
Simple Synchronisation for Open Sound Control

Sebastian Madgwick

x-io Technologies

Bristol, UK

sebmadgwick@x-io.co.uk

Thomas Mitchell

University of the West of England

Bristol, UK

tom.mitchel@uwe.ac.uk

Carlos Barreto

x-io Technologies

Bristol UK

cbarreto61@unisalle.edu.co

Adrian Freed

CNMAT, UC Berkeley

CA, USA

adrian@cnmat.berkeley.edu

ABSTRACT

Clock synchronisation is a mature and important aspect of

distributed computing systems. Despite the importance of

accurate timing in music, there are relatively few widely

applicable synchronisation solutions available to computer

music practitioners. In this paper we present a simple

OSC-based synchronisation method for wired and wireless

applications, which is designed to be easy to apply and is

shown to offer accuracy appropriate for fine-grained music

applications. The proposed solution relies on a single master

sending a synchronisation message to all slaves. Empirical

studies with a heterogeneous network of 17 Wi-Fi slaves and

5 Ethernet slaves demonstrate that each homogeneous group

is able to achieve a relative synchronisation accuracy of 166

us and 100 us respectively, offset from the master time by their

respective network latencies. An acoustic localisation system

is implemented to demonstrate an application that requires

both accurate synchronisation and benefits from wireless

connectivity. The system is shown to precisely locate a sound

source with a standard deviation of 1.8 mm.

1. INTRODUCTION

In networks of distributed computational devices, individual

network nodes are equipped with a local clock from which

events may be accurately scheduled or timestamped. In

practice this clock is derived from an on-board crystal or

oscillator circuit, which, due to imperfections in the timing

hardware, will tend drift with respect to the clocks on other

network nodes [1]. Scenarios demanding precise temporal

coordination have stimulated the development of many

synchronisation procedures designed to establish an accurate,

network-wide notion of time [2, 3]. Given the importance
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of timing and rhythm in music [4, 5], and the continually

emerging applications of networked computational devices

for musical purposes [6, 7, 8, 9, 10], there is a growing need

for a widely applicable synchronisation solution for computer

music applications.

This paper presents a simple Open Sound Control (OSC)

synchronisation procedure for distributed systems, which has

been designed to satisfy the following objectives:

• simple to implement on a wide range of platforms

(heterogeneous network nodes)

• ‘transport independent’ operating entirely through the

exchange of OSC messages

• meets the fine-grained synchronisation requirements of

computer music applications (i.e. sub-ms error [11])

The paper begins with an introduction to network

synchronisation with particular focus on computer music

systems. The proposed synchronisation method is then

presented, followed by a detailed empirical analysis and

discussion of its performance. A practical application

example of the synchronisation precision is then provided in

the form of a wireless indoor acoustic localisation system.

The paper closes with concluding remarks and proposals for

future developments.

2. BACKGROUND

Clock synchronisation is a long and established component of

distributed computing systems, underpinning the technology

that enables GPS, mobile telecommunications, wireless data

communications, networked file system integrity, sensor

fusion, localisation, object and motion tracking [1, 12].

The Network Time Protocol (NTP) [13] has for decades

kept internet clocks running to within a few milliseconds of

Universal Coordinated Time and now forms one of a plethora

of available synchronisation methods that have since been

proposed. Usually, these methods operate by propagating

a global or master time through the network from which

slaves modify their local clocks to maintain synchronisation.

The mechanisms of each synchronisation method differ based
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upon the the relevant network topology and the application

requirements in terms of accuracy, precision and energy.

Comprehensive overviews can be found in the literature, see

for example [14] and [15] for a more recent comparison of

synchronisation methods for wireless sensor networks.

Synchronisation has also played an important role in

distributed music systems to ensure audio and visual

media alignment. As technology has pervaded the sonic

and visual arts, a number of established synchronisation

protocols and interfaces have been proposed and adopted

that enable distributed devices to maintain a common

time frame. For example, MIDI clock, MIDI timecode

and SMPTE have provided reliable (although relatively

imprecise) device synchronisation for professional media

applications [16, 17]. Research into novel musical interfaces

and laptop/mobile phone performances are making increasing

use of interconnected networks of wired and wireless

devices to sense and capture expressive control input and

to schedule precisely timed output. For example, The

Princeton Laptop Orchestra [18], the Carnegie Mellon

Laptop Orchestra [19] and the LOLC laptop ensemble [20]

implement their own synchronisation algorithms to ensure

timely coordination amongst players. The former alludes

to an OSC synchronisation procedure with synchronisation

precision estimated in the order of 30-40 ms, while the latter

two incorporate messaging processes based upon Christian’s

algorithm [21]. A third live coding synchronisation process

developed by Ogborn [22] for the Cybernetic Orchestra

encapsulates the complexities of the synchronisation process

within a dedicated application called EspGrid, which exposes

global beat resolution event messages to clients running

OSC compatible music software. While this abstraction is

elegant for synchronising to salient musical events, it is not

designed to provide random access to the real-time clock,

precluding high-precision synchronisation applications such

as localisation and sensor fusion. In their 2014 live coding

report, Blackwell et al [23] draw attention to a growing

abundance of bespoke synchronisation methods noting that

cooperation is currently hampered by a lack of agreement on

a single protocol.

This work is concerned with cases in which many

established synchronisation protocols may not be applicable

because they depend upon specific physical interfaces or

other specific OSI model technologies such as TCP/IP. The

proposed synchronisation method is designed to operate in

situations where nodes are able to communicate by OSC and

have real-time access to an onboard physical clock. The

OSC protocol has been chosen as it has now become a key

technology within the computer music community [24]. The

time tag [25] argument type was introduced to the OSC

protocol as an enabling feature for device synchronisation.

Despite several subsequent calls for an OSC synchronisation

method [26, 27, 28], a standardised approach is still to be

established.

3. PROPOSED SOLUTION

3.1 Algorithm derivation

The proposed synchronisation solution relies on a single

synchronisation master periodically broadcasting a

measurement of global time to all slaves on a communication

network; a method resembling the ‘simple’ synchronisation

solution proposed by Dannenberg [29].

The synchronisation messages sent by the master provide

each slave with a precise observation of global time.

However, this observation will incorporate a varying error

due to the system latencies; the most significant being

communication latency, and task scheduling within the slave.

Figure 1 shows the error in the observed global clock for a

single slave. This plot was obtained for a Wi-Fi node using

the experimental setup described in Section 4.1 and a fixed

synchronisation message rate of 5 messages per second.
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Figure 1. Error in the observed global clock for a single slave.

The visualisation of the error in the observed global clock

shown in Figure 1 clearly indicates a fixed minimum error.

Although errors may be as high as 30 ms, a significant

number of observations have a precise error of 2.2 ms. This

represents the minimum system latency, and corroborates

Wi-Fi round-trip latency measurements made with similar

devices in [30, 31].

The distribution of the error will vary between hardware and

software platforms, and communication interfaces. However,

for a network of homogeneous slaves, the minimum system

latency will be equal for all slaves. A slave may therefore

achieve relative synchronisation with other homogeneous

types if it is able to identify synchronisation messages that

are likely to represent the minimum system latency. The

proposed solution achieves this through the following three

heuristics:

1. The slave incorporates a fixed slave clock drift to

ensure that the slave clock is slower than the global

clock.

2. If the observed global clock is ahead of the current

slave clock then update the slave clock to equal the

observed global clock.



3. If the observed global clock differs from slave clock by

more than a specified threshold then update the slave

clock to equal the observed master clock.

The slave clock drift must be greater than the expected

worst-case relative difference in speed between the global

clock and slave physical clock. For example, if both the

global clock and slave clock are derived from a ±20 ppm

crystal then drift should be at least -40 us per second. The

threshold value should be greater than the expected maximum

communication latency so that the difference between the

slave clock and global clock only ever exceeds the threshold

upon initialisation of the system.

Figure 1 demonstrates the slave clock maintaining

synchronisation with a fixed offset from the global clock

using the above heuristics. This plot was obtained for a Wi-Fi

node using the experimental setup described in Section 4.1

and a fixed synchronisation message rate of 5 messages per

second and slave clock drift of -10 us per second.
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Figure 2. Slave clock corrections based on observations of master clock

An important characteristic of the slave synchronisation

algorithm is that updates to the slave clock

(post-initialisation) will only ever result in steps forward in

time, an important condition that must be satisfied to ensure

partial ordering of events [32, 15].

3.2 Algorithm implementation

The synchronisation message sent by the master is a 20-byte

OSC message containing a single OSC time tag argument

with the address pattern, “/sync”. An OSC time tag is a

64-bit, unsigned fixed-point representation of time elapsed

since January 1, 1900 with a resolution of 233 ps. This is

also the representation used by NTP.

4. EMPIRICAL STUDIES

Empirical studies were conducted to demonstrate: the

relationship between the synchronisation message rate

and slave synchronisation error, the relationship between

application throughput and slave synchronisation error, and

the behaviour of a heterogeneous network of slaves.

4.1 Experimental setup

The experimental setup included 17 Wi-Fi slaves, 5 Ethernet

slaves, and a single Ethernet master. The Wi-Fi slaves were

x-OSCs [30] running customised firmware. The Ethernet

master and slaves were Microchip Ethernet Start Kits. All

devices communicated via a Netgear AC 1900 router. The

Ethernet master had a direct connection to the router while the

5 Ethernet slaves were connected to the router via a Netgear

GS308 Ethernet switch. The Wi-Fi slaves were connected to

the router 2.4 GHz network. A laptop was connected to the

router 5 GHz Wi-Fi network to log results without interfering

with the 2.4 GHz traffic. This setup is illustrated in Figure 3.

... ...

1 Hz Square Wave 

Wi-Fi Slaves (x17) Ethernet Slaves (x5)

Ethernet Master

Figure 3. Experimental setup showing a network of 17 Wi-Fi and 5 Ethernet

slaves with a single Ethernet master

A 1 Hz square wave signal was connected to a digital

input on the master and each slave. The digital inputs

were configured as external interrupts to send a time-stamped

OSC message indicating its clock value on each edge of the

square wave. The latency between the digital input edge and

sampling of the clock is <1.5 us. This provides a means of

sampling all clocks simultaneously so that the error of each

slave clock relative to global time may be obtained.

The Wi-Fi slaves were measured to have a small variance in

crystal tolerance and so used a slave clock drift value of -10

us per second. The Microchip Ethernet Start Kits used a slave

clock drift value of -150 us per second

4.2 Results

4.2.1 Synchronisation message rate vs. synchronisation

error

The box plots in Figure 4 shows the relationship between the

synchronisation message rate and the synchronisation error

of a single Wi-Fi slave. The synchronisation message rates

range from 1 message every 10 seconds to 100 messages

per second. Each box plot represents approximately 5300

samples over 45 minutes. The whiskers indicate 1.5×

interquartile range.

The distributions in Figure 4 demonstrate the predicable

relationship that higher synchronisation message rates yield

a reduced variance in the synchronisation error and shift

the mean towards to minimum system latency. Outliers
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Figure 4. Relationship between the synchronisation message rate and the

synchronisation error of a single Wi-Fi slave

define the peak-to-peak variation and so indicate the potential

worst-case synchronisation error. The peak-to-peak variation

was measured as 149 us at 0.1 Hz, 50.6 us at 5 Hz, 26.5 us at

50 Hz and 26.2 us at 100 Hz.

The relationship between the synchronisation message rate

and synchronisation error allows the designer to optimise for

a given application. For high-bandwidth applications, a high

message rate may achieve a synchronisation error (between

homogeneous slaves) approaching sample accurate timing

for CD quality audio (22.7 us sample period at 44.1 kHz).

For low-bandwidth or low-power applications, message rates

as low as once every 10 seconds may still achieve a low

peak-to-peak variation of <150 us.

4.2.2 Application throughput vs. synchronisation error

Synchronisation messages place an additional demand on

the bandwidth of a communication channel. The box plots

in Figure 5 show the relationship between the application

throughput and the synchronisation error of 17 Wi-Fi slaves.

The application throughput was created by each slave

sending an additional 0, 50, 100 or 200 UDP packets per

second. Each packet contained a 104-byte OSC message

containing 16 analogue input measurements represented as

32-bit floating point values. The synchronisation message

rate was 5 messages per second. Each box plot represents

approximately 30000 samples collected over 15 minutes.

The distributions in Figure 5 demonstrate that

synchronisation error can be expected to increase for

high application throughput. This is in part due to a reduction

in the available bandwidth of the communication channel

and in part due to the increased loading on the slaves’ task

scheduling. The peak-to-peak variation was measured as 117

us at 0 Hz, 159 us at 50 Hz, 218 us at 100 Hz and 376 us at

200 Hz.

4.2.3 Heterogeneous network of slaves

The proposed synchronisation solution is limited to only

achieving accurate synchronisation of slaves of homogeneous

types; each group of homogeneous types will be subject

to different error offset approximating the minimum system
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Figure 5. Relationship between application throughput and Wi-Fi slave

synchronisation error

latency for the type. The box plots in Figure 6 demonstrate

this behaviour for two groups of homogeneous types: the 17

Wi-Fi slaves and the 5 Ethernet slaves. Each distribution

represents approximately 53000 samples collected over 9

hours with a synchronisation message rate of 5 messages per

second.
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Figure 6. Synchronisation error of 22 heterogeneous slaves. Slaves A to Q

are Wi-Fi nodes, slaves R to V are Ethernet nodes (slave D malfunctioned

during the experiment)

A faster and more reliable connection enables the

Ethernet slaves to achieve a lower variance with a mean

synchronisation error of -125 us relative to the global

clock. Although the 17 Wi-Fi nodes maintain relative

synchronisation, they share a common mean synchronisation

error of -2.37 ms relative to the global clock. The worst-case

synchronisation error between any Wi-Fi slaves was 166 us,

and 100 us for any two Ethernet slaves over the 9 hour period.

5. EXAMPLE APPLICATION: ACOUSTIC

LOCALISATION

An acoustic localisation system was implemented to

demonstrate an application that requires both accurate

synchronisation and benefits from wireless connectivity. The

system comprises eight wireless sensing nodes distributed



around the edge of a workspace. The location of a sound

source within the workspace was calculated from the relative

time-of-arrival of the sound at each sensing node using

multilateration [33]. The accuracy of the location is therefore

dependant of the accuracy of the synchronisation. Wireless

connectivity simplifies deployment of the sensing nodes over

a large workspace.

5.1 Wireless sensing node

Each wireless sensing node comprised an x-OSC, audio

trigger circuit and battery. The x-OSC digital inputs provide

a timestamped OSC message for each rising or falling edge.

The audio trigger circuit would provide a digital pulse when

a microphone amplitude exceeds a threshold so that the time

of arrival of a sound would be obtained. The threshold was

set by a x-OSC PWM output so that it could be adjusted

wirelessly, via OSC messages, once the system had been

deployed.

The audio trigger circuit, shown in Figure 7, was designed

to minimise variations in latency between sensing nodes.

The signal from an omni-directional electret microphone,

multiplied by a gain of ∼1400, was compared with both a

positive and negative threshold of equal magnitude to prevent

sensitivity to the polarity of the wave form. The circuit does

not incorporate any intentional low-pass filtering (e.g. an

anti-aliasing filter) as resistor and capacitor value tolerances

may risk a differing phase response between devices.

Figure 7. One of eight wireless senseor nodes with attached audio trigger

circuitry

5.2 Deployment and results

The eight sensor nodes were equally spaced around the

perimeter of a 6 m square. The synchronisation message

rate was set to 50 messages per second to optimise for

synchronisation accuracy. A loudspeaker was placed at 5

different locations within the square. The speaker would play

a 15 ms noise burst 100 times at each location over 3 to

4 minutes. The microphone and loud speaker locations are

illustrated in Figure 8. The locations of the speaker in this

Figure were obtained using the acoustic localisation system.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

meters

Microphone Speaker

m
e
te
rs

Figure 8. Eight sense nodes were equally spaced around the perimeter of

a 6 m square to obtain measurements of 5 different speaker locations using

multilateration

The standard deviation in the measured locations of the

speaker was <8 mm. It was not possible to quantify the

mean error of each measured location as the accuracy of

the acoustic localisation measurement was greater than that

of the measurement made when physically setting up the

experiment. The precision was greatest when the speaker was

located in the centre with a standard deviation of 1.8 mm,

corresponding to a temporal error of 2.6 us. Figure 9 shows a

detailed plot of the 100 measurements made at this location.

These measurements suggest that the speaker was placed with

3 cm error in one dimension. This precision demonstrates the

accuracy of the synchronisation.

6. CONCLUSIONS

In this paper we have presented a simple distributed

computing synchronisation method for OSC. The method

relies on a single master sending a synchronisation message

to all slaves. The synchronisation algorithm has only

three adjustable parameters: slave clock drift, threshold,

and synchronisation message rate. The first two are

straightforward to derive from the crystal tolerance and

worst-case communication latency. The synchronisation

message rate may be chosen to meet the requirements of

a given application. For example, the empirical studies in

Section 4 demonstrate a synchronisation precision of <150 us
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Figure 9. Detailed view of acoustic localisation measurements for the

speaker located at the centre of the square

for a message rate of 0.1 Hz, and 26.5 us for a message rate of

50 Hz. Low message send rates are necessary for low-power

and low-bandwidth applications. High message rates are

appropriate for applications demanding greater precision,

such as the acoustic localisation system demonstrated in

Section 5.

The experimental work in this paper focused on Wi-Fi and

Ethernet implementations. However, the proposed solution

may be implemented on any communication network that

supports OSC. Synchronisation accuracy will vary between

different communication networks and types of slave as was

shown in Section 4.2.3 for the heterogeneous network of

Ethernet and Wi-Fi slaves, which showed a fixed offset

between each homogeneous group. Many applications will

use only homogeneous slave types and so can benefit from

greater relative synchronisation accuracy as demonstrated by

the 166 us error achieved for the 17 Wi-Fi nodes in Section

4.2.3.

Future work will explore methods of compensating for

differing physical clock speeds and estimation of the fixed

offset in synchronisation error from the global clock.

Methods to address the susceptibility of the method to

synchronisation loss if the clock master node fails are also

under investigation.
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