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Abstract: In the modern manufacturing arena, environmental and economical concerns draw 

considerable attention from both practitioners and researchers towards remanufacturing practices. 

The success of remanufacturing firms depends on how efficiently the recovery process is executed. 

Radio Frequency Identification (RFID) technology holds immense potential to enhance the recovery 

process. The deployment of RFID technology at reverse echelons has the advantage of having a real 

time system with reduced inventory shrinkage, reduced processing time, reduced labor cost, process 

accuracy, and other directly measurable benefits. In spite of these expected benefits, the heavy 

financial investment required in implementing the RFID system is a big threat for remanufacturing 

companies. This paper examines the economical impact of RFID adoption to remanufacturing. The aim 

of the research is to compare the basic and RFID-diffused reverse logistics model, and to 

quantitatively decide whether RFID implementation is economically viable. In order to meet these 

objectives, we have proposed a Chaos-based Interactive Artificial Bee Colony (CI-ABC) algorithm. 

Numerical results from using the CI-ABC for optimal performance are presented and analyzed. 

Comparison between the canonical Artificial Bee Colony and the Particle Swarm Optimization reveals 

the superiority of the CI-ABC for this application.  
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1) INTRODUCTION 

An unprecedented increase in every field of human daily requirements has a direct 

effect on the burgeoning demand for consumer goods in the last decade. In addition, 

the customer expects trouble-free use of products over a certain period of time. 

Consequently, the manufacturers need to produce superior products; this expectation 

also leads to scientific and technological innovations. Fast emerging manufacturing 

paradigms have resulted in frequent dumping of products due to technological 

obsolescence of any components that still have a significant value. The shortening of 

the product’s life cycle not only puts an extra demand of raw materials to manufacture 

a new product but also increases the threat to the environment as an inevitable 

by-product of this process. A growing concern about environment (pollution, global 

warming and traffic congestion, etc.) has led to a number of take-back legislation and 

European Union (EU) directives such as: End-of-Life Vehicle (ELV), Closed 

Substance Cycle and Waste Management Act, and Waste Electrical and Electronic 

Equipment (WEEE) to collect End-Of-Life (EOL) products and to properly dispose of 

the hazardous materials (Schultmann et al., 2006; Jung and Hwang, 2011). The 

economical value of EOL products has generated some interest in manufacturers and 

needs a better handling approach. A manufacturer can retrieve some components from 

an EOL product having the same utility as it was in the virgin state, at a much lower 

cost compared to a new one. For example, manufacturers of toner cartridges (Xerox), 

single-use cameras (Eastman Kodak and Fuji Film) and photocopiers (Fuji and 

Xerox), washing machines (ENVIE), computers (IBM) and mobile phones 

(ReCellular, and Greener Solutions) have profited by a huge amount through reusing 

durable components (Franke et al., 2006). Thus, various factors such as economical, 

environmental, legislative, and depletion of natural resources have led to the 

emergence of a promising field of research termed “remanufacturing”. 

Remanufacturing is a process of recapturing parts of value and proper disposal of the 

hazardous components from a used product. This process is performed in a 

cost-effective and environmentally friendly manner from the point of consumption to 

the point of origin of reverse logistics. There are several steps to be followed which 

can be executed in different order or some steps could even be ignored, depending on 

the product type, remanufacturing volume etc. Frequently used reverse logistics steps 
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reported in previous studies are termed as: collection, sorting, inspection, cleaning, 

disassembling, repairing, refurbishing, and disposing (Charter and Gray, 2008). First, 

inspection operation is performed at the collection centre to justify whether the 

returned product is directly reusable or needs disassembling to sort out its worn-out 

parts. At the disassembly centre, the product is disassembled to subassembly and 

further to the individual part level. The good and moderate quality components are 

shipped to refurbishing centres to execute cleaning, repairing and replacing operations 

on any defective or worn out parts, whereas the unendurable ones are sent to landfills 

at the disposal centre.   

Quantitative studies in remanufacturing addresses the various existing complexities 

such as; Network design (Charter and Gray, 2008; Lee and Dong, 2009), product 

recovery and distribution planning (Jayaraman, 2006; Pineyro and Viera, 2010), 

scheduling and shop floor management (Franke et al., 2006; Stanfield et al., 2006), 

inventory control (Konstantaras and Papachristos, 2007; and Pan et al., 2009), 

resource allocation (Wang and Yang 2007), routing (Blanc et al., 2006), and third 

party logistics (Ko and Evans, 2007; Lee et al., 2008). In addition to these, some 

researchers have highlighted issues related to uncertainty in demand and return rate. 

Hong et al. (2006) presents a scenario-based robust optimization model, “Reverse 

Production Systems” (RPS) that employs some electronic goods e-scraps under 

uncertainty. They implement an RPS model to a case study based in Georgia and 

linked a relation between RPS processing strategic decisions and RPS collection 

decisions. Salema et al. (2006) studies a design of reverse logistics network with 

uncertainty in demand and return, and capacity limits. They developed a mixed 

integer model to resolve these multi product management issues. Uncertainty in the 

return rate of an EOL product due to various environmental factors such as law, 

government policies, and environmental protection issues is considered in Bu and Xu 

(2008). They formulated an expiration based on above factors and have drawn a 

mathematical relation between return rate and environmental factors. Recently, 

Naeem et al. (2013) incorporated both deterministic and stochastic model to 

determine the optimal quantities that have to controlled for both inventories; 

recoverable and serviceable in remanufacturing environment. They developed a 
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dynamic programming based model to minimize the total cost, including production 

cost, holding cost for returns and finished goods, and backlog cost at each period.  

Utilisation of state-of-the-art Radio Frequency Identification (RFID) is experiencing 

an increasing popularity in logistics systems. Addressing the forward logistics 

problems, many researchers such as Prater et al. (2005), Chow et al. (2006), Nagi et 

al. (2007), and Pigni and Ugazio (2009) emphasise the adaptation of RFID technology 

at different echelons viz. manufacturer production sites, warehouses, distribution 

centres, retail stores, etc. These researchers have developed network models and 

discussed several benefits of RFID dissemination mainly for real time information, 

stock-out reduction, process accuracy, and for increasing labour efficiency. However, 

the cost associated with the RFID adaptation over the traditional shop floor facilities 

has been ignored by most of the researchers. Only a few recent papers deal with the 

economical impact of RFID technology on logistics. Veeramani et al. (2008), presents 

a framework and models for assessing the value of RFID utilization by tier-one 

suppliers to major retailers. Their paper argues that the RFID implementation is 

profitable on 5 upper echelons of the supply chain in the context of a real-life 

application to Wal-Mart’s top 100 suppliers. Bottani and Razzi (2008) evaluate the 

economical impact of RFID tools on three echelons of fast-moving consumer goods in 

a supply chain: manufacturers, distributors, and retailers. Their assessment is made by 

analysing two different scenarios: non-integrated and integrated, which shows that 

RFID diffusion is not profitable for all scenarios. A cost analysis of an RFID 

integrated three-echelon supply chain is investigated by Ustundag and Tanyas (2009). 

They conclude that the total supply chain cost savings are increased by RFID 

integration.   

Although resource allocation and inventory management at forward logistics echelons 

are similar to the reverse one, they are not exactly the same. Recycling activities differ 

from production procedure in time and manner such as quantity, category, cycle time, 

stock keeping unit, and distribution paths. Consequently, the remanufacturing process 

requires extra care in implementing the RFID technology than the forward supply 

chain. Moreover, unlike the forward logistics which has been adequately studied, the 

reverse logistics have not been well studied for the suitability of RFID adoption. 

Researchers have recently proposed the utilization of RFID in remanufacturing most 
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of them have overlooked its cost in their mathematical models (Lee and Chan, 2009; 

Yoo and Park, 2009; Dowlatshahi, 2012; etc.). In order to fill this gap, this study 

focuses on the design of a generic framework of a remanufacturing system which 

provides a way to measure the economical impact of RFID adoption at various 

reverse facility centres viz. collection, disassembling, and refurbishing.    

It has already been proven that the remanufacturing network design problem belong to 

the class of NP-hard problems (Doh and Lee, 2010). Hence, random search 

optimization techniques and their variants have been widely accepted as a more 

efficient optimization tool over conventional enumeration based optimization 

techniques; such as genetic algorithm (GA), artificial immune system (AIS), particle 

swarm optimization (PSO), and their variants (Chan et al., 2011; Kumar et al., 2009; 

Yadav et al., 2008; etc.). In addition, Artificial Bee Colony (ABC) meta-heuristic has 

gained adequate favour in this area of research in recent past (Lazzús, 2013; Tsai et 

al., 2009; Prakash et al., 2008; Kumar et al., 2004; Soleymanpour et al., 2003; etc.). 

Inspired by successful applications of ABC, in this paper, a new variant of the 

Artificial Bee Colony algorithm (ABC) called the Chaos-based Interactive Artificial 

Bee Colony (CI-ABC) Algorithm is used to handle a realistically sized 

remanufacturing problem. The proposed CI-ABC assimilates the attributes of chaotic 

systems by introducing stochastic and ergodic properties in searching for the optimal 

or near optimal solution. Moreover, a new primitive component is combined to update 

the position of component for enhancing the interaction between employed and 

unemployed bees. The computational results indicate that the proposed CI-ABC 

outperforms the canonical ABC and PSO metaheuristics. 

The rest of this paper is organized as follows: In section 2, modelling of a suitable 

objective function for a reverse logistics problem that includes the RFID cost is 

discussed. Section 3 presents the steps involved in implementing the CI-ABC over the 

illustrative examples which are discussed in section 4. The results obtained by 

implementing the aforementioned algorithms are discussed in detail in section 5. 

Finally, section 6 provides the conclusions from the study and provides directions for 

further research.  
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2) THE MODEL DEVELOPMENT 

This section develops a model to systematically examine the impact of RFID 

technology on reverse logistics cost factors. In this sense, a general and an 

RFID-integrated reverse logistics model are illustrated in the subsequent sub-sections.  

2.1  Reverse Logistics Model 

Figure 1 depicts a generic reverse logistics network of the system under study. This 

system starts with returned products including EOL products from customers. First, 

the returned products are collected at a collection centre where they are sorted. 

Reusable products are sent back to the manufacturer after the required treatment and 

the rest of them are transported to the disassembly centre. At the disassembly centre, 

the product is disassembled to subassembly and further to the individual part level. 

The components of good and moderate quality are shipped to refurbishing centres for 

cleaning, repairing, and replacing any defective or worn parts.  The unendurable 

ones are sent to a land fill at the disposal centre. At all three echelons (collection, 

disassembly, and refurbishing centres), the product/parts are processed through two 

warehouse processes: inbound moves and outbound moves. The inbound moves 

include unloading, receiving, and put-away operations during the receiving of the 

returned products, while outbound moves consist of two operations: picking and 

loading when the products are shipped to next the echelon. Table 1 summarises the 

warehouse operations considered in this study.   

<< Insert figure 1 about here>> 

<< Insert table 1 about here>> 

In this study, the manufacturer produces a certain number of products in a certain time 

period by assembling the virgin and used parts which are in good condition to 

remanufacture. Virgin parts are purchased from external suppliers while used parts are 

acquired by disassembling and retrieving the valuable parts from EOL products. Thus, 

the model is aimed at determining the optimal revival of the used parts in an 

economical way. In order to articulate this concept into mathematical terms, an 

objective function (J) is formulated below, followed by a list of all model parameters 

and decision variables used in this research, which is shown in Table 2.  
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<< Insert table 2 about here>> 

 

2.1.1. Objective function 

The objective function, J, is formulated as follows; 

Min (J) = Min (Jcost + Jtime)                           (1)   

In (1), the operation cost (Jcost) is defined as:                                  

{ . . . . . . ( . )
1 1 1 11 1 1 1

                  + ( ) ( . ) ( . ) ( . )
1 1 1 11 1 1 1

a pt p p pt pCost p

a a at p pt p

T T T TA P P P
J PCES N r S CC RR r S OCR OCD NDPptat

t t t ta p p p

T T T TA A P P
DC NH OCR NR SCC VC SCD VD

at pt
t t t ta a p p

         
      

         
      

                ( . ) (1 ) (1 ) (1 ) }
1 1 1 11 1 1 1

a at pt pt at

T T T TA P P A
SCR VR VC ICC VD ICD VR ICR

t t t ta p p a

            
        

(2)                                                          

This equation reflects the total manufacturing cost that consists of the cost of virgin 

product and the cost incurred in retrieving potential product/parts from EOL products. 

The first term shows the cost associated with the purchase of virgin parts to fulfil the 

customer demand in a time period; the second term considers the cost of collecting the 

end-of-use product from the final users. The collection cost of a product depends on 

its type and geographical region from which it was collected and aggregated on return 

rate ‘r’ of EOL. The third term stands for the cost charged for cleaning or repairing 

operations of all directly reusable products sorted out at the collection centre. The 

next three terms consider operating costs of the disassembly, disposal, and 

refurbishing centres respectively. The operations like landfill of uneconomical and 

hazardous parts at a disposal centre, breaking of joints to recover reusable parts at a 

disassembly centre, and repainting of potential parts at a refurbishing centre 

correspond to operation costs. The seventh, eighth, and ninth terms represent the 

set-up costs of collection, disassembly, and refurbishing echelons. The last three terms 

indicate the idle cost of reverse facilities.  

The second term in (1), Jtime represents the operational time cost and is defined as: 
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,

, / , / , / , / , /
1 1 , 1

(( ) ( ) ( ) ( ) ( ))

E P AT

et et et et ettime e p a e p a e p a e p a e p a
e t p a

J UT NU RT NR AT NA LT NL PT NA
  

              (3) 

This term counts the time involved in warehouse operations viz. inbound moves 

(Unloading, Receiving, and Put-away) and outbound moves (Picking and Loading) at 

echelons; collection, disassembly, and refurbishing centres. Note that the length of 

operational time depends on the number of items ready for movement between the 

two consecutive centres. 

Normalisation for assimilation 

Since the time and cost functions cannot be added directly, they are normalised in the 

range [0, 1]. The motive of normalization is to make them compatible with each other 

and to formulate a comprehensive objective function J. The normalised functions for 

Jcost and Jtime can be defined as: 

cos cos

cos

cos cos

_ t t

t

t t

J LB
N J

UB LB





                          (4) 

 

_ time time

time

time time

J LB
N J

UB LB





                               (5) 

where LBcost and LBtime are  the lower bounds of Jcost and Jtime respectively,  and 

UBcost and UBtime, are the upper bounds. 

Based on the normalized objective of cost and time J is reformulated as: 

 _  _cost C time tJ N J W N J W                                           (6) 

CW =Priority weight associated with cost objective. 

tW = Priority weight associated with time objective. 

The weight priorities associated with integrated objectives are given by crisp values 

which are assessed by decision’s maker based on relative importance of cost and time 

objectives. In case of more priority assigned to cost objective CW  is always greater 

than tW  and vice versa. 
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Constraints 

The total number of parts of type ‘a’ obtained after disassembling the products at a 

disassembly centre at time period‘t’ depends on the Bill-Of-Materials (BOM) of the 

products type, is represented by equation 7. 

1

. ;    , ,
P

at pt pa

p

DP NDP BOM a p t


 
                       (7) 

The total disassembled parts of type ‘a’ at time period‘t’ are further sorted into 

disposal and refurbished parts at the disassembly centre, is represented by equation 8. 

 
   ,at at atDP NH NR a t  

                             (8) 

The maximum inventory level of product can be equal to the upper capacity limit of 

the collection centre. Thus the sum of total number of sorted for disassembling and 

direct reusable purpose is equal to the processing capacity of collection centre of 

product type ‘p’ at time period ‘t’. 

. . ;   ,pt p pt pNDP RP r S PCC p t  
                          (9) 

The maximum inventory level of product can be equal to the upper capacity limit of 

the disassembly centre: 

;   ,pt pNDP PCD p t                                (10) 

The maximum inventory level of parts of type ‘a’ at time-period ‘t’ can be equal to 

the upper capacity limit of the refurbishing centre: 

;   ,at aNR PCR a t                                (11) 

 

The numbers of product ‘p’/part ‘a’ received at echelon ‘e’ in time period ‘t’ have to 

be satisfy sset-up constraint of different echelons. Here, M is a large predetermined 

positive number. 

    . ;      ,a t a tN R M V R a t                          (12) 
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          . ;      ,p t p tN D P M V D p t                          (13) 

. . . ;      ,p pt ptRR r S M VC p t                         (14) 

A parameter referring to the lower bond of disposal rate of part type ‘a’ is set to DRa 

in time period ‘t’ that instruct that a fraction of disassembled parts are assumed to be 

hazardous for that time period ‘t’. Thus, for the whole time horizon it is expressed as: 

1 1

. ;      ,
T T

at a at

t t

NH DR DP a t
 

  
                     (15) 

Non-negativity and binary constraints are represented by equation 16 and 17 

respectively: 

, , , , , 0; , ,pt a at pt at atS DR DP NDP NR NP a p t 
               (16) 

 , , 0,1 ;   , ,at pt ptVR VD VC a p t 
                  (17) 

 

2.2 RFID integrated Reverse Logistics Model 

RFID system is a wireless technology which enables auto-identification (auto-ID) and 

traceability of items by transmitting radio waves between an RFID tag and a reader. A 

tag, which contains a microchip that stores the data, is attached on objects and 

broadcasts part data such as: manufacturing site, production lot, date of manufacture, 

expiry date, product and component type, etc. The reader receives this information 

and converts it into digital data to a computer system. The capability to obtain 

real-time information about the location and properties of tagged objects influenced 

various industries to deploy the RFID tool for enhancing the efficiency of their 

logistics processes. A large number of forward logistics players such as Wal-Mart, 

The U.S.  Defence Department, Metro groups, and Tesco utilise RFID technology 

and are high profit examples.  In reverse logistics, the adaptation of RFID has not 

been studied much; however, there is significant opportunity in the use of this process 

to improve operational efficiencies which is being considered in this study. The 
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diffusion of RFID technology at reverse echelons (collection, disassembly, and 

refurbishing centres) enables increased inbound and outbound operational efficiency 

through auto-counting and precise instructions. The information and physical flow of 

the EOL items are presented in figure 1. Moreover, Table 3 summarises advantages of 

an RFID system in warehouse operations over traditional processes.   

<< Insert table 3 about here>> 

Based on the information provided in Table 3 the cost and time objective for the 

RFID adopted reverse logistics model, 
cos

RFID

t
J and RFID

time
J   is defined as:  

 

cos

cos

cos
1 1 1

( . (1 ). . . )

C D R

t RFID RFID RFID

RFID
T P A

t

pt p pt att
t p a

OBJ SP SP SP

J
Tag r S RR r S DP

  

  

  
   
 
 

 
 

  
 

       (18) 

Here, cost factors
C

RFID
SP ,

D

RFID
SP , and 

R

RFID
SP  are the RFID set-up costs at collection, 

disassembly, and refurbishing centres respectively. Excluding tag cost ( cos t
Tag ), the 

RFID set-up cost associates all hardware and software costs defined in Section 4. The 

model equally imposes the RFID set-up cost to all ‘T’ time scenarios. The last term of 

the equation represents the cost involved in pasting RFID-tags onto all optimally 

assigned products at collection centres and to the parts at disassembly centres after 

being disassembled. The RFID tagging is not required at the refurbishing centre as 

they were already tagged at disassembly centre. 

Now,  

 ,
' ' ' ' '

, / , / , / , / , /
1 1 , 1

(( . ) ( . ) ( . ) ( . ) ( . ))

E P AT
RFID

et et et et ettime e p a e p a e p a e p a e p a
e t p a

J UT NU RT NR AT NA LT NL PT NP
  

      (19) 

The RFID

time
J  equation calibrates time involved in inbound and outbound moves of 

warehouse operations. The expressions used in Equation (19) are described below. 

, / , /

'

, /(1 );         ,  ,  
e p a e p a e p aUT UT EUT a e p                   (20) 
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, /(1 );         ,  ,  
e p a e p a e p aRT RT ERT a e p                     (21) 

, / , /

'

, /(1 );         ,  ,  
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'
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Again, in order to formulate a compatible overall objective function, (
RFID

J ), cos

RFID

t
J  

and 
RFID

time
J  are normalised in the range of 0 to 1. 

cos

cos

cos cos

_
RFID RFID

RFID cost t

t RFID RFID

t t

J LB
N J
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                     (25) 

 

_
RFID RFID

RFID time time

time RFID RFID

time time

J LB
N J

UB LB





                        (26) 

where cos

RFID

tLB  and RFID

timeLB  are  the lower bounds of cos

RFID

t
J and 

RFID

time
J , and  cos

RFID

tUB  

and RFID

timeUB  are the upper bounds. 

Thus, the aim of this research is to 

Min (
RFID

J )                                   (27) 

where           _  _RFID RFID RFID RFID RFID

cost C time tJ N J W N J W     

RFID

CW =Priority factor associated with cost objective.  

RFID

tW = Priority factor associated with time objective. 

Constraints  

Apart from Constrains 7 to 17, a non-negativity constraint 28 which cannot exceed the 

value of one numerically is assumed in this study.. That is, 
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, / , / , / , / , /, , , , [0,1];   , ,e p a e p a e p a e p a e p aEUT ERT EAT ELT EPT a e p                 (28) 

 

3) SOLUTION METHODOLOGY 

The determination of an optimal solution in the reverse logistics problems is a 

computationally complex process since it requires vast exploration and exploitation of 

search space. Since this problem is NP-hard, artificial intelligence-based random 

search techniques have gained favour in this area of research (Kim et al., 2008). 

Inspired by successful applications of the Artificial Bee Colony meta-heuristic over a 

closed loop logistics model by Kumar et al. (2010), an improved version of Artificial 

Bee Colony (ABC) algorithm, known as Chaos-based Interactive Artificial Bee 

Colony (CI-ABC) algorithm, is used in this study. The following subsections present 

the proposed methodology in brief.    

3.1. An Overview of Artificial Bee Colony 

The ABC algorithm is a recently developed (Karaboga, 2005) swarm intelligence 

technique based on the natural food searching behaviour of bees. In a D-dimensional 

search space, each solution (Sxy) is represented as; 

1 2{ , ,..., }xy x x xDS S S S                     (29) 

Here, x = 1,…, SP is the index for solutions of a population and  y = 1,.., D is the 

optimization parameters index.  

The probability value which is based on the individuals’ fitness value to summation of 

fitness values of all food sources and decides whether a particular food source has 

potential to get status of a new food source is determined as; 

/g g gP f f                       (30) 

Where,  fg and Pg are the fitness and probability of the food source ‘g’ respectively.  

After sharing the nectar information between the existing onlookers and employed 

bees, in case of higher fitness than that of the previous one, the position of the new 

food source is calculated as following: 
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( 1) ( ) [ ( ( ) ( ))]xy xy n xy zyV n S n S n S n               (31) 

where z =1, 2,.., SP is a randomly selected index and has to be different from x. 

( )xyS n  is the food source position at n
th

 iteration, whereas ( 1)xyV n is its modified 

position in (n+1)
th

 iteration. n  is a random number in the range of [-1, 1].  The 

parameter xyS is set to meet the acceptable value and is modified as;  

min max min(0,1)( )y y y

xyS S ran S S                (32) 

In this equation, 
max

yS and
min

yS  are the maximum and minimum y
th

 parameter values.  

Although the employed and scout bees nicely exploit and explore the solution space, 

the original design of the onlooker bee’s movement only considers the relation 

between the employed bee food source, which is decided by the roulette wheel 

selection, and a food source having been selected randomly (Tsai et al., 2009). This 

consideration reduces the exploration capacity and thus induces premature 

convergence. In addition, the position updating factor utilises a random number 

generator which shows a tendency to generate a higher order bit more random than a 

lower order bit (Kumar et al., 2010).  

 

3.2. Chaos-based Interactive Artificial Bee Colony Algorithm  

In order to avoid the aforesaid shortcomings and enhance the searching capacity of 

the canonical form of the ABC, a new variant called the Chaos-based Interactive 

Artificial Bee Colony (CI-ABC) algorithm, has been proposed.    

This algorithm is described next. 

3.2.1. Basic of chaotic systems 

A non-linear system is said to be chaotic if its evolution is very sensitive to the initial 

conditions and has an infinite number of different periodic responses (Yuan et al., 

2002). The ability to generate unbiased random numbers increases the use of chaotic 
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sequences over random number generators in recent years. There are considerable 

numbers of chaotic operators possessing ergodic and stochastic properties and are 

reported in literature (Luo and Shen, 2000; Yang and Chen, 2002). In this paper, a 

“Logistics” (Parker and Chua, 1989) chaotic system is used to replace the random 

function in the equation (33), which is formulated as: 

       . ( 1 - )1C C Cn n n ; Cn (0, 1);   n =1,…, N                   (33)           

where Cn  is the value of the chaotic variable at n
th

 iteration and  is the bifurcation 

parameter of the system. Figure 2 shows the chaotic graph of the logistic map. This 

graph has been plotted for 300 iterations with initial values of C0 = 0.01 and  = 4. 

<<Include figure 2 about here>> 

 

3.2.2. Proposed CI-ABC 

In order to enhance the exploration capacity of foraging bees, the equation for 

updating new position (equation 31) has been modified by adding a new factor which 

incorporates more perturbation on the food source position Sxy.  

The concepts can be mathematically represented as;  

( 1) ( ) [ ( ( ) ( )) ( ( ) ( ))]xy xy n xy zy n xy wyV n S n C S n S n C S n S n            (34) 

where Cn[-1, 1] stands for the chaotic value obtained from equation (33) at n
th

 

iteration. w{1,...,W},  an index refers to the bee having the largest nectar amount. 

It is the best global position found by any employed bee so far. The index w may be to 

x or z, depending on whether the x or z index referred bees achieved best position in 

the population.   

The newly added term brings diversification in the search and facilitates each bee to 

interact with a higher number of neighbourhoods. Another advantage of this term is to 

help get better convergence toward the goal of the bees. For easy comprehension, a 

flow chat of the proposed algorithm (CI-ABC) has been detailed in Figure 3. 

<< Insert figure 3 about here>> 
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4) ILLUSTRATIVE EXAMPLES 

This section presents a numerical example to check the efficacy and scalability of the 

proposed algorithm. The dimension of the test cases has been varied irregularly with a 

view to show flexibility in an underlying model. The planning horizon for demand 

and supply of products considered is taken in six time periods (T=6). Table 4 

summarises the numbers of product that are to be manufactured according to their 

own production plan under 6 time periods. The test beds conceived in this paper have 

to manufacture 8 different numbers of product-types. Table 5 shows Bill-Of-Material 

(BOM) of each product by which part-types are assembled to a product. The BOM 

can have a maximum of 9 different part-types for each individual product.     

<<Include table 4 and 5 about here>> 

The unit purchasing cost from external supplies is set to be 20, 25, 22, 32, 25, 33, 68, 

25, and 35 dollars for part-type 1 to 9 respectively. Furthermore, the idle costs of the 

echelons; collection, disassembly, and refurbishing centres are fixed at 2900, 2500, 

and 2700 dollars respectively.  

The return rate ‘r’ is limited by the environmental factors which have a maximum of 

0.90 for any scenario. The test case set an upper fraction of EOL products going to be 

directly reusable is 0.25 (DRp= 0.25;   ‘p’) and the lower bound for the disposal rate 

for all part types in each time period is 0.30 (RRp= 0.30;   ‘p’). The set-up costs for 

each product/Part-type are set as: collection centre (SCCp=$0.2;   ‘p’), disassembly 

centre (SCDp=$0.4;   ‘p’), and refurbishing centre (SCRa=$0.25;   ‘a’). 

Furthermore, the upper limit of product-types and part-types to be operated at three 

centres is listed in table 6. Table 7 summarises the operating costs on these echelons. 

Owing to integrity with time objectives of the paper, the parameters related to 

implementing RFID at different reverse logistics echelons are outlined in Table 8. The 

costs of RFID adoption encompass hardware and software costs. For the 

RFID-hardware set-up, different technical devices such as tags, RFID mobile reader, 

shock-proof shielding gates, and RFID printer are taken into account. Unitary costs 

have been derived from Bottani and Rizzi (2008) and are listed in Table 9. The 

proposed procedure is used in conjunction with the above data on different cases.  
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<<Include table 6, 7, 8, and 9 about here>> 

The next section describes the numerical results from the proposed CI-ABC on the 

reverse logistics problems. 

5) RESULTS AND DISCUSSION 

This section is devoted to report and analyze the effect of different values of CI-ABC 

approach parameters on its performance. In order to check the efficacy of the 

proposed algorithm, canonical ABC and PSO algorithms are also tested on the 

illustrative example. The algorithms have been coded in C++ and executed on an 

Intel® core™ i5 CPU M @ 2.4 GHz and 4GB of RAM.  

5.1. Parameters Settings 

Extensive experimental tests were carried out to see the effect of different values of 

the parameters on the performance of all three algorithms. The population size has 

been varied in the range of 10-100 in steps of 10, and it was observed that the 

CI-ABC algorithm obtains best results with a population size of 70. It was also 

observed that although lesser population size reduces the computational time, it fails 

to achieve an optimal solution, and vice versa, in the case of higher population size. 

Thus, the population size of 60 was facilitated to obtain optimal solutions in a 

reasonable computational time. Similarly, the parameters value that assisted in finding 

optimal or near optimal solutions in case of PSO, and ABC, are presented in Table 10. 

<< Insert table 10 about here>> 

For the evaluation of the objective function, experiments have been performed for 50 

runs, and the lower and upper bounds of set cost and time objectives are calculated. 

Since the operation time changes with varied integration of RFID technology to 

reverse logistics, the cost and time limits for each case comes out to be different, as 

shown in table 11. 

<< Include table 11 about here>> 
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5.2. The Encoding Schema 

Integer coding is followed for the string representation so that each echelon and 

external supplies centre is assigned the value of a unique positive integer. A set of 

solution candidates equal to the number of the employed bees are generated. Each 

string segment denotes an individual reverse facility centre (collection, disassembly, 

refurbishing, and disposal) and external supplier. In order to assign the value of return 

rate in different scenarios, a separate string is followed which comprises integer 

values. For example, in the following 5-tuple string representation, <213; 189; 985; 

24; 94>, integers represents the number of products/parts assigned to collection, 

disassembly, refurbishing, disposal, and external supplier centre in a certain time 

period respectively. 

5.3. Performance Compression  

The proposed algorithm has been applied to the illustrative example underlined in the 

previous section. Equal priority has been assigned to both time and cost objectives. 

First, the results obtained from the basic reverse logistics model (equation 6) are given 

in Table 12. Also, for an easy appraisal, normality values of time (N_Jtime) and cost 

(N_Jcost) have been outlined in Table 12. On the basis of the results marked in Table 

12, it is evident that, although CI-ABC produced the  same quantitative results as 

ABC and PSO, it significantly outperforms the both when compared in terms of 

computational time and the number of function evaluation. In front of 192
th

 function 

evaluation for the CI-ABC, PSO terminates at 398
th

.  Figure 4 illustrates the 

convergence rate of solution with the number of function evaluations when algorithms 

are applied in the illustrated example. The following inference can be drawn from 

Figure 4: CI-ABC has the fastest convergence rate. However, PSO terminates better 

than CI-ABC in the middle, but with the increase in number of iterations, its 

convergence rate becomes almost constant.CI-ABC and ABC both initially converge 

with the same rate, and CI-ABC, in the long run, yields better solutions over others.  

<< Insert table 12 about here>> 

<< Insert figure 4 about here>> 
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In the process of getting the optimal objective value, the assigned numbers of 

parts/products to reverse facility centres are listed in Tables 13-15.  Table 13 

represents the reusable product to go to the manufacturer directly after minor cleaning 

operation. Table 14 summarizes the product quantities needed to disassemble for 

sorting into recoverable and disposable parts. Furthermore, the rest of the required 

parts purchased from external suppliers to fulfil the customer’s demands are listed in 

Table 15.  

<< Insert table 13, 14, and 15 about here>> 

5.4 Impact of RFID Technology 

In order to analyse the impact of RFID diffusion in reverse echelons, the proposed 

algorithm is implemented on the RFID integrated reverse logistics model (equation 

27). In contrast to the objective value (0.7275) of the basic reverse logistics model, 

the minimal objective value is evaluated by the CI-ABC as 0.7859. The figure reveals 

that the RFID-enabled scenario is uneconomical under the given data in Section 4. 

The result, however, reflects improvement in operational time performance by 

reducing the time objective by 53.3 %; it increases the overall cost objective by 

34.6%. The “hiking in cost” objective is primarily due to huge investments in 

software and hardware equipment at different echelons of reverse logistics. 

Consequently, the cost of RFID tags put heavy economical load in tagging the 

returned parts/product. It can be concluded that, €0.15/unit tag is still too high to 

enable the diffusion of RFID in reverse logistics. Nevertheless, such costs are widely 

compensated by time saving in inbound and outbound moves. The benefit of time 

saving in unloading, receiving, put-away, picking, and loading operations are 

achieved from a dramatic shortening of time required to perform replenishment cycle 

and inventory counts.   

The above finding of RFID-based reverse logistics model depended on a number of 

parameters that we assumed to be constant in the illustrative example. However, in 

corporate reality, the different quality of RFID hardware and software that is utilised, 

significantly affects the installation cost of RFID technology in reverse logistics. For 

this reason, sensitivity analysis is performed for RFID equipments, capacity of reverse 

echelons, and the parameter related to chaotic generator.  
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5.4.1 RFID equipment costs 

It can be examined from the objective values of basic reverse logistics model and 

RFID-based reverse logistics model, that the latter is uneconomical due to the high 

cost of adoption of an RFID project. At present, the cost of RFID implementation 

comprises the major investment in hardware, application software, middleware, tags, 

and the cost of integrating the RFID system with the legacy systems. Tag costs 

represent a major cost factor as they have to be supplied in high quantities. In market, 

the costs of these tags vary significantly which refer bulk or small orders of tags 

purchased. As the research aim is to utilise high quantities of tags at collection, 

disassembly, and refurbishing centres, an analysis is performed by varying the 

investment cost of all hardware and software defined in Table 9 for the successful 

diffusion of RFID technology. Since the tags are utilized in high quantities, we 

investigate the impact of RFID equipment at two different stages. Firstly, excluding 

the tags, Figure 5 gives the sensitivity of all hardware and software costs an objective 

value. Furthermore, the impact of RFID tags is depicted in Figure 6.       

<< Insert figure 5 about here>> 

<< Insert figure 6 about here>> 

As expected, Figures 5 and 6 shows that the price depreciation of RFID hardware and 

software creates great influence on remanufacturing. Though the implementation of 

RFID technology is uneconomical at present equipment prices, it will create a 

favourable environment for remanufacturers in the near future. It is easily noticed 

from the figures that a 55 % decrement tag’s price and a 25% decrement in other 

RFID equipment, produce same the objective of the basic reverse logistics model. In 

this scenario, the hike in objective value arises due to RFID-equipment costs is easily 

compensated by the operational time reduced after RFID installation.  

 5.4.2 Capacity of reverse echelons 

The successful implementation of any new technology relies on how effectively it is 

utilised by the system on which it is applied. In this research, the adoption of RFID 

has been proposed at reverse echelons that encompass RFID equipment, such as tags, 

readers, fixed and mobile devices, and related software. As mentioned above, the 

RFID tags only variable parameter is a quantity that depends on the optimal 
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assignment of parts/products to the echelons. Thus, the capacity of reverse echelons is 

an important influential factor in the proposed model.   

In order to investigate the effect of operational capacity over solution quality, the 

upper capacity limit of three echelons viz. collection, disassembly, and refurbishing 

centres varies by an even percentage amount. The result has been drawn in Figure 7.  

<< Insert figure 7 about here>> 

From Figures 7, it is analysed that the objective value decreases with the increase in 

capacity up to a certain level. Above this level the value became constant and the 

manufacturer is not getting any additional profit for extension of the centres. Such a 

result reveals that RFID implementation is favourable at the centres having a very 

high capacity limit. In this case, only RFID tags put additional costs, while the other 

equipment costs are the same for the echelons having lower operational capacity.  

5.5. Effort Analysis for RFID Adoption.  

The variation in demand of a new product and the returning of a used one are 

considered on seasonal basis in six time-horizons (T=6). The duration of an individual 

time period can be assumed in an hour, day, or month depending on the flow of the 

products. However, the maximum limit of operating products on the reverse echelons 

is not only controlled by such consideration, but also by the capacity of the 

corresponding echelon. A centre can only allow the maximum number of products to 

be operated which is minimum from the maximum capacity limit and maximum flow 

of EOL products in a time period.   

As the underlying model consists of cost and time objectives for different activities, a 

trade-off analysis of both is difficult to execute with the constraints discussed above. 

In order to examine a correlation, the inventory level defined in the equations 9, 10, 

and 11 are eliminated from the model. Moreover, the time periods are considered as 

order numbers (T=1 is order number 1 and so on), so that the product-types/ 

parts-type of any order can be operated just after the previous one. The result shows 

that the saving in time for in-bound and out-bound moves is  15.6%, 20.3%, 17.2%, 

11.3%, 21.7%, and 15.3% for order numbers 1 to 6 respectively. Similarly, the extra 

burden on cost objectives are 8.6%, 7.7%, 8.1%, 11.3%, 6.8%, and 8.1%. A 
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correlation that can be set from here is that the adoption of RFID technology is 

economically viable in the long run for remanufacturers. Since there is no inventory 

limit at the echelons, a sufficient number of refurbished products/parts are ready for 

re-use at low cost, which will reduce the burden on new parts from the external 

supplier. 

5.6. Impact of Chaos Parameter   on the Solution 

In the proposed CI-ABC, the bifurcation parameter   is used with the numerical 

value 3.5 to generate chaotic variables using equation (33). The computational 

experiments are performed by varying the value of   between 2 and 4 in Figure 8, 

and establishing that the solution quality increases with the increase in the value of . 

It can also be seen from Figure 8 that, as   attains value of 3, this comes in the 

region of the chaotic regime. Actually, this is the location of the first bifurcation and 

the logistic equation becomes super stable at this point. As the growth rate exceeds 4, 

all orbits zoom to infinity and the modelling aspects of this function become useless. 

Hence, this is the reason why the value of   stops at 4 and for this value the chaotic 

system performs best. 

<< Insert figure 8 about here>> 

5.7. Limitation of proposed CI-ABC 

The following aspects are relevant to the performance of the algorithm. 

1. Problem implementation: A decision maker is required only to evaluate the 

generated seed solutions and compare the estimated objective values. Thus, 

the cognitive load is not very arduous and it is not too complex to use CI-ABC 

in solving real problems. However, evaluation of the generated solutions and 

determining their preference values is a key issue.  

2. Parameter effect:   The algorithm moves towards the global best position by 

adjusting the trajectory of each bee towards its own best position and the 

nectars’ best position. The determination of the employed and unemployed 

(Onlooker, and Scout) bees and probability function are critical factors. Also, 

the chaotic function requires careful estimation.       
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3. Convergence: The decision maker’s preference model guides the search to 

explore the discrete Pareto front of seed solutions. Albeit, the algorithm 

performed very well to converge to the near optimal solutions. In each of the 

cases that use Linear value, Quadratic value, L-4 metric value, and the 

Tchebycheff value functions the percentage scaled deviation remains about 1 

% to 2%.   

 

6. CONCLUSION AND FUTURE REMARKS 

Implementing RFID technology in remanufacturing is more likely to bring about 

change, like the abandonment of outdated recovery processes. It can contribute to 

real-time quality information and increased efficiency in reverse logistics. Through 

this research, the authors have demonstrated that the RFID technology can  

effectively  improve inventory control, operational efficiency, and data visibility at 

reverse echelons, i.e., at collection, disassembly, and refurbishing centres. However, 

the present price of RFID equipment (hardware and software) is still one of the main 

cost factors when implementing RFID. We studied an illustrative example on a basic 

and a RFID-based reverse logistics model to quantitatively decide whether RFID 

technology is feasible and economically viable. In order to execute this task, the paper 

proposes a new variant of artificial bee colony algorithm, namely the Chaos-based 

Artificial Bee Colony (CI-ABC) approach. The analysis showed that the 

RFID-enabled scenario is uneconomical at present equipment prices but it has a 

potential to create a favourable environment for remanufacturers in the near future. 

For the comparative analysis of the proposed CI-ABC algorithm it was compared with 

ABC, and PSO algorithms, over a problem instances. The comparison shows that the 

proposed algorithm outperforms others in terms of computational time and rate of 

convergence.  

The paper put forwards a number of future research directions for interested 

researchers. Future research can be aimed at: (i) Checking the improvement in process 

accuracy; (ii) Sensitivity analysis of various cost factors such as operational, disposal, 

and inspection can be considered; (iii) Application of the proposed model to a real 
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remanufacturing corporation;  and (iv) Utilising the multi-objective techniques for 

solving the problems. 
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Figure 2: Logistic mapping 
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Figure 4: Solution convergence rate 

 

 

 

  

Figure 5: Sensitivity analysis of the RFID-equipments  
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Figure 6: Sensitivity analysis of the RFID-tags 

 

 

 

 

  

Figure 7: Sensitivity analysis of the reverse echelons capacity 
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Figure 8: Impact of bifurcation parameter on objective value 

 

Table 1: Main Warehouse Operations 

Movement type  Operations 

Inbound Moves Unloading Receiving Put-Away 

Outbound Moves Picking Loading 
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Table 2: List of indices, notations, and decision variables 

Indices 

p= 1, 2,…,P Index for Product-type  

a = 1, 2,…,A Index for Part-type  

e=1, 2,.., K Index for echelons; (collection centre (e=1), disassembly centre (e=2), 

refurbishing centre (e=3), and disposal centre (e=4)) 

t = 1, 2,…,T Index for time Period 

Notations 

Nat The total number of part ’a’ required by the manufacturer in time the period 

‘t’ 

Spt The total number of product type ‘p’ supplied by the manufacturer in the 

time period ‘t’ 

PCCp The processing capacity of collection centre of product type ‘p’. 

PCDp The processing capacity of disassembly centre of product type ‘p’ 

PCRa The processing capacity of refurbishing centre of part ‘a’ 

DPat The total number of part ‘a’ obtains after disassembling at disassembly 

centre in the  time period ‘t’  

RRp A parameter referring to the upper bond rate of directly reusable product ‘p’ 

sorted at collection centre. 

DRa A parameter referring to the lower bond of disposal rate of part ‘a’ 

CCp The collection cost per unit of returned product type ‘p’ 

OCRp The operating cost of reusable product ‘p’ 

OCDp The operating cost for disassembling per unit of product ‘p’ 

OCRa The operation cost for refurbishing per unit of part ‘j’  

DCa The disposal cost per unit of disposable Part ‘a” 

SCCp The set-up cost for return product ‘p’ at collection centre. 

SCDp The set-up cost for disassembling collected product ‘p’ 

SCRa The set-up cost for refurbishing disassembled part ‘a’  

PCESa The purchasing cost per unit of part ‘a’ from supplier at time ‘t’ 

ICC The idle cost of the collection centre 

ICD The idle cost of the disassembly centre 

ICR The idle cost of the refurbishing centre  

UTe,p/a The unloading time per unit product ‘p’/part ‘a’ at echelon ‘e’ 

RTe,p/a The receiving time per unit product ‘p’/part ‘a’ at echelon ‘e’ 

ATe,p/a The put-away time per unit product ‘p’/part ‘a’ at echelon ‘e’ 

LTe,p/a The loading time per unit product ‘p’/part ‘a’ at echelon ‘e’ 

PTe,p/a The picking time per unit product ‘p’/part ‘a’ at echelon ‘e’ 
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NUet The numbers of product ‘p’/part ‘a’ unloaded at echelon ‘e’ in time period ‘t’ 

NRet The numbers of product ‘p’/part ‘a’ received at echelon ‘e’ in time period ‘t’ 

NAet The numbers of product ‘p’/part ‘a’ put away at echelon ‘e’ in time period ‘t’ 

NLet The numbers of product ‘p’/part ‘a’ loaded at echelon ‘e’  in time period ‘t’ 

NPet The numbers of product ‘p’/part ‘a’ picked at echelon ‘e’  in time period ‘t’ 

EUTe,p/a The  percentage efficiency increscent in unloading time per unit product 

‘p’/part ‘a’ at echelon ‘e’ 

ERTe,p/a The percentage efficiency increscent in receiving time per unit product 

‘p’/part ‘a’ at echelon ‘e’  

EATe,p/a The percentage efficiency increscent in put-away time per unit product 

‘p’/part ‘a’ at echelon ‘e’ 

ELTe,p/a The percentage efficiency increscent in loading time per unit product ‘p’/part 

‘a’ at echelon ‘e’ 

EPTe,p/a The percentage efficiency increscent in picking time per unit product ‘p’/part 

‘a’ at echelon ‘e’ 

UT
’
e,p/a The unloading time per unit product ‘p’/part ‘a’ after diffusion of RFID at 

echelon ‘e’  

RT
’
e,p/a The receiving time per unit product ‘p’/part ‘a’ after diffusion of RFID at 

echelon ‘e’ 

AT
’
e,p/a The put-away time per unit product ‘p’/part ‘a’ after diffusion of RFID at 

echelon ‘e’ 

LT
’
e,p/a The loading time per unit product ‘p’/part ‘a’ after diffusion of RFID at 

echelon ‘e’ 

PT
’
e,p/a The picking time per unit product ‘p’/part ‘a’ after diffusion of RFID at 

echelon ‘e’ 

Decision variables 

NDPpt The number of disassembled product ‘p’ at time ‘t’ 

NRat The number of refurbishing part ‘a’ at time ‘t’ 

NHat The number of disposable part ‘a’ at time ‘t’ 

NPat The number of purchased part ‘a’ from external supplier at time ‘t’ 

VRat The binary variable for set-up of refurbishing part ‘a’ at time ‘t’ 

VDpt The binary variable for set-up of disassembly product ‘p’ at time ‘t’ 

VCpt The binary variable for set-up of collected product ‘p’ at time ‘t’ 



36 

 

Table 3: Benefits from implementing RFID technology 

Inbound Moves Benefits 

Unloading  Reduction in waiting time before unloading  

 Increased visibility of incoming product 

 Real time monitoring and control 

 Automated services 

Receiving   Pallet labels cost 

 Manpower cost for labeling of pallets 

 Manpower cost for checking of received pallets and updating the 

information to control room 

 Manpower cost for amending data errors  

Put Away   Manpower cost for paper works 

 Cost of shrinkage; misplacement, spoilage, shoplifting, and 

organized shop floor crime 

 Manpower cost for general and replacement inventory counts  

 Manpower cost to identify pallets and locations and update the 

information to control room. 

Outbound Moves  

Picking and 

Sorting 

  Optimal picking routes 

 Reduction in bin location exception management  

  Cost of pallets labels 

 Manpower cost for amending data errors 

 Manpower cost to identify pallets and locations and update the 

information to control room. 

 Cost of shrinkage of picking inventory 

Loading   Improvement in loading time 

 Reduction in waiting time before loading 

 Increased data accuracy and reduction of errors in counting 

 

Table 4: Manufacturing plan of product in different scenarios 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

t=1 13759 13823 16702 12271 8721 13023 3289 9917 

t=2 14562 12026 11011 16388 11902 10060 8871 8794 

t=3 8401 5988 9429 9832 9862 4821 14024 14290 

t=4 12452 14200 7793 11012 2291 6428 11191 12375 

t=5 9372 13063 10503 2310 13027 5826 7728 9943 

t=6 10067 8823 12985 8621 14738 12221 7998 10727 
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Table 5: BOM; number of part-types for assembling 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

a=1 5 1 10 4 5 3 6 3 

a=2 6 0 0 6 3 9 6 6 

a=3 1 10 0 2 4 5 3 7 

a=4 4 2 9 8 9 8 8 2 

a=5 6 8 9 10 7 8 10 7 

a=6 9 8 4 1 3 2 7 8 

a=7 2 6 8 6 6 9 2 9 

a=8 0 9 9 2 0 7 6 3 

a=9 7 3 0 6 8 4 6 8 

 

 

Table 6: Processing capacity of reverse echelons 

Product-type(p)/Part-type (a) 1 2 3 4 5 6 7 8 9 

Collection Centre (PCCp) 15000 15000 15000 15000 15000 15000 15000 15000  

Disassembly Centre (PCDp) 10000 8500 9000 7000 7500 7500 8000 8000  

Refurbishing Centre (PCRa) 195000 178000 169000 177000 187000 157500 105000 105000 181000 

 

 

Table 7: Operating costs of Product-types and part-types at reverse echelons (in $) 

Product-type(p)/Part-type (a) 1 2 3 4 5 6 7 8 9 

Collection cost (CCp) 7 7 11 8 6 3 5 7  

Cleaning (OCRp)  3.0 1.5 1.5 3.5 4.5 1.5 1.2 2.5  

Disassembling (OCDp) 2.0 0.5 0.75 1.5 1.8 2.2 3.2 0.75  

Refurbishing (OCRa) 1.4 0.75 0.3 0.75 0.9 1.2 2.5 1.8 0.75 

 

 

Table 8: Inbound and Outbound moves time for product and part-types (in Min.) 

 Unloading 

(UTe,p/a) 

Retrieving 

(RTe,p/a) 

Put-away 

(ATe,p/a) 

Loading 

(LTe,p/a) 

Picking 

(PTe,p/a) 

Processing time 2.2 1.5 1.8 2.5 1.75 

Percentage efficiency increment after adopting RFID 

 EUTe,p/a  ERTe,p/a EATe,p/a ELTe,p/a EPTe,p/a 
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% increment 0.75 0.75 0.50 0.85 0.65 

 

 

 

Table 9: Costs of RFID equipment (1€=1.3$) 

Hardware and software equipments Costs (€) 

RFID tag (€/tag) 0.15 

 label (€/label) 0.035 

Printer of logistics (€/time period) 400.00 

RFID reader (€/time period) 300.00 

RFID gate (€/time period) 425.00 

Equipments of a RFID truck (€/time period) 800.00 

Software and implementation projects (€/time period) 30,000.00 

 

 

Table 11: Lower and Upper bounds of cost and time objectives  

Upper bounds  Lower bounds  

costUB
 2.89*10

19
 costLB

 7.83*10
8
 

timeUB
 1.07*10

7
 timeLB

 8.41*10
4
 

cos

RFID

tUB
 

6.98*10
25

 
cos

RFID

tLB
 

5.19*10
10

 

RFID

timeUB
 

4.48*10
4
 RFID

timeLB
 

9.12*10
2
 

 

 

Table 12: Results on reverse logistics model 

 PSO ABC CI-ABC 

Objective function value ( J ) 0.7275 0.7275 0.7275 

Normalised Cost ( _ costN J ) 0.4013 0.3822 0.3778 

Normalised Time ( _ timeN J ) 0.3262 0.3253 0.3507 

Table 10: Optimal tuning parameters 

Parameters PSO ABC CI-ABC 

Random number generator [0, 1] [-1,1]  Logistics system 

Size of solution space 40 60 60 

Acceleration coefficients 2.0 - - 

Chaotic parameter ( )  - 3.0 3.0 
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Table 13: The number of Product to go to direct reuse 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

t=1 972 1238 1337 627 126 1526 1521 1087 

t=2 1091 1224 1421 771 273 1421 1471 1201 

t=3 1273 1379 1554 509 93 979 1009 997 

t=4 928 1127 1328 512 145 1437 1406 1213 

t=5 975 1325 1378 476 76 1584 1213 1203 

t=6 1013 1243 1287 518 205 1174 1313 1078 

 

 

 

Table 14: The number of disassembled product 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

t=1 6224 8031 1016 6127 5221 7117 1101 6124 

t=2 7079 8500 7723 6724 7334 6101 4017 5778 

t=3 5441 7023 5747 5981 5281 2814 4121 6908 

t=4 8108 6092 5391 6123 1019 3421 3789 7001 

t=5 7719 8500 5378 1223 7493 3871 2121 6193 

t=6 6873 7179 7273 5211 7197 6884 2298 6276 

 

 

 

Table 15: The number of parts to be purchased from external supplies 

 a=1 a=2 a=3 a=4 a=5 a=6 a=7 a=8 a=9 

t=1 12223 10270 7521 6541 4215 4216 103 4013 1267 

t=2 13107 11177 8795 5719 5073 5217 219 4271 1547 

t=3 9287 9271 6281 5929 4587 4791 3 5978 1987 

t=4 10018 8439 6547 5786 4991 6289 0 4774 678 

t=5 9129 88271 5489 6020 5298 5665 78 1719 910 

t=6 1174 7541 5545 5627 5303 5217 21 2191 1103 

 


