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Abstract. In this work, we revisit the notion of Decentralized Traceable Attribute-Based Signatures (DTABS)
introduced by El Kaafarani et al. (CT-RSA 2014) and improve the state-of-the-art in three dimensions: Firstly,
we provide a new stronger security model which circumvents some shortcomings in existing models. Our
model minimizes the trust placed in attribute authorities and hence provides, among other things, a stronger
definition for non-frameability. In addition, unlike previous models, our model captures the notion of tracing
soundness which is important for many applications of the primitive, and which ensures that even if all parties
in the system are fully corrupt, no one but the actual signer can claim authorship of the signature. Secondly, we
provide a generic construction that is secure w.r.t. our strong security model and show two example instantia-
tions in the standard model which are more efficient than existing constructions (secure under weaker security
definitions). Finally, unlike existing constructions, we dispense with the need for the expensive zero-knowledge
proofs required for proving tracing correctness by the tracing authority. As a result, tracing a signature in our
constructions is significantly more efficient than existing constructions, both in terms of the size of the tracing
proof and the computational cost required to generate and verify it. For instance, verifying tracing correctness
in our constructions requires only 4 pairings compared to 34 pairings in the most efficient existing construction.
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1 Introduction

Attribute-based cryptography provides a versatile solution for designing role-based cryptosystems. In
attribute-based cryptosystems, the private operation, e.g. decryption/signing, is performed w.r.t. a secu-
rity policy. Only users possessing attributes satisfying the policy can perform the operation. Goyal et al.
[18], inspired by the work of Sahai and Waters [32], put forward the first attribute-based cryptosystems.

In Attribute-Based Signatures (ABS) [27, 28], messages are signed w.r.t. signing policies expressed
as predicates. A signature convinces the verifier that it it was produced by a user with attributes sat-
isfying the associated signing policy revealing neither the identity of the user nor the attributes used.
Attribute-based signatures have many applications, including trust negotiation, e.g. [12], attribute-based
messaging, e.g. [9], and leaking secrets. For more details refer to [28, 31].

The security of attribute-based signatures [27] requires user’s privacy and unforgeability. Informally,
user’s privacy (i.e. anonymity), requires that signatures reveal neither the user’s identity nor the attributes
used in the signing. On the other hand, unforgeability requires that a user cannot forge a signature w.r.t.
a signing predicate that her attributes do not satisfy, even if she colludes with other users.

Traceable Attribute-Based Signatures (TABS) [11] extend standard attribute-based signatures by
adding an anonymity revocation mechanism which allows a tracing authority to recover the identity of
the signer. Such a feature is important for enforcing accountability and deterring abuse.

Related Work. Various constructions of attribute-based signatures exist in the literature [26, 34, 25, 28,
30, 31, 20, 13]. Those constructions vary in terms of the expressiveness of the policies they support and
whether they offer selective or adaptive security. Adaptively secure schemes supporting more expressive
policies are preferable since they cover a larger scale of potential applications.

While there exist constructions supporting threshold policies with constant-size signatures, e.g. [20,
13], constructions supporting monotonic/non-monotonic policies, e.g. [28, 30, 31], yield signatures that
are linearly dependent on the number of attributes in the policy or the systems’ security parameter.



Supporting multiple attribute authorities was first considered by [27, 30]. However, the multi–authority
setting still had the problem of requiring a central trusted authority. Furthermore, in some cases, the se-
curity of the entire system is compromised if the central authority is corrupted. Okamoto and Takashima
[31] proposed the first fully decentralized construction.

Escala et al. [11] added the traceability feature to standard ABS schemes and proposed a model for
the single attribute authority setting. More recently, El Kaafarani et al. [10] proposed a security model
and two generic constructions for decentralized traceable attribute-based signatures. They also provided
instantiations without random oracles [5]. Besides correctness, the recent model of [10] defines three
security requirements: anonymity, full unforgeability and traceability. Informally, anonymity requires
that a signature reveals neither the identity of the signer nor the set of attributes used in the signing; full
unforgeability requires that users cannot forge signatures w.r.t. signing policies their individual attributes
do not satisfy even if they collude, which also captures non-frameability; and traceability requires that
the tracing authority is always able to establish the identity of the signer and prove such a claim.

We end by noting that there exist other weaker variants of traceable attribute-based signatures suiting
specific applications. For instance, [22] proposed the notion of attribute-based group signatures which
attaches public attributes to standard group signatures. Also, [23] proposed a traceable attribute-based
signature scheme where the signing policy is determined beforehand by the verifier and hence requiring
interaction in the signing protocol.

Shortcomings in Existing Models. The unforgeability/non-frameability requirements in all existing
models for traceable attribute-based signatures [11, 10] (and even those for standard (i.e. non-traceable)
attribute-based signatures, e.g. [27, 30, 31]) besides placing full trust in attribute authorities, assume the
existence of secure means for the delivery of the secret attributes’ keys from attribute authorities to
users. More specifically, learning the key for any attribute a user owns allows framing the user w.r.t. to
those attributes. For instance, the non-frameability definition in the single-authority model of [11] relies
on the assumption that the attribute authority is fully honest, whereas the full unforgeability definition
(also capturing non-frameability) in the stronger and more recent model of [10] assumes that at least one
attribute authority is fully honest.

While this is not an issue in standard attribute-based signatures (since signatures are perfectly anony-
mous and hence it is infeasible for any party to identify the signer), we emphasize that this could be a
serious limitation in the traceable setting. In particular, the innocence of users could be jeopardized by
being falsely accused of producing signatures they have not produced. A misbehaving attribute authority
or any party intercepting the secret attributes’ keys is capable of signing on behalf of the user w.r.t. any
predicate satisfied by the compromised subset of attributes.

We believe that the overly strong assumptions upon which the unforgeability/non-frameability no-
tions in existing models rely is the result of the absence of the assignment of personal keys to the users.
Moreover, the absence of users’ personal keys further complicates the constructions and degrades the
efficiency. For instance, the recent constructions in [10], similarly to [28], rely on the so-called pseudo-
attribute technique in order to bind the signature to the message: the user proves that she either owns
attributes satisfying the signing predicate or she has a special signature on the message and the encoding
of the signing predicate that verifies w.r.t. some trapdoor verification key.

Another shortcoming of existing models for traceable attribute-based signatures is the absence of the
tracing soundness requirement which was defined recently in the context of traditional group signatures
[33]. This requirement ensures that a valid signature can only trace to a single user even if all entities in
the system are fully corrupt. It is vital for many applications, e.g., applications where users get rewarded
for signatures they produced or where abusing signing rights might result in legal consequences.

In addition, tracing in existing constructions is costly, both in terms of the size of the tracing proof
and the cost for producing and verifying it. The most efficient existing construction [10] requires 34
pairings to verify the opening of a single signature.
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Our Contribution. We first rectify the aforementioned shortcomings in existing models by presenting
a stronger security model for the primitive. Our model is for the interesting dynamic and fully decen-
tralized setting in which attributes’ management is distributed among different authorities who may not
even be aware of one another, and where users and attribute authorities can join the system at any time.
Our model offers a stronger security definition for non-frameability which circumvents the limitations
inherent in existing models. In addition, our model provides a cleaner definition for traceability, and
unlike previous models, it captures the useful notion of tracing soundness [33].

Our second contribution is a generic construction for the primitive which permits expressive signing
policies and meets strong adaptive security requirements. Our generic construction dispenses with the
expensive zero-knowledge proofs required by existing constructions for proving tracing correctness by
deploying a robust, non-interactive tag-based encryption scheme.

Finally, we provide two example instantiations of the generic framework in the standard model.
Besides offering stronger security, our instantiations are more efficient than existing constructions. In
addition, our constructions have much smaller computation and communication overhead for tracing.

Paper Organization. In Section 2, we give some preliminary definitions. We present our model in Sec-
tion 3. We list the building blocks we use in Section 4. In Section 5, we present our generic construction
and prove its security. In Section 6, we present instantiations in the standard model.

Notation. A function ν(.) : N → R+ is negligible in c if for every polynomial p(.) and all sufficiently
large values of c, it holds that ν(c) < 1

p(c) . Given a probability distribution S, we denote by y ←
S the operation of selecting an element according to S. If A is a probabilistic machine, we denote
by A(x1, . . . , xn) the output distribution of A on inputs (x1, . . . , xn). By PPT we mean running in
probabilistic polynomial time in the relevant security parameter.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

Let G1 := 〈G〉, G2 := 〈G̃〉 and GT be groups of a prime order p. A bilinear group is a tuple P :=
(G1,G2,GT , p,G, G̃, e) where e : G1 × G2 −→ GT is a non-degenerate bilinear map. We will use
multiplicative notation for all the groups and let G×1 := G1 \ {1G1} and G×2 := G2 \ {1G2}. We will
accent elements from G2 with ˜ for the sake of clarity. We use Type-3 groups [14] where G1 6= G2 and
there is no efficient isomorphism between the groups in either direction. We assume the existence of an
algorithm BGrpSetup which on input a security parameter λ outputs a description of bilinear groups.

2.2 Complexity Assumptions

We will use the following assumptions from the literature:

DDH. For a group G := 〈G〉 of a prime order p, given (G,Ga, Gb, C) ∈ G4 for a, b← Zp, it is hard to
decide whether or not C = Gab.

SXDH. This assumption requires that the Decisional Diffie-Hellman (DDH) assumption holds in both
groups G1 and G2.

XDLING1 [1] 1. Given P and the tuple (Gh, Gv, Gu, Grh, Gsv, Gut, G̃h, G̃v, G̃u, G̃rh, G̃sv) ∈ G6
1×G5

2

for unknown h, r, s, t, u, v ∈ Zp, it is hard to determine whether or not t = r + s.

q-SDH [8]. Given (G,Gx, . . . , Gx
q
, G̃, G̃x) for x← Zp, it is hard to output a pair (c,G

1
x+c ) ∈ Zp×G1

for an arbitrary c ∈ Zp\{−x}.

3



q-AGHO [3]. Given a uniformly random tuple (G, G̃, W̃ , X̃, Ỹ ) ∈ G1 ×G4
2, and q uniformly random

tuples (Ai, Bi, Ri, D̃i) ∈ G3
1 ×G2, each satisfying:

e(Ai, D̃i) = e(G, G̃),

e(G, X̃) = e(Ai, W̃ )e(Bi, G̃)e(Ri, Ỹ ),

it is hard to output a new tuple (A∗, B∗, R∗, D̃∗) satisfying the above equations.

2.3 Span Programs

For a field F and a variable set A = {α1, . . . , αn}, a monotone span program [21] is defined by a
β × γ matrix S (over F) along with a labeling map ρ which associates each row in S with an element
αi ∈ A. The span program accepts a set A′ iff 1 ∈ Span(SA′), where SA′ is the sub-matrix of S
containing only rows with labels αi ∈ A′, i.e., the program only accepts A′ if there exists a vector z s.t.
zSA′ = [1, 0, . . . , 0].

3 Syntax and Security of Decentralized Traceable Attribute-Based Signatures

A DTABS scheme involves the following entities: a set of attribute authorities, each with a unique
identity aid and a pair of secret/verification keys (askaid, avkaid); a tracing authority TA with a secret
tracing key tk that is used to identify the signer of a given signature; a set of users, each with a unique
identity uid, a personal secret/public key pair (usk[uid],uvk[uid]) and a set of attributesA ⊆ A (where
A is the attribute universe). Attributes in the system can be distinctly identified by concatenating the
identity of the managing authority with the name of the attribute. This way, the identities (and hence the
public keys) of attribute authorities managing attributes appearing in the signing policy can be inferred
from the predicate itself which eliminates the need for any additional meta-data to be attached. In our
model, attribute authorities as well as users can join the system at any time.

A DTABS scheme is a tuple of polynomial-time algorithmsDT ABS := (Setup,AKeyGen,UKeyGen,
AttKeyGen,Sign,Verify,Trace, Judge). The definition of the algorithms are as follows; to aid notation
all algorithms bar the first three take as implicit input the public parameters pp output by algorithm
Setup.

• Setup(1λ) is run by some trusted third party. On input a security parameter 1λ, it outputs public
parameters pp and a tracing key tk.

• AKeyGen(pp, aid) is run by attribute authority aid to generate its key pair (askaid, avkaid). The at-
tribute authority publishes its public key avkaid.

• UKeyGen(pp) outputs a personal secret/verification key pair (usk[uid],uvk[uid]) for the user with
identity uid. We assume that the public key table uvk is publicly available (possibly via some PKI)
so that anyone can obtain authentic copies of uers’ public keys.

• AttKeyGen(askaid(α), uid,uvk[uid], α) on input the secret key of the attribute authority managing
attribute α (i.e. askaid(α)), a user’s identity uid, a user’s personal public key uvk[uid] and an attribute
α ∈ A, it outputs a secret key skuid,α for attribute α for the user. The key skuid,α is given to uid.

• Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P) on input an ordered list of at-
tribute authorities’ verification keys {avkaid(α)}α∈A, a user’s identity uid, a user’s secret and public
keys (usk[uid],uvk[uid]), an ordered list of attributes’ secret keys {skuid,α}α∈A for attributes A
that user uid owns, a messagem and a signing predicate P such that P(A) = 1, it outputs a signature
Σ on m w.r.t. P.

1 It can similarly be defined in G2.
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• Verify({avkaid(α)}α∈P,m,Σ,P) on input an ordered list of authorities’ verification keys {avkaid(α)}α∈P,
a messagem, a signatureΣ and a predicate P, it verifies whetherΣ is valid onm w.r.t. P, outputting
a bit accordingly.

• Trace(tk,m,Σ,P,uvk) on input the tracing authority’s key tk, a message m, a signature Σ, a
signing predicate P, and the public keys table uvk, it outputs an identity uid > 0 of the signer of Σ
and a proof πTrace attesting to this claim. If it is unable to trace the signature, it returns (0, πTrace).

• Judge({avkaid(α)}α∈P,m,Σ,P, uid,uvk[uid], πTrace) is a deterministic algorithm which on input
an ordered list of attribute authorities’ verification keys {avkaid(α)}α∈P, a messagem, a signatureΣ,
a signing predicate P, a user’s identity uid, a user’s public verification key uvk[uid], and a tracing
proof πTrace, it outputs 1 if πTrace is a valid proof that uid has produced Σ or 0 otherwise.

3.1 Security of Decentralized Traceable Attribute-Based Signatures

The security properties we require from a DTABS scheme are: correctness, anonymity, unforgeability,
non-frameability, traceability, and tracing soundness. Unlike the model of El Kaafrani et al. [10], we
split the games of unforgeability and non-frameability in order to strengthen the definition of the lat-
ter where we allow for the corruption of all authorities. Even though the games of unforgeability and
non-frameability could be combined into one game, separating them preserves simplicity. Also, unlike
previous models, our model defines the notion of tracing soundness which was recently proposed in the
context of group signatures [33].

In our model, we distinguish between bad entities, i.e. those who were initially honest until the
adversary learned their secret keys and corrupt entities whose keys have been chosen by the adversary
itself.

The experiments used to define the security requirements are shown in Fig. 2. In those experiments,
the following global lists are used: HUL is a list of honest users; HAL is a list of honest attribute au-
thorities; HAttL is a list of honestly created users’ attributes and has entries of the form (uid, α); BUL
is a list of bad users whose personal secret keys have been revealed to the adversary; BAttL is a list of
bad users’ attributes whose keys have been revealed to the adversary with entries of the form (uid, α);
BAL is a list of bad attribute authorities whose secret keys have been learned by the adversary; CUL is
a list of corrupt users whose keys have been chosen by the adversary; CAL is a list of corrupt attribute
authorities whose keys have been chosen by the adversary; SL is a list of signatures obtained from the
Sign oracle; CL is a list of challenge signatures obtained from the challenge oracle and is used only in
the anonymity game.

The details of the following oracles are given in Fig. 1.

AddA(aid) adds an honest attribute authority with identity aid.
AddU(uid) adds an honest user with identity uid.
AddAtt(uid,A) adds honest attributes A ⊆ A for user uid. It can be called multiple times to add more

attributes for an existing user.
CrptA(aid, vk) adds a corrupt attribute authority whose keys are chosen by the adversary.
CrptU(uid, vk) adds a corrupt user with identity uid whose personal keys are chosen by the adversary.
RevealA(aid) returns the secret key askaid of the honest attribute authority aid.
RevealU(uid) returns the personal secret key usk[uid] of user uid.
RevealAtt(uid,A) returns the secret keys {skuid,α}α∈A for attributes A ⊆ A owned by user uid. It can

be called multiple times.
Sign(uid,A,m,P) returns a signatureΣ onm using attributesA belonging to user uid where P(A) = 1.
CHb((uid0,A0), (uid1,A1),m,P) is a left-right oracle for defining anonymity. On input (uid0,A0),

(uid1,A1), a message m and a signing policy P with P(A0) = P(A1) = 1, it returns a signature on
m using attributes Ab belonging to user uidb for b← {0, 1}.

Trace(m,Σ,P) allows the adversary to ask for signatures to be traced.
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AddU(uid)
- If uid ∈ HUL ∪ CUL Then Return⊥.
- (usk[uid],uvk[uid])← UKeyGen(pp).
- HUL := HUL ∪ {uid}.
AddAtt(uid,A)
- If ∃α ∈ A s.t. (uid, α) ∈ HAttL Then Return⊥.
- If uid /∈ HUL ∪ CUL Then
◦ If AddU(uid) =⊥ Then Return⊥.

- For each α ∈ A Do
◦ If aid(α) /∈ HAL Then

� If aid(α) ∈ CAL Then Return⊥.
� If AddA(aid(α)) =⊥ Then Return⊥.

◦ If askaid(α) =⊥ Then Return⊥.
◦ skuid,α ← AttKeyGen(askaid(α), uid,uvk[uid], α).

- HAttL := HAttL ∪ {(uid, α)}α∈A.

Sign(uid,A,m,P)
- If uid /∈ HUL or ∃α ∈ A s.t. (uid, α) /∈ HAttL Then Return⊥.
- Return⊥ if usk[uid] =⊥ or P(A) 6= 1 or ∃α ∈ A s.t. skuid,α =⊥.
- Σ ← Sign({avkaid(α)}α∈A, uid,usk[uid], {skuid,α}α∈A,m,P).
- SL := SL ∪ {(uid,A,m,Σ,P)}.
- Return Σ.

CHb((uid0,A0), (uid1,A1),m,P)
- If ∃b ∈ {0, 1} s.t. uidb /∈ HUL or P(Ab) 6= 1 Then Return⊥.
- For i=0 To 1 Do
◦ For each α ∈ Ai s.t. (uidi, α) /∈ HAttL DO

� If AddAtt(uidi, α) =⊥ Then Return⊥.
◦ If usk[uidi] =⊥ or ∃α ∈ Ai s.t. skuidi,α =⊥ Then Return⊥.

- Σ ← Sign({avkaid(α)}α∈Ab , uidb,usk[uidb], {skuidb,α}α∈Ab ,m,P).
- CL := CL ∪ {(m,Σ,P)}.
- Return Σ.

AddA(aid)
- If aid ∈ HAL ∪ CAL Then Return⊥.
- (askaid, avkaid)← AKeyGen(pp, aid).
- HAL := HAL ∪ {aid}.
RevealA(aid)
- If aid /∈ HAL \ (CAL ∪ BAL) Then Return⊥.
- BAL := BAL ∪ {aid}.
- Return askaid.

RevealU(uid)
- If uid /∈ HUL \ (CUL ∪ BUL) Return⊥.
- BUL := BUL ∪ {uid}.
- Return usk[uid].

RevealAtt(uid,A)
- Return⊥ if ∃α ∈ A s.t. (uid, α) /∈ HAttL \ BAttL.
- BAttL := BAttL ∪ {(uid, α)}α∈A.
- Return {skuid,α}α∈A.

CrptA(aid, vk)
- If aid ∈ HAL ∪ CAL Then Return⊥.
- CAL := CAL ∪ {aid}.
CrptU(uid, vk)
- If uid ∈ HUL ∪ CUL Then Return⊥.
- CUL := CUL ∪ {uid}.
Trace(m,Σ,P)
- Return⊥ if Verify({avkaid(α)}α∈P,m,Σ,P) = 0.
- If (m,Σ,P) ∈ CL Then Return⊥.
- Return Trace(tk,m,Σ,P,uvk).

Fig. 1. Oracles used in the security games for DTABS

The details of the security requirements are as follows:
Correctness. This requires that honestly generated signatures verify correctly and trace to the user who
produced them. In addition, the Judge algorithm accepts the tracing proof produced by the Trace algo-
rithm. Formally, a DTABS scheme is correct if for all λ ∈ N, all PPT adversaries B have a negligible
advantage AdvCorr

DT ABS,B(λ) where

AdvCorr
DT ABS,B(λ) := Pr[ExpCorr

DT ABS,B(λ) = 1]·

Anonymity. This requires that a signature reveals neither the identity of the user nor the set of attributes
used in the signing. In the game, the adversary chooses a message, a signing policy and two users with
two, possibly different, sets of attributes satisfying the signing policy. The adversary gets a signature by
either user and wins if it correctly guesses the user.

In the game, the adversary can fully corrupt all attribute authorities and learn any user’s personal
secret key/attribute keys including those used for the challenge. Thus, our definition captures full-key
exposure attacks. Since the adversary can sign on behalf of any user, it is redundant to provide it with a
sign oracle. The only restriction we impose on the adversary is that it may not query the Trace oracle on
the challenge signature.

Our definition captures unlinkability since the adversary has access to all users’ personal secret
keys/attribute keys.

Formally, a DTABS scheme is (fully) anonymous if for all λ ∈ N, all PPT adversaries B have a
negligible advantage AdvAnon

DT ABS,B(λ) where

AdvAnon
DT ABS,B(λ) :=

∣∣Pr[ExpAnon-1
DT ABS,B(λ) = 1]− Pr[ExpAnon-0

DT ABS,B(λ) = 1]
∣∣ ·
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Experiment: ExpCorr
DTABS,B(λ)

- (pp, tk)← Setup(1λ).
- HUL,HAttL,HAL := ∅.
- (uid,A,m,P)← B(pp : AddU(·),AddAtt(·, ·),AddA(·)).
- If P(A) 6= 1 or uid /∈ HUL or usk[uid] =⊥ Then Return 0.
- If ∃α ∈ A s.t. (uid, α) /∈ HAttL or skuid,α =⊥ or aid(α) /∈ HAL Then Return 0.
- Σ ← Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P).
- If Verify({avkaid(α)}α∈P,m,Σ,P) = 0 Then Return 1.
- (uid∗, πTrace)← Trace(tk,m,Σ,P,uvk).
- If uid∗ 6= uid or Judge({avkaid(α)}α∈P,m,Σ,P, uid,uvk[uid], πTrace) = 0 Then Return 1 Else Return 0.

Experiment: ExpAnon-b
DTABS,B(λ)

- (pp, tk)← Setup(1λ).
- CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL,CL := ∅.
- b∗ ← B

`
pp : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·),RevealA(·)

,RevealU(·),RevealAtt(·, ·),CHb((·, ·), (·, ·), ·, ·),Trace(·, ·, ·)
´
.

- Return b∗.

Experiment: Exp
Unforge
DTABS,B(λ)

- (pp, tk)← Setup(1λ).
- CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL, SL := ∅.
- (m∗, Σ∗,P∗, uid∗, π∗Trace)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·),RevealA(·)

,RevealU(·),RevealAtt(·, ·),Sign(·, ·, ·, ·)
´
.

- If Verify({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗) = 0 Then Return 0.

- If Judge({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗, uid∗,uvk[uid∗], π∗Trace) = 0 Then Return 0.

- LetAuid∗ be the attributes of uid∗ managed by dishonest (i.e. ∈ CAL ∪ BAL) attribute authorities.
- If ∃A s.t. {(uid∗, α)}α∈A ⊆ BAttL and P∗(A ∪Auid∗ ) = 1 Then Return 0.
- If ∃(uid∗, ·,m∗, Σ∗,P∗) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpNF
DTABS,B(λ)

- (pp, tk)← Setup(1λ).
- CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL, SL := ∅.
- (m∗, Σ∗,P∗, uid∗, π∗Trace)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·),RevealA(·)

,RevealU(·),RevealAtt(·, ·),Sign(·, ·, ·, ·)
´
.

- If Verify({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗) = 0 Then Return 0.

- If Judge({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗, uid∗,uvk[uid∗], π∗Trace) = 0 Then Return 0.

- If uid /∈ HUL \ BUL or ∃(uid∗, ·,m∗, Σ∗,P∗) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpTrace
DTABS,B(λ)

- (pp, tk)← Setup(1λ).
- CUL,HAL,HUL,HAttL,BUL,BAttL, SL := ∅.
- (m∗, Σ∗,P∗)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptU(·, ·),RevealU(·),RevealAtt(·, ·), Sign(·, ·, ·, ·)

´
.

- If Verify({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗) = 0 Then Return 0.

- (uid∗, π∗Trace)← Trace(tk,m∗, Σ∗,P∗,uvk).
- If uid∗ = 0 or Judge({avkaid(α)}α∈P∗ ,m

∗, Σ∗,P∗, uid∗,uvk[uid∗], π∗Trace) = 0 Then Return 1 Else Return 0.

Experiment: ExpTS
DTABS,B(λ)

- (pp, tk)← Setup(1λ).
- CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL := ∅.
- (m∗, Σ∗,P∗, uid1, πTrace,1, uid2, πTrace,2)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·)

,RevealA(·),RevealU(·),RevealAtt(·, ·)
´
.

- If uid1 = uid2 or Verify({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗) = 0 Then Return 0.

- If ∃i ∈ {1, 2} s.t. Judge({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗, uidi,uvk[uidi], πTrace,i) = 0 Then Return 0 Else Return 1.

Fig. 2. Security experiments for decentralized traceable attribute-based signatures

Unforgeability. This captures unforgeability scenarios where the forgery opens to a particular user.
It guarantees that even if all users in the system pool their individual attributes, they cannot output a
signature that traces to a user whose individual attributes do not satisfy the signing predicate. In the
game, the adversary can adaptively create corrupt attribute authorities and learn some of the honest
authorities’ secret keys as long as there is at least a single honest attribute authority managing one of the
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attributes required for satisfying the policy used in the forgery. The adversary can also fully corrupt the
tracing authority.

Our definition is adaptive and allows the adversary to adaptively choose both the signing predicate
and the message used in the forgery. Note that we consider the stronger variant of unforgeability, i.e.
(strong unforgeability) where the adversary wins even if it forges a new signature on a message/predicate
pair that was queried to the sign oracle. It is easy to adapt the definition if the weaker variant of unforge-
ability is desired.

Formally, a DTABS scheme is unforgeable if for all λ ∈ N, all PPT adversaries B have a negligible
advantage AdvUnforge

DT ABS,B(λ) where

AdvUnforge
DT ABS,B(λ) := Pr[ExpUnforge

DT ABS,B(λ) = 1]·

Non-Frameability. This ensures that even if all authorities and users collude, they cannot produce a
signature that traces to an honest user whose personal secret key has not been learned by the adversary.

Our definition guarantees that even if the secret attributes’ keys for attributes owned by a user are
leaked (for instance, by means of interception or leakage by dishonest attribute authorities), it is still
impossible to sign on behalf of the user without knowledge of her personal secret key. Thus, our model
overcomes the shortcoming of previous models [11, 10] and ensures that an innocent user cannot be
framed by dishonest attribute authorities or parties who intercept the communication between the user
and the attribute authorities.

In the game, the adversary can fully corrupt all attribute authorities as well as the tracing authority.
It can also corrupt as many users of the system as it wishes. We just require that the forgery output by
the adversary is a valid signature and traces to a user whose personal secret key has not been revealed to
the adversary.

Formally, a DTABS scheme is non-frameable if for all λ ∈ N, all PPT adversariesB have a negligible
advantage AdvNF

DT ABS,B(λ) where

AdvNF
DT ABS,B(λ) := Pr[ExpNF

DT ABS,B(λ) = 1]·

Traceability. This ensures that the adversary cannot produce a signature that cannot be traced. In the
game, the adversary is allowed to corrupt the tracing authority and learn both the personal secret key
and attributes’ keys of any user. However, unlike in the unforgeability and non-frameability games, we
require that all the attribute authorities are honest. We emphasize that such an assumption is inevitable as
knowing the secret key of any attribute authority would allow the adversary to grant attributes to dummy
users resulting in untraceable signature.

Formally, a DTABS scheme is traceable if for all λ ∈ N, all PPT adversaries B have a negligible
advantage AdvTrace

DT ABS,B(λ) where

AdvTrace
DT ABS,B(λ) := Pr[ExpTrace

DT ABS,B(λ) = 1]·

Tracing Soundness. This new requirement, which was not defined in previous models, ensures that even
if all authorities (including the tracing authority) and users in the system are all corrupt and collude, they
cannot produce a valid signature that traces to two different users. Among other things, this prevents
users from claiming authorship of signatures they did not produce or imputing possibly problematic
signatures to other users.

Formally, a DTABS scheme satisfies tracing soundness if for all λ ∈ N, all PPT adversaries B have
a negligible advantage AdvTS

DT ABS,B(λ) where

AdvTS
DT ABS,B(λ) := Pr[ExpTS

DT ABS,B(λ) = 1]·

8



DS.KeyGen(P)

- Choose x, y ← Zp and set (X̃, Ỹ ) := (G̃x, G̃y).
- Return sk := (x, y) and vk := (X̃, Ỹ ).

DS.Sign(sk,m)

- To sign m ∈ Zp, choose r ← Zp s.t. x+ r · y +m 6= 0,

set σ := G
1

x+r·y+m . Return (σ, r).

DS.Verify(vk,m, (σ, r))

- Return 1 if e(σ, X̃ · Ỹ r · G̃m) = e(G, G̃) and 0 otherwise.

DS.KeyGen(P)

- Choose x← Zp and set X̃ := G̃x.
- Return sk := x and vk := X̃ .

DS.Sign(sk,m)

- To sign m ∈ Zp s.t. x+m 6= 0, return σ := G
1

x+m .

DS.Verify(vk,m, σ)

- Return 1 if e(σ, X̃ · G̃m) = e(G, G̃) and 0 otherwise.

Fig. 3. The full Boneh-Boyen (Left) and the weak Boneh-Boyen (Right) signatures

4 Building Blocks

In this section we present the building blocks that we use in our constructions.

4.1 Digital Signatures

A digital signature for a message spaceMDS is a tuple of polynomial-time algorithmsDS := (KeyGen,
Sign,Verify), where KeyGen outputs a pair of secret/verification keys (sk, vk); Sign(sk,m) outputs a
signature σ on the message m; Verify(vk,m, σ) outputs 1 if σ is a valid signature on m.

Existential unforgeability under an adaptive chosen-message attack requires that all PPT adversaries
B have a negligible advantage in the following game:

• A key pair (sk, vk) is generated and vk is given to B.
• Adversary B makes a polynomial number of queries to a sign oracle Sign(sk, ·).
• Eventually, B halts by outputting (σ∗,m∗) and wins if σ∗ is valid on m∗ and m∗ was never queried

to Sign.

A weaker variant of existential unforgeability (i.e. existential unforgeability under a weak chosen-
message attack) requires that the adversary sends all its queries before seeing the verification key.
We use two digital signatures by Boneh and Boyen [8], which we refer to as the full (Fig. 3 (Left))
and weak (Fig. 3 (Right)) Boneh-Boyen signature, respectively. Both schemes are secure under the q-
SDH assumption. The weaker scheme is only secure under a weak chosen-message attack. Let P :=
(G1,G2,GT , p,G, G̃, e) be the description of an asymmetric bilinear group. The schemes are given in
Fig. 3.

4.2 Tagged Signatures

Tagged signatures [10] are digital signatures where the signing and verification algorithms take as an
additional input a tag τ . Formally, a tagged signature scheme for a message spaceMT S and a tag space
TT S is a tuple of polynomial-time algorithms T S := (Setup,KeyGen, Sign,Verify), where Setup(1λ)
outputs common public parameters param; KeyGen(param) outputs a pair of secret/verification keys
(sk, vk); Sign(sk, τ,m) outputs a signature σ on the tag τ and the messagem; Verify(vk, τ,m, σ) outputs
1 if σ is a valid signature on τ andm. Besides correctness, the security of a tagged signature [10] requires
existential unforgeability under an adaptive chosen-message-tag attack which is similar to the definition
of existential unforgeability of digital signatures.

We use two instantiations of tagged signatures based on two structure-preserving signature schemes
[2] by Abe et al. [3]. The first instantiation (shown in Fig. 4 (Left)) is based on the re-randomizable
signature scheme in [3] which signs messages in G2

2. We refer to this scheme as AGHO1 after its authors.
The tag space of this instantiation is TT S := G2, and the message space isMT S := G2. The tagged
signature size is G2

1×G2 and the signature is fully re-randomizable. The unforgeability of the signature
scheme rests on an interactive assumption. See [3] for more details. The second instantiation (shown
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T S.KeyGen(P)

- x1, x2, y ← Zp, set (X1, X2, Ỹ ) := (Gx1 , Gx2 , G̃y).
- Return

`
sk := (x1, x2, y), vk := (X1, X2, Ỹ )

´
.

T S.Sign(sk, τ̃ , M̃)

- a← Zp, A := Ga, B := Ay , D̃ := (G̃ · τ̃−x1 · M̃−x2 )
1
a .

- Return σ :=
“
A,B, D̃

”
.

T S.Verify(vk, τ̃ , M̃ , σ)

- Return 1 if e(A, Ỹ ) = e(B, G̃)

and e(A, D̃)e(X1, τ̃)e(X2, M̃) = e(G, G̃).

T S.KeyGen(P)

- w, x, {yi}3i=1 ← Zp, set (W̃ , X̃, Ỹi) := (G̃w, G̃x, G̃yi ).
- Return

`
sk := (w, x, {yi}3i=1), vk := (W̃ , X̃, {Ỹi}3i=1)

´
.

T S.Sign(sk, τ,M)

- R← G, a← Zp, A := Ga, D̃ := G̃
1
a ,

B := Gx−aw ·R−y1 · τ−y2 ·M−y3 .

- Return σ :=
“
A,B, D̃, R

”
.

T S.Verify(vk, τ,M, σ)

- Return 1 if e(A, D̃) = e(G, G̃) and
e(G, X̃) = e(A, W̃ )e(B, G̃)e(R, Ỹ1)e(τ, Ỹ2)e(M, Ỹ3).

Fig. 4. Two instantiations of tagged signatures

in Fig. 4 (Right)) is based on the strongly unforgeable signature scheme from [3] whose unforgeability
reduces to the non-interactive q-AGHO assumption (cf. Section 2). The message space of the underlying
signature scheme is G3

1 (where the first element is chosen randomly by the signer), we refer to the
underlying scheme as AGHO2. The tag space of this instantiation is TT S := G1, and the message
space is MT S := G1. The signature size is G3

1 × G2. In both instantiations T S.Setup(1λ) outputs
P := (G1,G2,GT , p,G, G̃, e) which is the description of an asymmetric bilinear group.

4.3 Strongly Unforgeable One-Time Signatures

A one-time signature scheme is a signature scheme that is unforgeable against an adversary who makes a
single signing query. Strong Unforgeability requires that the adversary cannot even forge a new signature
on a message queried the sign oracle on. We will instantiate the one-time signature using the full Boneh-
Boyen signature scheme from Fig. 3.

4.4 Non-Interactive Zero-Knowledge Proofs

Let R be an efficiently computable relation on pairs (x,w), where we call x the statement and w the
witness. We define the corresponding language L as all the statements x in R. A Non-Interactive Zero-
Knowledge (NIZK) proof system [7] for R is defined by a tuple of algorithms NIZK := (Setup,
Prove,Verify,Extract, SimSetup,SimProve).

Setup takes as input a security parameter 1λ and outputs a common reference string crs and an
extraction key xk which allows for witness extraction. Prove takes as input (crs, x, w) and outputs a proof
π that (x,w) ∈ R. Verify takes as input (crs, x, π) and outputs 1 if the proof is valid, or 0 otherwise.
Extract takes as input (crs, xk, x, π) and outputs a witness. SimSetup takes as input a security parameter
1λ and outputs a simulated reference string crsSim and a trapdoor key tr that allows for proof simulation.
SimProve takes as input (crsSim, tr, x) and outputs a simulated proof πSim without a witness.

We require: completeness, soundness and zero-knowledge. Completeness requires that honestly gen-
erated proofs are accepted; Soundness requires that it is infeasible (but for a small probability) to produce
a convincing proof for a false statement; Zero-knowledge requires that a proof reveals no information
about the witness used. The formal definitions can be found in Appendix A.

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [19] are efficient non-interactive proofs in the Common
Reference String (CRS) model. In this paper, we will be using the SXDH-based instantiation, which is
the most efficient instantiation of the proofs [17]. The language for the system has the form
L := {statement | ∃witness : E1(statement,witness), . . . , En(statement,witness) hold },
where Ei(statement, ·) is one of the types of equation summarized in Fig. 5, where X1, . . . , Xm ∈ G1,
Ỹ1, . . . , Ỹn ∈ G2, x1, . . . , xm, ỹ1, . . . , ỹn ∈ Zp are secret variables (hence underlined), whereasAi, T ∈
G1, B̃i, T̃ ∈ G2, ai, b̃i, ki,j , t ∈ Zp, tT ∈ GT are public constants. For clarity, we also accent exponents
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• Pairing Product Equation (PPE):
nQ
i=1

e(Ai, Ỹi)
mQ
i=1

e(Xi, B̃i)
mQ
i=1

nQ
j=1

e(Xi, Ỹj)
ki,j = tT ·

•Multi-Scalar Multiplication Equation (MSME) in G1:
nQ
i=1

A
ỹi

i

mQ
i=1

Xi
b̃i

mQ
i=1

nQ
j=1

Xi
ki,j ỹj = T ·

•Multi-Scalar Multiplication Equation (MSME) in G2:
nQ
i=1

Ỹi
ai

mQ
i=1

B̃
xi

i

mQ
i=1

nQ
j=1

Ỹj
ki,jxi = T̃ ·

• Quadratic Equation (QE) in Zp:
nP
i=1

aiỹi +
mP
i=1

xib̃i +
mP
i=1

nP
j=1

xiỹj = t·

Fig. 5. Types of equations over bilinear groups

to be mapped to group G2 with .̃ The system works by first committing to the elements of the witness
and then proving that the commitments satisfy the source equations.

The proof system has perfect completeness, (perfect) soundness, composable witness-indistinguishabil-
ity/zero-knowledge. Refer to [19] for the formal definitions and details of the instantiations.

4.5 Robust Non-Interactive Distributed/Threshold Tag-Based Encryption

In distributed tag-based encryption [4, 15], the (tag-based) ciphertexts can only be decrypted if all n
decryption servers compute their decryption shares correctly. In the threshold variant, at least κ out
of n decryption servers must compute their decryption shares correctly for the decryption to succeed.
The scheme is non-interactive if decrypting a ciphertext involves no interaction among the decryption
servers. The scheme is robust if invalid decryption shares can be identified by the combiner. If the well-
formedness of the ciphertext is publicly verifiable, we say the scheme has public verifiability.

Formally, a DTBE scheme for a message space MDT BE and a tag space TDT BE is a tuple of
polynomial-time algorithms (Setup,Enc, IsValid, ShareDec,ShareVerify,Combine),where Setup(1λ, n)
outputs a public key and vectors svk = (svk1, . . . , svkn) and sk = (sk1, . . . , skn) of verification/secret
keys for the decryption servers; Enc(pk, t,m) outputs a ciphertext Cdtbe on the message m using tag
t; IsValid(pk, t, Cdtbe) outputs 1 if the ciphertext is valid under the tag t w.r.t. pk or 0 otherwise;
ShareDec(pk, ski, t, Cdtbe) outputs the i-th server decryption share νi of Cdtbe or the reject symbol ⊥;
ShareVerify(pk, svki, t, Cdtbe, νi) outputs 1 if the decryption share νi is valid or 0 otherwise. Combine(pk,
{svki}ni=1, {νi}ni=1, Cdtbe, t) outputs either the message m or ⊥.

Besides correctness, we require Selective-Tag weak Indistinguishability against Adaptive Chosen
Ciphertext Attacks (ST-wIND-CCA) [24] and Decryption Consistency (DEC-CON). Informally, the for-
mer requires that an adversary who gets a decryption oracle for any ciphertext under a tag different from
the target tag (which is chosen beforehand), cannot distinguish which challenge message was encrypted.
The latter requires that an adversary cannot output two different sets of decryption shares of a ciphertext
which open differently. The formal definitions can be found in Appendix B.

For our purpose, it suffices to have a single decryption server, i.e. 1-out-of-1 scheme, therefore the se-
curity definitions hereafter are for this setting. We stress, however, that any variant of distributed/threshold
tag-based encryption scheme satisfying the properties above can be used in our constructions.

Besides the original scheme given in [15], we also use a second variant of the scheme in [15] (shown
in Fig. 6) where we transpose the groups in which the public key and the ciphertext lie. Note that since
here we only consider a single decryption server, the verification key svk is redundant as we include all
the public elements in the public key pk. Maintaining it is solely for the sake of consistency with the
definition of the algorithms.

5 Our Generic Construction

In this section, we present our generic construction for decentralized traceable attribute-based signatures.
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DT BE.Setup(1λ, 1)

- P ← BGrpSetup(1λ).
- h,w, z, u, v ← Zp, (H, H̃) := (Gh, G̃h),

(U, Ũ) := (Hu, H̃u), (V, Ṽ ) := (U
1
v , Ũ

1
v ),

(W, W̃ ) := (Hw, H̃w), (Z, Z̃) := (V z , Ṽ z).
- sk := (u, v), svk :=⊥.
- pk := (P, H, H̃, U, Ũ , V, Ṽ ,W, W̃ , Z, Z̃).

DT BE.Enc(pk, t, M̃)

- r1, r2 ← Zp; C̃1 := H̃r1 , C̃2 := Ṽ r2 , C̃3 := M̃ · Ũr1+r2 ,
C̃4 := (Ũt · W̃ )r1 , C̃5 := (Ũt · Z̃)r2 .

- Cdtbe :=
“
C̃1, C̃2, C̃3, C̃4, C̃5

”
.

DT BE.Combine(pk, svk, ν, Cdtbe, t)

- If DT BE.IsValid(pk, t, Cdtbe) = 0 Then Return ⊥
- Parse Cdtbe as (C̃1, C̃2, C̃3, C̃4, C̃5) and ν as (η̃1, η̃2).
- Return ⊥ if DT BE.ShareVerify(pk, svk, t, Cdtbe, ν) = 0.

- Return M̃ := C̃3
η̃1·η̃2

.

DT BE.ShareDec(pk, sk, t, Cdtbe)

- If DT BE.IsValid(pk, t, Cdtbe) = 0 Then Return ⊥.
- Parse Cdtbe as (C̃1, C̃2, C̃3, C̃4, C̃5) and sk as (u, v).
- Return ν := (η̃1 := C̃u1 , η̃2 := C̃v2 ).

DT BE.ShareVerify(pk, svk, t, Cdtbe, ν)

- Parse ν as (η̃1, η̃2).
- Parse Cdtbe as (C̃1, C̃2, C̃3, C̃4, C̃5).
- If DT BE.IsValid(pk, t, Cdtbe) = 0 Then Return 0

- If e(H, η̃1) 6= e(U, C̃1) Or
e(V, η̃2) 6= e(U, C̃2) Then Return 0.

- Else Return 1.

DT BE.IsValid(pk, t, Cdtbe)

- Parse Cdtbe as (C̃1, C̃2, C̃3, C̃4, C̃5).
- If e(Ut ·W, C̃1) 6= e(H, C̃4) Or

e(Ut · Z, C̃2) 6= e(V, C̃5) Then Return 0.
- Else Return 1.

Fig. 6. The transposed 1-out-of-1 variant of the distributed tag-based encryption scheme from [15]

Overview of the construction. Unlike previous constructions, e.g. [10], we dispense with relying on
the so-called pseudo-attribute technique to bind the signature to the message and eliminate the need
for some of the costly tools required by previous constructions which improves the efficiency of our
constructions while offering stronger security than previous ones. Also, we dispense with the need for
the expensive zero-knowledge proofs required for proving tracing correctnessns. As a result, tracing (i.e.
opening) signatures in our constructions is significantly more efficient than in previous constructions,
e.g. [10].

Our construction requires a NIZK proof of knowledge proof systemNIZK, a selective-tag weakly
IND-CCA robust non-interactive (1-out-of-1) distributed tag-based encryption schemeDT BE , a tagged
signature scheme T S , an existentially unforgeable digital signature schemeWDS that is secure against
a weak chosen-message attack, and a strongly unforgeable one-time signature scheme OT S. Addition-
ally, we require two collision-resistant hash functions Ĥ : {0, 1}∗ → TDT BE andH : {0, 1}∗ →MOT S .
It is sufficient forWDS to be existentially unforgeable against a weak chosen-message attack as we will
use this scheme to sign the verification keys of the one-time signature scheme OT S.

The Setup algorithm generates a common reference string crs forNIZK and runs DT BE .Setup to
generate the server’s secret esk, the verification key esvk and the public key epk. The public parameters
of the system is set to pp := (1λ, crs, epk, esvk, Ĥ,H). The tracing authority’s key is set to tk := esk.

When a new attribute authority joins the system, it creates a verification/secret key pair (avkaid, askaid)
for the tagged signature scheme T S . When a user joins the system, she generates a verification/secret
key pair (uvk[uid],usk[uid]) for the digital signature schemeWDS.

To generate a signing key for attribute α ∈ A for user uid, the managing attribute authority signs
the user’s public key uvk[uid] (used as tag) along with the attribute α using her secret tagged signature
signing key. The resulting signature σα is used as the secret key skuid,α for that attribute by user uid.

To sign a message m w.r.t. a signing policy P, the user chooses a fresh key pair (otsvk, otssk) for the
one-time signature OT S and encrypts her public key uvk[uid] using the distributed tag-based encryp-
tion scheme DT BE (and possibly some randomness µ) using Ĥ(otsvk) as a tag to obtain a ciphertext
Cdtbe. She then signs Ĥ(otsvk) using the digital signature scheme WDS and her personal secret key
usk[uid] to obtain a signature σ. Using NIZK, she then computes a proof π that: she encrypted her
public key correctly, she has a signature σ on Ĥ(otsvk) that verifies w.r.t. her public key uvk[uid], and
she has enough attributes on her public key to satisfy the signing predicate P. To prove the latter, we use
a span program (see Section 2.3) represented by the matrix S: the user proves that she knows a secret
vector z ∈ Z|P|p s.t. zS = [1, 0, . . . , 0]. She also needs to show that she possesses a valid tagged signa-

12



Setup(1λ)

- (crs, xk)← NIZK.Setup(1λ).
- (epk, esvk, esk)← DT BE.Setup(1λ, 1; ρ).
- Choose collision-resistant hash functions Ĥ : {0, 1}∗ → TDT BE andH : {0, 1}∗ →MOT S .
- Let tk := esk and pp := (1λ, crs, epk, esvk, Ĥ,H). Return pp.

AKeyGen(pp, aid)

- (avkaid, askaid)← T S.KeyGen(1λ). Return (avkaid, askaid).

UKeyGen(pp)

- (uvk[uid],usk[uid])←WDS.KeyGen(1λ). Return (uvk[uid],usk[uid]).

AttKeyGen(askaid(α), uid,uvk[uid], α)

- skuid,α ← T S.Sign(askaid(α),uvk[uid], α). Return skuid,α.

Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P)

- Return ⊥ if P(A) = 0.
- (otsvk, otssk)← OT S.KeyGen(1λ).
- Cdtbe ← DT BE.Enc(epk, Ĥ(otsvk),uvk[uid];µ).
- σ ←WDS.Sign(usk[uid], Ĥ(otsvk)).
- π ← NIZK.Prove(crs, {uvk[uid], µ,z, {σαi}

|P|
i=1, σ} : (Cdtbe, Ĥ(otsvk), epk, {avkaid(αi)

}|P|i=1, {αi}
|P|
i=1) ∈ L).

- σots ← OT S.Sign(otssk, (H(m,P), π, Cdtbe, otsvk)).
- Return Σ := (σots, π, Cdtbe, otsvk).

Verify({avkaid(α)}α∈P,m,Σ,P)

- Parse Σ as (σots, π, Cdtbe, otsvk) and pp as (1λ, crs, epk, esvk, Ĥ,H).
- Return 1 if all the following verify; otherwise, return 0:
◦ OT S.Verify(otsvk, (H(m,P), π, Cdtbe, otsvk), σots) = 1.
◦ NIZK.Verify(crs, π) = 1.
◦ DT BE.IsValid(epk, Ĥ(otsvk), Cdtbe) = 1.

Trace(tk,m,Σ,P,uvk)

- Parse pp as (1λ, crs, epk, esvk, Ĥ,H).
- Return (⊥,⊥) if Verify({avkaid(α)}α∈P,m,Σ,P) = 0.
- ν ← DT BE.ShareDec(epk, tk, Ĥ(otsvk), Cdtbe).
- Return (⊥,⊥) if DT BE.ShareVerify(epk, esvk, Ĥ(otsvk), Cdtbe, ν) = 0.
- vkuid ← DT BE.Combine(epk, esvk, ν, Cdtbe, Ĥ(otsvk)).
- Return (i, ν) if ∃i s.t. vkuid = uvk[i]. Otherwise, return (0, ν).

Judge({avkaid(α)}α∈P,m,Σ,P, uid,uvk[uid], πTrace)

- Parse pp as (1λ, crs, epk, esvk, Ĥ,H) and πTrace as (uid, ν).
- If (uid, ν) = (⊥,⊥) Then Return Verify({avkaid(α)}α∈P,m,Σ,P) = 0.
- Return (⊥,⊥) if DT BE.ShareVerify(epk, esvk, Ĥ(otsvk), Cdtbe, ν) = 0.
- vkuid ← DT BE.Combine(epk, esvk, ν, Cdtbe, Ĥ(otsvk)).
- If vkuid = uvk[uid] Then Return 1 Else Return 0.

Fig. 7. Our generic construction for DTABS

ture on each attribute in the signing predicate P for which the corresponding element in z is non-zero.
For attributes appearing in P that the signer does not own, she chooses random signatures. Finally, she
signs (H(m,P), π, Cdtbe, otsvk) using the one-time signature OT S to obtain a one-time signature σots.
To verify the signature, one just needs to verify the proof π and the one-time signature σots. We note
here that if T S and/orWDS are re-randomizable, one can reveal in the clear the signature components
which are independent of uvk[uid] after re-randomizing them. This simplifies the NIZK proof π and
subsequently improves the efficiency.

To trace a signature, the tracing authority uses its secret key to produce the decryption share ν of the
ciphertext Cdtbe which allows anyone to recover the user’s public key vkuid encrypted. It then searches
in the public key table uvk to identify the entry matching vkuid. It returns (uid, ν) if such entry exists,
or (0, ν) otherwise. To verify the tracing correctness, the judge just needs to verify the validity of the
decryption share ν and then recovers the plaintext and verifies that it decrypts to the concerned user.
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The construction is in Fig. 7, whereas the language associated with the NIZK system is as follows,
where for clarity we underline the elements of the witness:
L :
{(

(Cdtbe, Ĥ(otsvk), epk, {avkaid(αi)}
|P|
i=1, {αi}

|P|
i=1), (uvk[uid], µ,z, {σαi}

|P|
i=1)

)
:(

zS = [1, 0, . . . , 0]
∧|P|
i=1 if zi 6= 0⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi) = 1

)
∧ WDS.Verify(uvk[uid], Ĥ(otsvk), σ) = 1 ∧ DT BE .Enc(epk, Ĥ(otsvk),uvk[uid];µ) = Cdtbe

}
·

The full proof of the following Theorem is in Appendix C.

Theorem 1. The construction in Fig. 7 is a secure decentralized traceable attribute-based signature if
the building blocks are secure w.r.t. their security requirements.

Next, we present two instantiations of the generic framework in the standard model.

6 Instantiations in the Standard Model

6.1 Instantiation I

We instantiate T S using the AGHO1 signature scheme (see Fig. 4 (Left)) and instantiate WDS and
OT S using the weak and full Boneh-Boyen signature schemes, respectively. We instantiate NIZK
using the Groth-Sahai system, and DT BE using the scheme in Fig. 6.

Let S ∈ Z|P|,βp be the span program for P. To sign, the signer provides the following proofs:

• To prove that zS = [1, 0, . . . , 0], the signer proves the following linear equations:∑|P|
i=1(ziS̃i,1) = 1

∑|P|
i=1(ziS̃i,j) = 0, for j = 2, . . . , β

• To prove if zi 6= 0 ⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi) = 1, where σαi = (A′i, B
′
i, D̃

′
i) ∈

G2
1 × G2 and avkaid(αi) = (Xi,1, Xi,2, Ỹi) ∈ G2

1 × G2. The signer re-randomizes σαi by choosing

a′ ← Z∗p and computing σαi := (Ai, Bi, D̃i) = (A′i
a′ , B′i

a′ , D̃′i

1
a′ ), and proves the following

˘̃Di = D̃i
zi ˘̃Yi = Ỹ

zi
i

˘̃vki =
∼

uvk[uid]zi ˘̃Gi = G̃zi

e(Ai,
˘̃Yi) = e(Bi,

˘̃Gi) e(Ai,
˘̃Di)e(Xi,1,

˘̃vki)e(Xi,2,
˘̃Gi
αi

) = e(G, ˘̃Gi)

Note that the verifier can on her own compute a Groth-Sahai commitment to the value ˘̃Gi
αi

by
computing Cαi˘̃Gi

, where C ˘̃Gi
is the Groth-Sahai commitment (which is ElGamal ciphertext) to ˘̃Gi.

Such an observation improves the efficiency. In addition, the way we express the witness of the
equations only requires committing to the elements of the vector z in G1, which further improves
the efficiency.

• To prove thatWDS.Verify(uvk[uid], Ĥ(otsvk), σ) = 1, the signer proves that

e(σ,
∼

uvk[uid])e(σ, G̃Ĥ(otsvk))e(G, G̃) = 1 G−G = 0
• To prove DT BE .Enc(epk, Ĥ(otsvk),uvk[uid]; (r1, r2)) = Cdtbe, the signer proves she computed

the ciphertext (C̃1, C̃2, C̃3, C̃4, C̃5) =
(
H̃r1 , Ṽ r2 , Ũ r1+r2 ·

∼
uvk[uid], (Ũ Ĥ(otsvk) · W̃ )r1 , (Ũ Ĥ(otsvk) ·

Z̃)r2
)

correctly. It is sufficient to prove that C̃1, C̃2 and C̃3 were computed correctly and the rest can
be verified by checking that e(H, C̃4) = e(U Ĥ(otsvk) ·W, C̃1) and e(V, C̃5) = e(U Ĥ(otsvk) · Z, C̃2).

Thus, this requires proving C̃1 = H̃r1 , C̃2 = Ṽ r2 and C̃3 = Ũ r1 · Ũ r2 ·
∼

uvk[uid].

The total size of the signature is G27·|P|+19
1 + G22·|P|+15

2 + Zβ+3
p . The proof for the following Theorem

follows from that of Theorem 1.

Theorem 2. The instantiation is secure if the AGHO1 signature scheme is unforgeable and the assump-
tions XDLING2 , SXDH, and q-SDH all hold.
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Scheme Signature Size Model Setting No.of.A. Tracing
Size Compute Verify

[11] G|P|+β+7 ROM Composite One N/A N/A N/A
[10] G34·|P|+28

1 + G32·|P|+32
2 + Zβ+1

p STD Prime Many G3
1 ×G4

2 4EG1 + 6EG1 34P
Inst. I G27·|P|+19

1 + G22·|P|+15
2 + Zβ+3

p STD Prime Many G2
2 2EG2 4P

Inst. II G30·|P|+18
1 + G30·|P|+16

2 + Zβ+3
p STD Prime Many G2

1 2EG1 4P
Table 1. Efficiency comparison

6.2 Instantiation II

To get an efficient instantiation that is based on falsifiable intractability assumptions [29], we instantiate
T S using the AGHO2 signature scheme as shown in Fig. 4 (Right). We needed to transpose the groups
from which the public key and the signature components of WDS are chosen. We also transpose the
groups in DT BE . The rest of the tools remain the same as in Instantiation I.

Let S ∈ Z|P|,βp be the span program for P. To sign, the signer provides the following proofs:

• To prove that zS = [1, 0, . . . , 0], the signer proves the following linear equations:∑|P|
i=1(z̃iSi,1) = 1

∑|P|
i=1(z̃iSi,j) = 0, for j = 2, . . . , β

• To prove if zi 6= 0⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi) = 1 , where σαi = (Ai, Bi, Ri, D̃i) ∈
G3

1 ×G2 and avkaid(αi) = (W̃i, X̃i, Ỹi,1, Ỹi,2, Ỹi,3) ∈ G5
2, the signer proves:

Ăi = Ai
z̃i B̆i = Bi

z̃i R̆i = Ri
z̃i Ği = Gz̃i v̆ki = uvk[uid]z̃i

e(Ăi, D̃) = e(Ği, G̃) e(Ği, X̃i) = e(Ăi, W̃i)e(B̆i, G̃)e(R̆i, Ỹi,1)e(v̆ki, Ỹi,2)e(Ği
αi
, Ỹi,3)

The same two efficiency-enhancing observations used in Instantiation I apply but now in the opposite
groups.

• To prove thatWDS.Verify(uvk[uid], Ĥ(otsvk), σ̃) = 1, the signer needs to prove that

e(uvk[uid], σ̃)e(GĤ(otsvk), σ̃)e(G, G̃) = 1 G−G = 0
• To prove DT BE .Enc(epk, Ĥ(otsvk),uvk[uid]; (r1, r2)) = Cdtbe, the signer proves she computed

the ciphertext (C1, C2, C3, C4, C5) =
(
Hr1 , V r2 , U r1+r2 ·uvk[uid], (U Ĥ(otsvk) ·W )r1 , (U Ĥ(otsvk) ·

Z)r2
)

correctly. It is sufficient to prove that C1, C2 and C3 were computed correctly and the rest can
be verified by checking that e(C4, H̃) = e(C1, Ũ

Ĥ(otsvk) · W̃ ) and e(C5, H̃) = e(C2, Ũ
Ĥ(otsvk) · Z̃).

Thus, this requires proving C1 = H r̃1 , C2 = V r̃2 and C3 = U r̃1 · U r̃2 · uvk[uid].

The total size of the signature is G30·|P|+18
1 + G30·|P|+16

2 + Zβ+3
p . The proof for the following Theorem

follows from that of Theorem 1.

Theorem 3. The instantiation is secure if the assumptions XDLING1 , q-SDH, q-AGHO, and SXDH all
hold.

We end by noting that in both instantiations signature verification can be mode more efficient by
batch verifying GS proofs [16, 6].

6.3 Efficiency Comparison

We compare the efficiency of our instantiations with that of existing constructions in Table 1. Note here
that the construction in [11] is for the single attribute-authority setting and that our constructions are
secure w.r.t. a stronger security model than those in [11, 10]. In the table, P stands for pairing and E is
a multi-scalar exponentiation in the group.
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7 Conclusion

We have presented a new security model for decentralized traceable attribute-based signatures that is
stronger than existing models. In doing so, we have circumvented some shortcomings in existing models.
We have also provided a generic framework for obtaining constructions secure w.r.t. our strong model
and provided concrete instantiations in the standard model which outperform existing constructions. In
addition, tracing signatures in our constructions is much more efficient than previous constructions.

Acknowledgments. The author was supported by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO
and EPSRC via grant EP/H043454/1.
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A Properties of Non-Interactive Zero-Knowledge Proofs

The properties we require from a non-interctive zero-knowledge proof system are:

• (Perfect) Completeness: ∀λ ∈ N, ∀(x,w) ∈ R, we have

Pr
[
(crs, xk)← Setup(1λ);π ← Prove(crs, x, w) : Verify(crs, x, π) = 1

]
= 1 .

• Soundness: ∀λ ∈ N, ∀x /∈ L, we have for all adversaries B

Pr
[
(crs, xk)← Setup(1λ);π ← B(crs, x) : Verify(crs, x, π) = 1

]
≤ 2−λ .

If the above probability is 0, we say the system has perfect soundness.
• Knowledge Extraction: A proof system is a Proof of Knowledge or has Knowledge Extraction if

there exists an efficient extractor algorithm Extract which can extract the witness from any proof
the adversary outputs. Note that if a proof system is a proof of knowledge then it is sound. More
formally, for all adversaries B, we have

Pr
[
(crs, xk)← Setup(1λ); (x, π)← B(crs);w ← Extract(crs, xk, x, π)

: Verify(crs, x, π) = 0 OR (x,w) ∈ R] ≤ 1− ν(λ) .

If the above probability is 1, we say the system has perfect knowledge extraction.
• Zero-Knowledge: The system is zero-knowledge if ∀(x,w) ∈ R, we have for all PPT adversaries B

Pr
[
(crsSim, tr)← SimSetup(1λ) : BSim(crsSim,tr,·,·)(crsSim) = 1

]
≈ Pr

[
(crs, xk)← Setup(1λ) : BProve(crs,·,·)(crs) = 1

]
,

where Sim(crsSim, tr, x, w) outputs SimProve(crsSim, tr, x) if (x,w) ∈ R or ⊥ otherwise.
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Experiment: ExpST-wIND-CCA-b
DT BE,B,1 (λ):

- (t∗, stinit)← Binit

`
1λ
´
.

- (pk, {svki}1i=1, {ski}1i=1)← Setup(1λ, 1).

- (m0,m1, stfind)← Bfind

“
stinit, pk, {svki}1i=1 : Dect

∗
(·, ·)

”
, where |m0| = |m1|.

- C∗dtbe ← Enc(pk, t∗,mb).

- b∗ ← Bguess

“
stfind, C

∗
dtbe : Dect

∗
(·, ·)

”
.

- Return b∗.

Fig. 8. The ST-wIND-CCA security game for (1-out-of-1) distributed tag-based encryption

Experiment: ExpDEC-CON
DT BE,B,1(λ):

- (pk, {svki}1i=1, {ski}1i=1)← Setup(1λ, 1).
- (t, Cdtbe, {νi}1i=1, {ν′i}1i=1)← B

`
pk, {svki}1i=1, {ski}1i=1

´
.

- If IsValid(pk, t, Cdtbe) = 0 Then Return 0.
- If ShareVerify(pk, svk1, t, Cdtbe, ν1) = 0 or ShareVerify(pk, svk1, t, Cdtbe, ν

′
1) = 0 Then Return 0.

- If Combine(pk, {svki}1i=1, {νi}1i=1, Cdtbe, t) 6= Combine(pk, {svki}1i=1, {ν′i}1i=1, Cdtbe, t) Then Return 1.
- Return 0.

Fig. 9. The decryption consistency game for (1-out-of-1) distributed tag-based encryption

B Security of Robust Non-Interactive Distributed Tag-Based Encryption

Here we define the security requirements of a (1-out-of-1) distributed tag-based encryption.

• Selective-Tag weak Indistinguishability against Adaptive Chosen Ciphertext Attacks (ST-wIND-
CCA): This requires that for all λ ∈ N, for all polynomial-time adversaries B the advantage

AdvST-wIND-CCA
DT BE,B,1 (λ) :=

∣∣Pr[ExpST-wIND-CCA-1
DT BE,B,1 (λ) = 1]− Pr[ExpST-wIND-CCA-0

DT BE,B,1 (λ) = 1]
∣∣

is negligible in λ, where the game is shown in Fig. 8. In the game, Dect
∗

rejects any query on (t∗, ·)
and returns the decryption of the ciphertext otherwise.

• Decryption Consistency (DEC-CON): This requirement [15] requires that for all λ ∈ N, for all PPT
adversaries B, the advantage AdvDEC-CON

DT BE,B,1(λ) := Pr[ExpDEC-CON
DT BE,B,1(λ) = 1] is negligible in λ, where

the game is defined in Fig. 9.

C Proof of Theorem 1

Proof. Correctness of the construction follows from that of the underlying building blocks.

Lemma 1. The construction is non-frameable if NIZK is sound, the hash functions Ĥ and H are
collision-resistant, and the one-time signature OT S and the digital signature WDS are existentially
unforgeable.

Proof. We start by initiating NIZK in the soundness setting which ensures that the adversary cannot
break non-frameability by faking proofs for false statements. We show that if there exists an adversary
B that breaks non-frameability, we can construct adversaries: F1 against the unforgeability of the dig-
ital signature scheme WDS, adversary F2 against the strong unforgeability of the one-time signature
schemeOT S , and adversaries F3 and F4 against the collision-resistance ofH and Ĥ, respectively, such
that

AdvNF
DT ABS,B(λ) ≤κ(λ) · AdvUnforge

WDS,F1
(λ) + δ(λ) · AdvUnforge

OT S,F2
(λ) + AdvCR

H,F3
(λ)+

AdvCR
Ĥ,F4

(λ) + AdvSound
NIZK,F5

(λ),

where κ(λ) and δ(λ) are polynomials in λ representing an upper bound on the number of honest users
and sign queries, respectively, B is allowed to make in the game.
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The collision-resistance ofH ensures that B has a negligible probability in finding pairs (m∗,P∗) 6=
(m,P) s.t. H(m∗,P∗) = H(m,P). If this is not the case, we can use B to construct an adversary F3

that breaks the collision-resistance of H. Similarly, the collision-resistance of Ĥ ensures that B has a
negligible probability in finding two different one-time signature keys otsvk 6= otsvk′ s.t. Ĥ(otsvk) =
Ĥ(otsvk′). If this is not the case, we can use B to construct an adversary F4 that breaks the collision-
resistance of Ĥ. Thus, from now on we assume that there are no hash collisions.

• Adversary F1: Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B will frame
user i. We have a probability 1

κ(λ) of guessing the correct user. Let η(λ) denote the number of
sign queries by user i adversary B makes in the game. F1 chooses random key pairs OTSK :=
{(otsvk, otssk)j}η(λ)

j=1 for the one-time signature. It forwards Ĥ(otsvk1), . . . , Ĥ(otsvkη(λ)) to its
game and gets back a verification key vk and signatures σ1, . . . , ση(λ). AdversaryF1 runs (crs, xk)←
NIZK.Setup(1λ) and chooses a key tuple (epk, esvk, esk) for DT BE . It then forwards pp := (1λ,
crs, epk, esvk,H, Ĥ) and tk := esk to B.
To answer AddA queries, F1 chooses the secret/verification keys for the authority itself so it can
answer any AddAtt queries. To answer AddU queries, for all users other than user i, F1 chooses the
personal key pair for the user itself. However, for user i, it sets its verification key to vk it got from
its game (and thus it does not know the corresponding secret key). If in the game B issues a RevealU
query on user i, F1 aborts the game.
To answer Sign queries (uid,A,m,P) for any uid 6= i,F1 first chooses a fresh key pair (otsvk′, otssk′)
for the one-time signature OT S and encrypts uvk[uid] using Ĥ(otsvk′) as a tag and generates the
rest of the signature itself. For the j-th sign query by user i, F1 uses the j-th key pair in the set OTSK
and encrypts uvk[uid] using Ĥ(otsvkj) as a tag, and generates the rest of the signature. The rest of
B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F1 uses theNIZK’s extraction key xk to extract the witness
and returns the signature σ∗ on Ĥ(otsvk∗) that is different from all otsvk1, . . . , otsvkη(λ) that F1 has
used in answering signing queries if B’s forgery involved framing user i as was guessed by F1.
Otherwise, it aborts.
By the existential unforgeability of the signature scheme WDS, the probability of B winning is
negligible.

• Adversary F2: Adversary F2 gets otsvk∗ from its game and has access to an oracle Sign that it
uses to obtain a single one-time signature that verify w.r.t. otsvk∗ on a message of its choice. It runs
(crs, xk)← NIZK.Setup(1λ) and chooses a key tuple (epk, esvk, esk) for the tag-based encryption
scheme DT BE . It then forwards pp := (1λ, crs, epk, esvk,H, Ĥ) and tk := esk to B.
To answer AddA queries, F2 chooses the authority keys itself. To answer AddU queries, F2 chooses
the user’s key pair itself. To answer AddAtt queries, F2 uses the corresponding authorities’ secret
keys askaid(α) to create the attributes’ keys for the user.
AdversaryF2 randomly chooses i← {1, . . . , δ(λ)} and guesses thatB’s forgery will involve forging
a one-time signature that verifies under otsvk∗ used in answering the i-th signing query.
When asked for the j-th Sign query on (uid,A,m,P), if j 6= i, F2 chooses a fresh key pair
(otsvk, otssk) for the one-time signature scheme and answers the query by itself. If j = i, F2

encrypts uvk[uid] using Ĥ(otsvk∗) (i.e. the verification key it got from its game) as a tag to obtain
Cdtbe. It then generates σ by signing Ĥ(otsvk∗) using usk[uid] that it chose, and constructs the proof
π. It then forwards (H(m,P), π, Cdtbe, otsvk∗) as the message to its one-time signing oracle to get a
one-time signature σots. F2 then sends the signature Σ to B.
The rest of B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F2 aborts if the B’s forgery did not involve forging a one-
time signature that verifies w.r.t. otsvk∗ it got from its game. The probability that B forges a one-time
signature that verifies w.r.t. otsvk∗ is 1

δ(λ) .
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By the strong existential unforgeability of the one-time signatureOT S , B has a negligible advantage
in wining this case.

This concludes the proof.

Lemma 2. The construction is unforgeable ifNIZK is sound, the hash functions Ĥ andH are collision-
resistant, and the tagged signature T S , and the one-time signature OT S are existentially unforgeable.

Proof. We show that if there exists an adversary B breaking unforgeability, we can construct adversaries:
F1 against the unforgeability of the tagged signature scheme T S , F2 against the strong unforgeability
of the one-time signature scheme OT S, adversaries F3 and F4 against the collision-resistance of the
hash functions Ĥ andH, and F5 against the soundness of NIZK, such that

AdvUnforge
DT ABS,B(λ) ≤κ(λ) · AdvUnforge

T S,F1
(λ) + δ(λ) · AdvUnforge

OT S,F2
(λ) + AdvCR

Ĥ,F3
(λ)+

AdvCR
H,F4

(λ) + AdvSound
NIZK,F5

(λ),

where κ(λ) and δ(λ) are polynomials in λ representing an upper bound on the number of honest attribute
authorities and sign queries, respectively, B is allowed to make in the game.

We instantiate NIZK in the soundness setting and hence the adversary cannot break unforgeabil-
ity by faking proofs for false statements. By the collision-resistance of Ĥ, B has a negligible probability
in finding two different one-time signature keys otsvk 6= otsvk′ s.t. Ĥ(otsvk) = Ĥ(otsvk′). If this is
not the case, we can use B to construct an adversary F3 that breaks the collision-resistance of Ĥ. Sim-
ilarly, by the security of H, B has a negligible probability in finding collisions (m,P) 6= (m∗,P∗) s.t.
H(m,P) = H(m∗,P∗). If this is not the case, we can use B to construct an adversary F4 that breaks the
collision-resistance ofH. Thus, from now on we assume that there are no hash collisions.

• Adversay F1: Adversary F1 gets the tagged signature scheme’s verification key vk from its game
and has access to an oracle Sign that it uses to obtain tagged signatures that verify w.r.t. vk on
messages and tags of its choice. Adversary F1 starts by running (crs, xk) ← NIZK.Setup(1λ)
and choosing a key tuple (epk, esvk, esk) for the distributed tag-based encryption scheme DT BE . It
forwards pp := (1λ, crs, epk, esvk,H, Ĥ) and tk := esk to B.
Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B’s forgery will involve forg-
ing an attribute managed by the attribute authority i. To answer AddA queries, for all authorities
j 6= i, F1 chooses the secret/verification keys for the authority itself. For authority i, it sets its veri-
fication key to vk it got from its game (and thus it does not know the corresponding secret key). If in
the game B asks a RevealA query on authority i, F1 aborts the game.
To answer AddU queries, F1 chooses the user’s key pair itself. To answer AddAtt queries, if the
user has attributes managed by authority i, it forwards such a query to its Sign oracle; Otherwise, it
answers the query itself by using the authorities’ secret keys available to it.
To answer Sign queries on (uid,A,m,P), F1 first chooses a fresh key pair (otsvk, otssk) for the
one-time signature OT S and encrypts uvk[uid] using Ĥ(otsvk) as a tag and generates the rest of
the signature Σ which it then forwards to B. The rest of B’s queries are answered normally as in
Fig. 1.
Eventually, when B outputs its forgery, F1 uses theNIZK’s extraction key xk to extract the witness
and returns the tagged signature on uvk[uid∗] and the attribute α∗ if B’s forgery involved forging a
tagged signature. Otherwise, it aborts. F1 also aborts if the forgery does not involve forged attributes
managed by authority i that F1 has guessed. The probability of F1 guessing the correct authority is

1
κ(λ) .
By the existential unforgeability of the tagged signature scheme, the probability of B winning is
negligible.
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• Adversary F2: Adversary F2 gets otsvk∗ from its game and has access to an oracle Sign that it
uses to obtain a single one-time signature that verifies w.r.t. otsvk∗ on a message of its choice. It
runs (crs, xk)← NIZK.Setup(1λ) and also chooses a key tuple (epk, esvk, esk) for the distributed
tag-based encryption scheme DT BE . It forwards pp := (1λ, crs, epk, esvk,H, Ĥ) and tk := esk to
B.
To answer AddA queries, F2 chooses the authority keys itself. To answer AddU queries, F2 chooses
the user’s key pair itself. To answer AddAtt queries, F2 uses the corresponding authorities’ secret
keys askaid(α) to create the attribute key for the user.
AdversaryF2 randomly chooses i← {1, . . . , δ(λ)} and guesses thatB’s forgery will involve forging
a one-time signature that verifies under otsvk∗ used in answering the i-th signing query.
When asked for the j-th Sign query on (uid,A,m,P), if j 6= i, F2 chooses a fresh key pair
(otsvk, otssk) for the one-time signature scheme and answers the query by itself. If j = i, F2

encrypts uvk[uid] using Ĥ(otsvk∗) as a tag to obtain Cdtbe and generates the proof π. It then for-
wards (H(m,P), π, Cdtbe, otsvk∗) as the message to its one-time signature signing oracle to get a
one-time signature σots. F2 then sends the signature Σ := (σots, π, Cdtbe, otsvk∗) to B. The rest of
B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F2 aborts if the B’s forgery did not involve forging a one-
time signature that verifies w.r.t otsvk∗ it got from its game. The probability that B forges a one-time
signature that verifies w.r.t otsvk∗ is 1

δ(λ) .
By the strong existential unforgeability of the one-time signatureOT S , B has a negligible advantage
in winning.

This concludes the proof.

Lemma 3. The construction is traceable if the NIZK proof system is sound and the tagged signature
T S is existentially unforgeable.

Proof. Since the NIZK proof system NIZK is sound, the adversary has a negligible advantage in
succeeding by faking proofs for false statements. We show that if there exists an adversary B break-
ing traceability, we can construct an adversary F1 attacking the unforgeability of the tagged signature
scheme T S such that

AdvTrace
DT ABS,B(λ) ≤ κ(λ) · AdvUnforge

T S,F1
(λ) + AdvSound

NIZK,F2
(λ),

where κ(λ) is a polynomial in λ representing an upper bound on the number of honest attribute authori-
ties B is allowed to use in the game.

• Adversay F1: Adversary F1 gets the tagged signature scheme’s verification key vk from its game
and has access to an oracle Sign that it uses to obtain tagged signatures that verify w.r.t. vk on
messages and tags of its choice. Adversary F1 starts by running (crs, xk) ← NIZK.Setup(1λ)
and choosing a key tuple (epk, esvk, esk) for the distributed tag-based encryption scheme DT BE . It
forwards pp := (1λ, crs, epk, esvk,H, Ĥ) and tk := esk to B.
Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B’s forgery will involve forg-
ing an attribute managed by the attribute authority i. To answer AddA queries, for all authorities
j 6= i, F1 chooses the secret/verification keys for the authority itself. For authority i, it sets its ver-
ification key to vk it got from its game. If in the game, B issues RevealA query on authority i, F1

aborts the game. To answer AddU queries, F1 chooses the user’s key pair itself. Whenever asked
AddAtt queries, if the user has attributes managed by authority i, it forwards such a query to its Sign
oracle; Otherwise, it answers the query itself.
To answer Sign queries on (uid,A,m,P),F1 first chooses a fresh key pair (otsvk, otssk) for the one-
time signature OT S and encrypts uvk[uid] using Ĥ(otsvk) as a tag and generates the rest of the
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signature by itself. F1 forwards the signature Σ to B. The rest of B’s queries are answered normally
as in Fig. 1.
Eventually, when B outputs its forgery, F1 uses theNIZK’s extraction key xk to extract the witness
and returns the tagged signature on the uvk[uid∗] and the attribute α∗ if B’s forgery involved forging
a tagged signature that verifies w.r.t. vk it got from its game. Otherwise, it aborts. The probability
that F1 guesses the correct authority is 1

κ(λ) .
By the existential unforgeability of the tagged signature, the probability of B winning is negligible.

This concludes the proof

Lemma 4. IfNIZK is zero-knowledge, the distributed tag-based encryption schemeDT BE is selective-
tag weakly IND-CCA secure, the one-time signature OT S is strongly existentially unforgeable, and the
hash functions Ĥ andH are collision-resistant then the construction is fully anonymous (against full-key
exposure).

Proof. We show that if there exists an adversary B breaking anonymity, we can construct adversaries:
F1 against the collision-resistance of the hash function Ĥ, F2 against the strong unforgeability of the
one-time signature OT S, F3 against the collision-resistance of the hash function H, F4 against the
NIZK property of the proof systemNIZK, and F5 against the selective-tag weakly IND-CCA security
of the distributed tag-based encryption scheme DT BE .

By the collision-resistance of Ĥ, B has a negligible probability in finding otsvk′ s.t. Ĥ(otsvk′) col-
lides with the tag Ĥ(otsvk∗) we use for the challenge signature. If this is not the case, we can use B to
construct an adversary F1 that breaks the collision-resistance of Ĥ.

The strong existential unforgeability of OT S ensures that B has a negligible probability in forging
a one-time signature under otsvk∗ we use in the challenge signature. If this is not the case, we can
construct an adversary F2 that wins the strong unforgeability game of OT S.

By the collision-resistance of H, B has a negligible probability in finding pairs (m∗,P∗) 6= (m,P)
s.t. H(m∗,P∗) = H(m,P). If this is not the case, we can use B to construct an adversary F3 which
breaks the collision-resistance of the hash function H. Thus, from now on we assume that there are no
hash collisions.

We instantiateNIZK in the simulation setting which is, by the security ofNIZK, is indistinguish-
able from the soundness setting. The proof π is thus now zero-knowledge and hence does not reveal any
information about the witness.

We now proceed to construct an adversary F5 against the selective-tag weakly IND-CCA security of
DT BE using adversary B. Adversary F5 runs the Setup algorithm where it starts by randomly choosing
a key pair (otsvk∗, otssk∗) forOT S that it will use when producing the challenge signature. We needed
to choose the key pair beforehand as the distributed tag-based encryption scheme is only selective-tag
secure and hence the challenger in the ST-wIND-CCA game needs to know the challenge tag before
sending epk and esvk. F5 sends Ĥ(otsvk∗) to its challenger and gets back epk and esvk. In its game,
F5 has access to a decryption oracle Dec which it can query on any ciphertext under any tag different
from Ĥ(otsvk∗). F5 chooses crs as a simulation reference string and forwards pp := (1λ, crs, epk, esvk,
Ĥ,H) to B.

To answer AddU queries, F5 chooses the secret/verification keys of the user itself. To answer AddA
queries, F5 chooses the secret/verification keys for the authorities itself. Thus, F5 can answer any
AddAtt queries itself.

To answer the challenge query CHb((uid0,A0), (uid1,A1),m,P), F5 sends (uvk[uid0],uvk[uid1])
as its challenge in its ST-wIND-CCA game and gets a ciphertext under the tag Ĥ(otsvk∗) of either the
plaintext uvk[uid0] or uvk[uid1] which it needs to distinguish. F5 can now construct the rest of the
challenge signature by simulating the proof π and signing the whole thing with otssk∗ to obtain σots.

To answer Trace queries,F5 just uses its decryption oracle to get the decryption shares ofCdtbe. Note
that since we have chosen the challenge tag otsvk∗ uniformly at random and since we already eliminated
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any case where any signature sent to Trace uses the same tag as that we used for the challenge signature,
such a query will be accepted by F5’s decryption oracle because the tag is different from the tag used in
the challenge ciphertext. The rest of B’s queries are answered as in Fig. 1.

Eventually, when B halts, F5 outputs whatever B outputs. By the ST-wIND-CCA property of the
distributed tag-based encryption scheme, B has a negligible probability in winning.

This concludes the proof.

Lemma 5. The construction satisfies tracing soundness if DT BE satisfies decryption consistency.

Proof. We show that if there exists an adversary B that wins the tracing soundness game then we can
build an adversary F that breaks the decryption consistency requirement of the distributed tag-based
encryption scheme DT BE such that

AdvTS
DT ABS,B(λ) ≤ AdvDEC-CON

DT BE,F ,1(λ)·

Adversary F gets (epk, esvk, esk) from its game and runs the rest of the Setup algorithm normally. F
forwards pp := (1λ, crs, epk, esvk,H, Ĥ) and tk := esk to B. All B’s queries are answered normally as
in Fig. 1. Eventually, when B halts, F outputs ν and ν ′ returned by B in its game.

By the decryption consistency property of the distributed tag-based encryption scheme DT BE , this
only happens with a negligible probability.

This concludes the proof.
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