
Designing Traceability into Big Data Systems

R McClatchey, A Branson, J Shamdasani & Z Kovacs

Centre for Complex Cooperative Systems

University of the West of England, Bristol BS16 1QY

United Kingdom

Richard.mcclatchey@uwe.ac.uk

The CRISTAL-iSE Consortium

P Emin, M1i, Annecy

P Bornand, Alpha3i Rumilly

France

Patrick.Emin@agilium.com, PBornand@alpha3i.com

Abstract—Providing an appropriate level of accessibility and

traceability to data or process elements (‘Items’) in large volumes

of data, often Cloud-resident, is an essential requirement in the

Big Data era. Enterprise-wide data systems need to be designed

from the outset to support usage of such Items across the

spectrum of business use rather than from any specific

application view. The design philosophy advocated in this paper

is to drive the design process using a so-called ‘description-

driven’ approach which enriches models with meta-data and

description and focuses the design process on Item re-use,

thereby promoting traceability. Details are given of the

description-driven design of big data systems at CERN, in health

informatics and in business process management. Evidence is

presented that the approach leads to design simplicity and

consequent ease of management thanks to loose typing and the
adoption of a unified approach to Item management and usage.

Keywords: Description-driven systems; Big Data; object design

I. INTRODUCTION

In the age of the Cloud and Big Data, systems must be
increasingly flexible, reconfigurable and adaptable to change in
order to respond to enterprise demands. As a consequence,
designing systems to cater for evolution is becoming critical to
their success. To be able to cope with change, systems must
have the capability of reuse and the ability to adapt as and
when necessary to changes in requirements. Allowing systems
to be self-describing is one way to facilitate this and there have
been some significant advances recently in systems design
which enables us to start to build self-describing systems
(which could in time also become self-monitoring and
ultimately self-healing) based on the concepts of meta-data,
metamodels and ontologies.

Traditionally large data systems have been designed from a
set of requirements for system use, as determined from a user
community, for a specific business purpose, for example
human resource management, inventory control or business
information management. These systems evolve over time; new
requirements emerge including the need to co-exist with legacy
systems and/or to support new activities in an organization.
Enterprise system development has helped us take a more
holistic view on systems design so that multiple functions in an
organization can be supported in a single system. However,
over time emerging requirements can subject these systems to
frequent change leading to problems with schema evolution in
the underlying models and consequently periods of downtime
in the operation of the enterprise system.

Related efforts to tackle the problem of coping with design
evolution have included, design versioning [1], ‘active’ object
models [2] and schema versioning [3]. However, none of these
approaches enables the design of an existing system to be
changed dynamically and for those changes to be reflected in a
new running version of that design. We advocate a design and
implementation approach that is holistic in nature, viewing the
development of modern object-oriented software from a
systems standpoint. It is based on the systematic management
of the description of essential systems elements (so-called
‘Items’) facilitating multiple views of the system under design
using pure object oriented techniques.

To address the issues of reuse in designing evolvable
systems, this paper proposes a so-called description-driven
approach to systems design. The exemplar of this approach is
our CRISTAL project [4]. CRISTAL is based on description-
driven design principles; it uses versions of stored descriptions
to define versions of data (or processes) which can be stored in
multiple concurrent forms and it is outlined in this paper. We
shall show that this approach enables new versions of data
structures and processes to be created alongside the old,
thereby providing a history of changes to the underlying data
models and enabling the capture of provenance information.
Provenance information includes data on the use of system
Items (e.g. data, process or agent Items) and how they have
changed over time, by whom and for what purpose thus
providing a fine granularity in traceability of the use of Items
over the lifecycle of the big data system in question.

The dynamic and geographically distributed nature of
Cloud computing makes the capturing and processing of
provenance information a major research challenge [5]. To date
provenance gathering systems and techniques have mostly been
used within scientific research domains such as neuroscience
[6] or in bioinformatics [7] but we have also investigated its use
with commercial partners for business process management [8].
The usefulness of provenance collection has been discussed at
length elsewhere and the interested reader is directed to other
works such as [9]. We have developed a concrete application of
provenance management in industry which can be harnessed in
Big Data system design; it is discussed in this paper.

The structure of the paper is as follows. The next section
introduces description-driven concepts and describes the
CRISTAL software architecture. In section II we examine the
use of CRISTAL for managing a Big Data application in
engineering with its use in supporting the construction of the

Compact Muon Solenoid (CMS) experiment at CERN’s Large
Hadron Collider (LHC). Sections III and IV contrast this with
CRISTAL’s use in commercial Business Process Management
and in supporting clinicians’ analyses of MRI images in the
search for biomarkers of Alzheimer’s disease. In the final
section of this paper we evaluate the common design approach
underpinning these applications, that of designing flexibility
and traceability into these big data applications through the use
of description-driven techniques and outline conclusions and
future work.

Figure 1. The CMS Detector at the CERN Large Hadron Collider.

II. DESCRIPTION DRIVEN SYSTEMS AND PROVENANCE

Description-driven systems (DDS) design involves
identifying and abstracting, at the outset of the design process,
all the crucial elements (such as business objects, processes,
lifecycles, goals, agents and outputs) in the system under
consideration and creating high-level descriptions of these
elements which are stored in a model, dynamically modified
and managed separately from their instances. In many ways
adhering to a description-driven approach means following
very closely the original, and these days often neglected,
principles of pure object-oriented design especially those of
reuse, abstraction, and loose coupling.

A DDS [10] makes use of so-called meta-objects to store
domain-specific system descriptions, which control and
manage the life cycles of meta-object instances, or domain
objects. In a DDS, descriptions are managed independently to
allow the descriptions to be specified and to evolve
asynchronously from particular instantiations of those
descriptions. Separating descriptions from their instantiations
allows new versions of items to coexist with older versions.
This separation is essential in handling the complexity issues
facing many big data computing applications and allows the
realization of interoperability, reusability and system evolution
since it gives a clear boundary between the application’s basic
functionalities from its representations and controls.

The main strength of such a “description driven” approach
is that users who develop models of systems need only define
them once to create a usable application. The description-
driven system then orchestrates the execution of the processes
defined in that model (with the consequent capture of
provenance information). These descriptions can be modified at
runtime and can capture almost any domain; this flexibility has
been proven by the development and use of the CRISTAL
software in the construction of the CMS ECal [11] at CERN
(see figure 1), its application to the Business Process
Management (BPM) domain (to model business-based process
workflows) and in the manufacturing domain (to control
manufacturing processes) and is currently being applied to the
HR domain allowing users to modify defined processes.

Scientists at CERN build and operate complex accelerators
and detectors whose construction processes are very data-
intensive, highly distributed and ultimately require a computer-
based system to manage the production, assembly and
calibration of components. In constructing detectors like the
Compact Muon Solenoid [11] scientists require data
management systems that can cope with complexity, with
system evolution over time (primarily as a consequence of
changing user requirements and extended development
timescales) and with system scalability. They also require a
very fine granularity of provenance gathering and management
over extended timescales. In the case of CMS Electromagnetic
Calorimeter (ECal) the construction process took over 10 years
with data collected in CRISTAL for eight years up to 2008.
CMS has been taking data since at CERN’s Large Hadron
Collider (LHC).

The ECal construction process was very data-intensive,
Grid-resident and highly distributed and its production models
changed over time. Detector parts of different model versions
had to be handled over the complete construction and usage
lifecycle and to coexist with other parts of different model
versions. Separating details of model types from the details of
parts allowed the model type versions to be specified and
managed independently, asynchronously and explicitly from
single parts. Moreover, in capturing descriptions separate from
their instantiations, system evolution could be catered for while
production was underway and provide continuity in the
production process and for design changes to be reflected
quickly into production, thereby aiding the gathering of
historical data. The CRISTAL project was initiated to facilitate
the management of the engineering data collected at each stage
of production of CMS ECal. CRISTAL is a distributed product
data and workflow management system which makes use of an
OO-like database for its repository, a multi-layered architecture
for its component abstraction and dynamic object modelling for
the design of the objects and components of the system [12].
The DDS approach has been followed to handle the complexity
of such a data-intensive system and to provide the flexibility to
adapt to the changing usage scenarios which are typical of any
research production system. Lack of space prohibits detailed
discussion of CRISTAL; a full description can be found in [4].

The design of CRISTAL required adaptability over
extended timescales for schema evolution, interoperability,
deferred commitment and for reusability. In adopting a DDS
approach the separation of object instances from object

description instances was needed. This abstraction resulted in
the delivery of a three layer description-driven architecture (see
figure 2). Our CRISTAL approach is similar to the familiar
model-driven design concept [13], but differs in that the
descriptions and the instances of those descriptions are
implemented as objects (Items) and most importantly, they are
implemented and maintained using exactly the same internal
model. Even though workflow descriptions and instance
implementations are different, the manner in which they are
stored and are related to each other is the same in CRISTAL.

This approach is similar to the distinction between Classes
and Objects in the original definition of object oriented
principles [14]. We have followed those fundamental principles
in CRISTAL to ensure that we can provide the required level of
flexibility, maintainability and reusability to facilitate system
evolution and the consequent gathering of provenance
information at the level of CRISTAL ‘Items’.

Within CRISTAL every defined element (or Item) is stored
and versioned. This allows users of the system to view older
versions of their Items (akin to Objects in Object Orientation)
at a later date and either extend a version of an Item or return to
a later version of an Item. A full description of the CRISTAL
provenance model is out of the scope of this paper however, for
clarity the notion of an Item is briefly elaborated upon.
CRISTAL is an application server that abstracts all of its
business objects into workflow-driven, version-controlled
'Items' which are instantiated from descriptions stored in other
Items and are managed on-the-fly for target user communities.
Items contain (see figure 3):

• Workflows, which are complete layouts of every action that
can be performed on that Item, connected in a directed graph
that enforces the execution order of the constituent activities.

• Activities capture the parameters of each atomic execution
step, defining what data is to be supplied and by whom. The
execution is performed by agents.

• Agents are either human users or mechanical/
computational agents (via an API), which then generate events.

• Events detail each change of state of an Activity.
Completion events generate data, stored as outcomes. From the
generation of an Event provenance information is stored.

• Outcomes are XML documents resulting from each
execution (i.e. the data from completion Events), for which
viewpoints arise.

• Viewpoints refer to particular versions of an Item’s
Outcome (e.g. the latest version or, in the case of descriptions,
a particular version number).

• Properties are name/value pairs that name and type items.
Properties also denormalize collected data for more efficient
querying, and

• Collections enable items to be linked to each other.

The basic functionality of CRISTAL is best illustrated with
an example: using CRISTAL a user can define product types
(such as Newcar spark plug) and products (such as a Newcar
spark plug with serial number #123), workflows and activities
(test that the plugs work properly, and mount them into the
engine). This allows products that are undergoing workflow
activities to be traced and, over time, for new product types
(e.g. improved Newcar spark plug) to be defined which are
then instantiated as products (e.g. updated Newcar spark plug
#124) and traced in parallel to pre-existing ones. The
application logic is free to allow or deny the inclusion of older
product versions in newer ones (e.g. to use up the old stock of
spark plugs). Similarly, versions of the workflow activities can
co-exist and can be run on these products.

In practice some developers find the abstraction concepts of
CRISTAL conceptually difficult to understand. This is due to
the large amount of terminology involved in the design of
CRISTAL as well as the complexity of its concepts. New
personnel faced a steep learning curve before they can usefully
contribute to the code-base, though this is not a problem for
end-users, as complexity may be hidden in intermediate
description layers. However, we feel that Items represent a
return to the core values of object orientation, at a time when
modern languages are becoming increasingly profligate in their
implementation of them in the name of expediency, thereby

Instance

Model

Meta-model

instance of

Description

instance of

instance of

M
o

d
e

l
A

b
s
tr

a
c
ti
o

n

Descriptive Abstraction

Item DescriptionsItem

Class constructs/UML

‘Online’ Application ‘Offline’ Application

described by

Workflow, Schema, Script

Constructs
Item Classes

described by

Figure 2. Model versus description in CRISTAL (From [4])

Item

Workflow

History

Current versions

pointed to
Properties

Name

State

Type

Collection

Typed

Slot

Typed

Slot

ItemItem

Outcome

Viewpoint

Activity

Event

Generates Contains

 Figure 3: The components of an Item in CRISTAL [4]

sacrificing many of the benefits of object orientation. Object-
orientation encourages the developer to think about the entities
involved in the system and the operations required to provide
the system’s functionality, along with their context in the data
model, which together provide the methods of identified data
objects, resulting in an object model. In recent years, newer
programming languages have tended to focus on object
orientation as a means of API specification, increasing the
richness of library specification and maximizing code reuse,
but do little to encourage good object oriented design amongst
developers. Unfortunately, with the increasing popularity of
test oriented development methodologies, developers are
encouraged to hack away in a deliver-early-and-often way from
which a well-thought out object model rarely emerges.

In contrast with CRISTAL the object model must be
designed as a set of Items with lifecycles. While other non-Item
oriented software components are possible, they cannot store
state in the system without interacting with Item activities, and
therefore are encapsulated as Agent implementations. These are
considered external to the Item model, with a strictly designed
outcome specification stating what they must provide to the
system to have successfully completed their function. The
activities of an Item’s lifecycle are roughly analogous to object
oriented methods, since they define a single action performed
on that Item. However, it is much harder for an Item’s lifecycle
design to grow out of control with many unused methods since
the lifecycle is defined as a workflow; the activity set must
always form a valid graph of activities from the creation of the
Item to its completion. This clarity of design through
implementation constraints is a return to the intentions of the
early object oriented languages such as Smalltalk [15], and the
initial restrictions of Java, which discouraged the developer
from using mechanisms that could result in unstructured,
overcomplicated, un-maintainable code, and steer them towards
a core object oriented design with the system logic intuitively
partitioned and distributed in a manageable way.

During the six years of near-continuous operation, the
CRISTAL software collected about a quarter of a Terabyte of
scientific data from 450,000 Items needed for the 70,000
elements comprising the CMS ECal detector. During this
period there were 22 CRISTAL kernel rebuilds but thanks to
the description-driven nature of its design the system only
needed to be upgraded seven times, and of those, just one was
an update that caused downtime. This was because some data
formats originally designed proved not to be as scalable as
required; therefore a client update was required to read the new
structures. Conventional big data software development
separates the specification phase from the construction and
implementation phases. However, when the design is evolving
as a result of changing user needs, the development process
must be reactive and necessarily iterative in nature. The new
requirements from the users need to be implemented by the
developer in an incremental fashion so that the new results
could be assessed and further changes to the design requested,
if needed. CRISTAL allows the user to directly verify the
business object workflow design, so the normal progression
through implementation and testing can be short-circuited. In
other words the users can visualize the overall process to be
captured in terms of their own recognizable world objects; this

greatly simplifies the analysis and (re-)design process. It is
relatively easy for professional users to understand the
workflow system in CRISTAL, and the nature of XML based
data; these both can be detailed by an application maintainer
sufficiently accurately in collaboration with the user or may
even be drawn by a proficient user directly.

The application logic that needs to be executed during the
workflow will have its functionality conveniently broken down
along with the activities. It is then simple to import these
definitions into the system where it can be immediately tested
for feedback to the users. Improvements can thereby be quickly
performed online, often by modifying the workflow of one test
item, which then serves as a template for the type definitions.
Items subject to the improvements can co-exist with items
generated earlier and prior to the improvement being made and
both are accessed in a consistent, reusable and seamless
manner. All this can be done without recompiling a single line
of code or restarting the application server, providing
significant savings in time enabling users to work in an
iterative and reactive manner that suits their research.

In our experience, the process of factoring the lifecycle and
dataset of the new item type into activities and outcomes helps
to formalize the desired functionality in the user's mind; it
becomes more concrete - avoiding much of the vague and often
inconclusive discussion that can accompany user requirements
capture. Because it evolved from a production workflow
specification driven by user requirements, rather than a desire
simply to create a ‘workflow programming language’,
CRISTAL’s style of workflow correlates more closely to the
users’ concept of the activities required in the domain item’s
lifecycle. The degree of granularity can be chosen to ensure
that the user feels it provides sufficient control, with the
remaining potential subtasks rolled up into a single script. This
is one important aspect of the novel approach adopted during
CRISTAL development that has proven of benefit to its end-
user community. In practice this has been verified over a period
of more than 10 years use of CRISTAL at CERN and by its
exploitation as the Agilium product [16] across many different
application domains in industry. This is discussed in the next
section of this paper.

The main lesson learnt from the CRISTAL project in
coping with change was to develop a data model that had the
capacity to cover multiple types of data (be they products or
activities, atomic or composite in nature) and at the same time
was intuitively simple. To do this a disciplined and rigorously
applied object-oriented approach to data modelling was
required: designers needed to think in a way that would
ultimately facilitate system flexibility, would enable rapid
change and would ease the subsequent burden of maintenance
from the outset of the design process. The design approach that
was followed in CRISTAL was to concentrate on the essential
enterprise objects and descriptions (items, workflows,
activities, outcomes, events, viewpoints, properties and
collections) that could be needed during the lifetime of the
system no matter from which standpoint that data is accessed.

Thus the system was allowed to be open in design and the
elegance of its design was not compromised by being viewed
from one or several application-led standpoints (such as

Business Process Management (BPM [17]), Enterprise
Application Integration (EAI [18]), Workflow Management
Systems (WfMS [19]) or whatever. Rather we enabled the
traceability of the essential enterprise objects over the lifetime
of the system as the primary goal of the system and left the
application-specific views to be defined as and when they
became required. The ability of description-driven systems to
both cope with change and to provide traceability of such
changes (i.e. the ‘provenance’ of the change) we see as one of
the main contributions of the CRISTAL approach to building
flexible and maintainable big data systems and we believe this
makes a significant contribution to how enterprise systems can
be implemented. For more detail, consult our previous paper
[4] which discusses this in a practical application.

Recently a start-up company called Technoledge [20] has
been established to develop applications of CRISTAL that
exploit this novelty. Technoledge provide big data provenance
management solutions based on a set of customizable software
modules that are back-ended by the CRISTAL Kernel for
product and process traceability. Technoledge thereby provides
both the enterprise repository for capturing business-critical
data and the modules for enabling access to and control of that
data. Its solutions are generically applicable across business
enterprises from scientific and engineering logging applications
through manufacturing execution and control to business facing
systems for logistics, government, human resources and
financial applications. A Technoledge Package is based on the
provision of a highly customizable software kernel plus a set of
enterprise-agnostic access modules and a customized set of
enterprise-specific modules which enable functionality to a
particular business enterprise (see figure 4). The Kernel
captures the business model for the enterprise to be supported;
the modules populate and manage that model and allow access
to the critical data held in it so that applications can work with
it. The agnostic element comprises reusable modules for the
storage, querying, visualization, management, administration
and reporting of data supplied by the enterprise-specific
modules.

Figure 4. Technoledge use of the CRISTAL Kernel.

Keeping control of changes to big data, or the origins of the
changes to the processes involved in capturing this data, is
invaluable to any business. The Technoledge suite records this
provenance providing a means of capturing and visualizing
how clients’ enterprise data and processes have changed and
evolved. It allows considerable exploration functionality for
clients to browse past processes and data descriptions and to
instigate change based on those historical records. The overall
solution that is offered enables end-users to capture a
description of the ‘heart’ of their enterprise (engineering,
finance, retail, manufacturing), to handle process and data
logging and via the CRISTAL model to enable system
integration with existing systems. The open model and the
associated Technoledge modules facilitate business-to-business
operation and can be applied across enterprise functions (such
as personnel, order management, CRM, and ERP) seamlessly.

III. CRISTAL IN BUSINESS PROCESS MANAGEMENT

Further evidence of the benefits accruing from use of
CRISTAL comes from its commercialization as the Agilium
product. Since 2004 an early version of the CRISTAL Kernel
has been exploited as the Agilium product by the M1i
company (based in Annecy, France) for the purpose of
supporting BPM and the integration and co-operation of
multiple processes especially in business-to-business
applications. M1i have taken CRISTAL and added
applications for BPM that benefit from the description-driven
aspects of CRISTAL, v.i.z. its flexibility and system evolution
management. Their product addresses the harmonization of
business processes by the use of a CRISTAL database so that
multiple potentially heterogeneous processes can be integrated
and have their workflows tracked in the database.

Agilium integrates the management of data coming from
different sources and unites BPM with Business Activity
Management (BAM) [21] and Enterprise Application
Integration [18] through the capture and management of their
designs in the CRISTAL system. Using the facilities for
description and dynamic modification in CRISTAL, Agilium
is able to provide modifiable and reconfigurable business
workflows. It uses the description-driven nature of the
CRISTAL model to act dynamically on process instances
already running and can thus intervene in the actual process
instances during execution. These processes can be
dynamically (re-) configured based on the context of execution
without compiling, stopping or starting the process and the
user can make modifications directly and graphically of any
process parameter. Thus the Agilium system aims to provide
the level of flexibility for organizations to be agile in
responding to the ongoing changes required by cyber-
enterprises, with functionality derived from use of CRISTAL.

The Agilium Server is based on CRISTAL, but with
several domain extensions and support for additional protocols
added. The user interface (UI) components are the Agilium
Web component, the Agilium Supervisor GUI and the Agilium
Factory [16]. The Agilium Web is a web application based on
J2EE and running within Tomcat as the container. This is
where users can browse the currently active jobs and different
instances of business processes. The list of jobs available to a
user are constrained by their individual roles (for example,

administrator). The web UI also allows users to complete
manual activities. The supervisor GUI component of Agilium
is derived from the original Java Swing CRISTAL GUI, and is
used by administrators of the system to be able to design and
debug workflows and for general system management. The
key component in Agilium is known as the Factory. The
Factory is a full Eclipse based application which has a modern
UI and allows M1i’s users to create and manage their own
CRISTAL based workflows. A screenshot of the Agilium
Factory is shown in figure 5.

The major benefit to Agilium in the use of CRISTAL is in
provenance capture and recording of their Business Process
Modelling (BPM) workflow executions. Within the Agilium
product, the provenance model is identical to the provenance
model of CRISTAL where Events are generated and stored.
As stated previously, all models are created at runtime. This
means that all BPM workflows developed within Agilium are
stored and versioned (and thus their traceability, or
provenance, is recorded). This allows users to return at a later
date and view previous versions of the BPM models, fix bugs,
or to extend their previous BPM workflows in a new design.

One example of where provenance is useful for Agilium is
a company which produces solar panels. With this client, the
production of each solar panel can take more than a month.
They also require different versions of workflows to be stored

and accessed on site. Therefore, this client of theirs requires
that they be able to look into the past versions of their
processes and workflows. This means that they can retrieve
the history of all the production steps for each panel, even
though the BPM workflow has evolved between the two
generations of panels. When an alteration to the fabrication
process is required, in the past they have modified their
production process to increase the performance level of the
solar cells. The workflows corresponding to the production
processes are modified to add or remove activities matching an
electro-deposition or cleaning step, or to alter their parameters.
These modifications are usually done at run time. These
changes are saved and stored as newer versions, allowing the
panels using the older versions of the workflow to continue
unhindered whereas the newer modifications can be applied to
newer solar panels in production; this is a key strength of
using CRISTAL in Agilium and demonstrates not just the use
of provenance but also the flexibility of the system.

The inherent provenance capabilities of CRISTAL mean
that the model itself is also versioned, allowing users to look at
the production steps for each version of the panels they have
created and to see what processes they have in common. This
allows them to view and analyze which processes have
changed. This aspect is crucial to their business since it allows
them to look at the evolution of the production process. The
developers at M1i chose CRISTAL as the basis for their

Figure 5: The Agilium Factory Application.

system since they felt that its provenance and traceability
features were key for them to create a product with a
competitive edge in the market. With diversification into
Cloud-resident Big Data systems M1i are already realizing the
benefits to their advanced BPM solution through the use of
mature, proven technology based on the description-driven
concepts of CRISTAL.

IV. ANALYSIS TRACEABILITY WITH CRISTAL

A further application of CRISTAL technologies for big
data traceability is that from the neuGRID/N4U EC
Framework 7 project studies of medical imaging into
Alzheimer’s disease. The full details of these studies are
beyond the scope of the current paper (details can be found at
[22]) but they serve to illustrate the functions of a description-
driven system as used for tracing scientific workflows.
Scientific workflows are increasingly required to orchestrate
research processes in medical analyses, to ensure the
reproducibility of analyses and to confirm the correctness of
outcomes [23]. In a collaborative research environment, where
researchers use each others’ results and methods, traceability
of the data generated, stored and used must also be
maintained. All these forms of knowledge are collectively
referred to as provenance information.

In any big data system where there are multiplicities of
data-sets and versions of workflows operating upon those
data-sets, particularly when the analysis is carried out
repetitively and/or in collaborative teams, it is imperative to

retain a record of who did what, to which sets of data, on
which dates, as well as recording the outcome(s) of the
analysis. This provenance information needs to be logged as
records of particular users’ analyses so that they can be
reproduced or amended and repeated as part of a robust
research process. All of this information, normally generated
through the execution of scientific workflows enables the
traceability of the origins of data (and processes) and, perhaps
more importantly, their evolution between different stages of
their usage. Capturing and managing this provenance data
enables users to query analysis information, automatically
generate workflows and to detect errors and exceptional
behaviour in past analyses.

In the project neuGRID for Users (N4U) we have provided
a Virtual Laboratory (VL, see https://neugrid4you.eu) which
offers neuroscientists tracked access to a wide range of Cloud-
resident big data sets, and services, and support in their study
of biomarkers for identifying the onset of Alzheimer’s disease.
The N4U virtual laboratory, whose architecture is illustrated in
Figure 6, is based on services layered on top of the neuGRID
infrastructure and a CRISTAL database, described in detail in
[24]. The VL was developed for imaging neuroscientists
involved in Alzheimer’s studies but has been designed to be
reusable across other research communities. The VL enables
clinical researchers to find clinical data, pipelines, algorithm
applications, statistical tools, analysis definitions and detailed
interlinked provenance in a user-friendly environment. This
has been achieved by basing the N4U virtual laboratory on a
so-called integrated Analysis Base (or Data Atlas [24]).

Figure 6: The N4U Virtual Laboratory.

The N4U analysis base addresses practical challenges by
offering an integrated data analysis environment to optimally
exploit neuroscience workflows, large image datasets and
algorithms to conduct scientific analyses. The high-level flow
of data and analysis operations between various components
of the virtual laboratory and the analysis base are also
highlighted in Figure 6. The N4U analysis base enables such
analysis by indexing and interlinking the neuroimaging and
clinical study datasets stored on the N4U Grid infrastructure,
algorithms and scientific workflow definitions along with their
associated provenance information.

Once researchers conduct their analyses using this
interlinked information, the analysis definitions and resulting
data along with the user profiles are also made available in the
analysis base for tracking and reusability purposes via a so-
called Analysis Service. The N4U virtual laboratory provides
the environment for users to conduct their analyses on sets of
images and associated clinical data and to have the provenance
of those analyses tracked by CRISTAL. In neuGRID/N4U, we
have used CRISTAL to provide the provenance needed to
support neuroscience analysis and to track individualized
analysis definitions and usage patterns, thereby creating a
practical knowledge base for neuroscience researchers. The
N4U Analysis Service provides access to tracked information
(images, pipelines and analysis outcomes) for
querying/browsing, visualization, pipeline authoring and
execution.

CRISTAL captures provenance data that emerges in the
specification and execution of the stages in analysis
workflows. The provenance management service also keeps
track of the origins of the data products generated in an
analysis and their evolution between different stages of
research analysis. CRISTAL is a system that records every
change made to its objects or Items. Whenever a modification
is made to any piece of data, the definition of that piece of data
or application logic, the change and the metadata associated
with that change (e.g. who made the change, when and for
what purpose) are stored alongside that data. This makes
CRISTAL applications fully traceable, and this data may be
used to assemble detailed provenance information. In N4U,
CRISTAL manages data from the Analysis Service, containing
the full history of computing task execution; it can also
provide this level of traceability for any piece of data in the
system, such as the datasets, pipeline definitions and queries.

The Analysis Service provides workflow orchestration for
scientists and a platform for them to execute their experiments
on the GRID. It allows users to recreate their experiments on
the neuGRID/N4U Infrastructure using previously recorded
provenance information as well as a set of visualization tools
allowing users to view their results and perform statistical
analyses. In essence the Analysis Service enables:

• The browsing of past analyses and their results;

• The creation of new analyses by pairing datasets with
algorithms and pipelines found in the Analysis Base;

• The execution of analyses by creating jobs to be passed to
the Pipeline Service, then logging the returned results in the
analyses objects;

• Re-running of past analyses with different parameters or
altered datasets and

• The sharing of analyses between researchers.

The detailed operation of the Analysis Service is best
understood with a practical example. Consider the case where
a clinician wishes to conduct a new analysis. Her first step
would be to compile a selection of data from the datasets
which are available to her. To do this she would log into the
Analysis Service Area and interact with the Querying Service
through its user interface to find data that possesses the
particular properties she is looking for ((see figure 6). She
submits her constraints, which are passed as a query to the
Querying Service. The Querying Service then queries the
Analysis Base which would return a list of dataset properties
and locations which meet her constraints. The Querying
Service interface would then display this list to the clinician to
approve.

Once the user is satisfied with her dataset selection she
combines it with a pipeline specification to create her analysis.
To do this she would need to use the Analysis Service
Interface to search CRISTAL for existing algorithms that she
can use to create a new pipeline or to select a pre-defined
pipeline. An analysis is an instantiation of a pipeline in the
context of a dataset and a pipeline. Command line utilities will
be provided to aid in the creation of a pipeline by connecting
different algorithms together as steps. The completed pipeline
will have a dataset associated with it. Once this pipeline is
ready it will be run on each element of the dataset by
CRISTAL.

The pipeline will be sent to CRISTAL which will orchestrate
the input pipeline (see figure 6) using a Job Broker and the
N4U Pipeline Service. Currently the Pipeline Service is not
able to perform workflow orchestration. Therefore a single
activity from the input workflow will be sent to the Pipeline
Service as a single job using the pipeline API. Once the job
has completed, the result will be returned to CRISTAL. Here
CRISTAL will extract and store provenance information for
this job. This information will contain traceability factors such
as the time taken for execution, and whether the job completed
successfully. It will store this information internally in its own
data model. It will also post this information to the Analysis
Base so that this crucial provenance information is accessible
by the Querying Service. This loop of sending jobs and
receiving the result will continue until the workflow is
complete. Once this workflow has completed CRISTAL will
once more generate provenance information and store this
provenance for the entire workflow in its own internal data
store and the Analysis Base. The final result of the completed
workflow/pipeline will be presented to the user for evaluation.
A link to the completed result in the form of a LFN (a Cloud
location) and will be stored in the Analysis Base.

The clinician now has a permanently logged record
(provenance data) of her analysis including the datasets and
(versions of) algorithms she has invoked, the data captured
during the execution of here analysis and the final outcome
and data returned by her analyses. These provenance elements
may also have associated annotation that she has added to
provide further knowledge of her analysis that she or others

could consult at a later time to re-run, refine or verify the
analysis that has been carried out.

V. CONCLUSIONS AND FUTURE WORK

The examples described above of the usage of CRISTAL
across the spectrum of information systems from High Energy
Physics through Medical Imaging to Business Process
Management demonstrate the flexibility of the description-
driven design approach to systems implementation. It also
shows the importance of provenance data capture, management
and its use in the traceability of data and in large data volume
applications. These techniques are generally applicable to any
big data development for Cloud-resident data.

Following a description-driven approach designers
concentrate on the important building blocks at the heart of
their systems - the mission-critical enterprise objects whose
lifecycles (creation, versioning, usage, evolution and
termination) require tracing for the business to function
properly. These ‘Items’ may be any of data elements or sets,
images, video, composite or atomic activities, agents, roles or
people and these are specified at the outset of design in an
instance of CRISTAL supporting a flexible, described and
extensible data model. As described earlier these Items have
workflows which are complete layouts of every action that can
be performed on that Item, connected in a directed graph that
enforces the execution order of the constituent activities etc.
(see section 2).

Items are given descriptions and meta-data is associated
with both the Items and their descriptions and the designer
considers questions such as when are the Items created and by
whom and for what purpose? Who can change them over time
and why? What data does each Item generate as outcomes
when activities are run against those Items? How can the Item
be viewed and for what purpose? Does the Item persist and in
which versions can it be used concurrently? Note that here we
are referring to the Item and its use across the business model
rather than seeing the business model as supporting a specific
application. Thus the very same ‘Person’ Item may be viewed
via a Personnel system, a Project Management system, a
Payroll system, a Training Management system, a Resource
Scheduling system or whatever functions that are critical to the
operation of that enterprise.

Following the best principles of pure object-oriented
design, especially the ideas underpinning the familiar Model-
View-Controller paradigm of Smalltalk [15] and the tried and
tested principles of re-use, late binding, polymorphism,
deferred commitment and inheritance, description-driven
design enables flexibility and traceability of design decisions to
be built into the big data models that it can support (as
demonstrated by the examples given in this paper). Although
the CRISTAL approach seems somewhat abstract in terms of
its handling of data instances (and their meta-data), models and
metamodels, its implementation turns out to be elegant in its
simplicity. Items and their descriptions are defined at whatever
level is suitable for system management - data, model or meta-
model levels (see figure 2) – but, crucially, are treated in the
same way with the same code throughout their lifecycles

bringing a level of design consistency, coherence and
uniformity.

The studies described in this paper have shown that

describing a proposed big data system explicitly and openly

from the outset of the project enables the developer to change

aspects of it responsively as users’ requirements evolve. This

enables seamless transition from version to version with

(virtually) uninterrupted system availability and facilitates full

traceability throughout the system lifecycle. Indeed, the
description-driven design approach takes object-oriented

design this one step further and provides reuse of meta-data,

design patterns and maintenance of items and activities (and

their descriptions). Practically this results in a higher level of

control over design evolution and simpler implementation of

system improvements and easier maintenance cycles.

In practice we have found that many system elements have

gained in conceptual simplicity and consequent ease of

management thanks to loose typing and the adoption of a

unified approach to their online manipulation: activities/scripts

and their methods; member types and instances; properties and
primitives; items and collections; and outcome schemas and

views. One logical consequence of providing such a unified

design and simplicity of management is that the CRISTAL

software can be used for a wide spectrum of application

domains.

Future work is being carried out to model domain

semantics e.g. the specifics of a particular application domain

such as healthcare, public sector, finance, and aerospace. This

will essentially transform CRISTAL into a self-describing

model execution engine, making it possible to build

applications directly on top of the design, largely without code
generation. The design will be the framework for all of the

application logic – without the risks of misalignment and

subsequent loss that code generation can bring – and for

CRISTAL to be configured as needed to support the big data

application logic whatever it may be. What this means is that

the CRISTAL kernel will be able to capture information about

the application area in which a particular instance is being

used. This will allow usage patterns to be described and

captured, roles and agents to be defined on a per-application

basis, and rules and outcomes specific to particular user

domains to be managed. This will enable multiple instances of

CRISTAL to discover the semantics required to inter-operate
and to exchange data.

Research into the further extension and uses of CRISTAL

continues. There are plans to enrich its kernel (the data model)

to model not only data and processes (products and activities

as items) but also to model agents and users of the system

(whether human or computational). It is planned to investigate

how the semantics of CRISTAL items and agents could be

captured in terms of ontologies and thus mapped onto or

merged with existing ontologies for the benefit of new domain

models. The emerging technology of big data analytics and

cloud computing and its application in complex domains, such
as medicine and healthcare, provide further interesting

challenges. To support this in Q4 2014 a version of CRISTAL

called CRISTAL-ISE was released to the public as Open

Source under the LGPL V3.0 licensing scheme (see www.

http://cristal-ise.github.io/).

In the long run we intend to research and develop a so-

called Provenance Analysis module for CRISTAL. This will
enable applications built with CRISTAL to learn from their

past executions and improve and optimize new studies and

processes based on the previous experiences and results. Using

machine learning approaches, models will be formulated that

can derive the best possible optimisation strategies by learning

from the past execution of experiments and processes. This

will have particular application in manufacturing execution

and big data analysis suites. These models will evolve over

time and will facilitate decision support in designing, building

and running the future processes and workflows in a domain.

A provenance analysis mechanism will thus be built on top of

the data that has been captured in CRISTAL. It will employ
approaches to learn from the data that has been produced, find

common patterns and models, classify and reason from the

information accumulated and present it to the system in an

intuitive way. This information will be delivered to users

while they work on new processes or workflows and will be an

important source for their future decision-making and design

decision traceability and to support new applications built for

the (post-) big data era.

ACKNOWLEDGEMENTS

The authors wish to highlight the support of their home
institutes across all of the projects that led to this paper and
acknowledge funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant
agreement n. 211714 (“neuGRID”) and n. 283562 (“neuGRID
for users”). Particular thanks is given to Dr Jean-Marie le Goff
of CERN, a co-inventor of the CRISTAL system, to Florida
Estrella from UWE and CERN and to all past colleagues who
have worked on CRISTAL over the period 1996 to the present.

REFERENCES

[1] R. H. Katz, “Toward a unified framework for version modelling in

engineering databases”, ACM Computing Surveys (CSUR), v.22 n.4,

p.375-409, December 1990.

[2] B. Foote and J. Yoder., "Meta-data and Active Object-Models". Proc. of
the Int. Conference on Pattern Languages Of Programs, Monticello,

Illinois, USA, August 1998.

[3] J. F. Roddick. “Schema Versioning”. Encyclopedia of Database Systems
2009: 2499-2502

[4] A. Branson et al., “CRISTAL : A Practical Study in Designing Systems

to Cope with Change”. Information Systems 42, pp 139-152
http://dx.doi.org/10.1016/ j.is.2013.12.009. Elsevier publishers, January

2014.

[5] M. Vouk, “Cloud computing – issues, research and implementations,” in

30th International Conference on Information Technology Interfaces
(ITI), pp. 31-40, June 2008

[6] A. Anjum et al.,“Intelligent Grid Enabled Services for Neuroimaging
Analysis”. Neurocomputing, Vol 122 pp 88-99

DOI:10.1016/j.neucom.2013.01.042 Elsevier publishers, December
2013.

[7] S. Bechhofer et al., “Why Linked Data is Not Enough for Scientists”.

Future Generation Computer Systems 29(2): 599-611. Elsevier
publishers 2013.

[8] J. Shamdasani et al., “CRISTAL-ISE : Provenance Applied in Industry”.

Proc of the Int Conf on Enterprise Information Systems ICEIS (3) 2014:
453-458.

[9] Y. Simmhan et al., “A Survey of Data Provenance in e-Science”. In

SIGMOD RECORD, Vol 34, P. 31-36. ACM, 2005.

[10] F. Estrella et al., “ Meta-Data Objects as the Basis for System
Evolution”. Lecture Notes in Computer Science Volume 2118, p. 390-

399 ISBN 3-540-42298-6 Springer-Verlag, 2001.

[11] S. Chatrchyan et al. “The Compact Muon Solenoid Experiment at the
CERN LHC”. The Compact Muon Solenoid Collaboration, The Journal

of Instrumentation Volume: 3 Article No: S08004, Institute of Physics
Publishers, 2008.

[12] R. McClatchey et al., “A Distributed Workflow & Product Data
Management Application for the Construction of Large Scale Scientific

Apparatus”. NATO ASI Series F : Computer & Systems Sciences Vol
164 p. 18-34. ISBN 3-540-64411-3 Springer Verlag 1998.

[13] OMG Meta-Object facility, MOF, 2004.

http://www.omg.org/mof/ Last accessed October 2014.

[14] R. Wirfs-Brock et al. “Designing Object Oriented Software”. Prentice

Hall publishers, 1990.

[15] A. Goldberg, A et al, “Smalltalk-80: the Language and its
Implementation”. Addison-Wesley Longman Publishing Co. 1983.

[16] Agilium product, 2008. See http://www.agilium.com Last accessed

October 2014.

[17] M. Weske “Business Process Management. Concepts, Languages,

Architectures”. Springer publishers, 2007.

[18] D. Linthicum, “Enterprise Application Integration”. Addison Wesley
publishers. 1999

[19] D. Georgakopoulos et al. “An Overview of Workflow Management:

from Process Modelling to Infrastructure for Automation”, Journal of
Distributed and Parallel Database Systems 3 (2), pp119-153, 1995.

[20] Technoledge 2013. See: http://www.technoledge.eu/ Last accessed

October 2014.

[21] J. Kolar. “Business Activity Monitoring”. PhD Thesis, Faculty of
Informatics, Masaryk University. Brno, Czech Republic, 2009.

[22] R. McClatchey et al, “Providing Traceability for Neuroimaging

Analyses”. International Journal of Medical Informatics, 82 pp 882-894,
Elsevier publishers, 2013.

[23] E. Deelman et al., “Workflows and eScience: An overview of workflow
system features and capabilities”, Future Generation Computer System,

June 2008

[24] R. McClatchey et al., “Providing Analysis Traceability for Medical
Researchers”. Proc of the 27th International Symposium on Computer-

Based Medical Systems (CBMS 2014) pp 463-464. DOI
10.1109/CBMS.2014.91 New York. May 2014.

[25] K. Munir et al., “Provision of an Integrated Data Analysis Platform for

Computational Neuroscience Experiments”. Journal of Systems and
Information Technology, Vol 16 No. 3 pp 150-169 DOI 10.1108/JSIT-

01-2014-0004 August 2014. Emerald publishers.

