Droid Geometry

@SteveBattle
University of the West of England

Maintenance drones are eco-friendly

Flower Power

- How can we make a robot arm water a flower.
- This is the 1981 Armdroid 1.

Triangles

0

00

An isoceles triangle has two equal sides.

0

Turtles all the way down

- We can simulate this in Python.
- IDLE is a Python program editor.

turtle functions

forward(length)	backward(length)
left(angle)	right(angle)
penup()	pendown()
done()	
speed(s)	e.g. 'slow', 'fast', 'fastest'
shape(name)	e.g. 'turtle', 'classic'
goto(x , y)	x,y coordinates

Robot Simulator

Robot Kinematics: How far does it reach?

Break the problem down into triangles.

We know

the arm

lengths.

Triangle width & height

Analogue vs Digital

• To work out the reach of the upper arm read out the width (cosine), w, in the plot for the angle (eg. a=45°).

Adding the forearm

Test the results

Parallelograms

• The Armdroid has pulleys so that the forearm maintains its angle.

Inverse Kinematics

• If we know where the flower is, how do we work out the angle **a**?

Analogue computer

Maintenance Drones are eco-friendly.