shrinkage, the `blob' of model plasmodium minimises down the

Toussaint hierarchy to construct a Spanning Tree at high nutrient concentration

(Fig. 20h) or a Steiner Tree at low nutrient concentration (Fig. 20i).

6.2. Convex Hull

The Convex Hull of a set of points is the smallest convex polygon enclosing the set,

where all points are on the boundary or interior of the polygon. Classical algorithms

to generate Convex Hulls may be inspired by intuitively mechanical methods, such

as shrink wrapping an elastic band around the set of points, or rotating calipers

around the set of points [30, 31]. It is possible to approximate the convex hull

using the model plasmodium by initialising the population as a circular ring of

model plasmodium outside the points (Fig. 21), to represent a deformable elastic

material. This bounding `band' then shrinks to encompass the outer region of the
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 20. Proximity graph formation using the multi-agent model. a) initialisation at random
positions results in a self-assembled network (left) which minimises to approximate the Relative
Neighbourhood Graph (right), b) Initialisation as a solid blob (20 data points indicated by white
dots), c-g) slow shrinkage of the model plasmodium results in adaptation of the blob to the data
points, h) at high nutrient concentration a spanning tree is formed, i) at low nutrient concentration
a Steiner tree is formed.

set of points. The minimising properties of the paths ensure that the edges of the

hull are straight and convex. There are some practical limitations of this approach.

Firstly, the bounds of the set of points must be known in advance. Secondly, points

which are inside the hull, but close to the `band' (for example near the top edge

in the third image of Fig. 21) may attract the band inwards, forming a concavity.



June 4, 2014 18:9 WSPC/INSTRUCTION FILE
PPL_Adamatzky_JONES

24

This may be avoided by restricting the nodes to deposit stimuli only when directly

touched by the encircling band.

Fig. 21. Approximation of Convex Hull by shrinking band of model plasmodium. A circular band
of model plasmodium initialised outside the region of points shrinks. In this example nodes only
emanate nutrients when touched by model plasmodium (see text). Contact points of Convex Hull
are indicated by larger nodes.

Alternatively it is possible to have the `band' shrink around the array of points

which are actually repulsive to the band. This is achieved by projecting a repellent

source at all nutrient node locations. The band will shrink towards the nodes but

will not actually touch the nodes. This generates a hull which encompasses the

nodes but does not directly touch them (Fig. 22).

Fig. 22. Convex Hull via shrinkage around hazard stimuli. Three separate examples are shown.
A band of model plasmodium shrinks around the set of points to approximate the Convex Hull.
Note a small peripheral region is indicated because of the repulsive region.

If the boundary of the hull points is not known then it is possible to utilise a

method which employs self-organisation and repulsion to approximate the hull, as

shown in Fig. 23. In this approach the particle population is initialised at random

locations within the lattice. The particles are repulsed by the chemorepulsive nodes

and move away from these regions. If a particle touches a node it is annihilated and

randomly initialised to a new blank part of the lattice. Over time, the inner region

of the lattice becomes less frequently habited by particles but in contrast the outer

region (whose border is away from the repulsive region) becomes more populous.

The increasing strength of the emerging hull trail attracts particles from inside the

region (because the deposited `ring' of �ux is more attractive than the inner region)

and the particles are drawn out into this ring. The natural contraction of the ring

approximates the �nal convex hull.
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Fig. 23. Convex Hull via self-organisation within repulsive �eld. Particle population is initialised
randomly in the arena and is repulsed by nodes. Convex hull emerges at the border and internal
connections gradually weaken.

(a) (b) (c) (d)

Fig. 24. Examples of α-shape of a set of points as α decreases.

6.3. Concave Hull

The Concave Hull is the area occupied by, or the `shape' of, a set of points is not

as simple to de�ne as its convex hull. It can be considered as the minimum region

(or footprint [32]) occupied by a set of points, which cannot, in some cases, be rep-

resented correctly by the convex hull [33]. For example, a set of points arranged to

form the capital letter `C' would not be correctly represented by the convex hull

because the gap in the letter would be closed (Fig. 25a). Attempts to formalise

concave bounding representations of a set of points were suggested in the de�nition

of α-shapes [34]. The α-shape of a set of points, P , is an intersection of the comple-

ment of all closed discs of radius 1/α that includes no points of P . An α-shape is

a convex hull when α→∞ (Fig. 24a). When decreasing α, the shapes may shrink,

develop holes and become disconnected (Fig. 24b-d), collapsing to P when α → 0.

A concave hull is non-convex polygon representing area occupied by P . A concave

hull is a connected α-shape without holes.

The model plasmodium approximates the concave hull via its automatic morpho-

logical adaptation as the population size is reduced. The reduction in population size

may be implemented by adjusting the growth shrinkage parameters to bias adap-

tation towards shrinkage whilst maintaining network connectivity. In the examples

shown below the model plasmodium is initialised as a large population within the

con�nes of a Convex Hull (calculated using an algorithmic method) of a set of points

(Fig. 25b). By slowly reducing the population size, via biasing parameters towards
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(a) (b) (c)

(d) (e) (f)

Fig. 25. Concave Hull by uniform shrinkage of the model plasmodium. (a) Set of points approxi-
mating the shape of letter `C' cannot be intuitively represented by convex hull, (b-f) Approximation
of concave hull by gradual shrinkage of the model plasmodium, p=18,000, SA 60◦, RA 60◦, SO 7.

shrinkage, the model plasmodium adapts its shape as it shrinks. Retention to nodes

is ensured by chemoattractant projection and as the population continues to reduce,

the shape outlined by the population becomes increasingly concave (Fig. 25c-f).

The graph of changing population size as the model plasmodium adapts (Fig. 26)

shows that the population stabilises as the concave shape is adopted. If varying

degrees of concavity are required, the current population size as a fraction of the

original size, or alternatively the rate of population decline, could possibly be used

as a simple parameter to tune the desired concavity.

The shrinkage of a solid mass of model plasmodium cannot construct α-shapes,

shapes with vacant regions within them, for example as with the letter `A'. However,

by initialising the population at the node sites themselves, the individual fragments

of `plasmodium' fuse together and recover the general shape of the letter (Fig. 27,a-

d). Further increasing the population size (manually or by biasing growth/shrinkage

parameters) results in removal of the internal space and transition from an α-shape

to a solid Concave Hull (Fig. 27,e-f).
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Fig. 26. Decrease in population size as concave shape formed. Population size over time. Letters
and circles B-E represent corresponding images in Fig. 25(b�e).

(a) (b) (c)

(d) (e) (f)

Fig. 27. Alternate method of generating α-shape and Concave Hull by merging regions.

6.4. Voronoi Diagrams and Variant Problems

The Voronoi diagram of a set of n points in the plane is the subdivision of the plane

into n cells so that every location within each cell is closest to the point within
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that cell. Conversely the bisectors forming the diagram are equidistant from the

points between them. Computation of the Voronoi diagram may be achieved with

a number of classical algorithms [35, 36] and are also the prototypical application

solved by chemical reaction-di�usion non-classical computing devices [37, 38]. Non-

classical approaches are based upon the intuitive notion of uniform propagation

speed within a medium, emanating from the source nodes. The bisectors of the

diagram are formed where the propagating fronts meet.

The method of using P. polycephalum to approximate Voronoi diagrams by

avoidance of chemorepellents was described in [5, 26]. In this method a fully grown

large plasmodium was �rst formed in a circular arena. Then repellent sources were

introduced onto the plasmodium. The circular border of the arena was surrounded

by attractants to maintain connectivity of the plasmodium network. The plasmod-

ium then adapted its transport network to avoid the repellents whilst remain con-

nected to the outer attractants, approximating the Voronoi diagram. Computation

of Voronoi diagram may also be achieved by non-repellent methods. This method

was proposed in [39] where plasmodia of P. polycephalum were inoculated at node

sites on a nutrient-rich agar substrate. Attracted by the surrounding stimuli the

plasmodia grew outwards in a radial pattern but when two or more plasmodia met

they did not immediately fuse. There was a period where the growth was inhibited

(presumably via some component of the plasmodium membrane or slime capsule)

and the substrate at these positions was not occupied, approximating the Voronoi

diagram. The position of the growth fronts remained stable before complete fusion

eventually occurred.

The multi-agent model of P. polycephalum was used to approximate Voronoi

diagrams in [24] and replicated both the repellent method (28), and the attractant

methods (29). By varying the repellent concentration hybrid diagrams were formed

which possessed features of both plane division and minimal object wrapping Fig.

30. Weighted Voronoi diagrams were approximated by varying the repellent size and

concentration at di�erent node sites (Fig. 31b). Hybrid Voronoi diagram and Prox-

imity graph constructs were formed by using simultaneous placement of attractant

and repellent sources 31c).

7. Summary and Conclusions

In this article we have examined the problem of how to in�uence, or program,

spatially represented parallel unconventional computing substrates, inspired by re-

search into the remarkable computational behaviour of true slime mould Physarum

polycephalum. We used a multi-agent model of P. polycephalum which collectively

behaves as a morphologically adaptive virtual material. We examined and cata-

logued low-level mechanisms which caused shape adaptation in the material. Some

of these mechanisms were intrinsic to the parameter space of the model, in the

form of pattern type and pattern scale. Other mechanisms (again, inspired by the

e�ect of external stimuli on P. polycephalum) exerted their e�ect by changes in
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(a) (b) (c) (d)

Fig. 28. Approximation of Voronoi diagram by model in response to repulsive �eld. (a) Initial dis-
tribution of particles (yellow) representing a uniform mass of plasmodium, (b-c) particles respond
to repulsive �eld by moving away from repellents, (d) �nal network connects outer attractant and
bisectors correspond to Voronoi diagram.

(a) (b)

Fig. 29. Approximation of Voronoi diagram by merging method. (a) Approximation of Voronoi
diagram by Physarum polycephalum. Plasmodia are inoculated on oat �akes onto oatmeal agar.
Expansive growth of plasmodia is inhibited at regions occupied by other plasmodia. These regions
indicate bisectors of Voronoi diagram (Image courtesy of Andrew Adamatzky), (b) Attempt to
reproduce bisector formation by model. The model plasmodium (particle positions shown) is not
inhibited at regions of fusion, but bisector position is indicated by the increase in network density
at these regions.

the environment. These included the addition and removal of nutrients, nutrient

distance, angle and concentration, the presence of repellents, simulated light irra-

diation, and passive obstacles. These mechanisms may be used individually, or in

combination to induce a wide range of morphological adaptation and approximate a

range of spatially represented computing problems. Variants in the initial pattern-

ing, placement, and subsequent changing of problem stimuli may be used to cater

for individual problem types, as can the level of external feedback control.

The approximation of a wide range of classical computing problems using par-

allel unconventional computing methods requires a set of computational tools, in

much the same way that classical methods require di�erent symbolic mechanisms

(for example conditional program �ow, execution branching, iterative mechanisms).

Because unconventional computation is rooted in the physical world, these mecha-
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(a) (b) (c)

Fig. 30. Reducing repellent concentration allows minimising behaviour to exert its in�uence,
inducing formation of hybrid Voronoi diagram. (a) at high concentration the repellent gradient
forces the contractile network (yellow) to conform to the position of curved Voronoi bisectors
between planar shapes, (b and c) reduction in repellent concentration allows contractile e�ects of
transport network, minimising the connectivity between cells.

(a) (b) (c)

Fig. 31. Approximation of classical, weighted and hybrid Voronoi diagrams. a) classical Voronoi
diagram (overlaid) is approximated by the model with repellent sources, b) weighted Voronoi
diagram approximated using varying sized repellent stimuli, c) hybrid Voronoi and Proximity graph
is approximated when both attractants (thick regions) and repellents (circled) are simultaneously
presented to the model.

nisms typically a�ect the propagation of information throughout space. Components

of the data sets (edges, vertices) may also be represented in the same space and be

a�ected or manipulated by the spatial propagation, or indeed � as in the case of P.

polycephalum � may manipulate the propagation of information themselves. Using

tools inspired from the repertoire of slime mould we have presented mechanisms,

which when combined, can approximate in parallel a wide range of computational

tasks.

These tools may be used in an ad hoc manner to solve particular problem tasks,

or they may provide the basis of a more formal grammar in order to delineate the

range of problems which can be tackled by unconventional computing methods [9,

40]. The simplicity of the low-level mechanisms may also be attractive to distributed

robotics applications in which robotic devices composed of simple components must
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be amenable to indirect guidance and external control whilst integrating a large

number of distributed and concurrent inputs. In future work we will examine how

these unconventional computing mechanisms can be combined and used to induce

graph transformations in identical datasets.
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