Incorporating Semantics in Pattern-Based Scientific
Workflow Recommender Systems

Improving the Accuracy of Recommendations

Abstract—Recommender systems are used to enable decision-
support. Using them to assist users when designing scientific
workflows introduces a number of challenges. These include se-
lecting appropriate components and specifying correct parameter
values. Pattern-based workflow recommender systems employ
historical usage patterns to generate recommendations. Such
systems can intelligently adapt with use. Semantics, on the other
hand, can enable recommender systems to intelligently infer
new relationships between workflow components. Combining
both approaches can help to overcome the drawbacks of each
approach and improve the accuracy of the suggestions. To this
end, a framework for a hybrid workflow design recommender
system is presented in this paper along with the accompanying
suggestion generation algorithm. An illustrative example is also
presented to demonstrate how the system helps in constructing a
workflow. The performance of the framework is compared with
an existing pattern-based system using a dataset of neuroimaging
workflows. The evaluation results demonstrate that the proposed
system outperforms the existing system in a number of different
scenarios. The improvement in the performance of the proposed
system enhances the usability of the system for users and allows
them to more efficiently construct workflows.

Keywords—workflow design; recommender systems; workflow
execution systems; ontologies

I. INTRODUCTION

Workflows are a way to describe a series of computations
on raw e-Science data. These data may be MRI brain scans,
data from a high energy physics detector or metric data from
an earth observation project. In order to derive meaningful
knowledge from the data, it must be processed and analysed.
According to [1], workflows have emerged as the principle
mechanism for describing and enacting complex e-Science
analyses on distributed infrastructures such as grids. Scientific
users face a number of challenges when designing workflows.
These challenges include selecting appropriate components
for their tasks, specifying dependencies between them and
selecting appropriate parameter values. These tasks become
especially challenging as workflows become increasingly large.
For example, the CIVET workflow consists of up to 108
components [2]]. Building the workflow by hand and specifying
all the links can become quite cumbersome for scientific users.

Traditionally, decision-support systems have been em-
ployed to assist users in such time-consuming and tedious
tasks. Such systems are also called recommender systems. One
of the techniques used by recommender systems has been to
predict what the user is trying to do using a variety of tech-
niques. These techniques include using workflow semantics

on the one hand and historical usage patterns on the other.
Semantics-based systems attempt to infer a user’s intentions
based on the available semantics. Pattern-based systems at-
tempt to extract usage patterns from previously-constructed
workflows and match those patterns to the workflow under
construction. The use of historical patterns adds dynamism
to the suggestions as the system can learn and adapt with
“experience”. However, in cases where there are no previous
patterns to draw upon, pattern-based systems fail to perform.
Semantics-based systems, on the other hand infer from static
information, so they always have something to draw upon.
However, that information first has to be encoded into the
semantic repository for the system to draw upon it, which
is a time-consuming and tedious task in itself. Moreover,
semantics-based systems do not learn and adapt with ex-
perience. Both approaches have distinct, but complementary
features and drawbacks. By combining the two approaches,
the drawbacks of each approach can be addressed. This paper
presents a hybrid recommender system that combines both
these sources of knowledge to generate more accurate sugges-
tions. An overview of the proposed framework is presented in
this paper along with a comparative evaluation with an existing
system.

The paper begins with related work in Section |lI} The re-
lated work gives way to a description of the hybrid framework
being presented in this paper in Section The suggestion
generation algorithm is presented in Section An illustrative
example is presented in Section [V] Section identifies use
cases where this framework may be used. In Section the
proposed framework is compared with an existing system.
The results thus obtained are discussed in Section and
the paper concludes with a summary and conclusions in
Section [[X1

II. RELATED WORK

Over the past two decades, there has been a lot of interest
in developing systems to suggest relevant items to users. In
literature, such systems are termed recommender systems [3].
Such systems have found many real-world applications such
as recommending books, CDs and other products at Amazo
movies by MovieLens and news at VERSIFI Technologies
[4], (5], [6]. Due to the large number of items (objects to be
recommended) available, recommender systems help users to
simplify the often tedious and cumbersome process of sifting
through them. Recommender systems are a well-researched
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area in general. However, there has not been much focus on
workflow design recommender systems.

In general workflow design recommender systems rely
on one of two types of information to generate suggestions;
historic usage patterns and workflow component semantics.
VisComplete is a pattern-based system developed by Koop et
al. that treats workflows as graphs and tries to find the most
frequent patterns that occur in the graphs [7]]. These patterns
represent collections of workflow components that designers
frequently use in conjunction with each other. When workflows
are represented as graphs, frequent subgraphs within that set
represent the frequent patterns in the workflows. Similar to
VisComplete, Oliveira et al. have also developed a pattern-
based recommendation system that they have integrated into
the VisTrails workflow composition tool [8], [9]. It works
by parsing the repository of workflows and finding frequent
connections. Contrary to VisComplete, however, the system
only provides single-step suggestions at every point.

Junaid el at. have integrated a semantics-based system
into the ASKALON workflow environment [10], [11]. The
semantics considered include workflow name, workflow do-
main, component type, component function etc. Moreover, the
system also incorporates some user-defined criteria for filtering
suggestions. Users can limit the suggestions to be user-specific,
domain-specific or time-specific. In addition to the previous
criteria, the system also applies a third filtering step. The
filtering at this stage is performed on the basis of two measures;
the design-time and the runtime reliability and correctness
of the suggestions. Design-time reliability and correctness
are determined by the skill level of the users designing the
workflows and the frequency of use by expert users. On the
other hand runtime reliability and correctness are measured by
several factors including the number of successful executions
of the component, the degree of correctness of the results,
the resources previously used by the component currently
available in the grid, and the resources previously used by the
component currently reserved in the grid. However, this paper
argues that some of the criteria used by this system should
have no bearing on the appropriateness of the suggestions
generated. These include, for example the resources used by
the component when executed last, as often workflows are not
designed and executed at the same time. It is conceivable the
resources available on the grid might have changed by the time
the workflow is executed. Thus, they should have no role in
determining if a component is appropriate.

CAT is another example of a semantics-based system [12]].
It employs a mixed-initiative approach to workflow composi-
tion; the system can generate complete or partial workflows
automatically from user-defined descriptions as well suggest
actions to users as they compose workflows. At every step,
the system uses semantic descriptions coupled with formally
defined properties to determine correctness of workflows.
The semantics of the components and their input and output
ports are described in a knowledge base using two separate
hierarchical ontologies; a component ontology and a domain
term ontology.

Both semantics-based and pattern-based systems suffer
from certain drawbacks. Semantics-based systems require the
semantics to have been specified beforehand, which is a
time-consuming and tedious task. Pattern-based systems on

hand require can learn automatically with time without user
intervention. However, there may be certain cases where a user
may be constructing a workflow that is not very common.
In this situation a pattern-based system would not work.
However, a semantics-based system might be useful in this
case. This research proposes that by combining both sources
of knowledge, the drawbacks of each individual approach may
be overcome. Such a hybrid architecture is presented and
evaluated in this paper.

III. ARCHITECTURE FOR A HYBRID SCIENTIFIC
WORKFLOW DESIGN RECOMMENDER SYSTEM

The proposed suggestion generation framework is shown
in Fig.[T] It combines frequent usage patterns and semantics to
generate suggestions. The semantics as well as frequent usage
patterns are stored in a combined knowledge base (domain
ontology), which is then used to generate the suggestions.
The semantics are applied in two phases; when mining the
patterns and when generating suggestions. The steps involved
in applying the semantics and an overview of the framework
are described subsequently.

i) Workflow Composition Tool: Users use a Workflow Com-
position Tool to compose their workflows.

ii) Workflow Repository: The workflows, once composed
are stored in the workflow repository.

iii) Pattern Extraction Engine: The workflows are then
mined for frequent usage patterns by the pattern extraction
engine.

iv) Workflow to Graph Conversion: Before the workflows
can be mined, they must first be converted to graphs using
this component.

v) Component Generalisation: The converted workflows are
then generalised by the generalisation component. This
process employs the workflow component semantics to
identify their functional type. This allows the system to
extract patterns that represent groups of component types
that perform a single composite function instead of groups
of specific components.

vi) Usage Pattern Extraction: Finally the patterns are mined
for frequent subgraphs by the usage pattern extraction
component. These frequent subgraphs represent frequent
usage patterns in the workflows.

vii) Domain Ontology: All of the knowledge extracted in this
manner is stored in the domain ontology, the central entity
in this process. It contains the extracted patterns as well
as semantics about the workflow components. The initial
classification of components along with a description of
their inputs and outputs is specified by domain experts.

viii) Suggestion Building Engine: The Suggestion Building
Engine is responsible for retrieving suggestion candidates
from the Domain Ontology and sending them to the
Workflow Composition Tool.

ix) Semantic Analyser: This component analyses partial
workflows and propagates semantics across components.

When users design workflows, the workflow composition tool
contacts the suggestion building engine for recommendations.
The suggestion building engine sends the partially constructed
workflow to the semantic analyser for analysis. The semantic
analyser employs the relationships between component pa-
rameters specified in the domain ontology to semantically-
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Fig. 1. Hybrid suggestion generation framework architecture.

enrich the workflow. This allows the system to generate
more accurate suggestions. The semantically-annotated partial
workflow is then sent back to the suggestion building engine.
It then queries the domain ontology for suggestions and sends
them back to the workflow composition tool. The suggestion
generation algorithm is presented, discussed and evaluated in
the following sections.

IV. GENERATING SUGGESTIONS

In order to generate suggestions for a partial workflow,
it must undergo a series of processing steps. The suggestion
generation algorithm is discussed subsequently.

i) The workflow is converted to a graph.
ii) The components in the workflow are generalised.
iii) The repository is searched for patterns that overlap with
the partial workflow.
iv) Once matching patterns are found, they are specialised.
v) The partial workflow is then semantically analysed and
enriched.
vi) Compatible components are retrieved from the repository
based on the enriched workflow semantics.
vii) The results are sorted and returned.

Generalising the components involves replacing specific
components with their functional types from the ontology.
For example, Align Linear is a RegistrationComponent. If a
workflow contains the former, then generalisation will replace
it with the latter. This allows the system to identify composite
functions that constitute multiple other functions. For example,
when registering one MRI to another, linear alignment is the
first step that results in a transformation matrix. This matrix is
then used by the Reslice component to register the MRI. These
two components frequently appear together in workflows since
they are closely linked. Moreover, these are not the only two
components of their types that perform this function. There
are other components that do the same, but are appropriate
in different circumstances. Without generalisation, the system

would treat every group of components as a different pattern.
However, with generalisation, the system would be able to infer
that a RegistrationComponent and a ReslicingComponent to-
gether constitute a complete registration process. Specialisation
is the opposite process of generalisation.

Semantic analysis involves propagating known semantics
of component inputs and outputs across other components.
This ensures that when workflow completions are to be sug-
gested based on semantics, as much information as possible
is available for the system to reason with. For example,
BrainParser is a component that labels the different regions
of a brain MRI. It requires the MRI to be skull-stripped; i.e.
the skull and other extraneous tissue needs to be stripped
away so that only the brain is left in the image. Now if a
worklow contains the BrainParser component, the system can
determine that a skull-stripping component such as SSMA is
required. However, consider the situation where the input of
BrainParser is connected to another component, e.g. a noise-
filtering component such as Bias Field Corrector. In this case
the system would not be able to infer that a skull-stripping
component is required here. However, by propagating the
semantics of BrainParser back across Bias Field Corrector, the
system would be able to correctly infer that SSMA is required.
The use of semantic propagation to ensure more accurate
suggestions are generated enriches the workflow semantically.

V. ILLUSTRATIVE EXAMPLE

This section demonstrates how the system assists a user
in constructing a neuroimaging workflow. Fig. [2] shows an
example neuroimaging workflow that is just being constructed.
This workflow is taken from the LONI repository called
“Automated ROI Extraction/Volume Calculation”. As a user
adds components to the workflow, the system actively suggests
possible completions. In this case, Fig. [2] shows the initial
workflow as the user starts building it. Once the user adds
the first component, the system presents the user with a list of
candidates. For this example, the correct candidate consists of
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a subworkflow. This is because the added component appears
in the suggested subworkflow in the repository. Choosing the
appropriate suggestions results in the workflow shown Fig. [3]

Adding the subworkflow triggers another suggestion gen-
eration request. This time, the correct suggestion is not in the
list, so the user has to manually add the correct component.
The next batch of suggestions originate from semantic com-
patibility between components as they do not appear in any
frequent patterns. It takes a total of 9 steps to complete this
workflow. The completed workflow is shown in Fig. [4]

VI. USE CASES

The performance of the presented framework depends upon
several factors. These include the availability of workflow
semantics and the existence of overlapping patterns between
the workflow being designed and the repository. In the absence
of sufficient semantics, the framework would not be able
to produce semantics-based suggestions. Therefore, for these
use cases it is assumed that sufficient semantics exist in the
repository. However, there may be three scenarios with respect
to overlapping patterns. These scenarios are described below
as different use cases:

Use Case 1 (UCy): The workflow being constructed
may contain overlapping patterns
with the workflow repository.

The workflow may not have any
overlapping patterns with the repos-
itory before generalisation. How-
ever, generalising the workflow
may result in the emergence of
overlapping patterns.

The workflow may not have any
overlapping patterns with the repos-
itory even after generalisation.

Use Case 2 (UC,):

Use Case 3 (UC3):

VII. EXPERIMENTAL EVALUATION

To evaluate the framework, 65 neuroscience workflows
from the LONI repository were used [13]]. During the pat-
tern extraction phase, the minimum frequency threshold for
each pattern was set at 4. It was so chosen because it is
approximately equal to 5% of the total workflows, which is
the significance level commonly used in statistical significance
testing [14)]. In addition, Closed Graph mining was enabled
to eliminate overlapping patterns and reduce the number of
overall patterns mined [15]. These patterns were written into
the ontology for use by the Suggestion Building Engine. The
descriptions of the various workflow components along with

their inputs and outputs were specified beforehand by domain
experts.

The Mean Reciprocal Rank (MRR), coupled with the
number of steps required to construct the workflow were used
to evaluate the suggestions [16]. The MRR is appropriate in
this case because for each list of suggestions presented to the
user, there will be at most only one correct suggestion. A
higher MRR indicates that the relevant suggestion was ranked
highly by the system. For the number of steps required to
construct the workflow, a lower number is desirable. This
would indicate that the system was of greater assistance by
minimising user involvement. On the contrary, a high number
of steps would indicate that the user needed to be more
involved in the design process. The results were compared with
those of an existing system for the same dataset. The system
chosen for comparison was developed by [8]. It was chosen
because it is a system that does not employ any semantics. It
only relies on frequent patterns. Since this research attempts
to show how combining semantics with patterns can improve
the suggestions, Oliveira et al.’s system is a suitable candidate
for comparison.

Three sets of workflows were chosen in accordance with
the three use cases identified in Section These were
workflows that (a) already existed in the repository, (b) did
not exist in the repository but had overlapping patterns with it,
and (c) did not exist in the repository and had no overlapping
patterns with it. For the experiments, three workflows of each
category were chosen and are shown in Table [l The table
also lists their size in terms of the number of components
they comprise and which use case they are meant to evaluate.
For UC, and UC;, the workflows were first removed from
the original repository in turn, reducing the total count to 62
workflows. The results of the experiments are presented in the
next section.

VIII. RESULTS

For each of the workflows provided as input to the frame-
work, the results are shown in Fig. [5] Fig.[5a]shows the average
MRR for both systems. It was calculated by averaging the
MRRs for each individual step required to construct the work-

TABLE I. Workflows used to perform evaluation.

uc 1D Name Size

Wf, BrainParser (Hippocampus) 14

uc,  wf, BrainParser (56 Structures) 14

Wf, Automated ROI Extraction/Volume 22
Calculation

Wf, BrainParser (Hippocampus) 14

UC,  wfy BrainParser (56 Structures) 14

Wfs Automated ROI Extraction/Volume 22
Calculation

Wwf, MDT with KLMI (Existing Atlas) 15

UG Wf, MDT with KLMI (1 Subject Bias) 13

Wfy MDT with KLMI (Multiscale 27
Symmetric)
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flow. Fig. [5b| compares the number of steps it took to construct
each of the workflows using both systems. For workflows that
are already in the repository or have overlapping patterns,
the MRR is low as compared to Oliveira et al. because the
proposed system suggests more than one component at a time
while Oliveira suggests only one. The larger patterns were less
frequent than the smaller ones. Since both systems employ
frequency-based ranking mechanisms, Oliveira’s suggestions
occur more frequently, and thus are ranked higher. On the other
hand the proposed system’s suggestions occur less frequently
because they consist of multiple components. Thus they are
ranked lower. In the case of workflows with no overlapping
patterns, the proposed system clearly outperforms Oliveira et
al.’s system. This is because the proposed system also gener-
ates suggestions based on semantics, as opposed to Oliveira et
al.’s system.

In Fig. [5bl the proposed system clearly outperforms
Oliveira et al.’s system since the less steps it takes to construct
a workflow, the more efficient is the system. Overall it can
be seen that the proposed framework requires few steps to
construct workflows that have overlapping patterns with other
workflows in the repository. For Wf; it took only one step to
construct since the entire workflow appears as a sub-workflow
in other workflows in the repository. Similarly, for Wf, it took
only two steps. This is possible since the framework does not
suggest only one component at a time; instead it can suggest
as many as required. For Wf; it took 9 steps to complete the
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Warping

workflow even though it consisted of 22 components. This was
again made possible by the existence of overlapping patterns.
For workflows Wf,, Wf, and Wf,, the number of steps required
to complete the workflows were still much less than the sizes
of the workflows. This was true even though the workflows
themselves did not exist in the repository. The results for
workflows Wf,, Wfg and Wf; show that even though the
workflows did not exist in the repository and did not have any
overlapping patterns, the number of steps required to construct
them were still less. This is possible because even though there
were no overlapping patterns directly, the framework was able
to find patterns after generalisation.

IX. CONCLUSIONS

This paper presents a hybrid workflow design recommender
system that combines frequent usage patterns and workflow se-
mantics to generate suggestions and provide decision-support.
Doing so, the framework attempts to address the drawbacks of
each approach. The framework is described along with the sug-
gestion generation algorithm. The framework is also compared
with an existing system that only uses frequent patterns using a
dataset of neuroimaging workflows from the LONI repository.
Results show that there is a clear improvement in the accuracy
of the suggestions when semantics are combined with frequent
usage patterns as opposed to only using patterns. The various
scenarios that may occur when generating suggestions are
also presented and evaluated. These are a) when overlapping
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patterns between the workflow being constructed and the
repository exist, b) when overlapping patterns between the
workflow being constructed and the repository do not exist,
and c) when no overlapping patterns exist. Results show that
semantics do not improve the accuracy of the results in a).
However, there is clear improvement in the cases of b) and c).

Future directions for this research may include incorpo-
rating parameter value suggestions as well since the correct
functioning of workflows also relies on correct parameter
values.
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