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10

The giant unicellular slime mould Physarum polycephalum forms an11

extended network of stands (veins) that provide for an effective intracellular12

transportation system, which coarsens in time. The network coarsening was13

investigated numerically using an agent-based model and the results were14

compared to experimental observations. The coarsening process of both15

numerical and experimental networks was characterised by analyses of the16

kinetics of coarsening, of distributions of geometric network parameters17

(as, for instance, the lengths and widths of vein segments) and of network18

topologies.19
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1. Introduction21

Physarum polycephalum is a well-studied, giant, multinucleated, single22

amoeboid cell, which has developed into a prototypical system for inves-23

tigating two-dimensional transportation networks. The morphology of the24

plasmodium of P. polycephalum consists of an apical zone and an adaptive25

vein network [1], through which protoplasm and nutrients are continuously26

pumped back and forth. This peristalis-driven phenomenon is known as27

shuttle streaming. The adaptive vein network of P. polycephalum forms a28

regular graph (in the mathematical sense) [2, 3], which is known to solve sev-29

eral graph theoretical problems, like finding the shortest path in a maze [4],30

constructing Steiner minimum trees [5], or even mimicking the topology of31

road and railway networks [6–10]. The biological functionality of the vein32

network is to provide for an effective transport of protoplasm. Recently, it33
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has been shown that the self-similar vein network is hierarchically structured34

with respect to its transport efficiency [11]. Such a functionality demands a35

continuous and well-organised optimisation of the vein network. To under-36

stand the criteria according to which these networks are optimised, numerical37

simulations have been performed using a variety of models [6–8, 12–22].38

The proposed models of the network topology of P. polycephalum were39

developed in order to address different questions. Hence, the nature of these40

models varies. A first group of models has been developed to study the op-41

timisation of the transportation capabilities (i.e., the protoplasmic flow) of42

the plasmodial vein networks. These models consider the networks as follow-43

ing Kirchhoff’s rules and supporting Poiseuille flow of protoplasm. Usually,44

a network of a preselected topology is given and the change in the weights45

of the connectivities between nodes (mimicking the intensity of the flux be-46

tween two nodes) is studied as some conditions are varied [6, 8, 12–15]. These47

simulations provide networks with altered vein strengths, however, they do48

neither consider the annihilation of veins nor any topology changes during49

the development of the network.50

A second group of models has been developed to investigate the synchro-51

nisation of peristaltic pumping in a network [13, 16]. These models treat52

the nodes (branching points of veins) as coupled oscillators and focus on53

the nature of the synchronisation patterns obtained in the network. Again,54

modifications of the network topology are generally not addressed by such55

networks.56

A third group of models has been proposed to study changes in the57

topology of the vein networks of P. polycephalum [17–22]. These models are58

either cellular automata [17], agent-based models [18, 19], or even hybrid59

agent–cellular automaton schemes [20–22]. Numerical studies using these60

models focused on the morphologies of developing networks [22], mimicking61

the growth and morphology of the plasmodium either under different envi-62

ronmental conditions [17], or in presence of multiple food sources [20–22].63

These models have been used to simulate P. polycephalum’s ability to solve64

mazes and to approximate Steiner minimum trees [20].65

The multi-agent model introduced in Ref. [18] uses a mobile particle66

approach to approximate the self-assembly, formation and subsequent adap-67

tation of P. polycephalum transport networks. The model was introduced68

to explore the potential role of spatially implemented material-based uncon-69

ventional computing substrates [23–25]. The motivation for this approach70

was inspired by the P. polycephalum plasmodium itself, which exhibits com-71

plex behaviour emerging from only simple component parts and interactions72

(and, importantly, has no special or critical components). It may thus be73

described as a ‘bottom-up’ modelling approach. Although other modelling74

approaches, notably cellular automata, also share these motivations and75
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properties, the direct mobile behaviour of the agent particles renders it more76

suitable to reproduce the flux within the plasmodium. The model is notable77

for the self-assembly of transport networks which emerge from an initially78

random distribution of particles. These networks were found to exploit Local79

Activation and Lateral Inhibition (LALI) dynamics, (where Lateral Inhibi-80

tion was indirectly implemented by substrate depletion) and, subsequently,81

reproduced a wide range of Turing-type reaction-diffusion patterns [26]. Fur-82

thermore, these networks also exhibit physical properties such as network83

minimisation, the formation of Plateau angles and the observation of von84

Neumann’s law [27].85

In contrast to the first two groups of models, the cellular automata and86

agent-based models not only consider the formation of novel veins but also87

consider their subsequent morphological adaptation and annihilation. An-88

nihilation of veins, in fact, is a hallmark of the coarsening of networks. In89

contrast to flow optimisation, the coarsening of the vein networks of P. poly-90

cephalum has, so far, received much less attention in simulation studies.91

When monitoring a fixed area of the network, coarsening is observed when92

the plasmodium propagates. It coarsens continuously until, eventually, the93

slime mould leaves the monitored domain altogether. During coarsening94

several morphological parameters of the vein network change, for instance,95

the density of veins, the number of nodes (i.e., branching points of veins)96

and the mean length of the vein segments. Therefore, one should require97

that any model for the coarsening dynamics reproduces three main features,98

namely (i) the changes in the geometry of veins, (ii) the annihilation and99

disappearance of nodes, and (iii), in the long run, the network should dis-100

appear completely or collapse to a single point.101

In the present paper, we investigate the evolution of P. polycephalum vein102

networks and focus on the coarsening dynamics of originally dense networks.103

We consider the morphology of the network, the distributions of typical net-104

work parameters, and how these properties change during the coarsening of105

the network. We perform numerical simulations using the multi-agent based106

model, recently proposed by Jones [18], and compare the numerical results107

to findings obtained from experiments. To this purpose, we first briefly in-108

troduce the multi-agent based model [18]. Next, we present the materials109

and methods used in the experiments and to perform the network graph110

analysis. The subsequent section reports on the results on the coarsening111

processes in both the simulated and experimental networks, respectively.112

Finally, we discuss the obtained results.113
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2. Multi-agent model of the P. polycephalum plasmodium114

The multi-agent model of P. polycephalum uses a population of coupled115

mobile particles with very simple behaviours within a diffusive lattice [18].116

The lattice stores particle positions and the concentration of a local diffusive117

factor referred to generically as chemoattractant.118

The function of this chemoattractant is to reproduce the sol flux within119

the plasmodium. Particles deposit the chemoattractant factor when they120

move and also sense the local concentration of the factor during the sensory121

stage of the particle algorithm. The particles are thus indirectly coupled by122

the diffusive factor. This is a simple approximation of the changing composi-123

tion of the P. polycephalum plasmodium whereby collective particle positions124

represent the global structure of the material (gel phase), and collective par-125

ticle movement represents the flux within the plasmodium (sol phase).126

In this article, the particles reside within a circular virtual ‘Petri dish’127

inside a lattice 400× 400 pixels in size. The initial population size was com-128

posed of 25 000 particles, initialised at random positions and with random129

orientations.130

2.1. Generation of model plasmodium cohesion131

and morphological adaptation132

The behaviour of each particle occurs in two distinct stages, the sensory133

stage and the motor stage. In the sensory stage, the particles sample their134

local environment using three forward biased sensors whose angle from the135

forward position (the sensor angle parameter, SA), and distance (sensor136

offset, SO) may be parametrically adjusted (Fig. 1 (a)). The sampling area137

A is thus given as138

A =
SA

360◦
(SO)2π . (1)

The offset sensors generate local indirect coupling of sensory inputs and139

movement to generate the cohesion of the material. The SO parameter acts140

as a scaling parameter and distance is measured in pixels. A minimum dis-141

tance of 3 pixels is required for coupling to occur and coupling strength142

increases with SO. For the experiments in this article, we fixed the values of143

SA and RA to 67.5◦ and varied the values of SO. During the sensory stage,144

each particle changes its orientation to rotate (via the parameter rotation145

angle, RA) towards the strongest local source of chemoattractant (for ex-146

ample, rotating to the right in Fig. 1 (b)). Variations in both SA and RA147

parameters have been shown to generate a wide range of reaction-diffusion148

patterns [26] and for these experiments, we concentrate on a particular range149

of SA and RA parameters which have been shown to generate network as-150

sembly and adaptation [27].151
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(a) (b)

Fig. 1. Architecture of a single particle detailing the three sensory parameters.
(a) Morphology showing agent position ‘C’ and offset sensor positions (FL, F, FR,
that stand for forward left, forward, and forward right, respectively) and the SO
and SA parameters, (b) Effect of the RA parameter of agent orientation.

After the sensory stage, each particle executes the motor stage and at-152

tempts to move forwards in its current orientation (an angle from 0–360◦)153

by a single pixel. Each lattice site may only store a single particle and par-154

ticles deposit chemoattractant into the lattice (5 arbitrary units per step)155

only in the event of a successful forwards movement. If the next chosen site156

is already occupied by another particle, move is abandoned and the parti-157

cle selects a new randomly chosen direction. Selection of a new direction158

in response to obstruction prevents the build-up of momentum within the159

particle population. This ensures fluid network adaptation but prevents the160

accumulation of different regions of flux within the population, and so the161

emergence of oscillatory movement is not generated. This can be achieved162

by removing the condition of changing direction, causing oscillatory domains163

to emerge and grow [28], however this is outside the scope of this article.164

Diffusion of the attractant left by particle movement in the lattice was165

implemented at each scheduler step and at every site in the lattice in parallel166

via a simple mean filter of kernel size 3×3. Damping of the diffusion distance,167

which limits the distance of chemoattractant gradient diffusion, was achieved168

by multiplying the mean kernel value by 0.9 per scheduler step.169

2.2. Adaptation of model plasmodium population size170

Adaptation of the population size was implemented via tests at regular171

intervals. The frequency at which the growth and shrinkage of the population172

was executed determines the turnover rate for the population. The frequency173

of testing for growth was given by the Gf parameter and the frequency for174

testing for shrinkage is given by the Sf parameter. Both Gf and Sf were175

set to 5. Growth of the population was implemented as follows: If there176

were between Gmin (0) and Gmax (10) particles in a local neighbourhood177
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(window size given by Gw, in this case 9× 9) of a particle, and the particle178

had moved forward successfully, a new particle was created if there was a179

space available at a randomly selected empty location in the immediate 3×3180

neighbourhood surrounding the particle.181

Shrinkage of the population was implemented as follows: If there were182

between Smin (0) and Smax (22) particles in a local neighbourhood (window183

size given by Sw, in this case 5×5) of a particle the particle survived, other-184

wise it was deleted. Deletion of a particle left a vacant space at this location185

which was filled by nearby particles (due to the emergent cohesion effects),186

thus causing the population to shrink slightly. As the process continues, the187

model plasmodium continues to adapt its shape and shrink further.188

The model runs within a multi-agent framework running on a Windows 7189

PC system. The particles act independently and iteration of the particle190

population is performed randomly to avoid any artifacts from sequential191

ordering.192

3. Material and methods193

The dehydrated form of P. polycephalum strain HU195×HU200, the scle-194

rotia, was stored up to 24 months. Sclerotia were placed on a 1.0% w/v195

(weight per volume) plain, non-nutritive agar gel (Difco BactoAgar) in a196

polystyrene box (size: 18× 25× 35 cm3) at a constant temperature of 21◦C197

in the dark. The sclerotia germinated and transformed into plasmodia which198

expanded over the agar matrix. During growth, oat flakes (Kölln Flocken)199

were used to feed the plasmodium, in order to increase the plasmodial mass.200

An area of about 1 cm × 4 cm of the frontal zone of the expanding201

plasmodium was carefully cut off, and transferred into the centre of a square202

polystyrene Petri dish of 12 cm diameter, which contained 1.0% w/v plain,203

non-nutritive agar gel (Difco BactoAgar). After several hours, a network204

of tubular strands (veins) developed, that coarsened as the plasmodium205

propagated forwards. From this network, the evolution of a region of interest206

was observed over time. The coarsening process was monitored with a CCD207

Camera (Hamamatsu C3077) at a resolution of 768 × 576 px, where 1 px =208

0.0456 mm (i.e. an area of 3.5 cm × 2.6 cm). Images were acquired at a209

frame rate of 1/6 Hz and stored in a computer for later analysis.210

The experimental and simulated networks were extracted from the stored211

or calculated images, respectively, and subsequently analysed according to212

the methods described in references [29, 30].213

4. Results214

A typical network coarsening, as produced by the model, is depicted215

in Fig. 2. After the initialisation of the model, the network is formed216

(Fig. 2 (a)), and subsequently it begins to coarsen (Fig. 2 (b)–(d)). During217
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coarsening the number of veins is reduced, and the area of the network218

decreases, as indicated by the red circle which encloses the vein network.219

During the entire coarsening process, none of the nodes or edges remain in220

their position.221

(a) t = 50 (b) t = 300 (c) t = 1650 (d) t = 9075

Fig. 2. Coarsening in the model. SO = 5, RA = SA = 67.5◦. The red circle
enclosing the network indicates the circular shape of the network. This allows the
measurement of the network diameter and thus the area, where the vein network
is embedded. (a) At 50 time steps (time units, t.u.), a dense network has formed.
(b) At 300 t.u., the number of veins has decreased. (c) At 1650 t.u,. the vein
network has almost lost its circularity. (d) At 9075 t.u., the vein network has
vanished, due to the coarsening.

The coarsening of an experimentally observed vein network is shown in222

Fig. 3. At the beginning of the experiment, the plasmodium propagates over223

the agar. When it completely covers the observed area (Fig. 3 (a)), the vein224

network is very dense. As the plasmodium propagates, it keeps its mass225

(as the plasmodium migrates over a non-nutrient gel). This leads to the226

coarsening of the vein network (Fig. 3 (b), (c)). The coarsening is monitored227

until the plasmodium has moved out of the observation area.228

Fig. 3. Coarsening of a P. polycephalum vein network. The plasmodium propagates
from left to right. (a) 16 h after beginning the experiment, the dense vein network
is found in the observation area. (b) 17.5 h. The vein network begins to coarsen.
(c) 19.5 h. Further coarsening of the vein network. After 20.0 h (not shown), the
vein network has almost vanished.
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4.1. Morphology of coarsening networks229

At the beginning of the simulation, the model network covers the maxi-230

mum area as the particles are distributed over the entire area of interest Anet.231

The densely and randomly distributed particles form a dense and extended232

network of veins. With time, this network coarsens and the area Anet is233

covered by the network shrinks. These phenomena are associated with a234

continuous decrease in the number of veins, a situation that is also observed235

in the experiments. A notable difference between the morphologies of the236

experimentally observed networks and the model networks is found for the237

widths of the strands: whether the widths of the veins are log-normally dis-238

tributed in the real P. polycephalum networks [2], the width of the stands is239

uniform and invariant in the model networks.240

The log-normal distribution of vein widths observed in the experiments241

contributes to the generation of P. polycephalum networks that are hier-242

archically and self-similarly organised with respect to their transport effi-243

ciency [11]. Hence, these networks are optimised to provide for an efficient244

transport of protoplasm. Similar network structures are not found in the245

model.246

Another morphological aspect studied is the type of graph that is realised247

by the model and experiment. It was recently reported that the plasmodial248

vein networks of P. polycephalum form regular graphs with the unique node249

degree k = 3 [2, 3]. In the model, by contrast, nodes of degree k = 3250

predominate, however, during the contraction of the lacunar areas delimited251

by the veins, nodes of higher degree (up to k = 5) can also be found. Hence,252

model networks possess node degree distributions, and therefore they do not253

form regular graphs as the real networks do.254

4.2. Network area coverage255

We define the area of the smallest circle that covers the entire network256

as the network area Anet, and the number of all pixels belonging to veins of257

the network as vein area Av. The network coverage ρ258

ρ =
Av

Anet
(2)

describes the density of veins in the network area, and it is given by the ratio259

of the vein area to the network area. At the beginning of the simulation, the260

network coverage Av/Anet is large, as almost 70% of the space is covered by261

veins or cell mass, thus yielding ρ ≈ 0.7. With time the network coverage262

decreases until any branches of veins have disappeared and the shape of263

the last remaining vein has become circular. During this process, the area264

coverage converges to ρ ≈ 0.20. Once the network consists only of a single265
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circular vein, coarsening continue further and the network density ρ increases266

again, as the circle shrinks to a point, such that ρ → 1 in the long term267

(Fig. 4).268

Fig. 4. Temporal evolution of the network coverage ρ = Av/Anet for a model
network with SO = 5 and RA = SA = 67.5◦. The evolution is determined by two
processes: initially, the coarsening process, where ρ decays exponentially until it
reaches a minimum at tc = 6850 t.u. (time units). Thereafter, the evolution is
given by the shrinkage of the remaining circular vein to a single spot. This leads
to an increase of ρ.

The evolution of the network coverage ρ is governed by two processes,269

namely the coarsening of the network and, in the last stage of the coarsen-270

ing, the subsequent collapse of a circular vein (Fig. 2 (d)) to a single point.271

These processes are reflected in Fig. 4, where the network coverage ρ at first272

decreases exponentially with time273

ρ = ρ0 e
−κt , (3)

until it reaches a minimum. In Eq. (3), κ is the decay constant. The time274

required to reach this minimum is the coarsening time tc that is defined as275

the instant where all branching points of the network have been annihilated.276

In Fig. 4, which was obtained using a sensor offset SO = 5, the coarsening277

time was tc = 6850 t.u., where t.u. stands for time units (or time steps).278

The second process is the collapse of a circular vein to a single spot, and it279

occurs at t > tc. This process is associated with an increase in ρ.280

In experiments, a similar shrinkage of the network coverage was also281

reported [2]. Initially, the network coverage was high, however, its value282

decreased as the network coarsened and finally settled to an asymptotic283

value of ρ ≈ 0.20.284
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4.3. Coarsening time285

The dependence of the coarsening time tc on the range of the sensor286

offset was determined from networks generated with various values of SO.287

Figure 5 shows that tc shortens with increasing SO. An analysis reveals that288

the coarsening time tc is proportional to 1/SO2, according to289

tc = γ
1

SO2 + tc(0) , (4)

as demonstrated in the inset of Fig. 5. γ is the coarsening constant, which290

is determined as γ = 140352 t.u. × px−2, and the offset tc(0) = 1422 t.u. It291

is worth noticing that the dimension of SO is that of a reciprocal diffusion292

constant D.293

Fig. 5. Dependence of the coarsening time tc on the sensor offset SO. A plot of tc
as a function of γ/SO2 is shown in the inset. This correlation is linear (see Eq. (4))
with the slope γ as the coarsening constant obtained as γ = 140352 t.u. × px−2

and the offset tc(0) = 1422 t.u.

The coarsening time tc depends on the sampling area A which is probed294

by each particle during the sensory stage. This can be shown by substituting295

Eq. (1) into Eq. (4), such that296

tc = γ

(
π

SA

360◦

)
1

A
(5)

which states that the coarsening time decreases (increases) as the sampling297

area A is increased (decreased).298
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Hence, the area of the sensing domain may be interpreted as a measure299

for the “range” of influence of nearby flux on an individual particle (relating300

to the position and distance of nearby veins with greater flux). The more301

extended the sampling area A is, the faster any merging of veins may occur,302

thus leading to a faster coarsening process.303

4.4. Number of veins304

As the network coarsens, the number of veins in the network diminishes.305

However, the coarsening takes place at different time scales in experiment306

and simulations. To enable the comparison of kinetic data obtained from307

both experiments and simulations, we introduce the normalised time t/tmax.308

Here tmax is the time at which the network had either collapsed to a single309

point or completely disappeared from the region of observation.310

In model networks, the number N of veins decreases following the bi-311

exponential function (Fig. 6)312

N = N1 e
−α1 t +N2 e

−α2 t , (6)

due to coarsening. N1 + N2 = N0 is the number of veins at the beginning313

of the simulation (i.e., at time t = 0). In other words, in the model, the314

coarsening takes place at two time scales that are characterised by the decay315

rate constants α1 and α2. The fast decay rate constant α1 is associated316

with the rearrangement of the densely distributed particles to form veins.317

This process is fast and leads to a drop in the network density ρ. Once318

the first veins are formed, the network coarsens at a slower rate, which is319

dependent on the rate constant α2. This means that in Fig. 6, the fast320

process (associated to α1) lasts until t/tmax ≈ 0.06, and the coarsening321

process of veins which is associated with the decay rate constant α2 becomes322

dominant at t/tmax > 0.06.323

The coarsening of real vein networks of P. polycephalum follows different324

kinetics than that of the model networks. The annihilation of veins was325

found to decrease mono-exponentially in time, as described by326

N = N0 e
−αt , (7)

suggesting that reduction in the number of veins follows a single process.327

The kinetics of this process is characterised by the decay rate constant α.328

The physical process accounted by the (mono-exponential) decay constant α329

resembles that described by the (bi-exponential) decay constant α2 in coars-330

ening model networks.331

The decreases in the number of veins during coarsening in both model332

and real vein networks are plotted in Fig. 6. Here, a normalised number of333

veins N/N0 and a normalised time t/tmax were used to allow for a convenient334

comparison of the behaviours of the model and experimental networks.335
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Fig. 6. Evolution of the number of veins in a coarsening network. The decay
of the normalised number of veins N/N0 in dependence of the normalised time
t/tmax. The coarsening of the model network (red stars) with SO = 7 is best
fitted by a bi-exponential function (light grey/red line, with the decay constants
α1 = −31.25 t.u.−1 and α2 = −6.25 t.u.−1). By contrast, the experimental network
(black squares) presents a mono-exponential coarsening dynamics (grey/blue/line:
mono-exponential fit, with α = −7.69 s−1).

4.5. Evolution of the mean length of veins336

The lengths of the veins in the network are distributed log-normally,337

in both, the model networks (Fig. 7) and in the real networks [2]. This338

functional form remains constant during the entire coarsening process, only339

the parameter values change in time. In numerically generated networks,340

the log-normal function fits to the length distribution of veins to a good341

agreement as long as SO is kept small (i.e. SO ≤ 7). With increasing SO342

values the peak of the function becomes sharper, increasingly deviating from343

the typical log-normal distribution.344

With time, the mean length 〈l〉 of the veins increases almost linearly in345

both model and real networks (Fig. 8). This can be explained by the removal346

of nodes from the network, which leads to both a reduction in the number347

of veins and an increase in their lengths. P. polycephalum continuously348

optimises its plasmodial vein network, resulting in the annihilation of several349

nodes of the vein network, such that mean vein length 〈l〉 increases. In the350

model, lacunar areas between the veins shrink and nodes are continuously351
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removed, causing an increase in the lengths of the adjacent veins. As the352

network coarsens, these processes lead to a decrease of the number N of353

veins and to an increase of the mean vein length 〈l〉.354

Fig. 7. Distribution of lengths of veins in simulations for SO = 3 (squares), SO = 7

(circles), and SO = 15 (triangles). The values of RA = 67.5◦ and SA = 67.5◦ were
held constant. Log-normal distributions were fitted to the data (lines).

Fig. 8. Evolution of the mean vein length 〈l〉 as a function of the normalised time
t/tmax. Red stars show the data obtained from model networks, whereas black
squares represent data obtained from experiments.
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The mean length 〈l〉 and the number of veins N were found to be corre-355

lated through the power law356

〈l〉 = ηNβ , (8)

as revealed by Fig. 9. The exponents β obtained from the coarsening model357

and experimental networks were β = −0.41 and β = −0.35, respectively,358

suggesting a similar, but not identical coarsening dynamics.359

Fig. 9. Correlation between the number of veins N and the mean vein length 〈l〉.
Red stars and lines represent the model data and the corresponding fit of Eq. (8) to
the data, respectively, whereas black squares and the light grey/blue line represent
the experimental data and the corresponding fit of Eq. (8) to the data, respectively.

4.6. Mean width of the veins360

The mean width 〈w〉 of veins remains constant in time in both the model361

and the experiment (Fig. 10). However, the mechanisms leading to a con-362

stant mean vein width 〈w〉 are different in the model and experimental net-363

works. In the model, the width of veins is determined by the values of SA,364

RA and SO. Once these values are set, they remain fixed during the entire365

simulation, and so does the mean width 〈w〉 of the veins. This contrasts with366

the situation encountered in the experiments where the widths of the veins367

are distributed log-normally [2, 3] at all stages of the coarsening process.368

Interestingly, however, the mean width 〈w〉 of veins in the experiment also369

remains nearly constant during the coarsening process, since the log-normal370

distributions of the vein widths are narrow and the mean of the distribution371

always settles at a small value of w.372
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Fig. 10. Temporal evolution of the mean vein width 〈w〉 in model (red stars) and
experimental (black squares) networks. Interestingly, 〈w〉 is constant in both cases.

5. Discussion373

Coarsening is a process that was observed in studies of P. polycephalum374

vein networks, which are optimised with respect to the transport efficiency375

of the protoplasm and nutrients transporting veins. Whereas the coarsen-376

ing process and its dynamics have been characterised in a series of stud-377

ies [2, 22, 29, 30], simulation studies of this process are scant. In fact, this378

has been attempted by Gunji and coworkers, who have presented a model379

(the vacant particle-shrinkage model) that accounts for the coarsening of an380

initially very dense to a sparse network that connects nutrient sources de-381

posited on the arena (Petri dish) [22]. This setting reproduces experiments382

as reported in Ref. [31]. Gunji et al. have also compared the coarsening dy-383

namics obtained in numerical simulations to that of laboratory experiments384

by studying the temporal evolution of some network parameters, for instance385

the network area, the number of loops, and area closure of the experimental386

and simulated networks [22].387

In the present article, we have performed a detailed examination of the388

coarsening dynamics as presented by a frequently used agent-based model389

for P. polycephalum network [18, 19]. Results of the numerical studies were390

compared to those obtained from experiments. We found that the model391

reproduces a series of features seen in the coarsening of P. polycephalum392

to good agreement, while some discrepancies remain. Good agreement was393

achieved for the distribution of the lengths of the veins in the network,394

that were found to obey log-normal distributions in both, experiments and395
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numerical simulations. Furthermore, a good agreement was also observed396

in the evolution of the mean vein length 〈l〉, which was found to correlate397

to the number of veins N in the network by a power-law function in both,398

experiments and simulations. The values of the exponents β were quite399

similar as well.400

Another point where numerical and real networks behave similarly is the401

development of the network coverage ρ. Both experiments and simulations402

reveal that the network coverage decreases in time until it approaches a403

value of ≈ 0.2 in both experimental and numerical networks. However, in404

experiments this value of ρ ≈ 0.2 is asymptotic, whereas in the numeri-405

cal simulations the area coverage ρ increases again as soon as all branching406

points have been removed from the network, and only a single shrinking407

circular vein remains. This difference can be explained by different problem408

settings studied in the experiments at the one hand, and in the numerical409

studies at the other. The experiments were designed to elucidate the dynam-410

ics of a freely migrating giant plasmodium on a nutrient-free gel substrate.411

Ultimately, the scarce, propagating network leaves the region of observation.412

On the other hand, the agent-based model was originally designed to repro-413

duce a scenario where a dense matrix of protoplasm is spread on a substrate414

that contains a few nutrient sources. In such a situation, the plasmodium415

does not migrate. In the long term, a plasmodium located in a nutrient- and416

stimulus-free setting (as studied in this paper) rather contracts to a single417

spot.418

These different settings lead to some disparities in the coarsening of ex-419

perimental and numerical networks. The most pronounced difference lies in420

the kinetics of the number of veins N in the network: whereas N decays421

mono-exponentially in the experiments, the decay of N in numerical net-422

works is bi-exponential. In the experiments, one considers the evolution of423

the number of veins in the network area. That is, the formation of veins in424

the transition zone between the apical and the network zones of the plas-425

modium [1] are not taken into account. By contrast, the initial condition426

used in numerical simulations corresponds a plasmodium that is entirely427

and densely covered by tiny veins, as it is the case of the transition zone.428

Therefore, the simulated networks account for two processes, namely the429

formation of the veins and their fate in a coarsening network. Following this430

reasoning, the kinetics observed in the experimental networks corresponds431

to the network decay described by α2 (Eq. (6)) in the simulated networks.432

One of the factors determining the kinetics of coarsening in the simulated433

networks is the area of the domain A that is sensed by any agent. In fact,434

the coarsening occurs faster as the size of the sensing domain A (and hence435

the value of the sensor offset parameter SO) increases. This suggests that436

the rate of network coarsening augments with the area from which any agent437
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(i.e., any position in the network) draws information about its environment.438

This further suggests, that an agent approaches a more efficient vein in a439

more directed way as the sampling range A increases.440

In conclusion, the present study has provided insights in the coarsen-441

ing dynamics of both the plasmodial vein network of P. polycephalum, and442

networks produced by the multi-agent model proposed in Ref. [18]. Even443

though the modelling approach was developed for other purposes than the444

study of the contemplative migration of a plasmodial vein network, the net-445

work coarsening in experiments and numerical simulations show remarkable446

similarities. Nevertheless, the mechanistic origins leading to the remaining447

differences between experiments and numerical simulations constitute an in-448

teresting challenge for further studies.449

J.J. was supported by the EU research project “Physarum Chip: Growing450

Computers from Slime Mould” (FP7 ICT Ref 316366).451
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