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Abstract— Co-verbal gestures are an important part of hu-
man communication, improving its efficiency for information
conveyance. A key component of such improvement is the
observer’s ability to integrate information from the two commu-
nication channels, speech and gesture. Whether such integration
also occurs when the multi-modal communication information
is produced by a humanoid robot, and whether it is as efficient
as for a human communicator, is an open question. Here, we
present an experiment which, using a fully within subjects
design, shows that for a range of iconic gestures, speech and
gesture integration occurs with similar efficiency for human
and for robot communicators. The gestures for this study were
produced on an Aldebaran Robotics NAO robot platform with
a Kinect based tele-operation system. We also show that our
system is able to produce a range of iconic gestures that
are understood by participants in unimodal (gesture only)
communication, as well as being efficiently integrated with
speech. Hence, we demonstrate the utility of iconic gestures
for robotic communicators.

I. INTRODUCTION

Humanoid robots are thought to have a number of ad-
vantages over non-humanoid robots, one of which is the
possibility of communicating with a person in a naturalistic
manner, i.e., in a way that is intuitively understood by
humans without learning processes. Naturalistic communi-
cation is thought to be achievable by mimicking human
communication. Though naturalistic communication can be
achieved with only speech, human communication is often
multi-modal utilising gestures to improve its efficacy and
efficiency [1]. Hence, humanoid robots have a potential
advantage as the human-like form enables them to produce
hand/arm-gestures to accompany speech (co-verbal gestures),
in a similar manner to humans. This gives the possibility
of people applying mental models of human communication
to a humanoid robot. Further, a number of studies revealed
that hand gestures improve user perceptions of robots on
scales such as likability, and competence, and future con-
tact intentions (e.g. [2][3][4]). A possible explanation for
this finding is that humanoid robots engender humanlike
behavioural expectations in people they interact with, thus,
when these expectations are met, the interaction is viewed
more positively.

In human-human communication studies, co-verbal ges-
tures have been shown to add communicative value for
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listeners, disambiguating speech they accompany, be it for
semantic [5] or paralinguistic information [6]. Also, mul-
timodal communication is more efficient and effective at
conveying information between speaker and listener than
unimodal communication [5]. However, in order for ges-
tures to add communicative information to the speech they
accompany, information contained in both modes of the
communication must be integrated by the listener [5][7]. This
integration process is evidenced by an increase in listener
understanding of the information conveyed by the speaker,
relative to unimodal communication.

Our knowledge about whether this integration process
between perceived action and perceived speech can occur
when the information comes from a non-human agent such
as a robot, is, as yet, very limited. First studies using co-
verbal pointing gestures to improve robot communication
seem to suggest that, at least for pointing, such integration
can occur [8][9][10]. Other types of gestures, however, have
not yet been examined. More importantly, even for those
studies in which information integration had been shown for
non-human communicators, it remains unclear whether this
integration process is as efficient (i.e., occurs as reliably) as
when communicating with other humans.

Hence there are two key questions we seek to address
here, whether speech and gesture integration of non-pointing
gestures occurs for robot communicators, and whether it as
efficient as for human communicators. To do so we investi-
gate the integration process of speech and hand gestures for
iconic gestures (i.e. gestures that depict aspects of spatial
images or actions) when produced by a (live) NAO robot
(Aldebaran Robotics, [11]), and compare it directly to the
integration obtained when information is derived from a
human communicator (appearing on video). In particular, we
use a tele-operation system which uses human speech and
motion to produce communicative behaviour for the robot,
which we then record. To match conditions as closely as
possible, the same actor is used for human stimuli recorded
on video, and to produce the robot stimuli. Given the
previous findings of high recognition and integration rates
(close to ceiling) using video stimuli of human performers
for the type of iconic gestures used in our study [7], we
reasoned videos of human gestures would be comparable in
efficacy to live performances, with the advantage of being
identical across participants.

The tele-operated approach has a number of advantages
over either hand-scripted or autonomously produced speech
and gestures in robots, as the robot’s gestures can be closely
matched in both form and timing to the original human



gestures. Further, this approach allows us to keep the speech
identical for human and robot performers.

While the outcomes of the study should be interesting
in their own right, they are also an important step in the
development of embodied methods of telecommunication
with remote users. Whether a tele-presence system in which
a NAO robot is used as an avatar for communication by a
remote user has advantages over more conventional screen-
based approaches such as video conferencing (whether sta-
tionary or on a mobile platform such as the Giraff [12])
will improve human-human communication, will depend
strongly on people’s ability to integrate robotic gestures with
the human voice of their remote partner. Hence, we were
motivated to compare human video communication with
a live robot to evaluate the relative merits of each as a
telecommunication medium.

The main contribution of this paper is that speech and
gesture integration occurs for co-verbal iconic gestures per-
formed using the tele-operated NAO robot, in the same way
that they are for a video of a human performer. Additionally,
we demonstrate the efficacy of the tele-operation system
for producing comprehensible gestures, and hence a range
of gestures that can be understood when performed by a
humanoid robot.

II. BACKGROUND AND RELATED WORK

A. Iconic Gestures in Human Communication

In studies of human co-verbal gestures, gestures are typi-
cally classified according to their form and function [13][1].
Within the commonly applied classification scheme proposed
by Kendon [13] a key class of gestures are termed iconic
gestures, which have a clear meaning, and bear a close
formal relationship with the semantic content of the speech
they accompany. They are described as gestures of the
concrete, displaying in their form, and manner of execution, a
homology to aspects of the events or objects being verbalised
[13]. Note that such gestures often communicate additional
information to the words spoken, particularly of the sort that
is more easily and effectively conveyed using the gestural
channel; for example to convey relative locations of referents,
or how a particular action was performed (termed manner
gestures) [14]. An example iconic gesture is putting both
hands together, then moving the top of the hands apart while
keeping the base together as if they are the pages of a book,
used with the phrase ’I read’ to convey reading a book.

For human-human communication a number of studies
established the communicative value of iconic gestures, by
examining how such gestures affect the understanding of
information in multi-modal communications. One approach
to test effectiveness is to measure participants’ ability to
recall details of speech delivered in dependence on being
accompanied by different gestures (e.g. [15][14]). Analysis
of participant responses for such experiments is non-trivial,
and depends strongly on the memorability of the stimulus
material content.

An alternative approach was suggested by Beattie et al.
[5], whereby participants were asked questions about short

multi-modal vignettes, the answers to some of which were
only contained in the gestural channel. However, in such an
approach it might be difficult to distinguish between speech
and gesture integration, and contextual inferences [16].

To avoid confounds such as the ones potentially inherent
in the approaches described above, we decided to base our
experiments on a seminal study presented by Cocks et al.
[7]. In their study, participants were presented with a series
of actions conveyed either through speech alone, speech
accompanied by an iconic (manner) gesture, or the gesture
alone, and asked to choose the appropriate action from a
set of action images. This fully-balanced within subjects
design, allowed them to clearly distinguish between action
understanding based on unimodal as compared to multi-
modal communications. We adapted Cocks et al.’s design
for use with the NAO robot and our tele-presence control
scheme (see section III).

B. Gestures in Human-Robot Interaction

A primary focus of previous work on robot-performed ges-
tures has been observers’ comprehension of these gestures.
Results were variable and seemed to depend on the type of
gestures used. For example, participants were reported to be
able to identify co-operative robot gestures in timed response
trials, even when performed with non-humanlike velocity
profiles [17], but not iconic, emotive and emblematic gestures
[18][19][20]. As gestures in the above studies were hand-
scripted and presented in isolation (without speech), it cannot
be excluded that instead of robotic gestures themselves being
difficult to comprehend, it was the way they were scripted
(and the inherent difficulties in scripting) that was the actual
problem. In our study, we tried to overcome any scripting-
related issues by using our tele-operation control scheme to
copy both the shape and the timing of human movement.
Note, however, that even a tele-operation control system is
limited by the design, and the degrees of freedom of the
robotics system used.

When presented with speech, robot-performed pointing
(deictic) gestures [8][9][10], revealed that better understand-
ing of relative locations of referents could be achieved by
supplementing speech information with such gestures. Thus
providing evidence for speech and gesture integration.

Robot performed gestures have also been observed to
have effects beyond information comprehension. Huang and
Mutlu found that participants’ recall of items in a factual
talk presented by a robot was reliably improved if the
robot used deictic gestures, while other types of gesture
had little impact [21]. Bremner et al. found that parts of a
monologue accompanied by (metaphoric and beat) gestures
were not recalled any better than those without, though
higher certainty in the information recalled by the gestures
was observed [22]. By contrast, van Dijk et al. found that
recall was improved for actions accompanied by redundant
iconic gestures [23]. Moreover, Chidambaram et al. [24]
reported that participants were significantly more likely to
be persuaded by a robot when it used a variety of non-verbal
cues including gestures.



To the best of our knowledge, we are the first to directly
compare participants’ comprehension of speech and iconic
gesture integration for human and robot performers in a
single experiment, therefore eliminating a range of confounds
that make it difficult to compare findings within the literature.

III. EXPERIMENTAL METHODS

We conducted an experimental study with 22 participants
(12 male, 10 female), aged 18-55 (M = 34.80± 10.88SD),
all Native English speakers. Participants gave written in-
formed consent to participate in the study which was in
line with the revised Declarations of Helsinki (2013), and
approved by the Ethics Committee of the Faculty of Science,
University of Bristol.

Participants observed a series of pre-recorded communi-
cations which were comprised of either speech, gesture or
both speech and gesture, performed by either a person (on
video) or the NAO robot (physically present). Human video
stimuli were used to enable validation of the experimental
procedure, and allow comparative analysis between the per-
son and a tele-operated robot. Hence, the experiment used
a 3(communication mode) x 2 (performer) within-subjects
design.

A. Tele-operation System

We have designed a tele-operation system to reproduce
gestures from a tele-operator, on the NAO humanoid robot
platform from Aldebaran Robotics (see Fig. 1, for spec-
ifications see [11]). The system is built using the ROS
framework [25], with nodes to gather kinematic information
of the human tele-operator. The gathered information is then
published as ROS messages that are processed by a NAO
control node that calculates the required commands and
sends them to the robot. Fig. 1 shows a schematic of the
system architecture.

To ensure that during gestures joint coordination and link
orientations are correctly maintained, along with the desired
hand trajectory, arm link end points are tracked on the
tele-operator. For this purpose a Microsoft Kinect sensor,
combined with the Nite skeleton tracker API from OpenNI
is used. The Nite skeleton tracker is encapsulated in a ROS

Fig. 1. Tele-operation control architecture. Each circle is a separate ROS
node.

Fig. 2. A matched pose between the tele-operator and the NAO robot. The
directions of the arm unit vectors are indicated with black arrows, torso
coordinate frames in RGB (XYZ).

node which uses the arm link end points to calculate unit
vectors for the arm links relative to the torso coordinate
frame of the operator1, which are then sent as ROS messages.
Sensor update rate is 30Hz.

The NAO control node uses the arm unit vectors to
calculate the required angles for the robot’s arm joints so
as to align the robot arm links with equivalent unit vectors
in the robots own torso coordinate frame2. Fig. 2 gives an
example mapping between the human and robot positions.
The resulting joint angles are smoothed using a moving
average filter with a ten frame window, as the data from
the Kinect are subject to high levels of noise.

One limitation of the skeleton tracking data provided by
the Nite API (as a result of limitations of the resolution of
the Kinect when viewing the full body) is that it is unable
to provide tracking information for rotation of the hand
relative to the forearm (radial rotation), or finger tracking.
To allow tracking of these additional degrees of freedom
(DoF) a Polhemus Patriot (for radial rotation) and 5DT
data gloves (for finger tracking) are used. ROS nodes were
written that package this sensor data as ROS messages, again
with an update rate of 30Hz. The NAO node calculates the
needed joint angles for these additional DoF, and coordinates
them with the other calculated joint angles to send a single
command for all controlled DoF each command cycle3.

In order to stream audio to the robot a NAO module
based on the Gstreamer media framework was created, with
a corresponding program on the controlling PC.

B. Materials and Procedure

Stimuli for the experiment consisted of a set of 10 verb
phrases, depicting common actions (e.g., I paid, I read), cho-
sen from among those used in the Cocks et al. study [7]. Each
verb phrase was performed twice, each time accompanied by
a different iconic (manner) gesture that conveyed how the
action was carried out. In an aim to replicate conversational
gesturing the gestures performed were comparatively vague,

1calculations omitted here for brevity as they are relatively trivial
2see footnote 1
3Video of the tele-operation system in action is available in the supple-

mental material uploaded by the authors, at http://ieeexplore.ieee.org



Phrase Integration Target

I Cleaned 1. Dusting a lamp
2. Scrubbing a pan

I Cut 1. Cutting with a craft knife
2. Chopping into a melon

I Fixed 1. Hammering a nail
2. Sticking paper with tape

I Lit 1. Pulling a light pull
2. Pressing a light switch

I Measured 1. Pouring liquid into a measuring jug
2. Using a tape measure

I Opened 1. Pulling open a door
2. Opening a book

I Paid 1. Signing a cheque
2. Handing over cash

I Played 1.Playing chess
2. Playing a cello

I Read 1. Reading a newspaper
2. Reading a book

I Rubbed 1. Using a pencil eraser
2. Rubbing a balloon

TABLE I
THE SET OF PHRASES AND THE INTENDED MEANING WHEN COMBINED

WITH EACH OF THE TWO MANNER GESTURES (INTEGRATION TARGET)

and less detailed than pantomime gestures would be, e.g.,
one gesture for ’I paid’ is one hand tracing a curling path,
and the intended meaning is paying by cheque (see table I
for the list of phrases and multi-modal meanings4).

Two sets of stimuli were recorded, one for the human
performer using a digital video camera, and one for the robot
using the tele-operation system. Both sets of stimuli were
performed by the same human actor to avoid inter-individual
variability in action performance. However, the data-gloves
necessary for tele-operation were thought likely to distort
participant perceptions if videos of tele-operation were used
as stimuli; hence, the two stimulus sets were recorded
separately. To control for stimulus set-related biases, a video
of each tele-operation performance was reviewed by the actor
prior to the recording of each video stimulus, and compared
during recording (with repeat performances as needed) to
ensure performance was as similar as possible.

To create the robot communication stimuli, the messages
from the sensor nodes were recorded to a file using the built
in recording capabilities of ROS, as well as being directly
streamed to the robot to allow verification during recording.
Similarly, the audio (captured using a lapel microphone) was
recorded and streamed simultaneously.

The human video stumli and recorded tele-operation stim-
uli were then edited to produce a set of presentations lasting
approximately five seconds each, in three conditions: verbal-
gesture condition (VG; verbal phrase heard and gesture
seen); gesture only condition (G; gesture performed but
audio not played); verbal only condition (V; audio only no
performer movement). In both VG and G conditions, there
were two versions for each verb phrase, one for each of the
different manner gestures; hence, each action phrase came

4A video showing some of the gestures used, and the response image
sets is available in the supplemental material uploaded by the authors, at
http://ieeexplore.ieee.org

Fig. 3. Response image set for “I paid”: A and B are the gesture only
matches; C and E are the integration targets, and either of them match the
speech only condition; D and F are the incongruent foils.

in five different versions per performer (V, G1, G2, VG1,
VG2).

Note that for each phrase, the same audio was used for
both human and robot performers in all conditions including
a verbal component. The human stimuli were created by
adding the audio recorded during the robot performances
to the videos of the human performance, editing out the
original audio on the videos. The original audio on the videos
was used only to ensure the correct relative timing between
speech and gesture. This overriding of audio-information in
the video was seen as necessary to ensure that the audio in-
formation provided was absolutely identical between human
and robot performer. To ensure there was no unwanted effect
of facial gestures, and to prevent any lip-synching issues,
the human performer’s face was occluded in the video. The
speech and gesture timing for the robot conditions was based
on the video taken of the robot captured during the original
recording with the tele-operation system.

In total there were ten experimental conditions: five com-
munication mode conditions (V, G1, G2, VG1, VG2) for each
of the two performer conditions. Ten action phrases were
used in each experimental condition; hence, each participant
responds to a hundred different trials. Average experiment
time was 20 minutes. The trials are split into ten blocks each
containing all ten phrases and all ten experimental conditions.
To prevent ordering effects, trial presentation order was
counterbalanced by means of pseudo-randomisation using
partial latin squares across blocks for both condition and
sentence order.

After each stimulus presentation, participants were asked
to select one out of six colour photographs of people
performing actions presented on the 12.1 inch screen of a
response laptop by clicking with the laptop’s mouse curser
on the image they thought matched best what had been com-
municated; doing so advances to the next trial. Participants’
responses were recorded5. The layout of the images, and
hence the location of the target(s) on the response screen,
were randomised between conditions and between phrases.

5Presentation of the response images, and recording of responses was
done using the PsychoPy software [26]



Fig. 4. Experimental Setup

The sets of pictures for each phrase consisted of: an
integration target for each of the two manner gestures, which
matched the corresponding speech and gesture combination,
a gesture only target for each gesture, that matched the
according gesture but not the speech; a pair of unrelated
foils, each one semantically linked to one of the gesture-only
images, but not matching either the speech or the gesture
(Fig. 3 shows an example set, that used for ’I paid’). The
integration targets were both semantically congruent with the
speech so should have been chosen equally likely in the V
condition. For a particular gesture, the integration target and
one gesture only image were both semantically congruent
with it, so should have been equally likely selected in the
G condition. One of the integration targets was the only
congruent choice in each of the VG conditions.

The experimental setup is shown in Fig. 4. The NAO
and the video screen were both positioned 57cm from the
participant. A 32 inch wide-screen TV was used for playback
of the video stimuli in order to make the human performer
a similar size to the robot. Before each trial which presenter
was next was displayed on the screen of the response laptop
for 1s, and a tone sounded to indicate trial commencement.
Then the phrase performance was played, after which the
response images were automatically displayed. Playback of
each performance was started by the experimenter from a
laptop situated behind the screen so they were not watching
the participant during the trials, but could initiate playback,
and allow any breaks requested. Before the experimental
trials began participants undertook two practice trials to
familiarise themselves with the experimental procedure.

C. Data Analysis and Results

To test gesture comprehension we estimated the propor-
tion of correct responses in the gesture only conditions.
Each gesture was evaluated individually by comparing the
proportion of correct responses against chance (0.33 as
there are two possible correct answers for each gesture)
using a chi-squared test. These results are shown in Fig. 5
significant results are indicated with * (alpha level 0.05).
Almost all gestures (both the I lit gestures in the robot
condition being the exceptions) were identified significantly
better than chance in both human and robot conditions, with
high average proportions of correct responses (Mhuman =

0.943± 0.065SD;Mrobot = 0.802± 0.17SD). A Wilcoxon
signed rank test showed there was a significant difference
between performers (p<0.001) for the same gestures even
excluding the I lit gestures (p<0.001).

To test for speech and gesture integration, we examined
the proportion of correct integration target choices in the
different conditions. The scores for all stimulus items were
summed for each participant (incorporating scores for both
gestures for each phrase), and the proportion of correct
integration target choices was then calculated. Fig. 6 shows
participants’ group mean image choice for the image combin-
ing verbal and gestural information together, in dependence
of the presented stimulus mode. Along with expectations that
unimodal presentations had beside the integration image also
an unimodal image as correct answer, reponses for unimodal
conditions were around 50%, and a clear increase of selection
of the integrated image can be seen for multimodal iconic
information. Note, however, that no clear difference in per-
formance is observed between robot and human presenter.

Accordingly, a 2(presenter) x 3(communication modus)
repeated measures ANOVA revealed a significant main effect
of communication mode (F (2, 42) = 282.57,MSEffect =
2.21,MSError = 0.008, p < 0.0001). Post-hoc analysis
(Tukey) confirmed that participants chose the ‘integrated’
images far less often when gestures were presented on their
own (M = 0.39 ± 0.11SD) than when verbal information
was presented on its own (M = 0.49±0.02SD, p < 0.0005).
More importantly, as to be expected if verbal and gesture
information is correctly integrated, and therefore ambigu-
ity is decreased, participants chose the image representing
integrated verbal and gestural information when both were
presented together (M = 0.82 ± 0.08SD; p < 0.0005).
Thus, participants were able to clearly integrate verbal and
gestural information. There was indeed neither a significant
main effect for presenter (F (1, 21) = 2.61,MSEffect =
0.01;MSError = 0.004, p = 0.12), nor a significant

Fig. 6. Group averages for choosing the integrated targets for each
communication mode, in dependence of the type of communicator. Filled
symbols: robot communicator, open symbols: human communicator. Error
bars represent ± 1SEM. * p<0.0005; **p<0.0001.



Fig. 5. Proportion of correct identifications of each gesture for the two performers. * p<0.05.

interaction between presenter and communication mode
(F (2, 42) = 1.23,MSEffect = 0.0046,MSError =
0.003p = 0.30). This first analysis seems to indicate that
there is no difference in integration efficiency of verbal and
gesture information for human and robot communicators.

In order to give an estimate of the effect size of the VG
condition, and confirm the results of the pairwise compar-
isons of the integration scores, we estimated the change
in probability of integration target choices (ITC) between
unimodal and multimodal conditions, termed the multimodal
gain (MMG). Following the method described in Cocks et al.
[7] this is estimated as the difference between the proportion
of ITC in the VG conditions (P(Multi)) and an estimate of
the proportion of ITC in unimodal communication (P(Uni)),
as in (1).

MMG = P (Multi)− P (Uni) (1)

The proportion of ITC in unimodal conditions (P(Uni)) is
calculated as the weighted mean of ITC in the V (ITCV )
and G (ITCG) conditions, as in (2). This calculation is based
on the premise of how likely a given modality is taken
into account, i.e., it is assumed that participants are more
likely to be influenced by the modality that provides more
accurate information. Hence, WV and WG are estimated
as normalised proportions of trials in which correct choices
were made (PCV and PCG, for V and G trials respectively),
as in (3) and (4).

P (Uni) = WV ∗ ITCV +WG ∗ ITCG (2)

(2)WV = PCV/(PCV + PCG) (3)

(3)WG = PCG/(PCV + PCG) (4)

Hence, MMG takes into account how often the integration
targets were chosen in both unimodal conditions, and was
calculated for each performer separately (the results for both
gestures for each phrase were included to give one value
per performer), shown in Fig. 7 as a percentage gain. By

using two gestures per phrase we had an advantage over the
original study of Cocks et al. [7] in that for some phrases in
the verbal condition there was a clear preference for one of
the congruent images; so MMG for that particular image was
almost zero regardless of integration, whereas for the other
image MMG was very high if integration occurred; hence,
we got a clearer picture of the influence of integration by
including both these scores in the calculation.

A two tailed t-test was conducted for both perform-
ers against the null hypothesis that MMG=0, both sample
means (Mhuman = 0.393 ± 0.079SD;Mrobot = 0.355 ±
0.095SD) were significantly different from 0 (thuman(21) =
23.12, p < 0.001, r = 0.98; trobot(21) = 17.405, p <
0.001, r = 0.97). Note that maximum MMG can be esti-
mated as 1-P(Uni), which as a percentage is 56% for the
robot, and 55% for the human, so both MMG values are
approaching ceiling.

A paired two tailed t test comparing the means of the two
performers directly against each other revealed no signifi-
cant differences between them (t(21) = −2.005, Diff =
0.019, p = 0.058, r = 0.213). Note, however there was
insufficient statistical power to prove the hypothesis there
is no difference between performers. Hence, we used a
repeatability measure, the intraclass correlation coefficient,
to test if the results are interchangeable between performers;
we use ICC(2,k) as the MMG scores for each participant
are calculated from multiple measurements (somewhat equiv-
alent to a mean score) [27]. The results were found to
be significantly correlated, and indicate fair to substantial
reliability (ICC(2, k) = 0.61, F (21, 21) = 2.8, p = 0.011);
thus making us confident that our Null hypothesis of no
difference between performers was indeed the most likely
interpretation.

IV. DISCUSSION

The results show that for the gestures used in this
experiment, almost all were identified significantly better
than chance when they were presented in isolation (without
speech) for both the human and the robot. Thus, people were
able to identify a range of iconic gestures performed by a
humanoid robot. Hence, the iconic gestures examined here



Fig. 7. Group average multimodal gain for each performer. Error bars
represent ± 1SD.

represent a large repertoire of viable gestures which can be
used for HRI. This observation clearly differs from earlier
findings by Cabibihan el al. [18] and Zheng et al. [19] for
whom the robotic gestures were difficult to identify on their
own. It is hard to determine if the differences between studies
are due to subtleties in gestures captured by the tele-operation
scheme, the types of gestures used, or the different method
of response-gathering (forced choice used here as opposed
to open responses in previous work), or some combination
of all of these. However, it is important to note that gestures
were significantly easier to identify when performed by a
person than by the robot, shown by an increase in mean
recognition rate from 80.2% to 94.3%. This is most likely
due to subtleties of hand movement not conveyed by the
tele-operated NAO, that does not possess the same degrees
of freedom in the hand as a human performer.

This was most clearly seen in the gestures that accompa-
nied the phrase ’I lit’ which were identified correctly in the
human condition, but not significantly better than chance in
the robot condition. For both gestures (pressing a light switch
or pulling a cord as common in the UK), the unrelated foils
were chosen with almost identical frequency to the correct
answers. Visual inspection of the response images for ‘I lit’,
revealed that the foils could be interpreted to differ from the
target gesture images largely by hand orientation and shape.
The NAO hand is not capable of hand shapes other than
open and closed, and its design may make orientation harder
to observe than in the human case. While we endeavoured
to select gestures where hand shape was not critical (to
ensure fair comparison between performers), naturally per-
formed human gesture inevitably contain a hand shape and
orientation component that influences their interpretation.
Encouragingly however, the ‘I lit’ gestures were interpreted
correctly when presented with speech, resulting in selection
of the correct integration target in 82% and 95% of the
time for gestures 1 (pressing light switch) and 2 (pulling
a light cord), respectively. This finding seems to suggest
that participants were able to infer the missing details of
the gesture from the context provided by the speech (note,
however, that evidence for such a suggestion is still limited).

The significantly larger proportion of ITC in the VG
conditions suggest that speech and gesture are integrated
when performed by the tele-operated NAO robot, as they
are when performed by a human on video. In particular, the

significant difference between the image choices in the two
integration conditions (and large effect size) shows that the
gestures were integrated with speech, and thus influenced the
meaning ascribed to the communication. A clearer measure
of the effect of speech and gesture integration was provided
by MMG, which estimates, as a single variable, the change
in probability that the integration target image was chosen
compared to selections made in the uni-modal conditions, in
particular the verbal one. The values found for MMG were
shown to be highly significant for both performers, and there
was no significant difference between them, indicating robot-
performed gesture is integrated with speech, and this occurs
in the same way as for human communication.

These findings have implications for both the use of a
humanoid robot as a tele-communication avatar, and for the
design of communicative behaviours for humanoid robots.
The main implication is that semantic information in hu-
manoid robot communications can be split across modal-
ities, resulting in more efficient and accurate information
conveyance. Further, our findings indicate that multi-modal
communications are processed similarly to human ones, so
should be used where possible to result in more natural
human-robot interactions; this suggestion is in line with, and
provides a possible explanation for, previous findings that
people give higher subjective ratings of robots that perform
gestures [2][3][4].

V. CONCLUSION

Using a within subject design, we show in this paper that
iconic manner gestures conveyed on the NAO robot, using
our Kinect based tele-operation system, are recognisable,
and, more importantly, are integrated with speech that they
accompany. Moreover, the multi-modal integration for robot
performances is as efficient as human ones. Hence, with
regard to multi-modal semantic information conveyance, a
NAO tele-operated avatar can be close to a person in terms
of efficacy.

In light of these findings, we suggest that robot commu-
nication should be multi-modal to disambiguate its mean-
ing, improve its efficacy, and efficiency, in addition to
the improvements in subjective (likability) ratings found in
previous work [2][3][4]. Such improvement through multi-
modal communication is not only encouraging for our future
work on humanoid robot avatars, but also for the design of
communication behaviours in autonomous robots: previous
studies have found that participants treat avatars similarly
to how they do autonomous systems [28], indicating the
generality of our results. Indeed, one of the applications of
humanoid tele-operation is as a tool to test what is important
in terms of robot behaviour for successful HRI in so called
super Wizard of Oz studies [29].

VI. LIMITATIONS AND FUTURE WORK

While the work presented here provides initial insight into
speech and iconic gesture integration for robotic commu-
nicators, it has a number of limitations which we hope to
address in future work. Firstly, the range of tested gestures



was limited to manner gestures where hand shape was not
expected to be critical. In future work, we hope to further
investigate the idea that correct integration occurs even in
gestures which cannot be fully realised as humans would,
and thus easily understood, due to differences in degrees of
freedom between the robot and a human (as occurred for
the ‘I lit’ gestures). If so, one could generalise results far
more easily across different robot platforms than is currently
possible. Secondly, all gestures used were tested in a lab-
oratory setting. Future work will have to investigate more
naturalistic environments such as conversational, interactive
settings (extending the ideas in [30]). Thirdly, how close
the gestures were to the original human gestures was not
directly investigated, and it would be instructive to examine
the similarity required for comprehension and integration, for
robot design and control requirements (extending the ideas
in [17]).
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