1	Simultaneous Electricity Generation and Microbially-Assisted Electrosynthesis in	
2	ceramic MFCs	
3		
4	Iwona Gajda ^a , John Greenman ^{a,b} , Chris Melhuish ^a , Ioannis Ieropoulos ^{a,b}	
5	^a Bristol Robotics Laboratory Block T. UWF. Bristol Coldharbour Lane Bristol BS16 10Y	
6		
0		
7	^o School of Life Sciences, UWE, Bristol, Coldharbour Lane, Bristol BS16 1QY,UK	
8	*ioannis.ieropoulos@brl.ac.uk	
9		
10	*Corresponding author: Tel.: +44 117 32 86318, 86322; Fax: +44 117 32 83960 E-mail	
11	address: ioannis.ieropoulos@brl.ac.uk (I. Ieropoulos)	
12	Bristol Robotics Laboratory, T-Building, Frenchay Campus, Bristol, BS16 10Y, UK	
12	,,,,,,, _	
13		
14	Abstract	
15	To date, the development of microbially assisted synthesis in Bioelectrochemical Systems	Formatted: Highlight
16	(BES) has the focused on mechanisms that consume energy in order to drive the	Formatted: Highlight
17	electrosynthesis process. This work reports - for the first time - on-novel ceramic MFC	Formatted: Highlight
18	systems that generating generate useful energy electricity whilst simultaneously driving the	Formatted: Not Highlight
10	systems and generating generating distribution of the second seco	Formatted: Not Highlight
19	electrosynthesis of userul chemical products. A <u>novel, novel, low cost, simple in assembly</u>	Formatted: Highlight
20	and operation <u>inexpensive and low maintenance</u> MFC has <u>was</u> been developed to that	Formatted: Highlight
21	demonstrated electrical power production and implementation into a practical application.	Formatted: Highlight
22	Terracotta based tubular MFCs were able to produce sufficient power to operate an LED	Formatted: Not Highlight
23	continuously over a 7 day period with a concomitant 92% COD reduction. This is the first	Formatted: Highlight
23	the state of the s	Formatted: Highlight
24	demonstration of water recovery, as a direct result of microbially assisted electrosynthesis,	Formatted: Highlight
25	with simultaneous power generation and not consumption in a ceramic based MFC. It has	
26	been found that whilst Whilst the MFCs are were generating energy, an alkaline solution is	Formatted: Highlight
27	was produced on the cathode that is was directly related to the level of generated amount of	
28	power <u>generated</u> . The alkaline catholyte was able to fix CO2 into carbonate/bicarbonate salts.	
29	This approach implies carbon capture and storage (CCS), effectively capturing CO2 through	
30	wet caustic 'scrubbing' on the cathode, which ultimately locks carbon dioxide.	
31		
32	Key words: terracotta MFC, wet scrubbing, catholyte generation, water recovery, microbially	
33	assisted electrosynthesis	
21		
34		

- 1

35	Highlights		
36	 MFCs synthesise alkali as a direct product of electricity generation - not consumption 		Formatted: Highlight
37	 Electric current and up to 68mL of alkaline solution was produced from the 		
38	breakdown of wastewater		
39	 The maximum power performance of a single MFC obtained by polarization curve 		
40	<u>was 2,58 mW</u>		
41	Cost effective ceramic MFCs with internal cathode achieved 92% COD reduction		
42	• Energy generated from ceramic MFCs operated LED light for 7 days		
43			No bullets or numbering
44	• MFCs to synthesise alkali as a direct product of electricity generation - not		
45	consumption		
46	• The alkaline solution was only produced when electricity was generated from the		
47	breakdown of wastewater		
48	← COD reduction of 92% was achieved		Formatted: Bulleted + Level: 1 + Aligned at: 0.63 cm + Indent at: 1.27
49	The first demonstration of cost effective ceramic based MFC with Pt-free internal		ст
50	<u>cathode</u>		
51	 Energy generated from ceramic MFCs operated LED light for 7 days 		
52			
53	1. Introduction		
54	The cost of energy generation and wastewater treatment is expected to increase in the near		
55	future, in order to meet the growing global population and the resultant demand on resources.		
56	Wastewater is typically viewed as a burden rather than a resource that requires energy for		Formatted: Highlight
57	treatment The treatment of wastewater is typically viewed as an energy intensive burden		
58	rather than a resource. The energy value of domestic wastewater can be up to 7.6 kJ per litre		
59	(kJ/L) and that of mixed industrial and domestic wastewater to as much as 16.8 kJ/L [1].		Formatted: Highlight
60	the By harnessing the energy in energy contained in wastewater, the water industries can	$\overline{\ }$	Field Code Changed
61	become more efficient both financially and environmentally. In addition, wastewater could is		romatted: nighinght
62	harnessed, not only can it help the water industries become more efficient in energy		
63	consumption or even net production, but it could also become a source of energy in parts of		
64	the world, which currently lack the essential infrastructure for reliable and affordable energy		
65	generation and distribution. Globally, there is an urgent need for low-cost water treatment		
66	technologies both in developed and developing countries.		
67	Research in the field of Bioelectrochemical Systems (BES) has focused on converting		
68	compounds in wastewater to bioelectricity via Microbial Fuel Cell (MFC) or other		

69	energetically valuable products [2]. Properties of t The proton selective membrane properties		Formatted: Highlight	
70	and its configuration in dual-chamber MFCs offer the opportunity to extract transfer cations		Field Code Changed	
71	from the analyte over to the cathode [3] Therefore. In this way the cathode can be exploited		Formatted: Highlight]
71	non me anoryte over to me canode [5]. Anoretore in mis way me canode can be explored	\leq	Field Code Changed	
12	as a mechanism <u>of tor</u> removing specific contaminants e.g. heavy metals [4]. This can be		Formatted: Highlight	
73	taken a step further , and with the use of by supplying an external energy, supplied into the	\sim	Field Code Changed	
74	BES system, where valuable products such as hydrogen gas [5], hydrogen peroxide [6],		Formatted: Highlight	
75	methane [7] or caustic soda [5,8] can be recovered.	\bigwedge	Formatted: Highlight]
76	The formation of caustic soda for example, is driven by the alkalinisation on the cathode side		Field Code Changed	
77	due to the continuous consumption of protons by the oxygen reduction reaction (ORR) and	$\langle \rangle \rangle$	Field Code Changed	
78	cationic flux [3]. In general, ORR on the carbon based cathodes proceeds either via the two-		Field Code Changed	
70	or four electron nethoday. The 4 electron nethoday encours to be proceeds entitle for the metal	\checkmark	Formatted: Highlight	
19	bi four-election pathway. The 4-election pathway appears to be predominant on noble metar		Formatted: Highlight	
80	catalysts, whilst the 2-electron pathway, known as peroxide pathway is more common on		Formatted: Highlight	
81	carbon based electrodes. In acidic conditions, it will result in formation of hydrogen peroxide			
82	which is further reduced to water. In alkaline environment it will result in generation of OH-			
83	[9] that leads to a further increase in pH. Such-MFC operation causes not only transport of		Formatted: Highlight	
84	ions (protons and cations) but also flow of liquid through the membrane, which leads to the			
85	so called electroosmotic transport of water [10]. This has resulted in many recent studies		Field Code Changed	
86	moving away from electricity generation and instead focussing on electricity consumption via			
87	Microbial Electrolysis Cells, where microbially assisted electrosynthesis can effectively be			
88	used for the production of oxidants or disinfectants [11] or even water dissociation via		Field Code Changed	
89	electrodialysis for separating the ionic species. However, it has recently been reported that			
90	the same process of microbially driven electrosynthesis can be achieved with both energy			
91	production and simultaneous elemental recovery in a simple MFC design [12]. This process		Field Code Changed	
92	process generating generated a highly saline catholyte solutions that can additionally acted as		Formatted: Highlight)
93	a dragging mechanism, linking the operational conditions of such system with similar to the			
94	Osmotic MFC. The Osmotic Microbial Fuel Cell (OsMFC), incorporates forward osmosis			
95	membranes, NaCl as the catholyte solution and usually, platinum electrodes. OsMFC			
96	represents a water extraction technology, which can recover water molecules from the			
97	anolyte through the membrane via osmotic pressure [13]. This relies on Forward Osmosis		Field Code Changed	
98	(FO), where the osmotic pressure gradient that exists between solutions of two different			
99	concentrations is driving the transport of water across the membrane. The driving force is			
100	created by high solute concentration solution and water transport occurs naturally via electro			
101	passive transport. In such a systemOsMFC, externally supplied salt solution is used as		Formatted: Highlight	
102	catholyte -and hasthe high catholyte salinity has been shown to increase current generation		Formatted: Highlight	
	3			

103		[14], however- the disadvantage of FO reactors is the salt leakage such as NaCl-across the	_	Formatted: Highlight
104	I	membrane [15].		Field Code Changed
105		Wastewater, as an abundant biological resource has the enormous potential for clean energy,		Formatted: Highlight
106		and its treatment is an important benefit of this process. In order for the MFC technology to		Formatted: Highlight
107		be feasible and implemented in real world conditions, the performance needs to be improved		Formatted: Highlight
108		and its design has to be simplified to become cost effective for practical use. To explore this		Formatted: Highlight
109	I	nath further it is important to look into cost effective materials, design and methodology to	\square	Formatted: Highlight
110		pain further it is important to look into cost effective materials, design and methodology to		Formatted: Highlight
110		snowcase the technology as a serious contender for practical implementation in wastewater		
111		treatment plants. For example, cCeramic materials, as porous, semi permeable membranes,	<	Formatted: Highlight
112		have been recognised as a low cost alternative to PEMs and . The use of ceramic materials in		Formatted: Highlight
113		MFCs has been reported before asused as septum/separator [16] or as a whole MFC reactor		Formatted: Highlight
114	I	[17–20]. In addition, the electrode material is another critical factor of the MFC architecture		Field Code Changed
115		that plays an important role in performance, cost of production and preparation, as well as		Field Code Changed
116		longevity and maintenance. In this respect, activated carbon based cathodes are inexpensive		Formatted: Highlight
117		and useful alternatives to Pt-catalyzed electrodes in MFCsas cathode material has gained a lot		
118		of interest in recent years, being an alternative material to the more expensive platinum [21–		Field Code Changed
119	I	24]		
120		-3. The aims of this work were therefore to: i) develop a simple, ceramic based MEC design as		
120				
121		an immersed anode in a wastewater tank for both energy recovery and microbially driven		
122		electrosynthesis of catholyte; ii) explore simple and cost effective ceramic designs based only		Formatted: Highlight
123		on carbon electrodes and ceramic materials, iii) demonstrate the catholyte generation in situ		
124		within the catholyte chamber as a means of water recovery and carbon capture.		
125				
126		2. Materials and methods		
127		2.1. MFC design and operation		
128		MFCs were built using terracotta caves (Orwell Aquatics, UK) of 10 cm length length, 4.2		Formatted: Highlight
129		cm outside diameter, 3.6 cm inside diameter and the, wall thickness of 3mm 3mm, were		Formatted: Highlight
130		purchased for £4.75 . They wereas assembled with carbon yeil anode and activated carbon		Formatted: Highlight
131		cathode. The anode electrode was made of carbon weil 20 g/m^2 (PRE Composite Materials		Formatted: Not Highlight
122		Example: The above electrode was $\frac{1}{1000}$ encode very $\frac{1}{20}$ g/m (FRI composite Materials,		Formatted: Highlight
132		Dorsel, UK), size 2430cm. The electrode was folded down, and wrapped around the		Formatted: Highlight
133		terracotta cave, and <u>it</u> was held in place with nickel chromium wire (0.45cm diameter) as	<	Formatted: Highlight
134		shown in Figure 1. The MFCs were placed inside a container filled with 200 mL of activated		Formatted: Highlight
135		sludge provided by Wessex Water Scientific Laboratory (Cam Valley, Saltford, UK) and		

136	supplemented with 0.1M sodium acetate at pH 6.6, which was periodically (7 days) supplied		
137	as feedstock.		
138	ANODE Terracotta CATHODE		Formatted: Centered
139	Figure 1. The ceramic MFC assembled and its schematic description.		Formatted: Highlight
			Formatted: Highlight
140	•		Formatted: Centered
141	2.2.Cathode preparation		
142	To optimise the <u>cost and</u> performance as well as the cost of the cathode electrode material,		Formatted: Highlight
143	carbon veil was used as gas diffusion layer (GDL) replacing for example the more expensive	$\overline{}$	Formatted: Highlight
144	carbon cloth Carbon veil sheet was pre-treated by coating with with 30% PTFE (Sigma	\backslash	Formatted: Highlight
144	carbon croin. Carbon ven sneet was pre-incared by coating with with 50/01 11 E (Signa		Formatted: Highlight
145	Aldrich) solution and left to dry. This material was used as the current collector and GDL ₇ .		
146	Afterwards, it was coated with activated carbon and 20% PTFE mixture on one side only.		Formatted: Highlight
147	The mixture was prepared by combining 80g of Activated activated Carbon carbon powder		
148	(G. Baldwin and Co., London, UK) and 20 % wt PTFE (60% PTFE dispersion in water -		
149	Sigma Aldrich, UK) in deionised water. The prepared mixture was applied onto the pre-		
150	treated carbon veil and distributed with a spatula. The obtained loading of activated carbon		
151	was ~60 mg/cm ² . The AC/PTFE mixture and carbon veil were hot pressed pressed underat		Formatted: Highlight
152	150-200 °C with-using a household iron at maximum temperature setting until the coated		Formatted: Highlight
153	material was completely dry (Figure 2)		Formatted: Highlight
100			

175	determined by drying 0.5 mL of catholyte over 48 h and weighing the dry mass. Energy	
176	dispersive X-ray (EDX) analysis was performed (Philips XL30 SEM) and it-was used to	Formatted: Highlight
177	determine elements present in crystallised cathodic salts. Detection limits are typically 0.1–	
178	100% wt. X-ray diffraction (XRD) analysis on precipitated salts from the catholyte was	
179	determined using powder measurements performed on a Bruker D8 Advance Diffractometer	
180	with the results being analysed using EVA software package (Bruker, UK).	Formatted: Highlight
181	COD was determined using the notassium dichromate oxidation method (COD HR test vials	
182	Camlab LIK) and analysed with a MD 200 photometer (Lovibord LIK) where 0.2mL	
183	samples were taken before and during MEC treatment and filter-sterilised prior to analysis	
165	samples were taken before and during wire treatment and inter-sternised prior to analysis.	
184		
185		
186	3. Results and Discussion	Formatted: Highlight
187	3.1. Power performance	
188	Two <u>A</u> triplicates of MFCs were continuously operated under external load conditions from	Formatted: Highlight
189	the beginning (T1, T2, T3), whereas the second triplicate set (T4, T5, T6) was left to mature	Formatted: Highlight
190	under open circuit conditions. In order to evaluate the electricity generation of this system,	Formatted: Highlight
191	the polarisation experiments were performed only on the working MFCs and are shown in	
192	Figure 3^2 . The best performance 2.58mW (286mW/m ²) was achieved by T1, whereas T2	Formatted: Highlight
193	generated 2.12mW (235mW/m ²) and T3 gave 1.16 mW (128mW/m ²). The MFCs under open	
194	circuit conditions were used to assess the passive dialysis effects, i.e. the passive diffusion of	
195	anolyte through the porous structure of the terracotta chassis.	
195	anotyte unough the porous structure of the terracotia chassis.	
197	Figure <u>3</u> 2. Polarisation curves performed during experiment <u>MFCs were operated using</u>	Formatted: Highlight
198	sodium acetate and wastewater mixture.	
	7	

225 difference in pH between the anolyte and catholyte was more marked for the working MFCs

Formatted: Highlight

Formatted: Highlight Formatted: Highlight

226 rather than the MFCs under open-circuit, which showed no significant changes indicating

an-ion and pH splitting mechanism in working MFCs (T- working). 227

228 229

Fig 54. A) Catholyte formation. (left) and B) the amount of catholyte produced under (a)

working (53Ω)closed circuit (left) and (b) open circuit conditions (right).

230 231

232 233 Figure 65. Conductivity and pH of MFC catholyte, with respect to the anolyte, in working and open circuit conditions. Arrows highlight the difference in these two conditions. 234 Formatted: Highlight 235 236 During the 7 days of continuous operation under load, for the working MFCs, it was clearly 237 shown that the COD was significantly reduced, as illustrated in Figure 76 below.

Figure <u>76</u>. Temporal COD reduction from the working MFCs against MFCs in open circuit.

As can be seen in Figure 67, the level of COD reduction achieved by the ceramic MFCs was

of the order of 92%, and this was also true for the underperforming T2 MFC. It may be

assumed that other antagonistic reactions were taking place in this unit in particular, and this

should form part of a separate investigation.

245 3.3. Powering the LED

To show the potential of the cylindrical MFCs to power real world applications, the working

247 MFCs were used to successfully operate a red LED <u>directly</u>, at a constant voltage of ~1.7V.

248 The LED was shown to be operated continuously as long as the substrate (0.1M sodium

acetate) was fed to the MFCs. This substrate has been used once and has was fed at the

beginning of the week and was not been replenished until the end of the test as shown in
figure 78. During the anolyte exchange for feeding, the LED would stop working for a short

252 period of time, until the MFC performance recovered to the previous levels, at which point

the LED would turn ON once again.

Formatted: Highlight

254

272	higher amount of salts migrated the amount of salts that have migrated from the anode to the			
273	cathode in the loaded MFCs is far higher than the solid mass measured from the open circuit			
274	units; this is also proportional to the amount of liquid catholyte formed. If the amount of salts			
275	generated under open circuit (no charge transfer) is deducted from the amount of salts			
276	generated by the loaded MFCs, then a net weight of 3.3g/mL can be directly attributed to			
277	electro-osmotic drag and ORR. In addition, the chemical properties of the catholyte generated			
278	under load conditions, such as high pH, high conductivity and high salinity, may be suitable			
279	as a disinfection agent, which is forming part of our <i>immediate next stepscontinuing research</i> .		Formatted: Highlight	
280	Initial findings suggest that the chemical composition of the catholyte is consistent with			
281	mineral phases such as trona, (Na ₃ (CO ₃)(HCO ₃) 2H ₂ O) and Na ₂ CO ₃ 2H ₂ O. Trona is a		Formatted: Subscript	
282	mixture of two phases of sodium carbonate/bicarbonate (data not shown).		Formatted: Subscript	
283			Formatted: Subscript	
284	4. Discussion		Formatted: Subscript	
285	The key issue for the implementation of Carbon Capture and Storage (CCS) is the high cost	//	Formatted: Subscript	
286	of sorbents. The current practice for CCS is effectively capturing CO_2 in the flue gas by an		Formatted: Subscript	
287	alkaline hydroxide absorbing solution, in order to react and form an alkaline carbonate	l)
288	solution with a normal gas-liquid absorption tower: for example, $CO_2 + MOH \rightarrow MHCO_3$			
289	where M represents a metal such as sodium. The use of alkaline sorbents have been shown as			
290	a method for carbon capture [27] and the MFC could be a method for a sorbent production		Field Code Changed	
291	that produces electrical energy [28]		Field Code Changed	
201	Electro-dialysis is a process that depends on the principle that most dissolved salts are)
292	positively or pagatively charged and they will migrate to electrodes with opposing charges			
293	Electro dialucia systems do this hu using supersive membranes [20]. In the MEC presented	ſ	Field Code Changed	
294	here westwater which was supplemented with as diver sectors is and utilized as the serbor		Field Code Changed	
293	nere, wastewater with supplemented with sodium acetate as the carbon	\leq	Formatted: Highlight	
296	energy source for the microorganisms, which break it down for consumption. This dissociates			
297	the sodium ions, which migrate over to the cathode through the ceramic material, as a direct			
298	consequence of the electricity being generated, thus effecting electrodialysis and ion		~	
299	separation. Cost effectiveness has been achieved by choosing cost efficient this method is		Formatted: Highlight	
300	truly cost effective because inexpensive materials and simplified methods of preparation were		Formatted: Highlight]
301	employed. For example, carbon veil used as a gas diffusion matrix is 100 times cheaper than			
302	30% PTFE pre-treated, commercially available carbon cloth (<u>e.g. as supplied by</u>		Formatted: Highlight)
303	fuelcellearth). The calculated cost of in house prepared activated carbon cathodes is $120 \text{s}/\text{m}^2$			
304	which would be is 7 times cheaper in comparison to the to using the same coating on carbon		Formatted: Highlight)
305	cloth.			

306	With an electric field in the system, the process of anolyte dissociation takes place with the		
307	use of membrane systems. Electrical potential applied to the ion exchange separators will		
308	involve the ion movement within the reactor. This has been the basis for electrodialysis		
309	studies where the potential is set externally to drive the dialytic process or desalination.		
310	Recently, it was proposed that alkali production in a cathodic chamber of a microbial		
311	electrolysis cell is possible, when a high electrical potential is applied and additional		
312	catholyte is externally supplied at high salt concentrations [8]. This exploration has been		Field Code Changed
313	showing the potential of alkali production in situ in electrodialysis systems [30] resulting in		Field Code Changed
314	rather complicated designs [31]. This study is aiming to demonstrate the advantages of simple		Field Code Changed
315	designs to make the MFC technology even more attractive.		
316	The novelty of the use of ceramic material to (i) perform the co-generation of electricity and		
317	electro-dialytic functions and (ii) extract water and (iii) produce alkaline catholyte, is		
318	bringing this closer to implementation in real domestic environments as well as wastewater		
319	treatment plants. It is shown here that water desalination can be accomplished without		
320	electrical energy input as a result of electricity generation. The fact that the power does not		
321	decrease during this operation, whilst the cathode electrode has been flooded, might be		
322	attributed to the high salt concentration and increased conductivity. Electrical resistance of		
323	ion exchange membranes strongly increases with the decrease of solution concentration		
324	especially in low strength solutions [32,33]. Moreover the electrical power produced from		Field Code Changed
325	mixing saline solutions is rooted in the membrane-based energy conversion mechanisms such		Formatted: Highlight
326	as reversed electrodialysis [34,35]. The salinity gradient energy is a very promising avenue		Field Code Changed
327	for electricity generation and in this design, it might be an additional driving element	Í	Formatted: Highlight
327			Formatted: Highlight
328	Ceramic based MFC cylinders were-have been previously shown, however in standard anode-		Field Code Changed
329	cathode configurations [20] showing the ability to remove ammonium [36] and energise		Formatted: Highlight
330	practical applications [37]. The submerged MFC design described in the present study		Field Code Changed
331	represents a true integration of two BES systems (MFC and MEC) into one simple design		Formatted: Highlight
222	that aculd he used in a real environment. Seeled up versions of the MECs presented here have		Formatted: Highlight
552	that could be used in a real environment. Scaled-up, versions of the MFCs presented nere <u>mave</u>	\leq	Formatted: Not Highlight
333	<u>already been demonstrated as (1) a stack of 40 MFC reactors set up to treat urine and charge a</u>	$\backslash \downarrow$	Formatted: Highlight
334	mobile phone in real-time [38] and (ii) a stack of 288 MFC reactors operating directly from	$\langle \rangle$	Formatted: Highlight
335	urinals to power indoor lighting [39]. [39]. Open to air cathode coupled with ceramic	$\langle \rangle \rangle \langle \gamma \rangle$	Formatted: Highlight
336	membranes could be used both for electricity generation and filtration of wastewater to	$\langle / / \rangle$	Formatted: Highlight
227	recomposed over the local big implementation of which his fact and the state of the state		Formatted: Not Highlight
331	regenerate water. Real life implementation of microbial fuel cells presented herein that does		Formatted: Not Highlight
338	not require strictly controlled conditions or high maintenance, has the potential to play a		Formatted: Highlight
339	major role in developing sustainable urban wastewater systems. Considering the amount of		Formatted: Highlight
I			

340	wastewater produced globally and the potential energy stored within it, it is important that				
341	MFC technology development should perhaps be pursued with real word applications in	Formatted: Highlight			
342	mind, This work is aiming at efficient industrial-scale development that would recover	Formatted: Highlight			
343	energy from wastewater using a terracotta tubular design, enhancing functionality of the	Formatted: Highlight			
344	MFC.				
345					
346	5. Conclusions				
347	-This work has shown a novel, ceramic based MFC with an internal cathode that can perform				
348	the function of the co-generation of electricity and linked formation of catholyte from	Formatted: Not Highlight			
349	wastewater. MFC electrical performance is directly related to the amount of accumulated				
350	catholyte in the internal cathode chamber. The formation of catholyte is solely due to the	Formatted: Not Highlight			
351	MFC operation that drives the electro-dialytic transport of ions from the anode to the cathode	Formatted: Highlight			
352	and results in active electroosmotic extraction of water. The properties of formed catholyte	Formatted: Highlight			
353	include high pH and high salt concentration, which demonstrates the potential of in situ	Formatted: Highlight			
354	production of alkaline sorbent from wastewater. Pt-free MFC produced caustic sorbents that				
355	can fix carbon dioxide into carbonates and bicarbonates through wet scrubbing showing cost				
356	effective microbially assisted electrosynthesis.				
357	This work is reporting reports simultaneous extraction of clean water from wastewater.	Formatted: Highlight			
358	elemental recovery and power production from using a low maintenance, simple to make	Formatted: Highlight			
358 359	elemental recovery and power production from using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications.	Formatted: Highlight Formatted: Highlight			
358359360	elemental recovery and power production from using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications.	Formatted: Highlight Formatted: Highlight			
358359360361	 elemental recovery and power production from-using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications. 6. Acknowledgement 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 	 elemental recovery and power production <u>from-using</u> a low maintenance, simple to make Microbial Fuel Cell system <u>encouraging further scale-up into real world applications</u>. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 	 elemental recovery and power production <u>from-using</u> a low maintenance, simple to make Microbial Fuel Cell system <u>encouraging further scale-up into real world applications</u>. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 	 elemental recovery and power production <u>from-using</u> a low maintenance, simple to make Microbial Fuel Cell system <u>encouraging further scale-up into real world applications</u>. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 365 	 elemental recovery and power production <u>from-using</u> a low maintenance, simple to make Microbial Fuel Cell system <u>encouraging further scale-up into real world applications</u>. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 365 366 	 elemental recovery and power production from-using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the West of England and Dr Hazel Sparkes from the University of Bristol for the valuable 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 365 366 367 	 elemental recovery and power production from-using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-1004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the West of England and Dr Hazel Sparkes from the University of Bristol for the valuable expertise and analysis of the catholyte samples, and also Dr Jonathan Winfield for his general 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 365 366 367 368 	 elemental recovery and power production <u>from-using</u> a low maintenance, simple to make Microbial Fuel Cell system <u>encouraging further scale-up into real world applications</u>. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the West of England and Dr Hazel Sparkes from the University of Bristol for the valuable expertise and analysis of the catholyte samples, and also Dr Jonathan Winfield for his general advice. 	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 365 366 367 368 369 	elemental recovery and power production from-using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the West of England and Dr Hazel Sparkes from the University of Bristol for the valuable expertise and analysis of the catholyte samples, and also Dr Jonathan Winfield for his general advice.	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 365 366 367 368 369 370 	elemental recovery and power production from using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the West of England and Dr Hazel Sparkes from the University of Bristol for the valuable expertise and analysis of the catholyte samples, and also Dr Jonathan Winfield for his general advice.	Formatted: Highlight Formatted: Highlight			
 358 359 360 361 362 363 364 365 366 367 368 369 370 	elemental recovery and power production from using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the West of England and Dr Hazel Sparkes from the University of Bristol for the valuable expertise and analysis of the catholyte samples, and also Dr Jonathan Winfield for his general advice. References	Formatted: Highlight Formatted: Highlight Field Code Changed			
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372	 elemental recovery and power production from-using a low maintenance, simple to make Microbial Fuel Cell system encouraging further scale-up into real world applications. 6. Acknowledgement The work was funded by the Engineering and Physical Sciences Research Council EPSRC CAF EP-I004653/1 and EP/L002132/1. The scale-up part of the work for the Re-Invent the Toilet Fair in India has been supported by the Bill & Melinda Gates Foundation, grant no. OPP1094890. The authors would like to thank Dr David Patton, from the University of the West of England and Dr Hazel Sparkes from the University of Bristol for the valuable expertise and analysis of the catholyte samples, and also Dr Jonathan Winfield for his general advice. References [1] E.S. Heidrich, T.P. Curtis, J. Dolfing, Determination of the internal chemical energy of wastewater., Environ. Sci. Technol. 45 (2011) 827–32. doi:10.1021/es103058w. 	Formatted: Highlight Formatted: Highlight Field Code Changed			

373 374 375	[2]	D.R. Lovley, K.P. Nevin, A shift in the current: new applications and concepts for microbe-electrode electron exchange., Curr. Opin. Biotechnol. 22 (2011) 441–8. doi:10.1016/j.copbio.2011.01.009.
376 377 378	[3]	R. Rozendal, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol. 40 (2006) 5206–5211. http://pubs.acs.org/doi/abs/10.1021/es060387r (accessed May 08, 2014).
379 380	[4]	K. Rabaey, J. Keller, Microbial fuel cell cathodes: from bottleneck to prime opportunity?, Water Sci. Technol. 57 (2008) 655–9. doi:10.2166/wst.2008.103.
381 382 383	[5]	D. Call, B.E. Logan, Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane., Environ. Sci. Technol. 42 (2008) 3401–6. http://www.ncbi.nlm.nih.gov/pubmed/18522125.
384 385 386	[6]	R.A. Rozendal, E. Leone, J. Keller, K. Rabaey, Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system, Electrochem. Commun. 11 (2009) 1752–1755. doi:10.1016/j.elecom.2009.07.008.
387 388 389	[7]	P. Clauwaert, W. Verstraete, Methanogenesis in membraneless microbial electrolysis cells., Appl. Microbiol. Biotechnol. 82 (2009) 829–36. doi:10.1007/s00253-008-1796-4.
390 391 392	[8]	K. Rabaey, S. Bützer, S. Brown, J. Keller, R. a Rozendal, High current generation coupled to caustic production using a lamellar bioelectrochemical system., Environ. Sci. Technol. 44 (2010) 4315–21. doi:10.1021/es9037963.
393 394	[9]	K. Kinoshita, Carbon Electrochemical and Physicochemical Properties, John Wiley & Sons, Ltd,., 1988.
395 396 397	[10]	J.R. Kim, G.C. Premier, F.R. Hawkes, R.M. Dinsdale, A.J. Guwy, Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode, J. Power Sources. 187 (2009) 393–399. doi:10.1016/j.jpowsour.2008.11.020.
398 399 400	[11]	K. Rabaey, R. a Rozendal, Microbial electrosynthesis - revisiting the electrical route for microbial production., Nat. Rev. Microbiol. 8 (2010) 706–16. doi:10.1038/nrmicro2422.
401 402 403 404	[12]	I. Gajda, J. Greenman, C. Melhuish, C. Santoro, B. Li, P. Cristiani, et al., Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs), Sustain. Energy Technol. Assessments. 7 (2014) 187–194. doi:10.1016/j.seta.2014.05.001.
405 406 407	[13]	Z. Ge, Q. Ping, L. Xiao, Z. He, Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater, Desalination. 312 (2013) 52–59. doi:10.1016/j.desal.2012.08.036.
408 409 410	[14]	F. Zhang, K.S. Brastad, Z. He, Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation., Environ. Sci. Technol. 45 (2011) 6690–6. doi:10.1021/es201505t.
	15	

- 411 [15] N.T. Hancock, T.Y. Cath, Solute coupled diffusion in osmotically driven membrane
 412 processes., Environ. Sci. Technol. 43 (2009) 6769–75.
 413 http://www.ncbi.nlm.nih.gov/pubmed/19764248.
- 414 [16] D.H. Park, J.G. Zeikus, Improved fuel cell and electrode designs for producing
 415 electricity from microbial degradation., Biotechnol. Bioeng. 81 (2003) 348–55.
 416 doi:10.1002/bit.10501.
- 417 [17] M. Behera, P.S. Jana, M.M. Ghangrekar, Performance evaluation of low cost microbial
 418 fuel cell fabricated using earthen pot with biotic and abiotic cathode., Bioresour.
 419 Technol. 101 (2010) 1183–9. doi:10.1016/j.biortech.2009.07.089.
- 420 [18] F.F. Ajayi, P.R. Weigele, A terracotta bio-battery., Bioresour. Technol. 116 (2012) 86–
 421 91. doi:10.1016/j.biortech.2012.04.019.
- M. Behera, P.S. Jana, T.T. More, M.M. Ghangrekar, Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH., Bioelectrochemistry. 79 (2010) 228–33.
 doi:10.1016/j.bioelechem.2010.06.002.
- 426 [20] J. Winfield, J. Greenman, D. Huson, I. Ieropoulos, Comparing terracotta and
 427 earthenware for multiple functionalities in microbial fuel cells., Bioprocess Biosyst.
 428 Eng. 36 (2013) 1913–21. doi:10.1007/s00449-013-0967-6.
- 429 [21] X. Zhang, X. Xia, I. Ivanov, X. Huang, B.E. Logan, Enhanced activated carbon
 430 cathode performance for microbial fuel cell by blending carbon black., Environ. Sci.
 431 Technol. 48 (2014) 2075–81. doi:10.1021/es405029y.
- 432 [22] M. Ghasemi, S. Shahgaldi, M. Ismail, B.H. Kim, Z. Yaakob, W.R. Wan Daud,
 433 Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two434 chamber microbial fuel cell, Int. J. Hydrogen Energy. 36 (2011) 13746–13752.
 435 doi:10.1016/j.ijhydene.2011.07.118.
- 436 [23] C. Santoro, K. Artyushkova, S. Babanova, P. Atanassov, I. Ieropoulos, M. Grattieri, et
 437 al., Parameters characterization and optimization of activated carbon (AC) cathodes for
 438 microbial fuel cell application., Bioresour. Technol. 163C (2014) 54–63.
 439 doi:10.1016/j.biortech.2014.03.091.
- 440 [24] X. Li, X. Wang, Y. Zhang, N. Ding, Q. Zhou, Opening size optimization of metal 441 matrix in rolling-pressed activated carbon air–cathode for microbial fuel cells, Appl. 442 Energy. 123 (2014) 13–18. doi:10.1016/j.apenergy.2014.02.048.
- [25] N. Degrenne, F. Buret, B. Allard, P. Bevilacqua, Electrical energy generation from a large number of microbial fuel cells operating at maximum power point electrical load, J. Power Sources. 205 (2012) 188–193. doi:10.1016/j.jpowsour.2012.01.082.
- I. Ieropoulos, J. Greenman, C. Melhuish, Microbial fuel cells based on carbon veil
 electrodes: Stack configuration and scalability, Int. J. Energy Res. 32 (2008) 1228–
 1240. doi:10.1002/er.1419.

- K.S. Lackner, The thermodynamics of direct air capture of carbon dioxide, Energy. 50 (2013) 38–46. doi:10.1016/j.energy.2012.09.012.
- 451 [28] Gajda, I., J. Greenman, C. Melhuish, I. Ieropoulos, Artificial photosynthesis coupled
 452 with electricity generation microbial fuel cells as artificial plants, in: ALIFE 14
 453 Fourteenth Int. Conf. Synth. Simul. Living Syst. ALIFE Work. Exploit. Synerg.
 454 between Biol. Artif. Life Technol. Tools, Possibilities, Examples, 30 July-2 August
 455 2014, NY, USA., 2014.
- [29] C. Huang, T. Xu, Electrodialysis with Bipolar Membranes for Sustainable
 Development, Environ. Sci. Technol. 40 (2006) 5233–5243. doi:10.1021/es060039p.
- M. Chen, F. Zhang, Y. Zhang, R.J. Zeng, Alkali production from bipolar membrane
 electrodialysis powered by microbial fuel cell and application for biogas upgrading,
 Appl. Energy. 103 (2013) 428–434. doi:10.1016/j.apenergy.2012.10.005.
- 461 [31] X. Zhu, M.C. Hatzell, R.D. Cusick, B.E. Logan, Microbial reverse-electrodialysis
 462 chemical-production cell for acid and alkali production, Electrochem. Commun. 31
 463 (2013) 52–55. doi:10.1016/j.elecom.2013.03.010.
- P. Długołęcki, B. Anet, S.J. Metz, K. Nijmeijer, M. Wessling, Transport limitations in ion exchange membranes at low salt concentrations, J. Memb. Sci. 346 (2010) 163– 171. doi:10.1016/j.memsci.2009.09.033.
- 467 [33] F. Harnisch, U. Schröder, F. Scholz, The suitability of monopolar and bipolar ion
 468 exchange membranes as separators for biological fuel cells., Environ. Sci. Technol. 42
 469 (2008) 1740–6. http://www.ncbi.nlm.nih.gov/pubmed/18441829.
- J.W. Post, J. Veerman, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, K. Nymeijer, et
 al., Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse
 electrodialysis, J. Memb. Sci. 288 (2007) 218–230. doi:10.1016/j.memsci.2006.11.018.
- [35] R.E. Pattle, Production of Electric Power by mixing Fresh and Salt Water in the
 Hydroelectric Pile, Nature. 174 (1954) 660–660. doi:10.1038/174660a0.
- [36] D.A. Jadhav, M.M. Ghangrekar, Effective ammonium removal by anaerobic oxidation
 in microbial fuel cells., Environ. Technol. (2014) 1–23.
 doi:10.1080/09593330.2014.960481.
- [37] I. Ieropoulos, P. Ledezma, A. Stinchcombe, G. Papaharalabos, C. Melhuish, J.
 Greenman, Waste to real energy: the first MFC powered mobile phone., Phys. Chem.
 Chem. Phys. 15 (2013) 15312–15316. doi:10.1039/c3cp52889h.
- 481 [38] Gatesfoundation.org, Urine-tricity, Reinvent-the-Toilet-Fair-India-2014-Program.
 482 (2014) Page 13. http://www.gatesfoundation.org/~/media/GFO/Documents/What-We-483 Do/Reinvent-the-Toilet-Fair-India-2014-Program.pdf.
- 484 [39] University of the West of England, "Pee-power" to light camps in disaster zones,
 485 (2015). http://info.uwe.ac.uk/news/UWENews/news.aspx?id=3050.