
The Cognitive Dimensions of Music Notations

Chris Nash
Department of Computer Science and Creative Technology,

University of the West of England,
Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom

chris.nash@uwe.ac.uk

ABSTRACT
This paper presents and adapts the Cognitive Dimensions
of Notations framework (Green and Petre, 1996) for use
in designing and analysing notations (and user interfaces)
in both digital and traditional music practice and study.
Originally developed to research the psychology of
programming languages, the framework has since found
wider use in both general HCI and music. The paper
provides an overview of the framework, its application,
and a detailed account of the core cognitive dimensions,
each discussed in the context of three music scenarios:
the score, Max/MSP, and sequencer/DAW software.
Qualitative and quantitative methodologies for applying
the framework are presented in closing, highlighting
directions for further development of the framework.

1. INTRODUCTION
Music and programming are two creative mediums
mediated through notation. In both scenarios, notation is
used to describe the behaviour of a system for subsequent
execution – be that by computer or human performer. As
a representation of a creative domain, notation shapes
how the practitioner perceives and interacts with their art.
In formal systems, such as computers and common
practice music, the design of notation defines what
actions and expressions are possible. However, the design
of notation and techniques for manipulating can also
dispose (or discourage) users to certain actions and
formulations – what actions and expressions are easy.
 This paper draws on research and findings in the
psychology of programming and music HCI to describe a
flexible approach to analysing and evaluating notations
and user interfaces in a variety of digital and traditional
musical practices. It begins with a discussion of the
parallels between musical creativity (e.g. composition)
and programming, before introducing the Cognitive
Dimensions of Notation framework. [1] To demonstrate
the application and adaptability of the framework,
Section 4 explores sixteen core dimensions of notation
use through three scenarios of notation-mediated music
interaction: sketching and transcription using traditional
score; audio/music programming using Max/MSP; and
composition and production using a sequencer or digital
audio workstation (DAW). Finally, Section 5 offers a
survey of methodologies for applying the framework.

2. FROM PROGRAMMING TO MUSIC
There are many parallels between programming and
creative musical scenarios such as composition, both in
digital interaction and more traditional music practice.
 Fundamentally, both practices can be mediated through
notation. In Western music, formal training and practice
is oriented around the musical score. Composers exploit
the flexible affordances of pencil and paper to sketch and
experiment with musical ideas, before transcribing their
work more formally for communication to the performer,
who interprets the notation to realise the written form as
music (i.e. sound). The listener, as the consumer, does not
see the notation. In programming, developers describe
processes and interactive systems in source code, using
symbol-based formal languages (such as C/C++, BASIC,
or LISP). The code is compiled or interpreted by the
computer to create a program that encapsulates some kind
of functionality and processing of input and/or output. As
in music, the end-user does not see the source code.
 In both instances, the formal rules of the notation define
what actions and entities can be represented with respect
to the creative domain – music or program behaviour.
The musical score developed over centuries to efficiently
capture the formal rules of Western tonal music, during
the common practice period (1600-1900). [2] While this
covers a wide gamut of musical practices and styles, and
continues to be relevant in modern styles, the format and
conventions of the score implicitly shape the creativity of
anyone working through it. [3,4,5]
 Unlike music, no single standard programming notation
exists; users have an element of choice over formalisms.
Most coding languages are Turing complete, meaning
they are practically capable of encapsulating any
desired computer functionality. Thus, the issue with such
notations is not what is possible, but what functionality is
easy or quick to code, given the formal rules of the
notation. [1] Different languages (and dialects) offer
distinctions in syntax and semantics to facilitate different
users and uses. For example: BASIC is designed using
simple English keywords to be easily comprehended by
beginners (at the expense of structure); Assembler more
directly exposes low-level workings of hardware (at the
expense of human-readability); and object-oriented
languages, like Java and C++, are designed around
creating modular systems and abstract data models that
map onto user ontologies to enable notation of both low-
and high-level concepts. As music notation similarly
seeks to support beginners, instrument affordances, and
flexible levels of abstract representation, it is instructive
to analyse usability factors in notations for programming.

Copyright: © 2015 Chris Nash. This is an open-access article distributed
under the terms of the Creative Commons Attribution License 3.0 Unported,
which permits unrestricted use, distribution, and reproduction in any medi-
um, provided the original author and source are credited.

 Beyond the format of notation, editing tools also impact
the usability of a notation, and although text-based
notations can be separated from code editors, other
programming paradigms are more integrated with the
user experience of the development environment. For
example, visual programming languages (VPLs), such as
Max/MSP, are manipulated through a graphical user
interface, the usability of which impacts how users
perceive the language and its capabilities. Other coders
develop using an integrated development environment
(IDE), offering unified platform for writing, building,
running and debugging code. The integration of such
tools allows code edits to be quickly tested and evaluated,
accelerating the feedback cycle and thus enabling rapid
application development, in turn facilitating experimenta-
tion and ideation. [6] Thus, any approach for analysing
notation should likewise address factors in the UI.
 In music, similar considerations can be made of the
design of interactive modes supported by tools to
manipulate notations – be that pencil and paper, ink and
printer, or mouse and computer screen. Score notation
supports composers in creating music, performers in
interpreting it, scholars in analysing it, and learners in
understanding it. In each case, practitioners use different
techniques and tools to interact with the encapsulated
music. Moreover, while music plays a functional role in
many aspects of culture, it is also about personal, creative
expression, and thus it is important to look at how the
development of musical ideas is shaped by the design of
notations. To consider this, the following section uses the
analogue of programming to adapt an established analysis
framework that might be used to reveal limitations, influ-
ences and opportunities in music notations and interfaces.

3. A USABILITY FRAMEWORK
The Cognitive Dimensions of Notations [1] is a usability
framework originally developed by Thomas R. G. Green
and Marian Petre, to explore the psychology of interac-
tion with notation in the field of programming, breaking
different factors of the software designer’s user experi-
ence into cognitive dimensions that separately focus on
affordances of the notation, but which collectively help to
paint a broad picture of the user experience involved with
editing code and crafting interactive software systems.
 The definitions of each dimension (see Section 4) are
borne from research in cognitive science, but shaped to
operationalise the framework as a practical analysis
tool for use by interaction designers, researchers, and
language architects. [7] It is intended that each dimension
describe a separate factor in the usability of a notation,
offering properties of granularity (continuous scale;
high/low), orthogonality (independent from other dimen-
sions), polarity (not good or bad, only more or less desir-
able in a given context), and applicability (broader rele-
vance to any notations).
 In practice, these properties cannot always be met. [1,7]
Interactions between dimensions are evident, with either
concomitant or inverse relationships. For example,
low viscosity (~ ease of changing data) contributes to
provisionality (~ ease of experimentation); whereas,
higher visibility (~ ease of viewing) may reduce hidden

dependencies (~ invisible relationships). Moreover, some
dimensions are value-laden; intuitively it may be difficult
to see how error proneness, hard mental operations, and
hidden dependencies are desirable. However, knowledge
of these relationships can be useful in solving usability
issues, where a solution to one dimension can be ad-
dressed through a design manœuvre targeted at another.
 The exact set of cognitive dimensions is not fixed, and
various proposals for new dimensions, designed to
capture aspects of a notation or user experience beyond
the original framework, have been forwarded – many
arising from its expanded use in other fields in and
around HCI (non-programming interaction, tangibles,
computer music). New dimensions should be measured
against the aforementioned requirements, but their value
is most effectively gauged by how much they reveal
about the interaction context in question, and arguably
the greatest contribution of the framework is that it
provides a vocabulary and structure for discussing and
analysing notation from multiple perspectives.
 As an HCI tool (and in contrast to other usability meth-
odologies), it allows both broad and detailed analysis of
human factors in a notation or user interface, adaptable to
different use cases and audiences. By considering each
cognitive dimension in the context of a specific system,
designers and evaluators can assess how the notation fits
their user or activity type, whether that’s making end-user
systems easier to use [5] or making musical interaction
more rewarding by increasing challenge. [8,9]
 For a detailed discussion of the background and defini-
tion of dimensions in the original framework, see [1]. For
further publications on the subject, see the framework’s
resource site and associated bibliography.1

4. DIMENSIONS OF MUSIC NOTATION
In this section, sixteen core dimensions of the framework,
adapted for a musical context, are detailed and discussed
in the context of three common musical interaction sce-
narios. To evaluate both formal and informal music nota-
tion, each dimension is respectively reviewed in the con-
text of the musical score and sketch (SCORE). The inter-
section of musical expression and programming is then
similarly explored in the context of the Max audio syn-
thesis environment (MAX/MSP). Lastly, the framework is
used to review the user interfaces and experiences offered
by mainstream end-user systems, through an analysis of
digital audio workstation (DAW) and sequencer software
(DAW). In addition to a description of the dimension, each
is introduced with a simple question designed to encapsu-
late the definition in a form that can be used to capture
feedback from end-users (e.g. a user survey [3,8,10,11]).

4.1 Visibility

“How easy is it to view and find elements or parts of the
music during editing?”

This dimension assesses how much of the musical work
is visualised in the notation or UI, as well as how easy it
is to search and locate specific elements. While hiding

1 http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/

data will make it difficult to find, showing too much data
can also slow the search. Pages and screens limit the
amount of space available for displaying data, requiring a
careful balance of visual detail and coverage.

[Related dimensions: juxtaposability, abstraction man-
agement, hidden dependencies, conciseness/diffuseness,
closeness of mapping, role expressiveness.]

SCORE: In sheet music, all notated elements are visible on
the page; there is no feature to dynamically hide notated
elements, beyond using separate sheets. However, music
is hidden on other pages, where page turns also present
challenges for typesetter or performer, if phrases continue
over a join. This can be accounted for in layout, with
forethought, but this increases the premature commit-
ment. Things are easier for the composer, as a draft musi-
cal sketch need not cater for the performer, and pages can
be laid side-by-side (see juxtaposability). Some aspects of
the final musical form (e.g. expression and prosody of
performance) may not be visually explicit in the musical
score (see closeness of mapping).

MAX/MSP: As a visual programming language (VPL),
visibility is a key dimension of Max, which explicitly
represents the flow of audio and musical data. As in
many programming languages, the visibility of process
(code/data-flow) is prioritised over musical events (data).
In Max, many elements of a system are not visualised,
such as the internal state of most objects (e.g. default or
current values). There is also no inherent linear / serial
representation of musical time, making it difficult to
sequence past or future events or behaviour. As such,
Max best suits generative and reactive (live) applications.

DAW: Like most end-user software, DAWs offer a graph-
ical user interface (GUI) that is inherently visual. How-
ever, different sub-devices (views) reveal or hide differ-
ent properties of the music; no screen provides a compre-
hensive or primary notation. Notably, the arrange win-
dow is the only window designed to provide an overview
of the whole piece, but filters low-level detail (e.g. notes),
which must be edited through other interfaces (score,
piano roll, data list). As a result musical data is dispersed
through the UI and can be difficult to find, often involv-
ing navigating and scrolling through windows and views
with the mouse. Arguably the primary and most expres-
sive interaction medium for the sequencer is inherently
non-visible: performance capture (MIDI/audio recording).

4.2 Juxtaposability

“How easy is it to compare elements within the music?”

Related to visibility, this dimension assesses how notated
music can be compared against other data. Pages and
moveable windows allow side-by-side comparison, albeit
at some cost to visibility. How clearly elements and their
purpose are represented will also affect how easy it is to
compare notated passages (see role expressiveness).
Music systems may also provide tools for non-visual
comparisons – e.g. sound (see progressive evaluation).

[Related dimensions: visibility, consciseness/diffuseness,
role expressiveness, progressive evaluation]

SCORE: Pages allow side-by-side comparison of elements,
and the formal rules for encapsulating music make visual
inspection an effective tool for assessing similarity
(rhythmic patterns, melodic contour, etc.). However,
some musical properties are distinguished more subtly in
the visual domain (e.g. harmony, key, transposed parts –
see hidden dependencies), requiring musicianship as well
as notational literacy to enable effective comparison.

MAX/MSP: Max’s windowed system allows side-by-side
comparison, so long as abstraction (sub-patching) is
applied effectively. Groups of objects can be dragged
next to each other, but this becomes cumbersome as the
patch grows and objects are intricately woven and linked
to surrounding objects (see viscosity and premature
commitment). Broad visually similarity and functional
similarity may not always align (see role expressiveness).

DAW: As in Max, windowed systems allow side-by-side
comparisons, though sizing, scrubbing, and scrolling can
be cumbersome in the face of many windows, a common
issue in traditional linear sequencers [4,12]. Most visuali-
sations of musical elements are easy to compare to simi-
lar properties of other tracks, bars, etc., and generalised
representations (track automation envelopes) also offer a
basis for comparison across different musical properties.

4.3 Hidden Dependencies

“How explicit are the relationships between related
elements in the notation?”

This definition assesses to what extent the relationships
and dependencies (causal or ontological) between
elements in the music are clear in the notation. Showing
dependencies can improve visibility, but there is often a
trade-off with editing viscosity. For example, in
programming, textual source code (e.g. C/C++) can be
easily edited, but the relationships between sections of
code, functions, and variables are not explicitly shown.
However, in visual programming languages (VPLs),
objects and variables are linked using arcs, making their
functional connection visually explicit, but making it
harder to edit, once woven into the rest of the code. [1,13]

[Related dimensions: visibility, closeness of mapping,
role expressiveness, viscosity, conciseness/diffuseness]

SCORE: The visibility of the score ensures no actual data is
hidden, except on separate pages, though the musical
relationship between notated elements is not always
explicit. Some elements are visually linked (e.g. slurs and
phrasing) and there are other visual cues that events are
related, as in the use of beams or stems to respectively
bridge rhythmic or harmonic relationships. However,
musical events are sensitive to context, as with dynamic
marks, previous performance directions, and key changes
– though a visual link between each individual note and
the markings that affect its performance would be ineffi-
cient to notate explicitly (increasing the diffuseness).

MAX/MSP: A key attribute of all VPLs; the graphical
connection of elements using patch cables explicitly
identifies dependencies between Max objects, and help to
show signal flow and the wider architecture of a patch.

However, patch execution in Max is also affected by the
relative placement and spatial relationship of objects (e.g.
right-to-left processing of outlets), which is not visualised
explicitly and can lead to unexpected patch behaviour
that confuses users. While relations between objects are
shown, its specific functional purpose is not explicit and
the object’s current state or value is hidden. For example,
default values specified as arguments can be replaced by
messages, but there is no visual indication the value of
the object has changed from its displayed default value.
 Use of sub-patching can also hide functionality, though
this is a common trade-off with the additional expressive
power offered by abstraction mechanisms. Moreover, as
a data-flow environment (and in contrast to imperative
programming, as in C++), musical time and the sequence
of events are not visually explicit, hiding causal and
timing relationships between musical elements.

DAW: The variety of different views and UIs designed for
different purposes and perspectives can lead to a large
number of hidden dependencies within DAWs. [3]
For example, across the different screens and settings
there are dozens of variables that impact the final volume
of an individual note, and often no explicit visual link
between them. Similarly, the routing of audio signals
through a DAW is usually not visually illustrated, but
dependent on the values of (potentially hidden) drop
menus. Some DAWs have attempted to address this:
Tracktion enforces a left-to-right signal flow where a
track’s inputs, inserts, send effects, outputs, and other
processes are aligned in sequence (in a row) within the
tracks of its arrange screen; whereas Reason takes a
skeuromorphic approach using visual metaphor to the
studio, enabling users to inspect and manipulate the wired
connections on the back of virtual hardware devices.

4.4 Hard Mental Operations

“When writing music, are there difficult things to work
out in your head?”

This dimension assesses the cognitive load placed on
users. While this is one of the few dimensions with a
prescribed polarity (to be avoided in a user experience),
musical immersion, motivation, and enjoyment is predi-
cated on providing a rewarding challenge commensurate
with ability, such that music may be one of the few fields
where this dimension is to some degree desirable.

[Related dimensions: consistency, hidden dependencies]

SCORE: Formal music notation carries a high literacy
threshold, making the score inaccessible to untrained or
novice users. Moreover, aspects of the score also require
experienced musicians to solve problems in their head,
such as applying key signature, deducing fingering, etc.
(see hidden dependencies). By not notating these
elements, scores can be more concise, as well as less
prescriptive for interpretation by performers. Interaction
with music notation also draws heavily on rote learning
and deliberate practice to develop unconscious skills and
reflexive playing techniques that would be less efficiently
or fluidly performed if mediated through notation.

MAX/MSP: While arithmetic and computation tasks can be
offloaded to the Max, some aspects of patch behaviour
must be carefully approached. Execution order and causal
relationships are not visually explicit in a Max patch;
users must comprehend the flow of processing to under-
stand the behaviour of their program. Similarly, the lack
of a timeline makes time a more abstract concept, making
less process-oriented styles of music harder to create and
conceive, unless mentally simulated by the user.

DAW: Pro audio software is created with design principles
favouring usability and ease-of-use: to be accessible to
musicians and non-computer audiences. The various sub-
devices in a DAW allow users to edit data through a UI
style suiting their background (score, mixer, piano roll,
MIDI instrument, etc.). However, because complexity is
hidden from the user, there is some risk of such systems
becoming less flexible and more opaque; made of black
boxes supporting established artistic workflows (see
closeness of mapping, premature commitment). The
apparent disjunction between usability and the virtuosity
musicians embrace in other aspects of their practice
(performance, score literacy, composition) may suggest
that such users would accept the cost of developing skill,
when more flexible approaches to musical creativity is
the reward, and thus design heuristics based on virtuosity
rather than usability may be more apt. [9,14]

4.5 Progressive Evaluation (Audibility / Liveness)

“How easy is it to stop and check your progress during
editing?”

This dimension details how easy it is to gain domain
feedback on the notated work during editing. How
complete must the work be before it can be executed?
 In music, this is defined by what facilities are available
to audition the sound or performance of the music.
‘Liveness’, another concept adapted from programming,
defines the immediacy and richness of domain feedback
available in the manipulation of notation [15,16], and is a
key factor in the user’s feeling of immersion in the crea-
tive process and domains such as music. [11,17]

[Related dimensions: provisionality, premature commit-
ment, hard mental operations]

SCORE: Musical feedback is available through manually
playing, sight-reading, and auditioning the notated music
using an instrument. Material can be evaluated through
performance (possibly requiring transposition) on various
instruments – commonly, a piano. Crucially, the piece
needn’t be complete (or ‘correct’) to audition individual
phrases or parts. Moreover, lo-fidelity musical scores
(sketches) allow unfinished, informal notation of ideas
that can still be interpreted by the composer. There may,
however, be a disparity between notated forms and a
musical performance, where performers may add their
own interpretations to the notes on the page (individual
prosody, articulation, rubato, etc.). Simulation of material
on a different instrument also relies on the composer’s
knowledge of the target instrument and related technique
– e.g. a piano may be more or less musically flexible, and
offer a different timbre to the target instrument.

MAX/MSP: The environment allows patches to be run at
any time, though they must be coherent and syntactically
correct to evaluate the sound design or music. Good
programming practice encourages a modular approach
that allows sub-components and simpler configurations to
be tested individually, early in development, though its
function and output might be abstracted from the final
sonic intent of the code.

DAW: The timeline, mixer, playback and track controls
(e.g. mute, solo) enable the user flexible control of listen-
ing back to musical data and auditioning individual edits.
A piece can be auditioned as it is built up, track-by-track,
bar-by-bar, or note-by-note, and there is no requirement
that the ‘solution’ or notated form be musically correct or
coherent to be heard. The rigid UI prevents the entry of
non-sensical data, and informal or ambiguous directions
(see secondary notation) cannot be auditioned. For digi-
tally-produced music, the sound output offers an exact
representation of the music notated in the UI.
 Sequencers designed to accelerate the edit-audition
cycle enable a higher level of liveness in the user
experience of notation-mediated digital music systems, as
evidenced by loop- and pattern-based sequencer software
such as Ableton Live and most soundtrackers [11], which
focus editing on shorter excerpts of music, shortening
the feedback cycle. This contrasts the unbroken linear
timelines of traditional sequencers, where (beyond the
literally live experience of recording), interaction styles
for editing and arranging parts offer lower liveness.

4.6 Conciseness / Diffuseness

“How concise is the notation? What is the balance
between detail and overview?”

This dimension assesses the use of space in a notation.
Both pages and screens have limited space, and both the
visibility and viscosity of a notation suffer when data
escapes from focus. Legibility may also suffer if the
notation is simply shrunk or packed tightly, such that
conciseness must normally be balanced with careful use
of abstraction mechanisms. In music, composers need to
be able to access every detail of a piece, but also able to
get a sense of the ‘big picture’. [3,12]

[Related dimensions: visibility, juxtaposability, hidden
dependencies, abstraction management, consistency]

SCORE: The score has evolved to provide a concise
representation of music. Unlike digital notations, no
abstractions or sub-views are available to hide detail; all
elements are always visible, requiring economical use of
space. Time is represented using a pseudo-linear scale,
where notes are positioned within the bar to reflect rela-
tive position in a piece, but bar sizes are compressed such
that sparse phrases consume less space. Musical time and
page position are further decoupled through the symbolic
representation of note duration, such that slow passages
(e.g. of semi-breves) do not consume excessive space, but
fast passages (e.g. of demi-semi quavers) are expanded to
show the detail more clearly. This symbolic encoding of
time, however, does lower the closeness of mapping,
increasing the onus on literacy (virtuosity).

MAX/MSP: The layout and density of a Max patch is
flexible, though readability suffers when objects are
densely packed together or connecting patchcords
obscure each other. When complex patches grow outside
the confines of a window, visibility suffers and mouse-
based interaction can be cumbersome. Abstraction mech-
anisms such as sub-patching are critical in managing
complex systems and avoiding sprawling patches, but
trade diffuseness over screen space for diffuseness over
separate, possibly hidden windows.

DAW: The variety of notations and views in DAWs offer a
varied level of conciseness. The arrange view sacrifices
visibility of data to accommodate a broader overview of a
piece in the UI. Part editors, like the score and piano roll
interfaces, offer more detail (in a manner similar to the
traditional score), but only partial views of the entire
work. More generally, the lack of a comprehensive
principle notation or interface means that information is
diffused over different views within the program. Many
DAWs do little to optimise window management, naviga-
tion, or searching, compounding interaction issues.

4.7 Provisionality

“Is it possible to sketch things out and play with ideas
without being too precise about the exact result?”
This dimension assesses how easy it is to experiment
with new ideas through the notation or UI, and how fully
formed those ideas must be. Accordingly, it is a critical
factor in a musical system’s support for sketching, idea-
tion, and exploratory creativity. [3,5,11,16] In digital
systems, an ‘undo’ facility significantly contributes
to provisionality, allowing inputs and edits (‘what if’
scenarios) to be trialled and reversed, reducing premature
commitment to a particular approach [1] – reducing the
risk of trying new ideas. The dimension is closely related
to viscosity and progressive evaluation, where the ease
and flexibility of editing and auditioning similarly facili-
tates exploring new ideas. Secondary notation also offers
the opportunity to make incomplete or informal remarks,
but in a non-executable form that can’t be auditioned.

[Related dimensions: premature commitment, viscosity,
progressive evaluation, secondary notation]

SCORE: In a musical sketch, the affordances of paper and
pencil support a powerful and flexible medium for
capturing part-formed ideas. [5,18] Pencil can be easily
and quickly erased, facilitating experimentation and idea-
tion. By contrast, the formality of the typeset, printed ink
manuscript is less flexible and more permanent, used
only to finalise a composition for archiving or communi-
cation (e.g. to performers). These two instances of score
notation compliment each other in an established
ecosystem that facilitates both composition (creativity)
and performance (production) (cf. [19]).

MAX/MSP: The visual drag-&-drop, interactive debugging
environment of Max facilitates its use as a rapid prototyp-
ing tool, useful in the exploratory design of new audio
processing tools and synthesis techniques [13] – though
some more involved musical constructs or expressions
can be harder to develop or articulate quickly, reducing

provisionality and ideation. Conversely, as a prototyping
tool, Max’s focus on experimentation and early stage
creativity comes at the expense of subsequent stages of
the creative process (“productivity” [19]): finalisation,
refinement, and continued development of designs (e.g.
for consumption by end-users, non-programmers, and
other musicians) is normally conducted using other de-
velopment tools (e.g. C/C++).

DAW: Like other authoring tools, DAWs offer multiple
ways of quickly adding, editing and deleting elements in
the document (i.e. musical piece). Moreover, the presence
of ‘undo’ functionality makes it easy to backtrack
actions, reducing the risk of experimenting with new
ideas, encouraging ideation [1]. The primary mode of
input – digital audio or MIDI performance capture – in
combination with practically unlimited storage (length,
tracks, etc.) represents an improvement in provisionality
over historic recording techniques (e.g. tape). Users can
also address issues in live recordings using advanced
overdub tools, without recourse to re-recording entire
performances. Offline editing, through part editors like
score or piano roll, allows experimentation with different
ideas, though such interfaces are not always optimised for
the rapid entry, editing and auditioning of new material to
support creative exploration of musical ideas. [11]

4.8 Secondary Notation

“How easy is it to make informal notes to capture ideas
outside the formal rules of the notation?”
This dimension evaluates a system’s provision for record-
ing information beyond the formal constraints of the
notation. As informal notation, data is typically not
executable by computer or performer, and may only be
related to the encapsulated piece / performance indirectly.
Decoupled from the formal rules of expression in the
notation, secondary notations often allow users to make
freeform notes to support their edit process, though
flexibly designed facilities may be used for a variety of
purposes – including evaluation (peer feedback), working
out problems, highlighting relationships in the notation,
sketching rough high-level structure, aesthetic decoration,
to-do lists, incomplete ideas, etc. In programming, code
commenting is used to annotate code with useful labels,
instructions, explanations, ASCII art, etc., helping to
make the code more readable, but also as a form of
communication between coders. As such, secondary
notations should be designed to be as flexible as possible,
to allow users to appropriate them for their own needs.
[Related dimensions: provisionality, hard mental opera-
tions, hidden dependencies, role expressiveness]

SCORE: The expressive freedom of pencil and pen marks
on paper allow musical scores to be annotated with any
additional information, such as personal notes, decora-
tion, as well as irregular performance instructions.
Formal notation places more constraints on what is
representable, though written language can be freely used
in performance directions. The human interpretation of
scores enables a further degree of flexibility in applying
and developing new terminology, such that informal

notes that break from standard semantics may still be
executable. Performers can also add their own notes to
manuscripts to guide their own interpretation of the piece.

MAX/MSP: Like other programming tools, code comments
are an important part of developing and maintaining Max
patches. Max’s visual medium supports annotations using
free text (comment boxes), shaded areas, and imported
images (bitmaps), used to explain workings, usage, or as
decoration. However, drawing facilities are very limited
in comparison to pencil and paper, and even digital
graphics, with no provision for freehand sketching or
drawing lines, arrows, or shapes (other than rectangles).
Given the proven benefits of such affordances in other
music notations (e.g. the musical sketch and score [5]),
their omission in such a visual medium is surprising.

DAW: Despite the proliferation of different notational
styles in DAWs, each UI is rigidly structured to fulfil a
defined purpose and offer specific tools for editing the
underlying data. Limited provisions for annotations are
provided by way of labelling and colour-coding parts and
tracks, and free text is often supported for meta-data, but
few mechanisms are provided for flexibly annotating the
music in any of the sub-notations or views, beyond those
forms formally recognised by the program.

4.9 Consistency

“Where aspects of the notation mean similar things, is
the similarity clear in the way they appear?”

This dimension defines how coherent and consistent the
methods of representing elements in a notation or UI are.
Consistency facilitates the learning of a system (see
virtuosity), as users used to a style of presentation can
apply knowledge learnt in one area to understand others.
However, consistency may also be sacrificed to improve
conciseness, visibility, or role expressiveness.

[Related dimensions: conciseness, visibility, virtuosity,
role expressiveness, abstraction management]

SCORE: In sheet music, notated passages that are similar
musically share similar visual cues, e.g. melodic contour,
repeated passages, etc. Formal rules applied consistently
likewise ensure recognisable and learnable conventions.
However, compromises are made for conciseness, and to
optimise the presentation of common expressions, at the
expense of readability in less canonical works. For
example, the symbolic representation of note rhythm in a
passage completely alters if offset within the bar (e.g.
moved by a quaver). Similarly, the representation of pitch
depends on key; an identical phrase requires accidentals
following a change of key signature. Both scenarios
present limited issues in common practice music, but the
inconsistency makes the notation harder to learn and
understand, and the difficulty of using it outside its
intended purpose encourages conformity, discouraging
experimentation and creativity. Moreover, in digital use
(notably MIDI sequencers), such inflexibility markedly
reduces the usability of score notation, where systems are
unable to unpick the expressive prosody in a captured
live performance to display a coherent visual score.

MAX/MSP: By design, programming languages offer
diverse paths to produce similar code functionality.
Textual languages are based on rigid, carefully designed
formal grammars that ensure basic low-level consistency
among programming primitives, also enabling many
syntactic errors to be identified during compilation.
Max’s collection of objects is less formally designed and,
as the accumulation of several developer’s efforts (and
coding styles), less consistent. Inconsistencies exist in
many areas, including object-naming schemes, inlet and
outlet conventions, processing behaviour, message
handling, audio quality (and level), and configuration
methods. These nuances produce unanticipated code
behaviour that increases the learning curve for novices.
Objects behave like self-contained programs or plugins;
black boxes that have to be mastered individually.

DAW: The added flexibility in the visualisation of data, in
the various views afforded by DAWs inevitably comes at
the cost of consistency of representation throughout the
program. For example, volume might variously be repre-
sented as a MIDI value (0-127), automation value (0-1),
gain (dBFS, e.g. -96dB to 0dB for 16-bit audio), or using
graphics (colour, bar size, rotary knob angle). The trend
towards skeuromorphic visual metaphors to electronic
studio equipment similarly encourages inconsistencies in
representation, drawing on the conventions of previously
separate, loosely connected hardware devices. Moreover,
while the advent of third-party plugins brings great
advantages and creative flexibility, inconsistencies in
control, representation, terminology, and interaction
create usability issues and a fragmented user experience
that is difficult to integrate with the host application.

4.10 Viscosity

“Is it easy to go back and make changes to the music?”
This dimension defines how easy it is to edit or change a
notation, once data has been entered. A common example
is knock-on viscosity, where making a simple edit to the
notation requires further edits to restore data integrity.
High viscosity prevents or discourages alterations, forcing
users to work in a prescribed, pre-planned order (see
premature commitment); low viscosity simplifies and
encourages making changes, reducing the investment
associated with trialling new ideas (see provisionality).
Being able to easily explore and revisit ideas (ideation) is
a key factor in supporting creativity [6,19], requiring
creative systems engender low viscosity.

[Related dimensions: provisionality, premature commit-
ment, progressive evaluation]

SCORE: The provisionality of pencil marks simplifies the
alteration, erasure and overwriting of notes and passages
in a musical sketch. If more drastic changes are required,
the reduced emphasis on neatness and third-party
readability allows the composer to strike out larger
sections. Inserting new material is harder, but composers
can similarly sketch the inserted passage where there is
space (or on a new sheet) and note the insertion. Final
manuscripts are intentionally more rigid, but performers
can still annotate their copy with alternative instructions.

MAX/MSP: Simple changes to values and local objects are
straightforward in Max. However, as patches grow and
the interconnectedness of objects increases, Max suffers
from knock-on viscosity [1], where one change requires
further edits to restore patch integrity. For example,
deleting, editing, or replacing objects removes all
cords to other objects. Increased viscosity is a common
trade-off in tools designed to avoid hidden dependencies,
often seen in data-flow and visual programming
languages like Max. As a graphical notation, changes to a
patch often require the layout of a patch to be reworked
to make room for object insertions, and to maintain
readability. In text-based coding environments, such
housekeeping is simplified by the inherent serialisation of
code, but in VPLs like Max, leads to increased viscosity.

DAW: As with provisionality, the level of viscosity in
DAW interaction varies between the interfaces and inter-
action modes of the sequencer. By itself, a tape recorder
metaphor of recording a live performance makes it easy
to erase and re-record a take, but harder to edit recorded
data. Audio data can be processed (e.g. EQ, mixing, FX,
splicing, etc.), but musical content (e.g. individual notes
or harmonies) is not easily addressed or manipulated.
Recorded MIDI data is easier to edit, though visual repre-
sentations (e.g. score – see consistency) and interaction
styles can be cumbersome and unwieldy for anything but
simple edits. [11,12]

4.11 Role Expressiveness

“Is it easy to see what each part is for, in the overall
format of the notation?”

This dimension evaluates how well the role or purpose of
individual elements is represented in the overall scheme
of the notation or UI. Different elements may not be
visually indistinct, or their function may be unclear in the
way they are presented. For example, English language
keywords in a menu or programming language can be
used to express their function, whereas cryptic symbols
or icons may need to be learnt. Alternatively, the visual
design of GUI may impose a consistent aesthetic or
layout that fails to capture the diverse functionality en-
capsulated, or the relationship to other elements of the UI
(see hidden dependencies and closeness of mapping).

[Related dimensions: visibility, hidden dependencies,
closeness of mapping]

SCORE: While some aspects of the score may be inferred
by listening to the music (such as a general sense of pitch
and rhythm), most involve learning syntax and rote prac-
tice. Similarly, while some signs offer more expressive
visual cues to role (crescendo and diminuendo hairpins;
tremolo marks), many do not – clefs, accidentals, key
signatures, note shapes, ornaments, and foreign terms
symbolise complex musical concepts that require tuition.
Once learnt, however, the symbols facilitate the rapid
comprehension of notated music – e.g. different note
shapes and beaming conventions provide clear differen-
tiation between different note lengths. However, recent
approaches to contemporary scores tend to exploit more
expressive geometric forms, rather than new symbol sets.

MAX/MSP: The role of some specialised objects, notably
user controls, is clear from their representation in Max.
However, beyond caption and inlet/outlet configuration,
Max offers little visual distinction in the representation of
most coding objects, which appear as text boxes. Patch-
cords help to define the context and role of connected
objects, and visual distinction is made between audio and
message types (though not between int, float, list, or bang
subtypes) – but, despite the unidirectional flow of data,
flow direction is not depicted (e.g. using arrows).

DAW: Many aspects of DAW UIs rely on a degree of
familiarity with studio equipment and musical practice.
However, the graphical user interfaces of most packages
make prominent use of expressive icons and detailed
graphics to indicate the function of controls. Visual
metaphor and skeuromorphisms are commonly used to
relate program controls to familiar concepts. Image
schema and direct manipulation principles are similarly
applied to highlight interaction affordances, in the context
of both music and generic computer interaction styles.

4.12 Premature Commitment

“Do edits have to be performed in a prescribed order,
requiring you to plan or think ahead?”

This dimension defines how flexible a notation is with
respect to workflow, and the process of developing ideas.
Notations or system features that must be prepared or
configured before use entail premature commitment.
Notations with high viscosity, where it is hard to back-
track, also entail forward planning and commitment. In
programming, an illustrative example is the need to
declare variables and allocate memory before coding
actual functionality (cf. C/C++ vs. BASIC).

[Related dimensions: provisionality, viscosity]

SCORE: A degree of viscosity in altering page layout
means that some forward thinking is required to commit
musical ideas to the page, which generally proceeds left-
to-right, bar-by-bar. However, separate pages allow
sections and movements to be developed non-linearly,
and the provisionality of the musical sketch allows some
flexibility with development of musical phrases and bars.
Multiple approaches to composition are possible:
horizontal (part-by-part), vertical (all parts at once, start
to finish), bottom up (bar-by-bar), top down (musical
form). Historically, the literacy and musical experience of
composers meant that musical material was often part-
formed before being committed to the page – either men-
tally, or through experimentation with instruments.

MAX/MSP: As a prototyping tool, Max supports experi-
mentation with partially-formed design concepts. Often,
however, audio processes will be designed with a plan or
general architecture in mind; in Max, forethought with
respect to abstraction (sub-patching) or layout benefits
development, though housekeeping may be needed
retrospectively (see also viscosity). The open-ended
canvas allows patches to be flexibly extended in any
direction, and a modular approach to programming al-
lows piecewise development of complex systems.

DAW: Musical parts and audio segments can be easily
inserted, moved, and copied in the arrange window,
though complex phrases with overlapping tracks and
automation can be difficult to split and re-sequence.
Furthermore, the unified linear timeline and tape
recorder metaphor encourages a linear workflow. [12] In
modelling studio workflows, DAWs can be seen as
transcription tools, rather than environments for explora-
tory creativity, where artists only turn to the recording
process once a work has already taken form. [3,20]
By contrast, pattern- and loop-based sequencers (Live, FL
Studio, tracker-style sequencers) offer a flexible non-
linear approach to developing and sequencing musical
forms, facilitating digitally-supported creativity and flow.

4.13 Error Proneness

“How easy is it to make annoying mistakes?”

This dimension identifies whether the design of a UI or
notation makes the user more or less likely to make errors
or mistakes. These can manifest as accidental interactions
with a program, or incoherent, unexpected musical results
arising from vagueness or ambiguity in the notation (see
role expressiveness). In programming, for example, a
notation is error prone if its function markedly alters
upon the addition/omission/position of a single character.
Errors are broadly undesirable, but can lead to creative,
serendipitous formulations in artistic expression. [21]

[Related dimensions: hidden dep., role expressivness]

SCORE: In scoring, the literacy threshold means mistakes
are more likely during early stages of learning. Aspects of
consistency and hidden dependencies contribute to a
user’s propensity to make errors. However, like language,
fluency with the notation reduces mistakes. Sketching, as
a private medium for the composer, is also tolerant of
errors; they are free to misuse or invent notation, which
remains meaningful to them personally. When scores are
used for communication, mistakes have consequences;
but the impact on early creative process is minimal.

MAX/MSP: As a formal language, it is easy to make
mistakes in Max, through the creation of ill-formed code.
However, aspects of the Max UI make it more prone to
errors in certain situations. As a graphical UI, mouse
interaction is cumbersome, and Max attempts to avoid
diffuseness with compact objects, such that selecting and
connecting inlets or outlets using patchcords is awkward.
As with the score, consistency issues and hidden depend-
encies also invite mistakes relating to coding semantics.

DAW: Recording performances in real-time heightens the
likelihood of input errors, though facilities exist to correct
or overdub recorded data, and the occasional mistake is
often acceptable for the improved flow (musical and
creative) afforded by live interaction with an instrument.
As in Max, DAWs invite mistakes through dependence
on the mouse, where delicate pointer control is required –
many edits require targeting the edge of elements (track
segments, notes, etc.), and the extent of such hotspots
may be small and visually indistinct. Proximate and over-
lapping objects can be similarly difficult to target.

4.14 Closeness of Mapping

“Does the notation match how you describe the music
yourself?”

This dimension assesses how well a notation’s represen-
tation of the domain aligns with the user’s own mental
model. In a UI, this also applies to how closely work-
flows and interaction styles fit a user’s working methods.
Music perception and aesthetics are quintessentially sub-
jective, making it difficult to encode a universally or
intuitively acceptable formalisation, so notations and
systems are built around common cultural practices. This
can constrain the creative expression or affordances of a
notation. To mitigate this, abstraction mechanisms may
enable users to appropriate, redefine, and extend systems.

[Related dimensions: role expressiveness, abstraction
management, virtuosity]

SCORE: While the score is not an intuitive representation
that untrained users might themselves conceive or comp-
rehend, it remains a widespread and established technique
for notation in Western music. At the same time, the
canonical score systematises music in a way that makes
assumptions about the musical practices and aesthetics of
its users, such that modern composers identify the format
as a constraint on their personal expression and creativity.
However, the flexibility offered by individual sketching
techniques allows composers to invent and appropriate
notation techniques for their own personal use.

MAX/MSP: The data-flow model of Max maps closely to
diagrammatic forms used widely in signal processing,
with a shared legacy in electronics and circuit diagrams.
The inherent role of electronics in the studio, and repre-
sentation of audio as voltage, also make this an analogy
that musicians and producers can relate to. The functional
and visual resemblance to generic flow charts further
helps to make the programming environment accessible
to non-technical users. However, for musical applications
(rather than audio processing) such as arrangement and
composition, the abstract representation of time offers a
poor closeness of mapping to familiar representations of
music. Similarly, for traditional programmers used to
imperative programming (ordered sequences of instruc-
tions), scripting program behaviour over time is difficult.

DAW: For its intended audience of musicians and sound
engineers, traditional sequencers and DAWs provide a
strong closeness of mapping, using visual metaphors and
interaction paradigms based on studio processes and
audio hardware, to allow skills transfer. Notably, MIDI
and audio recording tools focus interaction on musical
instruments. However, in recent years, more computer-
oriented musicians, with greater technical literacy, have
begun to embrace tools that rely less on analogies to the
recording studio and focus on the affordances of digital
and computer music technologies – as offered by Ableton
Live and FL Studio. Ultimately, engagement with music,
as a personal experience, should be based on articulations
of the music domain crafted by the user themselves,
which the rising level of computer literacy might enable,
as end-users increasingly engage with programming.

4.15 Abstraction Management

“How can the notation be customised, adapted, or used
beyond its intended use?”

This dimension defines what facilities a system offers for
appropriating, repurposing, or extending a notation or UI.
All notations present an abstract model of a domain (e.g.
music, software), providing a set of fixed abstractions
representing basic objects (e.g. notes, parts) and proper-
ties (e.g. pitch, time, etc.) that enable the articulation of
solutions (e.g. a piece). The creative possibilities are
defined by what encapsulations of objects are possible
and how easy they are to extend. Notations defined for a
specific purpose fix the possible abstractions and ways of
working. However, the opportunity to define new
abstractions (e.g. in terms of existing ones) offers the user
a way to develop their own toolset and facilitates the
building of more complex solutions (e.g. by abstracting
low-level detail), and helps to personalise and raise the
creative ceiling of a system. [6] In programming, exam-
ples include defining custom functions and abstract data
types (objects). In end-user computing, systems may
support automation, macros, or plugins to enable users to
add new functionality. Simpler abstraction mechanisms
such as grouping and naming elements are also possible.

[Related dimensions: visibility, closeness of mapping,
role expressiveness, conciseness/diffuseness, consistency]

SCORE: In sketching the piece during the creative process,
composers are able to appropriate or invent new
terminology of notation technique to describe music more
concisely (composer shorthand) or to encapsulate uncon-
ventional musical devices and practices – only when it is
transcribed for communication to a performer (or com-
puter) must it conform to established notational forms.
 The canonical score format is more limited; designed
around common practices and conventions in formal
music, but offers some support for grouping mechanisms
(e.g. brackets, phrasing) and abstraction (e.g. custom
ornaments). However, a composer can use the preface to
a score to introduce original notation techniques and
syntax, to instruct the performer’s interpretation.

MAX/MSP: As a programming language, abstraction is a
key technique for building and maintaining complex
solutions. Max offers several provisions for abstracting
and extending code: sub-patches allow embedded and
external patches to be nested inside other patches, repre-
sented as new objects (linked using inlets and outlets);
externals use a plugin model to allow new objects to be
coded in C/C++ with defined inputs and outputs; and
presentation mode allows patches to be rearrange, simpli-
fied and selectively exposed in end user-oriented UIs.

DAW: Sequencers and DAWs are designed to support
specific working styles in music / production scenarios.
Part editors support low-level editing of notes and other
musical events. In other screens, higher-level abstractions
are used to structure music (tracks, parts, etc.), with some
provision for grouping and organising objects (e.g. group
channels, folders, track segments). Most packages also
support audio plugin formats that extend FX processing

and synthesis options. However, few sequencers support
more flexible abstraction mechanisms to facilitate inter-
action with notation, such as macros, scripting, or auto-
mation. Exceptions to this include Live, which can be
integrated with Max, CAL Script in Cakewalk SONAR,
and Sibelius plugins. In the tracker domain, Manhattan
[23] offers end-user programming for music using an
extended implementation of spreadsheet-style formulae.

4.16 Virtuosity / Learnability

“How easy is it to master the notation? Where is the
respective threshold for novices and ceiling for experts?”

This dimension assesses the learnability of the notation,
and whether it engenders a scalable learning curve – that
is, a “low threshold” for practical use by beginners, a
“high ceiling” for flexible expression by experts, afford-
ing “many paths” by which users can express themselves.
In addition to supporting multiple levels of expertise and
creativity, virtuosity should be understood in terms of the
balance of challenge and ability experienced by the user.
A slight challenge, relative to their ability, intrinsically
motivates users and helps create the conditions for flow.
[3,9,11,22] Too much challenge and users become anx-
ious; too little and they become bored. The best
model for systems are based around “simple primitives”
(building blocks) that can be easily understood by begin-
ners, but flexibly combined to form more complex
abstractions and functionality. [6]
[Related dimensions: consistency, prog. evaluation, role
expressiveness, closeness of mapping, error proneness]

SCORE: The score has a steep learning curve and
beginners require formal tuition and practice to master it.
Novices can be discouraged from learning music by
the literacy entry threshold. [3] The complexity of the
notation reflects its relatively high ceiling and capacity to
flexibly encapsulate a wide variety of musical styles and
pieces, though contemporary and electronic composers
can find traditional, formal syntax limiting. [2,3,12]
MAX/MSP: While programming languages often present a
high threshold for novices, Max is explicitly designed for
musicians, and uses a visual programming model to
appeal to non-coders. Tutorials present beginners with
simple patches that produce useful results, enabling a
working knowledge to develop quickly. Innovative
interactive in-program documentation and a strong user
community supports both learners and practitioners.
There are aspects of the environment that also impede
learning (see consistency, error proneness and hidden
dependencies). The creative ceiling for developing audio
and music systems in Max is high, further supported by
abstraction mechanisms – though audio programmers
and more music-oriented users may graduate to other
tools (e.g. C/C++, OpenMusic, SuperCollider).
DAW: Music and audio production packages are designed
to provide a low threshold for musicians and those famil-
iar with studios. The use of visual metaphor and direct
manipulation principles allows knowledge transfer from
these other practices [4], though users without such back-
grounds may struggle. Packages provide a wide array of

tools and features for a variety of purposes, though few
users will have need of all features. The ceiling for musi-
cal creativity is relatively high, within the confines of
conventional practices, though UIs are often optimised
for specific workflows and techniques, and users are
largely dependent on software developers to provide new
opportunities for expression. Unlike the traditional score,
and programming languages (like Max), users efforts to
master authoring packages can be frustrated by a lack of
continuity between versions.

5. PRACTICAL METHODOLOGIES
This section briefly surveys existing applications of the
Cognitive Dimensions of Notations in musical contexts,
highlighting both qualitative and quantitative methods for
analysing notations and interaction.
 Blackwell (with others [7-11,16,20,24]) has used
cognitive dimensions to highlight aspects of musical
interaction in several settings, including music typeset-
ting software [10,20], programming languages [16,24],
and digital tools for composition (e.g. sequencers, track-
ers) [8-11]. In such treatments, the framework provides a
language for discussing the affordances of notation, but
has also lead to the development of tools to elicit feed-
back from end-users, such as questionnaires that probe
dimensions in user-friendly, accessible language. [10]
McLean’s work on music and art programming languages
similarly applies and develops the framework for analysis
of new music coding notations and interfaces. [21]
 Nash [3,9,11] extended previous qualitative analysis
techniques to develop a quantitative approach to evaluat-
ing notations. Using a Likert scale, each dimension is
formulated as a statement that users can agree or disagree
with to a greater or lesser extent. The mean response
from a large sample of users can then be used to plot a
dimensional profile of the notation under evaluation.
Figure 1 shows profiles for a survey of various music
sequencer tools (n=245), not only highlighting relative
strengths and weakness with respect to properties of each
UI, but also revealing a general profile for music systems,
where the trend may indicate the desired polarity of each
cognitive dimension in music interaction. Moreover, the
approach was combined with psychometric-style surveys
of the experience of creative flow [22], using a battery of
questions to also measure users’ subjective experience of

Figure 1 Cognitive dimension and flow profiles of music
tools, based on quantitative user testing (see [3,11]).

nine components of flow. Using cross-correlation and
multiple-regression analysis, the results for individual
flow components and dimensions of the notation were
used to identify the key properties of notations facilitating
flow, findings of which can be used to guide the design of
immersive or embodied interaction systems. The study
[3,11] suggests that key dimensions in the support of flow
were visibility (visual feedback), progressive evaluation
(audio feedback) and consistency (support for learning
and sense of control) – as well as virtuosity (balance of
skill and ability), abstraction management (high creative
ceiling), viscosity (ease of editing), premature commit-
ment (freedom of action) and role expressiveness
(support for learning). The findings were used to propose
a set of design heuristics for music systems based around
the concept of virtuosity, rather than usability (see [3,9]).

6. CONCLUSIONS
This paper has presented a musical reworking of the
Cognitive Dimensions of Notations usability framework,
and suggested methods and tools for using it to analyse
music notations, interfaces, and systems. Several applica-
tions have been identified that use the framework to pro-
vide insight into the human factors of notation-mediated
musical systems, including creativity, virtuosity and flow.
 Future work will focus on further use and development
of the framework, including its application to other music
interaction scenarios and systems, the evaluation of new
dimensions, and research of other dimensional profiles in
other music interactions. The growing intersection of
music and programming practice is also likely to reveal
other parallels between these creative domains that can
further inform both theory and practice.

Acknowledgments

The author wishes to thank all those who supported and
contributed to this research, especially Alan Blackwell,
Ian Cross, Darren Edge, Sam Aaron, the Cambridge
Centre for Music & Science (CMS), and many other
researchers exploring and developing the CD framework
in other domains. This research was funded by the Harold
Hyam Wingate Foundation and UWE (Bristol).

7. REFERENCES
[1] T. R. G. Green, and M. Petre, “Usability analysis of

visual programming environments: a ‘cognitive di-
mensions’ framework,” Journal of Visual Lan-
guages & Computing, 7, 1996, pp.131-74.

[2] G. Read, Music notation: a manual of modern prac-
tice, 1979, Taplinger Publishing Company.

[3] C. Nash, Supporting Virtuosity and Flow in Com-
puter Music, PhD, University of Cambridge, 2011.

[4] M. Duignan, Computer mediated music production:
A study of abstraction and activity, PhD, Victoria
University of Wellington, 2008.

[5] M. Graf, From Beethoven to Shostakovich, New
York: Philosophical Library, New York, 1947.

[6] M. Resnick et al., “Design principles for tools to
support creative thinking,” 2005, NSF Workshop of
Creative Support Tools, pp. 25-36.

[7] A. Blackwell, “Dealing with new cognitive dimen-
sions”, Workshop on Cognitive Dimensions, Uni. of
Hertfordshire, 2000.

[8] C. Nash, and A. Blackwell, “Tracking virtuosity and
flow in computer music,” 2011, Proceedings of
ICMC 2011, pp. 572-582.

[9] C. Nash, and A. Blackwell, “Flow of creative inter-
action with digital music notations,” in The Oxford
Handbook of Interactive Audio, 2014, OUP.

[10] A. Blackwell, and T.R.G. Green, “A cognitive di-
mensions questionnaire optimized for users,” 2000,
Proc. of PPIG 2000, pp. 137-152.

[11] C. Nash, and A. Blackwell, “Liveness and flow in
notation use,” 2012, Proc. of NIME 2012, pp. 28-33.

[12] D. Collins, “A synthesis process model of creative
thinking in music composition,” Psychology of
Music, 33, 2005, pp. 192-216.

[13] P. Desain et al., “Putting Max in perspective,” CMJ,
17(2), 1993, pp. 3-11.

[14] J. A. Paradiso, and S. O’Modhrain, “Current Trends
in Electronic Music Interfaces. Guest Editors’ Intro-
duction,” JNMR, 32(4), 2003, pp. 345-349.

[15] S. L. Tanimoto, “VIVA: A visual language for im-
age processing,” Journal of Visual Languages &
Computing, 1(2), 1990, Elsevier, pp. 127-139.

[16] L. Church, C. Nash, and A. F. Blackwell, “Liveness
in notation use: From music to programming,” 22,
2010, Proceedings of PPIG 2010, pp. 2-11.

[17] M. Leman, Embodied music cognition and media-
tion technology, MIT Press, Camb., MA, 2008.

[18] A. J. Sellen, and R. H. R. Harper, The myth of the
paperless office, MIT Press, 2002.

[19] T. Amabile, “The social psychology of creativity: A
componential conceptualization,” Journal of person-
ality and social psychology, 45(2), 1983, pp. 357-76.

[20] A. F. Blackwell, T. R. G. Green, and D. J. E. Nunn,
“Cognitive Dimensions and musical notation sys-
tems,” 2000, ICMC 2000: Workshop on Notation
and Music Information Retrieval in the Comp. Age.

[21] A. McLean, Artist-programmers and programming
languages for the arts, PhD, Goldsmiths, 2011.

[22] M. Csikszentmihalyi, Creativity: Flow and the Psy-
chology of Discovery and Invention, HarperCollins,
New York, 1997.

[23] C. Nash, “Manhattan: End-User Programming for
Music,” 2014, Proc. of NIME 2014, pp. 28-33.

[24] A. Blackwell, and N. Collins, “The programming
language as a musical instrument,” 2005, Proceed-
ings of PPIG05, pp. 120-130.

