The probabilistic approach to limited packings in graphs

Andrei Gagarin ${ }^{\text {a,* }}$, Vadim Zverovich ${ }^{\text {b }}$
${ }^{a}$ Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
${ }^{b}$ University of the West of England, Bristol, BS16 1QY, UK

Abstract

We consider (closed neighbourhood) packings and their generalization in graphs. A vertex set X in a graph G is a k-limited packing if for every vertex $v \in V(G)$, $|N[v] \cap X| \leq k$, where $N[v]$ is the closed neighbourhood of v. The k-limited packing number $L_{k}(G)$ of a graph G is the largest size of a k-limited packing in G. Limited packing problems can be considered as secure facility location problems in networks.

In this paper, we develop a new application of the probabilistic method to limited packings in graphs, resulting in lower bounds for the k-limited packing number and a randomized algorithm to find k-limited packings satisfying the bounds. In particular, we prove that for any graph G of order n with maximum vertex degree Δ,

$$
L_{k}(G) \geq \frac{k n}{(k+1) \sqrt[k]{\binom{\Delta}{k}(\Delta+1)}}
$$

Also, some other upper and lower bounds for $L_{k}(G)$ are given.
Keywords: k-Limited packings, The probabilistic method, Lower and upper bounds, Randomized algorithm

1. Introduction

We consider simple undirected graphs. If not specified otherwise, standard graph-theoretic terminology and notations are used (e.g., see [1, 2]). We are interested in the classical packings and packing numbers of graphs as introduced in [9], and their generalization, called limited packings and limited packing numbers, respectively, as presented in [6]. In the literature, the classical packings are often referred to under different names: for example, as (distance) 2-packings [9, 13], closed neighborhood packings [11] or strong stable sets [8]. They can also be considered as generalizations of independent (stable) sets which, following the terminology of [9], would be (distance) 1-packings.

[^0]Formally, a vertex set X in a graph G is a k-limited packing if for every vertex $v \in V(G)$,

$$
|N[v] \cap X| \leq k,
$$

where $N[v]$ is the closed neighbourhood of v. The k-limited packing number $L_{k}(G)$ of a graph G is the maximum size of a k-limited packing in G. In these terms, the classical (distance) 2-packings are 1-limited packings, and hence $\rho(G)=L_{1}(G)$, where $\rho(G)$ is the 2-packing number.

The problem of finding a 2-packing (1-limited packing) of maximum size is shown to be $N P$-complete by Hochbaum and Schmoys [8]. In [4], it is shown that the problem of finding a maximum size k-limited packing is $N P$-complete even for the classes of split and bipartite graphs.

Graphs usually serve as underlying models for networks. A number of interesting application scenarios of limited packings are described in [6], including network security, market saturation, and codes. These and others can be summarized as secure location or distribution of facilities in a network. In a more general sense, these problems can be viewed as (maximization) facility location problems to place/distribute in a given network as many resources as possible subject to some (security) constraints.

2-Packings (1-limited packings) are well-studied in the literature from the structural and algorithmic point of view (e.g., see [8, 9, 11, 12]) and in connection with other graph parameters (e.g., see [3, 7, 9, 11, 13]). In particular, several papers discuss connections between packings and dominating sets in graphs (e.g., see $[3,4,6,7,11])$. Although the formal definitions for packings and dominating sets may appear to be similar, the problems have a very different nature: one of the problems is a maximization problem not to break some (security) constraints, and the other is a minimization problem to satisfy some reliability requirements. For example, given a graph G, the definitions imply a simple inequality $\rho(G) \leq \gamma(G)$, where $\gamma(G)$ is the domination number of G (e.g., see [11]). However, the difference between $\rho(G)$ and $\gamma(G)$ can be arbitrarily large as illustrated in [3]: $\rho\left(K_{n} \times K_{n}\right)=1$ for the Cartesian product of complete graphs, but $\gamma\left(K_{n} \times K_{n}\right)=n$.

In this paper, we develop an application of the probabilistic method to k-limited packings in general and to 2-packings (1-limited packings) in particular. In Section 2 we present the probabilistic construction and use it to derive two lower bounds for the k-limited packing number $L_{k}(G)$. Also, using a greedy algorithm approach, we provide an improved lower bound for the 2-packing (1-limited packing) number $\rho(G)=L_{1}(G)$. The probabilistic construction implies a randomized algorithm to find k-limited packings satisfying the lower bounds. The algorithm and its analysis are presented in Section 3. Section 4 shows that the main lower bound is asymptotically sharp, and discusses the improvement for 1-limited packings from the greedy algorithm approach. Finally, Section 5 provides upper bounds for $L_{k}(G)$, e.g. in terms of the k-tuple domination number $\gamma_{\times k}(G)$.

Notice that the probabilistic construction and approach are different from the well-known probabilistic constructions used for independent sets (e.g., see [1], p.2728). In terms of packings, an independent set in a graph G is a distance 1-packing: for any two vertices in an independent set, the distance between them in G is greater
than 1. To the best of our knowledge, the proposed application of the probabilistic method is a new approach to work with packings and related maximization problems.

2. The probabilistic construction and lower bounds

Let $\Delta=\Delta(G)$ denote the maximum vertex degree in a graph G. Notice that $L_{k}(G)=n$ when $k \geq \Delta+1$. We define

$$
c_{t}=c_{t}(G)=\binom{\Delta}{t} \quad \text { and } \quad \tilde{c}_{t}=\tilde{c}_{t}(G)=\binom{\Delta+1}{t} .
$$

In what follows, we put $\binom{a}{b}=0$ if $b>a$.
The following theorem gives a new lower bound for the k-limited packing number. It may be pointed out that the probabilistic construction used in the proof of Theorem 1 implies a randomized algorithm for finding a k-limited packing set, whose size satisfies the bound of Theorem 1 with a positive probability (see Algorithm 1 in Section 3).

Theorem 1. For any graph G of order n with $\Delta \geq k \geq 1$,

$$
\begin{equation*}
L_{k}(G) \geq \frac{k n}{\tilde{c}_{k+1}^{1 / k}(1+k)^{1+1 / k}} \tag{1}
\end{equation*}
$$

Proof. Let A be a set formed by an independent choice of vertices of G, where each vertex is selected with the probability

$$
\begin{equation*}
p=\left(\frac{1}{\tilde{c}_{k+1}(1+k)}\right)^{1 / k} \tag{2}
\end{equation*}
$$

For $m=k, \ldots, \Delta$, we denote

$$
A_{m}=\{v \in A:|N(v) \cap A|=m\} .
$$

For each set A_{m}, we form a set A_{m}^{\prime} in the following way. For every vertex $v \in A_{m}$, we take $m-(k-1)$ neighbours from $N(v) \cap A$ and add them to A_{m}^{\prime}. Such neighbours always exist because $m \geq k$. It is obvious that

$$
\left|A_{m}^{\prime}\right| \leq(m-k+1)\left|A_{m}\right| .
$$

For $m=k+1, \ldots, \Delta$, let us denote

$$
B_{m}=\{v \in V(G)-A:|N(v) \cap A|=m\} .
$$

For each set B_{m}, we form a set B_{m}^{\prime} by taking $m-k$ neighbours from $N(v) \cap A$ for every vertex $v \in B_{m}$. We have

$$
\left|B_{m}^{\prime}\right| \leq(m-k)\left|B_{m}\right| .
$$

Let us construct the set X as follows:

$$
X=A-\left(\bigcup_{m=k}^{\Delta} A_{m}^{\prime}\right)-\left(\bigcup_{m=k+1}^{\Delta} B_{m}^{\prime}\right)
$$

It is easy to see that X is a k-limited packing in G. The expectation of $|X|$ is

$$
\begin{aligned}
\mathbf{E}[|X|] & \geq \mathbf{E}\left[|A|-\sum_{m=k}^{\Delta}\left|A_{m}^{\prime}\right|-\sum_{m=k+1}^{\Delta}\left|B_{m}^{\prime}\right|\right] \\
& \geq \mathbf{E}\left[|A|-\sum_{m=k}^{\Delta}(m-k+1)\left|A_{m}\right|-\sum_{m=k+1}^{\Delta}(m-k)\left|B_{m}\right|\right] \\
& =p n-\sum_{m=k}^{\Delta}(m-k+1) \mathbf{E}\left[\left|A_{m}\right|\right]-\sum_{m=k+1}^{\Delta}(m-k) \mathbf{E}\left[\left|B_{m}\right|\right] .
\end{aligned}
$$

Let us denote the vertices of G by $v_{1}, v_{2}, \ldots, v_{n}$ and the corresponding vertex degrees by $d_{1}, d_{2}, \ldots, d_{n}$. We will need the following lemma:
Lemma 2. If $p=\left(\frac{1}{\tilde{c}_{k+1}(1+k)}\right)^{1 / k}$, then, for any vertex $v_{i} \in V(G)$,

$$
\begin{equation*}
\binom{d_{i}}{m}(1-p)^{d_{i}-m} \leq\binom{\Delta}{m}(1-p)^{\Delta-m}, \quad m \geq k \tag{3}
\end{equation*}
$$

Proof. The inequality (3) holds if $d_{i}=\Delta$. It is also true if $d_{i}<m$ because in this case $\binom{d_{i}}{m}=0$. Thus, we may assume that

$$
m \leq d_{i}<\Delta
$$

Now, it is easy to see that inequality (3) is equivalent to the following:

$$
\begin{equation*}
(1-p)^{\Delta-d_{i}} \geq\binom{ d_{i}}{m} /\binom{\Delta}{m}=\frac{(\Delta-m)!/\left(d_{i}-m\right)!}{\Delta!/ d_{i}!}=\prod_{i=0}^{\Delta-d_{i}-1} \frac{\Delta-m-i}{\Delta-i} \tag{4}
\end{equation*}
$$

Further, $\Delta \geq k$ implies $\frac{\Delta}{k} \leq \frac{\Delta-i}{k-i}$, where $0 \leq i \leq k-1$. Taking into account that $\Delta>0$, we obtain

$$
\left(\frac{\Delta}{k}\right)^{k} \leq \prod_{i=0}^{k-1} \frac{\Delta-i}{k-i}=c_{k}<\tilde{c}_{k+1}(1+k)
$$

or

$$
\frac{1}{\tilde{c}_{k+1}(1+k)}<\left(\frac{k}{\Delta}\right)^{k}
$$

Thus,

$$
p^{k}<\left(\frac{k}{\Delta}\right)^{k} \quad \text { or } \quad p<\frac{k}{\Delta} \leq \frac{m}{\Delta}
$$

We have $p<\frac{m}{\Delta}$, which is equivalent to $1-p>\frac{\Delta-m}{\Delta}$. Therefore,

$$
(1-p)^{\Delta-d_{i}}>\left(\frac{\Delta-m}{\Delta}\right)^{\Delta-d_{i}} \geq \prod_{i=0}^{\Delta-d_{i}-1} \frac{\Delta-m-i}{\Delta-i}
$$

as required in (4).

Now we go on with the proof of Theorem 1. By Lemma 2,

$$
\begin{aligned}
\mathbf{E}\left[\left|A_{m}\right|\right] & =\sum_{i=1}^{n} \mathbf{P}\left[v_{i} \in A_{m}\right] \\
& =\sum_{i=1}^{n} p\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m} \\
& \leq p^{m+1} \sum_{i=1}^{n}\binom{\Delta}{m}(1-p)^{\Delta-m} \\
& =p^{m+1}(1-p)^{\Delta-m} c_{m} n,
\end{aligned}
$$

where $p\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m}$ is the probability of having vertex $v_{i}, i=1, \ldots, n$, in the set $A_{m}, m=k, \ldots, \Delta$. Again, by Lemma 2 ,

$$
\begin{aligned}
\mathbf{E}\left[\left|B_{m}\right|\right] & =\sum_{i=1}^{n} \mathbf{P}\left[v_{i} \in B_{m}\right] \\
& =\sum_{i=1}^{n}(1-p)\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m} \\
& \leq p^{m} \sum_{i=1}^{n}\binom{\Delta}{m}(1-p)^{\Delta-m+1} \\
& =p^{m}(1-p)^{\Delta-m+1} c_{m} n,
\end{aligned}
$$

where $(1-p)\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m}$ is the probability of having vertex $v_{i}, i=1, \ldots, n$, in the set $B_{m}, m=k+1, \ldots, \Delta$.

Taking into account that $c_{\Delta+1}=\binom{\Delta}{\Delta+1}=0$, we obtain

$$
\begin{aligned}
& \mathbf{E}[|X|] \geq p n-\sum_{m=k}^{\Delta}(m-k+1) p^{m+1}(1-p)^{\Delta-m} c_{m} n-\sum_{m=k+1}^{\Delta+1}(m-k) p^{m}(1-p)^{\Delta-m+1} c_{m} n \\
&= p n-\sum_{m=0}^{\Delta-k}(m+1) p^{m+k+1}(1-p)^{\Delta-m-k} c_{m+k} n \\
& \quad-\sum_{m=0}^{\Delta-k}(m+1) p^{m+k+1}(1-p)^{\Delta-m-k} c_{m+k+1} n
\end{aligned}
$$

$$
\begin{aligned}
& =p n-\sum_{m=0}^{\Delta-k}(m+1) p^{m+k+1}(1-p)^{\Delta-m-k} n\left(c_{m+k}+c_{m+k+1}\right) \\
& =p n-p^{k+1} n \sum_{m=0}^{\Delta-k}(m+1) \tilde{c}_{m+k+1} p^{m}(1-p)^{\Delta-k-m}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& (m+1) \tilde{c}_{m+k+1}=\binom{\Delta-k}{m} \frac{(m+1)!(\Delta+1)!}{(m+k+1)!(\Delta-k)!} \\
& \quad \leq\binom{\Delta-k}{m} \frac{(\Delta+1)!}{(k+1)!(\Delta-k)!}=\binom{\Delta-k}{m} \tilde{c}_{k+1} .
\end{aligned}
$$

We obtain, by the binomial theorem,

$$
\begin{aligned}
\mathbf{E}[|X|] & \geq p n-p^{k+1} n \sum_{m=0}^{\Delta-k}\binom{\Delta-k}{m} \tilde{c}_{k+1} p^{m}(1-p)^{\Delta-k-m} \\
& =p n-p^{k+1} n \tilde{c}_{k+1} \\
& =p n\left(1-p^{k} \tilde{c}_{k+1}\right) \\
& =\frac{k n}{\tilde{c}_{k+1}^{1 / k}(1+k)^{1+1 / k}} .
\end{aligned}
$$

Since the expectation is an average value, there exists a particular k-limited packing of size at least $\frac{k n}{\tilde{c}_{k+1}^{1 / k}(1+k)^{1+1 / k}}$, as required. The proof of the theorem is complete.

The lower bound of Theorem 1 can be written in a simpler but weaker form as follows:

Corollary 3. For any graph G of order n,

$$
L_{k}(G)>\frac{k n}{e(1+\Delta)^{1+1 / k}} .
$$

Proof. It is not difficult to see that

$$
\tilde{c}_{k+1} \leq \frac{(\Delta+1)^{k+1}}{(k+1)!}
$$

and, using Stirling's formula,

$$
(k!)^{1 / k}>\left(\sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k}\right)^{1 / k}=\sqrt[2 k]{2 \pi k} \frac{k}{e}
$$

By Theorem 1,

$$
L_{k}(G) \geq \frac{k n((k+1)!)^{1 / k}}{(\Delta+1)^{1+1 / k}(1+k)^{1+1 / k}}>\frac{k n}{e(1+\Delta)^{1+1 / k}} \times \frac{\sqrt[2 k]{2 \pi k} k}{1+k}>\frac{k n}{e(1+\Delta)^{1+1 / k}}
$$

Note that $\frac{\sqrt[2 k]{2 \pi k} k}{1+k}=\frac{\sqrt[2 k]{2 \pi k}}{1+1 / k}>1$. The last inequality is obviously true for $k=1$, while for $k \geq 2$ it can be rewritten in the equivalent form: $2 \pi k>(1+1 / k)^{2 k}=$ $e^{2}-o(1)$.

In the case $k=1$, Theorem 1 gives the following lower bound for the 2-packing (1-limited packing) number:

Corollary 4. For any graph G of order n with $\Delta \geq 1$,

$$
\begin{equation*}
\rho(G)=L_{1}(G) \geq \frac{n}{2 \Delta(\Delta+1)} \tag{5}
\end{equation*}
$$

Let $\delta=\delta(G)$ denote the minimum vertex degree in a graph G. The lower bound of Corollary 4 can be improved as follows:

Theorem 5. For any graph G of order n,

$$
\begin{equation*}
\rho(G)=L_{1}(G) \geq \frac{n+\Delta(\Delta-\delta)}{\Delta^{2}+1} \geq \frac{n}{\Delta^{2}+1} . \tag{6}
\end{equation*}
$$

Proof. Choose any vertex $v \in V(G)$ of the minimum degree δ in G. Then add v to a set X and remove vertices of $N[N[v]]$ from the graph to obtain $G^{\prime}=G-N[N[v]]$, where $N[N[v]]=\{w: w \in N[u]$ for some $u \in N[v]\}$ is the so-called second closed neighbourhood of v in G. Recursively apply the same procedure to the remaining graph G^{\prime} until it is empty. It is not difficult to see that X is a 1 -limited packing (distance 2-packing) of size at least $\left\lceil\frac{n+\Delta(\Delta-\delta)}{\Delta^{2}+1}\right\rceil$: we remove at most $1+\Delta+\Delta(\Delta-$ $1)=1+\Delta^{2}$ vertices at each iteration, but at most $1+\delta+\delta(\Delta-1)=1+\delta \Delta$ vertices at the first iteration, and $\left(1+\Delta^{2}\right)-(1+\delta \Delta)=\Delta(\Delta-\delta)$.

The proof of Theorem 5 provides a greedy algorithm to find a distance 2-packing (1-limited packing) satisfying bound (6). We explain later in Section 4 why the lower bound of Theorem 5 is as good as lower bound (5) of Corollary 4 for almost all graphs.

3. Randomized algorithm

A pseudocode presented in Algorithm 1 explicitly describes a randomized algorithm to find a k-limited packing set, whose size satisfies bound (1) with a positive probability. Notice that Algorithm 1 constructs a (preliminary) k-limited packing X^{\prime} by recursively removing unwanted vertices from a randomly generated set A. This is different from the probabilistic construction used in the proof of Theorem 1. The recursive removal of vertices from the set A may be more effective and efficient, especially if one tries to remove overall as few vertices as possible from A by maximizing intersections of the sets $A_{m}^{\prime}(m=k, \ldots, \Delta)$ and $B_{m}^{\prime}(m=k+1, \ldots, \Delta)$.

At the final stage, Algorithm 1 does a (greedy) extension of the preliminary k-limited packing X^{\prime} derived from the randomly generated set A. Our experimental tests with randomly generated problem instances show the following: although
the randomized part of Algorithm 1 may eventually return a preliminary k-limited packing set slightly smaller than lower bound (1), the extension of this set to a maximal k-limited packing always satisfies (1). This is of no surprise, because the expectation of the size of randomly formed set A in Algorithm 1 is $\mathbf{E}[|A|]=p n$, where $p=\left(\binom{\Delta}{k}(\Delta+1)\right)^{-1 / k}$, while the expression for lower bound in (1) yields a smaller value:

$$
\frac{k n}{\tilde{c}_{k+1}^{1 / k}(1+k)^{1+1 / k}}=\frac{k}{k+1} p n=\frac{k}{k+1} \mathbf{E}[|A|]<\mathbf{E}[|A|] .
$$

From the experimental tests, an initially formed set A may contain only few redundant vertices to be removed to obtain the preliminary k-limited packing X^{\prime}. As a result, the preliminary k-limited packing X^{\prime} in many cases satisfies lower bound (1), and the extension of X^{\prime} to a maximal k-limited packing X seems to always satisfy (1). In our view, since the problem is $N P$-hard, Algorithm 1 constitutes a simple efficient approach to tackle the problem in practice and, hopefully, can be useful to solve some hard instances of the problem.

```
Algorithm 1: Randomized \(k\)-limited packing
    Input: Graph \(G\) and integer \(k, 1 \leq k \leq \Delta\).
    Output: \(k\)-Limited packing \(X\) in \(G\).
    begin
    Compute \(p=\left(\frac{1}{\tilde{c}_{k+1}(1+k)}\right)^{1 / k}\);
    Initialize \(A=\emptyset ; \quad\) /* Form a set \(A \subseteq V(G)\) */
    foreach vertex \(v \in V(G)\) do
            with the probability \(p\), decide whether \(v \in A\) or \(v \notin A\);
        end
                    /* Recursively remove redundant vertices from \(A\) */
            foreach vertex \(v \in V(G)\) do
            Compute \(r=|N(v) \cap A|\);
            if \(v \in A\) and \(r \geq k\) then
                remove any \(r-k+1\) vertices of \(N(v) \cap A\) from \(A\);
            end
            if \(v \notin A\) and \(r>k\) then
                    remove any \(r-k\) vertices of \(N(v) \cap A\) from \(A\);
            end
            end
            Put \(X^{\prime}=A ; \quad / * X^{\prime}\) is a \(k\)-limited packing */
            Extend \(X^{\prime}\) to a maximal \(k\)-limited packing \(X\);
            return \(X\);
    end
```

Algorithm 1 can be implemented to run in $O\left(n^{2}\right)$ time. To compute the probability $p=\left(\binom{\Delta}{k}(\Delta+1)\right)^{-1 / k}$, the binomial coefficient $\binom{\Delta}{k}$ can be computed
by using the dynamic programming and Pascal's triangle in $O(k \Delta)=O\left(\Delta^{2}\right)$ time using $O(k)=O(\Delta)$ memory. The maximum vertex degree Δ of G can be computed in $O(m)$ time, where m is the number of edges in G. Then p can be computed in $O\left(m+\Delta^{2}\right)=O\left(n^{2}\right)$ steps. It takes $O(n)$ time to find the initial set A. Computing the intersection numbers $r=|N(v) \cap A|$ and removing unwanted vertices of $N(v) \cap A$'s from A can be done in $O(n+m)$ steps. Finally, checking whether X^{\prime} is maximal or extending X^{\prime} to a maximal k-limited packing X can be done in $O(n+m)$ time: try to add vertices of $V(G)-X^{\prime}$ to X^{\prime} recursively one by one, and check whether the addition of a new vertex $v \in V(G)-X^{\prime}$ to X^{\prime} violates the conditions of a k-limited packing for v or at least one of its neighbours in G with respect to $X^{\prime} \cup\{v\}$. Thus, overall Algorithm 1 takes $O\left(n^{2}\right)$ time, and, since $m=O\left(n^{2}\right)$ in general, it is linear in the graph size $(m+n)$ when $m=\theta\left(n^{2}\right)$.

Also, this randomized algorithm for finding k-limited packings in a graph G can be implemented in parallel or as a local distributed algorithm. As explained in [5], this kind of algorithms are especially important, e.g. in the context of ad hoc and wireless sensor networks. We hope that this approach can be also extended to design self-stabilizing or on-line algorithms for k-limited packings. For example, a self-stabilizing algorithm searching for maximal 2-packings in a distributed network system is presented in [12]. Notice that self-stabilizing algorithms are distributed and fault-tolerant, and use the fact that each node has only a local view/knowledge of the distributed network system. This provides another motivation for efficient distributed search and algorithms to find k-limited packings in graphs and networks.

4. Sharpness of the lower bounds

We now show that the lower bound of Theorem 1 is asymptotically best possible for some values of k. The bound of Theorem 1 can be rewritten in the following form for $\Delta \geq k$:

$$
L_{k}(G) \geq \frac{k n}{(k+1) \sqrt[k]{\binom{\Delta}{k}(\Delta+1)}}
$$

Combining this bound with the upper bound of Lemma 8 from [6], we obtain that for any connected graph G of order n with minimum degree $\delta(G) \geq k$,

$$
\begin{equation*}
\frac{1}{\sqrt[k]{\binom{\Delta}{k}(\Delta+1)}} \times \frac{k}{k+1} n \leq L_{k}(G) \leq \frac{k}{k+1} n \tag{7}
\end{equation*}
$$

Notice that the upper bound in the inequality (7) is sharp (see [6]), so these bounds provide an interval of values for $L_{k}(G)$ in terms of k and Δ when $k \leq \delta$. For regular graphs, $\delta=\Delta$, and, when $k=\Delta$, we have

$$
\frac{1}{\sqrt[k]{\binom{\Delta}{k}(\Delta+1)}}=\frac{1}{(k+1)^{1 / k}} \longrightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Therefore, the bound of Theorem 1 is asymptotically sharp for regular connected graphs in the case $k=\Delta$. In other words, there are graphs whose k-limited packing number is arbitrarily close to the bound of Theorem 1. Thus, the following result holds:

Theorem 6. When n is large, there exist graphs G such that

$$
\begin{equation*}
L_{k}(G) \leq \frac{k n}{\tilde{c}_{k+1}^{1 / k}(1+k)^{1+1 / k}}(1+o(1)) \tag{8}
\end{equation*}
$$

As shown above, the graphs satisfying Theorem 6 contain regular connected ones for $k=\Delta$. This class of graphs can be extended, because it is possible to prove that the bound of Theorem 1 is asymptotically sharp for connected graphs with $k=\Delta(1-o(1)), \delta(G) \geq k$.

Notice that, for regular graphs, the condition $k=\Delta$ and Lemma 5 from [6] imply $L_{k}(G)=n-\gamma(G)$. Then the classical upper bound (9) for $\gamma(G)$ gives a weaker lower bound for $L_{k}(G)$ than Theorem 1.

As shown in Theorem 5, in contrast to the situation for relatively 'large' values of k, bound (1) of Theorem 1 (see Corollary 4) can be improved for distance 2-packings (1-limited packings), i.e. when $k=1$. However, this improvement is irrelevant for almost all graphs. A 1-limited packing set X in G has a very strong property that any two vertices in X are at distance at least 3 in G. It is well known that almost every graph has diameter equal to 2 (e.g., see [10]). Therefore, $\rho(G)=L_{1}(G)=1$ for almost all graphs. Thus, in the case $k=1$, Theorem 1 yields a lower bound of 1 for almost all graphs and is as good as Theorem 5. Notice that the bound of Theorem 5 is sharp, for example, for any number of disjoint copies of the Petersen graph. In the other cases, when G has a diameter larger than 2 , one is encouraged to use the greedy algorithm and lower bound (6) provided by Theorem 5, because it improves bound (5) of Corollary 4 by a factor of $2+o(1)$.

5. Upper bounds

As mentioned earlier, $\rho(G)=L_{1}(G) \leq \gamma(G)$. In [6], the authors provide several upper bounds for $L_{k}(G)$, e.g. $L_{k}(G) \leq k \gamma(G)$ for any graph G. Using the well-known bound (see e.g. [1])

$$
\begin{equation*}
\gamma(G) \leq \frac{\ln (\delta+1)+1}{\delta+1} n \tag{9}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
L_{k}(G) \leq \frac{\ln (\delta+1)+1}{\delta+1} k n \tag{10}
\end{equation*}
$$

Even though this bound does not work well when k is 'close' to δ, it is very reasonable for small values of k.

We now prove an upper bound for the k-limited packing number in terms of the k-tuple domination number. A set X is called a k-tuple dominating set of G if for every vertex $v \in V(G),|N[v] \cap X| \geq k$. The minimum cardinality of a k tuple dominating set of G is the k-tuple domination number $\gamma_{\times k}(G)$. The k-tuple domination number is only defined for graphs with $\delta \geq k-1$.

Theorem 7. For any graph G of order n with $\delta \geq k-1$,

$$
\begin{equation*}
L_{k}(G) \leq \gamma_{\times k}(G) \tag{11}
\end{equation*}
$$

Proof. We prove inequality (11) by contradiction. Let X be a maximum k-limited packing in G of size $L_{k}(G)$, and let Y be a minimum k-tuple dominating set in G of size $\gamma_{\times k}(G)$. We denote $B=X \cap Y$, i.e. $X=A \cup B$ and $Y=B \cup C$, where A and C are disjoint. Assume to the contrary that $L_{k}(G)>\gamma_{\times k}(G)$, thus $|A|>|C|$.

Since Y is k-tuple dominating set, each vertex of A is adjacent to at least k vertices of Y. Hence the number of edges between A and $B \cup C$ is as follows:

$$
e(A, B \cup C) \geq k|A|
$$

Now, every vertex of C is adjacent to at most k vertices of X, because X is a k limited packing set. Therefore, the number of edges between C and $A \cup B$ satisfies

$$
e(C, A \cup B) \leq k|C|
$$

We obtain

$$
e(C, A \cup B) \leq k|C|<k|A| \leq e(A, B \cup C)
$$

i.e. $e(C, A \cup B)<e(A, B \cup C)$. By eliminating the edges between A and C, we conclude that

$$
e(C, B)<e(A, B)
$$

Now, let us consider an arbitrary vertex $b \in B$ and denote $s=|N(b) \cap A|$. Since $X=A \cup B$ is a k-limited packing set, we obtain $|N(b) \cap X| \leq k-1$, and hence $|N(b) \cap B| \leq k-s-1$. On the other hand, $Y=B \cup C$ is k-tuple dominating set, so $|N(b) \cap Y| \geq k-1$. Therefore, $|N(b) \cap C| \geq s$. Thus, $|N(b) \cap C| \geq|N(b) \cap A|$ for any vertex $b \in B$. We obtain,

$$
e(C, B) \geq e(A, B)
$$

a contradiction. We conclude that $L_{k}(G) \leq \gamma_{\times k}(G)$.
Notice that it is possible to have $k=\Delta+1$ in the statement of Theorem 7, which is not covered by Theorem 1. Then $\delta=\Delta$, which implies the graph is regular. However, $L_{k}(G)=\gamma_{\times k}(G)=n$ for $k=\delta+1=\Delta+1$. In non-regular graphs, $\delta+1 \leq \Delta$, and $k \leq \Delta$ to satisfy the conditions of Theorem 1 as well.

For $t \leq \delta$, we define

$$
\delta^{\prime}=\delta-k+1 \quad \text { and } \quad \tilde{b}_{t}=\tilde{b}_{t}(G)=\binom{\delta+1}{t}
$$

Using the upper bound for the k-tuple domination number from [5], we obtain:
Corollary 8. For any graph G with $\delta \geq k$,

$$
\begin{equation*}
L_{k}(G) \leq\left(1-\frac{\delta^{\prime}}{\tilde{b}_{k-1}^{1 / \delta^{\prime}}\left(1+\delta^{\prime}\right)^{1+1 / \delta^{\prime}}}\right) n \tag{12}
\end{equation*}
$$

In some cases, Theorem 1 and Corollary 8 simultaneously provide good bounds for the k-limited packing number. For example, for a 40-regular graph G :

$$
0.312 n<L_{25}(G)<0.843 n
$$

Acknowledgement

The authors are grateful to the anonymous referee for helpful comments and suggestions.

References

[1] N. Alon, J.H. Spencer, The Probabilistic Method, 2nd ed., John Wiley \& Sons Inc., New York, 2000.
[2] B. Bollobás, Graph Theory: An Introductory Course, Springer-Verlag, New York, 1979.
[3] A.P. Burger, M.A. Henning, J.H. van Vuuren, On the ratios between packing and domination parameters of a graph, Discrete Math. 309 (2009) 2473-2478.
[4] M.P. Dobson, V. Leoni, G. Nasini, The multiple domination and limited packing problems in graphs, Inform. Process. Lett. 111 (2011) 1108-1113.
[5] A. Gagarin, A. Poghosyan, V.E. Zverovich, Randomized algorithms and upper bounds for multiple domination in graphs and networks, Discrete Appl. Math. 161 (2013) 604-611.
[6] R. Gallant, G. Gunther, B. Hartnell, D. Rall, Limited packings in graphs, Discrete Appl. Math. 158(12) (2010) 1357-1364.
[7] M.A. Henning, C. Löwenstein, D. Rautenbach, Dominating sets, packings, and the maximum degree, Discrete Math. 311 (2011) 2031-2036.
[8] D.S. Hochbaum, D.B. Schmoys, A best possible heuristic for the k-center problem, Math. Oper. Res. 10(2) (1985) 180-184.
[9] A. Meir, J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.
[10] J.W. Moon, L. Moser, Almost all $(0,1)$ matrices are primitive, Studia Sci. Math. Hungar. 1 (1966) 153-156.
[11] R.R. Rubalcaba, A. Schneider, P.J. Slater, A survey on graphs which have equal domination and closed neighborhood packing numbers, AKCE J. Graphs. Combin. 3(2) (2006) 93-114.
[12] Z. Shi, A self-stabilizing algorithm to maximal 2-packing with improved complexity, Inform. Process. Lett. 112 (2012) 525-531.
[13] J. Topp, L. Volkmann, On packing and covering numbers of graphs, Discrete Math. 96 (1991) 229-238.

[^0]: *Corresponding author, fax: +44 (0) 1784 439786, phone: +44 (0) 1784443437
 Email addresses: andrei.gagarin@rhul.ac.uk (Andrei Gagarin),
 vadim.zverovich@uwe.ac.uk (Vadim Zverovich)

