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ABSTRACT
Deep learning architectures have emerged as powerful function approximators in a broad spectrum of complex representa-
tion learning tasks, such as, computer vision, natural language processing and collaborative filtering. These architectures
bear a high potential to learn the intrinsic structure of data and extract valuable insights. Despite the surge in the devel-
opment of state-of-the-art intelligent systems using the deep neural networks (DNNs), these systems have found to be
vulnerable to adversarial examples produced by adding a small-magnitude of perturbations. Such adversarial examples are
adept at misleading the DNN classifiers. In the past, different attack strategies have been proposed to produce adversarial
examples in the digital, physical, and transform domain, but the likelihood to generate perceptually realistic adversarial
examples require more research efforts. In this paper, we present a novel approach to produce adversarial examples by
combining the single-shot fast gradient sign method (FGSM) and spatial, as well as, transform domain image processing
techniques. The resulted perturbations neutralize the impact of low-intensity based regions, thus, instilling the noise only
in the selective high-intensity regions of the input image. While combining the customized perturbation with one-step
FGSM perturbation in an un-targeted black-box attack scenario, the proposed approach successfully fools state-of-the-art
DNN classifiers with 99% adversarial examples being misclassified on the ImageNet validation dataset.
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1. INTRODUCTION
The past decade has witnessed a widespread use of deep neural networks (DNNs) in multi-disciplinary real-life applications
ranging from medicine [1], to self-driving cars [2], and to natural language processing domain [3]. These algorithms have
found their way to influence life-critical decision making activities by empowering enterprise applications. Despite great
successes in numerous applications, recent studies have revealed that intelligent algorithms are vulnerable to mislead
predictions by slightly adjusting the input data. For instance, a carefully chosen small perturbation injected in the system’s
input can cause an unintended behaviour at the output, thus, impeding its functionality. A similar disruption can happen
in DNNs, such that, it can push the model to produce adversary-selected results. The situation can lead to the catastrophic
results while putting the human lives and the security-critical applications at risk.

In an image classification problem, Szegedy et al. [4] first generated trivial perturbations for input images and fooled
the AlexNet classifier with a high probability score. These small perturbations cause no apparent changes to the input
images and hard for misleading the human vision apparatus (i.e. eyes), yet, still fool sophisticated algorithms. The
manipulated inputs (by adding perturbations) that can mislead the computer vision algorithms are known as adversarial
examples. As undeniably exploiting the power of DNNs in various applications, these networks have also created a
window of opportunity for the attackers to generate appropriate adversarial examples. For instance, the adversary may
require a comprehensive prior knowledge of various potential adversarial techniques to generate imperceptible adversarial
examples, or, it can also craft adversarial examples using the techniques that are unknown to the classifier, such as, adaptive
noise reduction [5].
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The field of adversarial Machine Learning (ML) also focuses on enabling DNNs to safeguard against such attacks.
Several studies have been carried out in this direction ranging from detecting adversarial examples at source [6–9] to
training resilient DNN models with input data comprising of sufficient adversarial examples, or training auxiliary models
for detecting adversarial attacks [6,7] to evaluating DNNs using statistical tests on adversarial and benign inputs [8,9].

The existing research on adversarial ML largely undermines an intrinsic quality of DNNs that these models carry vary-
ing information in different parts of the network. Most adversarial example generation approaches introduce perturbation
to the entire input image regardless of the importance of individual regions to model predictions. In this paper, we aim to
address such limitations and present a hybrid adversarial attack approach to generate unique perturbations using a combi-
nation of single-shot FGSM with spatial (entropy or variance) or transform domain (DCT, DWT or FFT) image processing
techniques. Fig. 1 illustrates the over-all workflow diagram of our proposed methodology. The main underlying intuition is
that adversarial perturbations shall be confined to limited (information-rich) regions of the input image for the adversarial
change to remain indistinguishable. Therefore, the first objective is to identify high-intensity regions using classical image
processing techniques. We call such regions as ”high-profile” regions. These regions tend to carry more importance to-
ward generating adversarial perturbations. The second objective is to exploit these regions to generate highly realistic and
imperceptible adversarial examples. Lastly, to evaluate the robustness of our approach to successfully fool state-of-the-art
DNN models (i.e., Inception V3, AlexNet, ResNet, VGG16) using the generated adversarial examples. A summary of the
approach and key contributions of this paper are as follows:
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Figure 1. Forward pass of entropy-based adversarial example using fix epsilon in each channel of host image.

• By applying spatial (or transform domain) image processing techniques on the host image, mask image
entailing high-intensity region is obtained. These masks tend to induce perturbations only in the selected
(high varying) regions when combine with single-shot FGSM based perturbations.

• While incorporating the single-shot FGSM technique, the proposed approach incorporates a fixed epsilon
ε value, as well as, a different ε value for each host image channel (RGB). The mask image (e.g., entropy



mask), when combines with the variable ε based FGSM perturbation produces more imperceptible adver-
sarial examples as compared to the fixed ε based adversarial examples. At the high-category threshold of
0.7, the SSIM value (averaged) of 0.88 is obtained between the host images and the adversarial examples
generated using the FGSM perturbation with an entropy mask.

• The pre-trained classifiers are vulnerable to adversarial attacks as the proposed techniques (i.e., instill-
ing the FGSM perturbation with spatial and transform-domain perturbation masks) are adept at fooling
state-of-the-art DNN classifiers. In case of AlexNet classifier, 99% adversarial examples are misclassi-
fied, whereas, the InceptionV3 classifier successfully fools on average 70% of the generated adversarial
examples.

The rest of the paper is organized as follows. Section 2 outlines the background information in context of single-shot FGSM
and spatial and transform-domain image processing techniques. Section 3 explains the methodology for (1) generating
image masks (2) attack algorithm using fix epsilon ε, and (3) attack algorithm using variable epsilon ε. Section 4 and 5
reports the experimental setup and results, respectively. Finally, Section 6 concludes the paper with a discussion.

2. BACKGROUND
While machine learning systems are working at par, adversarial ML [10] has jeopardized the security and privacy of smart
intelligent systems. These systems have become vulnerable to the latest adversarial attack methodologies, such as training
data-unaware imperceptible security attacks [11] and decision-based attacks [12,13] that extract tangible information to
weaken the security of these systems. For instance, the attacker can target a machine learning system during the learning
phase to temper with the training data, or it can manipulate the data on which the model is making predictions during the
inference time. In such a scenario, understanding the behaviour of systems and the learning algorithms is an important
line of work. Among the perturbations generated for inference attacks, a class of adversarial inputs, known as adversarial
examples was introduced by [4]. The indistinguishable perturbations when injected in state-of-the-art DNN architectures
have revealed their serious limitations which led the ML research to quest for a series of follow-up work. The research
shows that the perturbations could be produced with minimal knowledge [14], and it can also be engineered using methods
from the digital domain, physical domain [15,16] and most recently the transform-domain [17].

While the first demonstration of adversarial examples [18] has led to slanted attack methodologies, this section ex-
plains the technical details on generating adversarial examples using the first-order FGSM approach and few basic image
processing techniques that are implemented using spatial and transform domain methodologies.

2.1 Overview of Fast Gradient Sign Method (FGSM) for Adversarial Attacks
2.1.1 Notations:

Let us say we have an input sample pair (x, y) which belongs to a set of training samples X (i.e., x ∈ X). Let F (·) denotes
a DNN based classification model (pre-trained) which takes the vector representation of an input image x (host image) and
outputs the probability distribution Z(·) (i.e., logits) over all possible classification labels. Assuming, a softmax activation
function is applied on the logits, the predicted label of the host image x is the one with the highest estimated probability.
Formally, it can be expressed as:

C(x) = argmax
i

(F (x)i), (1)

where F (x) = softmax(Z(x)).

2.1.2 Attack Algorithm:

In the past, various first-order algorithms have been proposed to generate adversarial examples, such as, single-step Finite
Gradient Sign Method (FGSM) [18], the Randomized Fast Gradient Sign Method (RAND+FGSM) [19], the iterative
version of FGSM, i.e., Projected Gradient Descent (PGD) [15]. For a host image x, these methods add perturbation in the
direction of gradient of loss function to generate independent adversarial examples.

Given an input image x, the goal is to generate adversarial example x̃, which should be perceptually indistinguishable
from the input x. Theoretically, this is obtained by adding an adversarial perturbation θ to the original input x. As a result
of such perturbations, the true class label of the host image x is changed to a different class label, i.e., C(xi) = C(xj),



where i 6= j. Note that, we want the adversarial example to be indistinguishable from the original one. Thus, adversarial
examples should be constrained by the magnitude of adversarial perturbation as ‖xi− x̃i‖∞ ≤ ε, i.e., the L∞ norm should
be less than the epsilon ε value. Here, L∞ denotes the maximum change for all pixels of an adversarial example.

FGSM is a fast and computationally efficient method to generate adversarial examples. It performs single step gradient
update on the original samples along the direction of the gradient of the loss function L(x, y; θ). The loss function is
usually defined as the cross-entropy between the output of a classifier and the true label yi. Formally, the adversarial
examples using FGSM approach are expressed as:

x̃i = clip[0,1]{xi + ε · sign∇xL(xi, yi; θ)}, (2)

where ε controls the maximum L∞ perturbation of the adversarial examples (i.e., magnitude), and the clip[a,b](x) forces
the sample xi to reside in the range of [a, b].

2.2 Spatial-Domain Image Processing Techniques
Variance: The first image statistic that we used to evaluate the image characteristics is the local variance of image intensity
(i.e., the second central moment of the pixel intensities within a local neighborhood, thus, the ”local variance” hereinafter).
Computing the local variance helps in measuring the visual saliency and smoothness in an image. Local variance has been
applied to many areas of image processing and analysis. For instance, in the domain of image quality assessment, Lai-Man
Po [20] shows that image patches with complex structures have much higher changes of achieving better image quality
score. Similarly, in image filtering, local variance has been applied as a measure to control the degree of filtering on local
regions. Formally, let I denote an M×N block of a grayscale image. The local variance, i.e., the second central moment of
pixel intensities, is defined as:

var(x) =
1

MN

M−1∑
m=0

N−1∑
n=0

(Im,n − u)2, (3)

where µ denotes the mean pixel intensity at the Ith block.
Entropy: Entropy is a measure of image information content which is interpreted as the average uncertainty of information
source. In an image, discrete entropy is defined as corresponding states of intensity level that individual pixels can adapt.
It is a powerful metric and has widely been used in many image processing tasks. Without loss of generality, for an M×N
grayscale image with 256 pixel values (0∼255), the function entropy takes a 1-dimensional array and calculates the entropy
of the pixels in that array, expressed as under:

H(x) = −
255∑
i=0

pilog2(pi), (4)

where pi = fi/M ×N is the frequency of ith pixel level.

2.3 Transform-Domain Image Processing Techniques
Discrete Cosine Transform (DCT) Given that, the recent work has examined adversarial examples in the digital [21], as
well as, in the physical domain [22], adversarial perturbations in transform domain can also exploit the vulnerability of
DNNs [17]. Thus, carrying the similar notion, transform domain techniques are of significant importance in understanding
the image characteristics. Given I as an M×N block of a grayscale image matrix, the two-dimensional DCT is defined as:

F (u, v) = αpαq

M−1∑
m=0

N−1∑
n=0

Im,n

cos(
π(2m+ 1)p

2M
) cos(

π(2n+ 1)q

2N
),

(5)

where the values F (u, v) are called the DCT coefficients of image pixels at the coordinate (m,n), and αp, αq are the basis
functions.
Discrete Wavelet Transform (DWT) In a digital image, edges contain the most important high-frequency information.
To extract such information, discrete wavelet transform (DWT) is generally considered that split the input image into



four non-overlapping sub-bands of frequency, i.e., LL (low-low), LH (low-high),HL (high-low), and HH (high-high).
The LL (approximation-component) sub-band represents the coarse-scale DWT coefficients, whereas, the sub-bands LH
(horizontal component), HL (vertical component) and HH (diagonal component) reflect the fine-scale of DWT coefficients.
In literature, researchers have used DWTs for performing steganography, as well as, to generate adversarial examples using
the approximate and fine-scale DWT components [17,23]. Without loss of generality, let I denote the M×N block of a
grayscale image. The two-dimensional DWT of the Ith block is defined as:

W i
ψ(j, u, v) =

1√
MN

M−1∑
m=0

N−1∑
n=0

Im,nφj0,u,v(m,n),

(6)

where i = {H,V,D}. Wψ(j, u, v) coefficients represent horizontal, vertical, and diagonal components of the block Im,n.
Fast Fourier Transform (FFT) The use of fourier analysis is beneficial for variety of image processing techniques,
such as, image manipulation, filtering, correction and compression. The technique has been adopted to perform image
steganography [24] and generating adversarial examples [25]. For an M×N block of a digital image, the two-dimensional
FFT is defined as follows:

F (u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

Im,ne
−j2π(

mu

M
+
nu

N
), (7)

where Im,n is the corresponding image pixel value of block size M×N.

3. METHODOLOGY
3.1 Overview
The proposed approach aims to generate a perturbation by employing spatial and transform domain image processing
techniques, and embed it with a single shot FGSM perturbation to generate the adversarial examples. The idea behind it
is to modify the traditional FGSM based perturbation technique and incorporate the perturbations of only high intensity
or sharp transition based regions of a host image. This can be accomplished using the techniques of image processing,
such as, variance, entropy as well as, the transform domain methods, i.e., DWT, DCT, and FFT. For example, computing
variance in a selective block (e.g., block size of 5×5) of a host image shall separate out the high and low intensity regions.
In our work, we leverage such intensity variations and introduce a threshold constraint that clips out the image pixel
values that fall below the threshold constraint. Hence, for a host image, image processing techniques tend to reduce the
overall adversarial effect by superimposing only the high varying pixel values to the traditional FGSM based perturbation
technique.

3.2 Threat Model
In this paper, we propose to incorporate a common threat scenario where the adversaries can attack the victim model only
at the testing or the deployment stage. After the victim model has been trained, the attacker can tamper the input data to
generate the adversarial samples and estimate the strength of the model against the embedded perturbation. Furthermore,
the proposed scenario also assumes that the adversaries may have the prior knowledge of the trained models (i.e., the
architectures and parameters) but are not allowed to modify them. Later on, against these adversarial examples, the model’s
integrity (i.e., the adversarial goal) is calculated by employing the performance metrics, such as, the fooling rate value,
posterior raise count, mean square error (MSE), and structural similarity index measure (SSIM).

3.3 Generating Image Masks
In an image dataset, the components of high intensity region play an important role in generating adversarial perturbations.
In this sub-section, we formulate a methodology to generate the mask image x′i of a clean host image xi using the proposed
image processing techniques. The idea is to decompose a host image xi of dimensions 229×229 ×3 into non-overlapping
patches of size 5×5. For each patch, we compute variance (or entropy, DCT, DWT and FFT). Later on, these patches are
sequentially recombined to obtain an intermediate image of dimensions 229×229×3. The intermediate image is linearly
normalized between the range of 0 to 255, and passes through the threshold block T to obtain the final mask image x′i of
the host image xi (dimensions 229×229×3). For each technique, we set three different threshold values, categorized as,



Table 1. Selected thresholds in each category of spatial and transform-domain image processing technique.

Methods Category
Low Medium High

Spatial Domain Variance 0.1 0.15 0.2
Entropy 0.2 0.5 0.7

Transform Domain
DCT 0.3 0.5 0.7
DWT 0.3 0.5 0.7
FFT 0.1 0.2 0.3

low, medium and high. Table 1 shows the selected threshold values. Furthermore, the steps to obtain the mask image x′i in
each technique are enlisted below:

• Variance: For each (RGB) channel of host image xi, compute the variance (Eq. 3) value var(xi) of every 5×5 non
over-lapping patch. The response from each channel is combined together to obtain the mask image xvar.

• Entropy: For each (RGB) channel of host image xi, compute the discrete entropy score (Eq. 4) H(xi) of non-
overlapping 5×5 patch. The score of each channel is combined together to obtain the final mask image xent.

• DCT: For each (RGB) channel of host image xi, apply the two-dimensional discrete cosine transform (DCT) (Eq. 5)
on non over-lapping 5×5 blocks (patches). The blocks are combined together from each channel to obtain the mask
image xDCT .

• DWT: For each (RGB) channel of host image xi, apply the level-1 two-dimensional discrete wavelet transform
(DWT) (Eq. 6) on non over-lapping 5×5 blocks (patches). For each patch, extract only the diagonal information
(HH) sub-band and recombine the patches from each channel to obtain the respective mask image xDWT .

• FFT: For each (RGB) channel of host image xi, compute the fast fourier transform (FFT) (Eq. 7) on non over-
lapping 5×5 patches. For each patch, extract only the phase component, and recombine the patches from each
channel to obtain the corresponding mask image xFFT .

3.4 Attack Algorithm using FGSM (Fix ε)
For exploratory purposes, we select FGSM to construct adversarial examples, as the method is computationally cheap and
linearly approximates the DNN classifiers. The ability to solve the maximization problem in a closed form still makes it
a reliable technique to fool pre-trained networks in the context of computer vision classification [26]. In this sub-section,
we highlight the significance of the proposed mask images by devising the methodology to generate perceptually better
adversarial examples. The presented approach generates FGSM perturbation in a one-shot attack manner. Using chain rule,
each pixel of a host image x contributes to the loss value L(x, y; θ), and hence, the method finds the required gradients with
respect to the host image. Once the gradients are acquired from FGSM, we generate the newly adversarial perturbation
by multiplying the mask image x′ with the FGSM based perturbation (gradients). The generated adversarial perturbation
δ, when combines with the original image x tend to produce perceptually realistic adversarial examples. Using Eq. 2, the
adversarial example x̃ can be expressed as:

x̃ = clip[0,1]{x+ ε · δ}, (8)

where δ = (sign∇xL(x, y; θ)) · x′ denotes the customized perturbation achieved by superimposing the mask image x′ on
the FGSM based perturbation θ, and ε is the fixed epsilon value controlling the perturbation’s amplitude.

3.5 Attack Algorithm using FGSM (Variable ε)
The advantage of instilling perturbations in high intensity regions encourage the DNN classifiers to perform misclassi-
fication with a high attack success rate. However, this can be explored further while varying the epsilon value for each
individual channel of the host image x. Like the previous presented approach with a fixed ε value, the proposed approach
follows the similar methodology and generates perturbations by addressing the high intensity regions of FGSM induced
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Figure 2. Generated adversarial examples(high-category threshold T ) by combining FGSM with the proposed spatial and transform-
domain image processing techniques. The adversarial examples are generated using the single-step FGSM, FGSM with ε fixed value
and FGSM with different ε value in each host image channel.

perturbations. Later on, it assigns a different ε value for each RGB host image channel which signifies the change in the
pixel value of the individual channel (e.g. Red, Green, or Blue). Using Eq. 2, the generated adversarial examples x̃ can be
expressed as:

x̃ = clip[0,1]{x+ ((εR · δR) + (εG · δG) + (εB · δB))}, (9)

where δ = (sign∇xL(x, y; θ)) · x′ is the customized perturbation achieved by superimposing the mask image x′ on the
FGSM based perturbation θ. The epsilon value ε controls the amplitude of an individual perturbation channel (red, green,
and blue) by assigning a different weight value to the three channels. Fig. 2 shows the adversarial examples that are
generated using the proposed methodology.

4. EXPERIMENTAL SETUP
To demonstrate the effectiveness of our proposed methodology, we evaluate the adversarial examples in a black-box attack
manner, and demonstrate that adversarial examples generated using fixed and variable epsilon case achieves a near equiv-
alent fooling rate value of the classical FGSM technique. We used PyTorch library to implement our methodology. The
experiments have been conducted on AMD Ryzen 2700X with a GeForce GTX 1060 compatible GPU.

4.1 Dataset
In our experiments, we use ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 validation dataset [27]
that has widely been used in the research of object classification and localization algorithms. The dataset comprises of
50,000 colored images that are evenly split (50 objects per category) among 1000 different object categories from different
animal species, house-hold objects, vehicle types, and much more.



Table 2. Summary of fooling rate of adversarial examples generated by masking the spatial domain techniques on FGSM perturbation
(fixed epsilon ε).

Models

Fooling Rate
Variance Entropy

Classical FGSM FGSM FGSM FGSM FGSM
Fixed ε Variable ε Fixed ε Variable ε

InceptionV3 78.12 74.84 72.51 72.78 70.61
AlexNet 99.74 99.64 99.47 99.46 99.24

ResNet18 98.74 98.12 97.63 97.20 96.51
VGG16 97.13 96.09 94.65 94.72 93.11

4.2 Models
To perform un-targeted black-box attacks on the three proposed methodologies, we incorporate four famous pretrained
models, i.e. InceptionV3 [28], AlexNet [29], ResNet18 [30], and VGG-16 [31]. All these models have achieved classifi-
cation accuracy while competing the ILSVRC challenge.

4.3 Adversarial Goal
The object of the adversary is inferred from the incorrectness of the model. Based on the impact on the classifier output
integrity, Using our proposed methodology, the adversarial goals are defined as under:
Un-targeted Misclassification: For a particular DNN classifier F (e.g., InceptionV3), our first adversarial goal is to change
the classification output of a host image x to any class different from the original class. To evaluate the effectiveness of
the proposed goal on the pre-trained classifiers, we compute and compare the class labels of host images xcl (validation
samples) with the class labels of adversarial examples x̃cl. After that, fooling rate FR is computed by counting the number
of adversarial images whose class labels do not match with the class labels of host images.
Confidence Reduction Assuming, the pre-trained classifier correctly classifies the class label of a host image x and ad-
versarial image x̃ (i.e., class labels do not change), our second adversarial goal is to evaluate whether the DNN classifier
classifies the adversarial image x̃ to the same class as of host image x, but with a lower posterior probability score (con-
fidence). In this way, we count those number of adversarial images which result in lower confidence score. This helps in
evaluating the robustness of our proposed methodologies against the classical FGSM based perturbation technique.

5. EVALUATION RESULTS
For each image in the ImageNet validation dataset, we compute three adversarial images using the classical FGSM method,
the proposed FGSM with fixed ε, and FGSM with variable ε methods respectively. These adversarial images are passed
through the pre-trained DNN classifiers, and further evaluated according to the defined adversarial goals.

5.1 Evaluating Adversarial Examples using Spatial-Domain Image Processing Technique
Table 2 shows the successful fooling of adversarial examples that are misclassified using the variance and entropy based
FGSM perturbation technique. The threshold value for variance mask, as well as, the entropy mask is kept at 0.1 and 0.2 re-
spectively. The fooling rate values are compared with the classical FGSM technique. While the other pre-trained classifiers
(i.e., AlexNet, ResNet18, VGG16) are vulnerable to adversarial attacks, it can be observed that, the InceptionV3 model
is slightly robust, as 78% adversarial examples are classified into other classes. This is due to the deep 48 convolutional
layer architecture of InceptionV3 model which makes it better in differentiating the real host image and its adversarial
counterpart. Contrarily, the other pre-trained models have less than the half the number of convolutional layers which
make them vulnerable to a slight adversarial perturbation induced in the host image. From table 2, it can be seen that, for
every perturbation case, more than 90% of the generated adversarial examples are misclassified when the classical FGSM
perturbation technique is combined with variance and entropy mask.

Using the InceptionV3 classifier, while employing the FGSM based perturbation technique, 21.88% adversarial exam-
ples attain the similar class labels as of the original host images, but, 20.08% of these examples achieve a lower confidence



Table 3. Summary of fooling rate of adversarial examples generated by masking the the transform domain methods on FGSM perturba-
tion (fixed epsilon ε).

Models
Fooling Rate

DCT DWT FFT
Classical FGSM FGSM Fixed ε

InceptionV3 78.12 70.44 76.12 74.84
AlexNet 99.74 99.16 99.52 99.64

ResNet18 98.74 95.59 98.76 98.12
VGG16 97.13 92.74 97.83 96.09

score (i.e., posterior probability score) in predicting the same class. In case of generating the FGSM perturbation with
a variance mask, the model achieves a confidence score of 15.56% for FGSM with a fixed epsilon value, and 14.28%
for FGSM with a variable epsilon value in the host image channels. Whereas, using an entropy mask, the InceptionV3
classifier attains a confidence score of 17.16% and 16.77% for FGSM with fixed and variable epsilon value, respectively.
The confidence score depicts that, even though, the classifier has classified the host and the adversarial image to the same
class, yet, it predicts the adversarial example’s posterior probability with a lesser confidence as compared to the host image.
Contrarily, the other three pre-trained models (i.e., AlexNet, ResNet18, VGG16) successfully misclassify the adversarial
examples, therefore, the confidence reduction scores of these classifiers are not incorporated.

Further on, we also evaluate the MSE and SSIM metric between each host image and its adversarial example generated
using the FGSM technique, as well as, the example obtained while applying the variance and entropy mask on FGSM
perturbation. For the variance case, it is observed that, at all thresholds (i.e., low 0.1 , medium 0.15, and high 0.2), MSE
values do not incur a major change. Using the fixed ε value, the average MSE value between the host images and adversarial
examples is 0.018, where as, it is 0.013 in case of assigning a different ε value to the host image channels. While using the
entropy mask in FGSM perturbation, the average MSE value at the high category threshold (i.e., 0.7) is 0.006, where as, at
the low threshold (i.e., 0.2), the average MSE value is similar to the simple FGSM perturbation value, i.e, 0.018.

Similarly, at all thresholds (i.e., low 0.1, medium 0.15, and high 0.2), the average SSIM value for the variance-induced
fix ε case is similar to the average SSIM value of FGSM technique, i.e., 0.62. On the other hand, at threshold 0.2, and
fixing a different ε value to each host image channel, the generated adversarial examples look perceptually more realistic
to the host images, as average SSIM value turns out to be 0.71. Moving further to the entropy case, at low threshold value
(i.e., 0.2), the average SSIM difference between the adversarial examples generated using classical FGSM technique and
variable epsilon case is only 9%. The attained values are 0.62 and 0.71, respectively. At the high-category threshold (i.e.,
0.7), the adversarial examples generated using a varied ε signify the perceptual similarity with its host image counterpart,
as the average SSIM value is 0.88.

5.2 Evaluating Adversarial Examples using Transform-Domain Image Processing Techniques
The integrity of the pre-trained classifiers is further evaluated using transform-domain perturbation techniques. Follow-
ing the transform-domain perturbation masking procedure present in section 3.3, the adversarial examples are initially
generated by keeping the ε value fixed and later on, it is varied in each host image channel. Table 3 and Table 4 shows
the fooling rate of adversarial examples that are misclassified by imposing the DCT, DWT, and FFT based masks over
FGSM induced perturbations. The fooling rates are compared to the single-shot FGSM technique. Likewise earlier, the
inceptionV3 model is resilient towards the generated adversarial attacks, as 78.12% adversarial examples are classified into
other classes, whereas, by employing the DWT based masking technique, 76.12% of the samples reside in other classes.

The similar results are obtained in Table 4, where the ε value is varied in each channel of the host image. For Incep-
tionV3 model, the adversarial examples generated through the DWT based masking procedure achieves the fooling rate
value of 74.70%, whereas, the other DNN classifiers (i.e., AlexNet, ResNet18, VGG16) still remain vulnerable towards the
proposed adversarial attacks. These classifiers successfully fool more than 90% of the adversarial examples.

While comparing the perceptibility (i.e., SSIM) of the host images and the adversarial examples generated using the
FGSM and other two proposed techniques, the DCT masked FGSM perturbation attains the highest SSIM (average) value,
i.e., 0.88 at threshold 0.7 with a variable ε in each host image channel. Whereas, the adversarial examples obtained from
the other DCT scenarios, as well as, the perturbation techniques (i.e., FFT and DWT) attain almost a similar SSIM pattern.



Table 4. Summary of fooling rate of adversarial examples generated by masking the transform domain methods on FGSM perturbation
(variable epsilon ε).

Models
Fooling Rate

DCT DWT FFT
Classical FGSM FGSM Variable ε

InceptionV3 78.12 68.33 74.70 72.51
AlexNet 99.74 98.84 99.64 99.47

ResNet18 98.74 94.78 98.21 97.63
VGG16 97.13 90.64 95.65 94.65

An average SSIM of 0.62 is obtained for the low-category thresholds and a value of 0.71 is achieved for the high-category
thresholds. In case of applying the DCT mask on FGSM perturbation, the best MSE value (averaged) of 0.006 is obtained
when we set different ε value to each host image channel.

6. CONCLUSION
Generating perceptually realistic adversarial examples can guise the true nature of actual images. Thus, the concealed
information can help the attackers to misguide the DNNs, especially in the decision-making process. In this paper, we
present a novel approach to produce perceptually realistic adversarial examples. Our insight is that high-intensity regions
or edges of an image can be identified using the spatial (variance, entropy) and transform-domain (DCT, FFT, DWT) image
processing techniques. These regions tend to produce a mask image x′ which can be combined with the single-shot FGSM
perturbation to produce a customized perturbation δ. The epsilon ε value (i.e., perturbation’s amplitude) played a key role
in producing imperceptible adversarial examples. It is observed that, the red channel of the generated perturbation δ carries
more significance towards producing a clean adversarial image, as we assign different epsilon weights to the adversarial
perturbation (i.e., εR = 0.6, εG = 0.2, εB = 0.4). As a result, the perturbation only appears in the selective high-varying
regions or at the edges of the adversarial example x̃. Thus, it helps in maintaining the visual quality of the adversarial
images. Experimental results show that our imperceptible attack methodology is effective against un-targeted black-box
attacks. Compared to the 78.12% misclassification achieved using the FGSM, the proposed methodology achieves almost
a near equivalent fooling rate value, i.e., 74.84% (ε fixed), and 72.51 in (ε varied) on InceptionV3 classifier. In our future
work, we intend to develop approaches for DNNs to quickly identify and cope with such input images while maintaining
the overall accuracy. This will lead towards more resilient and robust machine learning.
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