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This paper presents a series of experiments in collective social robotics,
spanning more than 10 years, with the long-term aim of building embodied
models of (aspects of) cultural evolution. Initial experiments demonstrated
the emergence of behavioural traditions in a group of social robots pro-
grammed to imitate each other’s behaviours (we call these Copybots).
These experiments show that the noisy (i.e. less than perfect fidelity) imita-
tion that comes for free with real physical robots gives rise naturally to
variation in social learning. More recent experimental work extends the
robots’ cognitive capabilities with simulation-based internal models,
equipping them with a simple artificial theory of mind. With this extended
capability we explore, in our current work, social learning not via imitation
but robot–robot storytelling, in an effort to model this very human mode of
cultural transmission. In this paper, we give an account of the methods and
inspiration for these experiments, the experiments and their results, and an
outline of possible directions for this programme of research. It is our hope
that this paper stimulates not only discussion but suggestions for hypotheses
to test with the Storybots.

This article is part of a discussion meeting issue ‘The emergence
of collective knowledge and cumulative culture in animals, humans and
machines’.
1. Introduction
In this paper, we describe two sets of experiments with small groups of real
robots, conducted over the course of more than 10 years, in the Bristol Robotics
Lab. The long-term aim of these ongoing experiments is to explore aspects of
the question ‘how do we have culture?’ in a new way, by modelling the low-
level processes and mechanisms of cultural evolution with robots. In this
paper we adopt Mesoudi’s definition of culture: ‘information that is acquired
from other individuals via social transmission mechanisms such as imitation,
teaching or language’ [1]. We outline two sets of experiments—the first already
completed and the second in preparation—with a focus on two of these
transmission mechanisms: imitation and language.

The first set of experiments we describe were directly inspired by the
thought experiment in [2, p. 106], which imagines a group of robots capable
of imitating each other. Referred to as Copybots, their ability to imitate actions
with variation makes them very simple meme machines. Another source of
inspiration was Gabriel Tarde who proposed ‘a remarkable sociological
research project’ [3] when he wrote
If we wish to make sociology a truly experimental science and stamp it with the seal
of exactness, we must, I believe…write out with the greatest care and in the greatest
possible detail the succession of minute transformations in the political or industrial
world, or some other sphere of life,… in (our) native town or village, beginning in
(our) own immediate surroundings (quoted in [3, p. 511]).
Barry & Thrift [3] write that ‘Tarde’s project was not, as far as we are aware,
ever carried out’. When we started to work on what became known as the

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0323&domain=pdf&date_stamp=2021-12-13
http://dx.doi.org/10.1098/rstb/377/1843
http://dx.doi.org/10.1098/rstb/377/1843
http://dx.doi.org/10.1098/rstb/377/1843
mailto:alan.winfield@brl.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-1476-3127
http://orcid.org/0000-0003-0845-2223
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200323

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 D

ec
em

be
r 

20
21

 

Artificial Culture project, we realized that we could set up a
free-running group of robots (an artificial society) and lit-
erally observe, record and analyse every minute detail of
the robots’ interactions with each other.

A second and more recent set of experiments extends our
robots’ cognitive capabilities with simulation-based internal
models. A simulation-based internal model (literally a robot
with a simulation of itself, inside itself ), allows a robot to
be able to ask itself ‘what if’ questions. This capability has
been described as a functional imagination [4], as it enables
a robot to ‘imagine’ the consequences of its actions (and—
in our implementation—the reaction of others to those
actions). Our experimental implementation of a simulation-
based internal model, which we refer to as a consequence
engine (CE), has proven to be remarkably powerful. Our
experiments with the CE were inspired by both the simu-
lation theory of cognition [5,6] and Dennett’s ‘Tower of
Generate-and-Test’ [7]. Both simulation and the loop of
generate-and-test are present in the architecture of the CE.

In our current work, also using the CE, we aim to explore
social learning not via imitation but robot–robot storytelling
in an effort to model this very human mode of cultural trans-
mission. Although we are not aiming at evolving language,
we have nevertheless been influenced by both the seminal
Talking Heads experiments of Steels [8] and work to evolve
mechanisms of communication in a swarm of robots [9].
Instead, and in addition to the CE, our ‘Storybots’ are being
equipped with the means to communicate via speech, and
what Penn et al. [10] call the ‘spectacular scaffolding provided
by language’.

Ourmethod for both sets of experiments is to build awork-
ing model or, as we prefer to describe it, an embodied simulation
consisting of a group of autonomous robots, in which the
robots are programmed with simple behaviours and interact
with each other in an artificial arena. The arena is equipped
with a system that allows each robot’s movements to be
tracked and recorded, alongside a time-stamped record of
each robot’s internal decisions sent to the logging system via
a local WiFi network. In this way, we are able to capture
Tarde’s ‘minute transformations’ for analysis.

Physical embodiment is important to us for several
reasons: first, because experiments with real robots are noisy
and unpredictable. Even though our robots are seemingly
identical, small differences between the motors and sensors
mean that each robot will move and sense in slightly different
ways. These unintended heterogeneities serve to model differ-
ences between conspecific animals and humans. And the noise
will prove to be of critical importance. Unlike computer simu-
lations, the noise, stochasticity and physics come for free, just
as they do for animals and us. Second, and perhaps most
importantly, robots—like animals—have physical bodies that
constrain how they behave and ‘think’ [11]. Robots also see
each other only from their own first-person perspectives.
Yes, our robots have distinctly non-human minds [10]—
albeit of a kind so simple that the term ‘mind’ is hardly
appropriate—but, we contend, they have enough in common
with animals and humans to allow us to plausibly model inter-
esting aspects of social learning and behavioural evolution.
The work of this paper fits, we believe, within the microevolu-
tion strand of the science of cultural evolution [12], and
although simulation models of cultural evolution are not
new [13], we believe that our approach using robots in an
embodied individual-based simulation is novel. Physical
embodiment and noise together provide the ‘natural phenom-
ena’ [14] that can be exploited in cumulative cultural evolution.

This paper proceeds as follow. In §2, we outline the Copy-
bots and the key findings from the first set of experiments.
Then, in §3 we describe the consequence engine—the key
innovation of our second generation of experimental work.
We illustrate the CE and the kind of emergent behaviour
that is typical of real-robot embodied simulations with the
pedestrian experiment, before then introducing the Storybots.
We conclude the paper in two parts: in §4a we outline Den-
nett’s tower of generate-and-test before then showing how
it provides a unifying framework in which we can classify
all of the robots of this paper. Finally in §4b, we discuss
experimental possibilities for the Storybots hoping this will
stimulate research questions in cultural microevolution that
might feasibly be explored.
2. Copybots
In a series of experiments, we implemented social learning in
a group of robots [15]. Simple wheeled robots (figure 1) were
programmed to learn socially, from each other, by imitation.
These miniature robots—called e-pucks—are extremely
simple compared with animals; they have just two wheels
and so cannot interact with objects in their environment
except by colliding with them. Their sensorium is equally
limited—they ‘see’ only with a single 640 × 480 resolution
camera, and something approaching a sense of touch is pro-
vided by eight short-range infrared proximity sensors
mounted around their body radius [16]. From a behavioural
perspective the robots are a blank canvas. They have no
built-in or innate behaviours, all must be programmed [17].

In these experiments, imitation was strictly embodied.
Robots have no access to each other’s internal states, instead
robots observed each other using their onboard sensors and,
on the basis of only visual sense data from a robot’s own
camera and perspective, the learner robot inferred another
robot’s pattern of movements. (This contrasts with the social
learning in Bredeche & Fontbonne [18], in which robots
learn by sharing internal parameters when they encounter
each other.) We ‘seed’ each Copybot with initial behaviours,
which are self-contained movement sequences (or ‘dances’)
which we refer to as memes (Dawkins [19] defines a meme
as ‘that which is imitated’). We then free run the Copybots
with each robot alternating between enacting memes and
watching (and learning) those memes.

Not surprisingly embodied robot–robot imitation is
imperfect. A combination of factors including the e-puck
robots’ low-resolution camera, variations in ambient lighting,
heterogeneities among the robots, multiple robots sometimes
appearing within a learner robot’s field of view, and of course
having to infer another robot’s movements by tracking the
relative size and position of that robot in the learner’s field
of view, lead to imitation errors. Furthermore, some memes
are easier to learn by imitation than others (think of how
much easier it is to learn the steps of a slow waltz than the
tango by watching your dance teacher). The fidelity of embo-
died imitation for robots, just as for animals, is a complex
function of four factors: (i) the behaviours being imitated,
(ii) the robots’ sensorium and morphology, (iii) environ-
mental noise and (iv) the inferential learning algorithm (for
a brief outline of how the algorithm works see appendix A).
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(a) (b)

Figure 1. (a) Artificial culture laboratory showing six robots in the arena. (b) An e-puck robot, fitted with a red skirt which makes it easier for robots to see each
other, and a yellow hat which provides a matrix of pins for the reflective spheres that allow the tracking system to identify and follow each robot.
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But rather than being a problem, noisy imitation was our
aim. We are interested in the dynamics of social learning, and
in particular the way that memes evolve as they propagate
across the collective, by social learning. Noisy social learning
means that behaviours are subject to variation as they are
copied from one robot to another. Multiple cycles of imitation
(robot B socially learns behaviour m from A, then robot C
learns the same behaviour m0 (m mutated), from robot B,
and so on), gives rise to behavioural heredity. And if robots
are able to select which learned behaviours to enact we
have the three Darwinian operators for evolution, except
that this is behavioural, or memetic, evolution.

Our experiments demonstrate that embodied behavioural
evolution does indeed take place. If selection is random, that
is robots select which behaviour to enact from those already
learned—with equal probability—then we see several inter-
esting findings. First, if by chance one or more high fidelity
copies follow a poor fidelity imitation, the large variation in
the initial noisy learning can lead to a new behavioural
species, as shown here in figure 2, thus demonstrating that
noisy social learning can play a role in the emergence of
new—and potentially useful—behaviours in behavioural
(i.e. cultural) evolution [20]. Second, we observe that beha-
viours adapt to be easier to learn, i.e. better ‘fitted’ to the
sensorium and morphology of the robots [21], a result
which appears to mirror the findings of Kirby et al. [22],
that artifically evolved languages evolve to be easier to learn.

A third finding from this series of experiments is perhaps
the most unexpected. When we ran the same embodied
behavioural evolution with three memory sizes—no
memory, limited memory and unlimited memory—the lim-
ited memory case led to the most ‘stable’ population of
behaviours across the robot collective, i.e. a smaller number
of larger clusters of related memes; in other words, a small
number of relatively persistent behavioural types. In
figure 3, we see one cluster of 12 closely related memes.
This result suggests the intriguing conclusion that forgetting
may be a significant collective trait in behavioural evolution
[21], and might also be related to what is referred to as con-
formist social learning, in which learners are more prone to
act as others do [23].

A related series of experiments combine social and indi-
vidual learning. We extended reinforcement learning with
imitation, so that robots could observe and learn, by imita-
tion, from more ‘experienced’ individual learners (for an
outline description see appendix B). Reinforcement learning
is a well-known approach to machine learning based on
trial-and-error interactions between an agent and its environ-
ment [24]. As above, the imitation is strictly embodied, and
an imitating robot has no access to the internal state of an
observed robot. In a series of experiments, we saw that
robots with imitation-enhanced reinforcement learning
learned faster than those with reinforcement learning alone.
Not a surprising result; social learning is very much faster
than individual learning, and robots, just like animals, can
benefit from learning socially from more experienced others
[25]. Such social learning in animals, for instance when juven-
iles typically prefer to copy older individuals who are more
experienced, is one of the social learning strategies reviewed
in Kendal et al. [26]. However, we were surprised to observe
that errors in the imitation phase sometimes led to robots
learning even faster. It appears that imitation errors that
arise while copying another robot can lead to faster learning.

This work has, perhaps for the first time, studied embo-
died social learning, by imitation, in real-robot collectives.
The work has value in extending techniques for robot–robot
learning. But its primary purpose is to model and illuminate
low-level processes and mechanisms of behavioural evolution.
Embodied social learning provides minimal but sufficient bio-
logical plausibility and as outlined here, embodiment leads
naturally to imperfect imitation, which appears to play an
important role in the dynamics of behavioural evolution.
3. Storybots
In more recent work, we have extended the robots’ cognition
with a simulation-based internal model. Robots equipped
with a simulation-based internal model have the ability to
simulate (or ‘imagine’) the future actions of both themselves
and others, and the consequences of those actions.

Figure 4 shows a block diagram of a robot equippedwith a
consequence engine (CE), which consists of the blue boxes and
dataflows on the left. The simulator at the heart of the CE con-
tains three components: a model of the world, which must be
initialized to mirror the robot’s immediate environment
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including the objects and actors in it, as it is now, via the ‘object
tracker-localizer’; a model of the robot itself; and an exact copy
of the robot’s controller. The loop of generate-and-test shown
on the left, generates each of the robot’s next possible actions,
then ‘runs’ the simulator for each of those actions in turn. The
consequence evaluator determines the anticipated outcome
for each of those actions, so that the robot’s action selection
can be appropriately moderated (what counts as appropriate
depends on whether the CE’s primary purpose is keeping
the robot safe, or behaving ethically, etc.). In our experiments,
the CE will typically generate and test 30 next possible actions
and, for each action, simulate 10 s into the future. The complete
generate-and-test cycle will be repeated every 0.5 s.

The CE has proven to be a remarkably powerful piece of
cognitive machinery. With it we have experimentally demon-
strated (i) robots that can make simple ethical decisions in
order to pro-actively prevent another robot (acting as a
proxy human) from coming to harm [28,29]; (ii) robots with
enhanced safety [30]; and (iii) robots capable of the imitation
of goals [31]. We have also argued that the CE provides a
robot with a simple artificial theory-of-mind [32]. These
experiments were conducted with real physical e-puck
(figure 1) and NAO robots (figure 6).

The pedestrian experiment provides an elegant example
of emergent behaviour in two robots, each equipped with a
CE, and programmed with the goal of approaching and
then passing each other safely. Figure 5 shows the trajectories
of the two robots: blue, starting from the left, and green, start-
ing from the right. In real-robot experiments, four times out
of five blue and green pass each other as two pedestrians
would, each stepping to her left (or right) (see figure 5a).
But one time in five, both blue and green step toward each
other, and—just like humans—engage in a short dance
before resolving and proceeding on their way (figure 5b).

More recently we have theorized that the CE may also be
co-opted as a mechanism for robot–robot storytelling [27].
The CE provides a robot with the cognitive machinery to
be able to ask ‘what if?’ questions. These could be very
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Figure 4. Block diagram of a robot equipped with a consequence engine. The robot control dataflows are shown in red (right); the consequence engine and its
dataflows in blue (left). Adapted from Winfield [27].
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Figure 5. The pedestrian experiment—two trials showing robot trajectories. Two robots, blue and green, are each equipped with a CE. Blue starts from the right,
with a goal position on the left, while at the same time green starts from the left with a goal position on the right. (a) We see the typical behaviour in which the
two robots pass each other without difficulty, normally because one robot—anticipating a collision—changes direction first, in this case green. (b) Here both robots
make a decision to turn at the same time, green to its left and blue to its right; a ‘dance’ then ensues before the impasse is resolved. Adapted from Winfield [32].
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simple questions like ‘what if I turn left?’ But consider now
that instead of the robot using the predictions of the CE to
perform (or not perform) some action, it narrates that action
together with its imagined outcome to another robot also
equipped with a CE, as in ‘If I turned left, I would collide
with the wall’. The robot would, in effect, be thinking out
loud. A more accurate term might be ‘narrated cognition’,
although we prefer to use the shorthand ‘story’.1 Figure 6
illustrates this process for robot A.

If robot B, the listener, is equipped with a microphone and
speech recognition process it is able to listen to robot A’s story,
as shown in figure 7. Because robot B has the same internal
modelling machinery as A—they are conspecifics—it is capable
of ‘running’ the story it has just heard within its own internal
model. In order that this can happen we need to modify the
robot’s programming so that the what-if sequence it has
heard and interpreted is substituted for an internally generated
what-if sequence. Once that substitution is made, robot B is
able to run A’s what-if sequence (its story) in exactly the
same way it runs its own internally generated next possible
actions, simulating and evaluating the consequences. Robot B
is therefore able to ‘imagine’ robot A’s story. Does this story
mean anything to robot B? Arguably it does, as B is able to
simulate and therefore ‘experience’ the sensory inputs, and
consequences (if any) of listening to A’s story.

Note that the humanoid NAO robots, shown in figures 6
and 7, do not have human-like intelligence even though their
appearance might suggest otherwise. Like the e-puck Copy-
bots, all behaviours must be programmed from scratch. The
NAO robots do, however, have the advantage of micro-
phones and loudspeakers, alongside a library of functions
for speech recognition and synthesis. This makes them
much more suitable as Storybots.

If we provide not just two, but a group of robots with a
rich physical environment they can explore then we are
providing the robots with something they can tell each
other stories about. And, for the same reasons that our
Copybots’ imitation is noisy, so will our Storybots experi-
ence imperfect communication, so the stories will mutate
as they are told and re-told. The architecture of the CE
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royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200323

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 D

ec
em

be
r 

20
21

 

and its simulation-based internal model opens the possi-
bility that we can replay and visualize any episode in a
robot’s ‘imagination’, thus adding further detail to
Tarde’s ‘minute transformations’ and allowing us to
inspect the robots’ mental representation of stories as they
pass from robot to robot.
4. Discussion and conclusion
(a) Dennett’s tower of generate-and-test: a unifying

framework
As mentioned in the introduction, Dennett’s tower of
generate-and-test directly inspired the second series of exper-
iments outlined above, culminating in the Storybots.
Dennett’s tower also provides us post facto with a single
framework to unify all of the experimental work outlined
in this paper.

Dennett [7] proposes a conceptual framework, the tower of
generate-and-test, for thinking about design options for brains.
Each floorof the tower uses the threeDarwinianoperators: copy,
generate variations, test outcomes—repeat. Each floor builds on
the outcome of the previous ones. The framework provides a
way of seeing how humans, as a cultural species, emerged
from creatureswith no cumulative culture, using the same ‘gen-
erate and test’ process all the way up. The ground floor is
inhabited by Darwinian creatures. Variation is provided by
the more or less random recombination and mutation of
genes, and selection is brutal—design-by-death [33]. All living
things are Darwinian creatures.

Some of these creatures emerged with conditionable plas-
ticity; that is, not all their behaviour was genetically
determined. Occupying the first floor of Dennett’s tower,
these Skinnerian creatures try out a variety of responses to
their environment selecting only actions that are reinforced
for repeating. Dennett named them after Skinner’s comment
that, ‘Where inherited behaviour leaves off, the inherited
modifiability of the process of conditioning takes over’ [34,
p. 83]. Most plants and animals are Skinnerian, as well as
Darwinian, creatures.

On the third floor, we find Popperian creatures. These are
able to think through possible actions and their likely conse-
quences before carrying them out. This requires internal



Table 1. Classifying the robots of this paper within Dennett’s conceptual tower of generate-and-test.

robot Darwinian Skinnerian Popperian Gregorian

basic Copybots [20] ✓

Copybots with imitation-enhanced reinforcement learning [25] ✓ ✓

robots with consequence engine (CE) [30,31] ✓ ✓

Storybots [27] ✓ ✓ ✓
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models of (relevant features of) the environment, as well as of
their own body and behaviour. Variation comes from
imagining different actions; selection is by imagined conse-
quences. As Popper remarked, when imagining outcomes
we ‘let our conjectures, our theories, die in our stead’ [35].
We are not alone in being Popperian creatures; most mam-
mals, birds, fish and reptiles can learn through both
classical and operant conditioning, and can contemplate the
consequences of at least some of their actions.

On the fourth floor are Gregorian creatures. As far as we
know, we are the only Gregorian creatures, at least on this
planet. Gregory introduced the idea of ‘tools of Mind’ or
‘mind-tools’ by which he meant ‘aids to measuring, calculat-
ing and thinking’ [36, p. 48], including tools like scissors or
levers as well as spoken and written words, and ways of
counting. Language makes possible long trains of thought,
the ability to look ahead, and the sharing of tools that
enhance intelligence. These tools are built up over gener-
ations by creatures that can copy information from each
other, building up culture. Gregorian creatures are therefore
meme machines [2] as well as Darwinian, Skinnerian and
Popperian creatures. This ability to imitate and learn from
others makes possible what Dennett calls the ‘deliberate,
foresightful generate-and-test known as science’ [7, p. 380].

Dennett’s tower of generate-and-test contrasts with other
modular-mind frameworks, for instance Mithen’s cathedral
model [37], in three important respects: (i) it is not a flat
model of intelligence modules but instead a nested hierarchy,
(ii) it defines a number of key transitions in the evolution of
mind, and (iii) in the third transition, from Skinnerian to Pop-
perian, it introduces the crucial innovation of an internal
model. Dennett’s tower is commented on in several papers
(including [38,39], and more recently [40]). Godfrey–Smith’s
paper [40] both critiques and extends Dennett’s framework,
and notably points out an omission in the original frame-
work, that an internal model requires a mechanism for
consequence evaluation in order to be of value. In developing
our consequence engine (CE), we too realized that we needed
to implement just such a mechanism.

Let us now place our robots within the floors of Dennett’s
tower. The basic Copybots are Darwinian creatures alone, their
design having been selected from many other possible designs
we might have chosen—a form of design-by-death. The Copy-
bots with imitation-enhanced learning are also Skinnerian
creatures. Both types can imitate, which might suggest they
are Gregorian, but this would be a misclassification as the
Copybots have no internal model—the defining characteristic
of Popperian, and hence also Gregorian creatures. By contrast,
all of our robots with a CE are Popperian; the CE enables them
to generate and test hypotheses about what to do next. They
are, however, not strictly Skinnerian because we have not
added reinforcement learning (although this is perfectly
feasible). The Storybots proposed in figures 6 and 7 finally
take us from the Popperian to Gregorian level.

While the Copybots imitate by visually observing move-
ment memes, lacking a CE they cannot predict and
evaluate the consequences of those imitated behaviours.
The Storybots, on the other hand do not imitate behaviour
directly. Their method of learning from others is mediated
by the mind-tool of language. Table 1 summarizes the
classification outlined here.

Applying the framework of Dennett’s tower does raise the
interesting question of whether intelligence must necessarily
be achieved by building each level of generate-and-test on
top of the preceding one, or whether robot intelligence
might skip one or more, to achieve cumulative culture more
directly. The fact that we are able to skip the Skinnerian
level is a consequence of hard coding the capabilities sum-
marized in table 1. Strictly speaking, this is a serious break
with both the evolutionary origins and cumulative nature
of each level in Dennett’s framework. Given, however, that
artificially evolving each capability in succession is far
beyond what can be achieved in evolutionary robotics at pre-
sent [41], and that we have demonstrated the implementation
of Skinnerian learning, the break is—we believe—justified.
(b) What can we learn from the Storybots?
In order to address this question, consider first what we
might learn from the Storybots as presented in §3. These
robots are equipped with a CE plus the speech synthesis
and recognition capabilities shown in figures 6 and 7. Like
the other robots with a CE outlined at the start of §3, the
basic Storybots have a short-term memory which is used to
retain the evaluated consequences of each generated-and-
tested action, in order that the most appropriate action can
be selected. But at the end of each complete cycle of gener-
ate-and-test that short-term memory is cleared ready for the
next cycle. These robots do not learn, which may seem sur-
prising given the capabilities demonstrated by the CE.
However, even these basic Storybots (like the first Copybots
we tested) can usefully allow us to explore how stories vary
as they are told and re-told by several robots. As part of
this experiment, we would first need to find the optimal
balance between zero and perfect fidelity robot–robot
speech-transmission (as we had to do with the Copybots
for vision-based imitation) such that we do see a reasonable
level of variation; this would require for instance adjusting
speech loudness, microphone sensitivities and attending
to directionality so that the listener robot is facing the
narrating robot.

Next consider memory. It would be straightforward to
equip each Storybot with a long-term (episodic) memory.
The memory would store discrete events (things that
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Figure 8. Schematic showing the three stages of learning by imitation. Adapted from Erbas et al. [21].
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Figure 9. An illustration of line fitting, the third stage of learning by imita-
tion. Note that positions P3 and P4, and P8 and P9 coincide, marking the
points at which the teacher robot turned and thus the beginning and end
of line L. Adapted from Erbas et al. [21].
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happened to the robot) and the actions (of the robot). Those
actions might be either reactions to events, or actions initiated
by the robot in order to achieve some goals. Alongside these
actions and events, the robot could also remember stories; not
only stories it has heard (with the name of the storytelling
robot), but also ‘what if’ stories that the robot has asked
itself.2 Of course, since the robot uses its CE to choose its
next possible action then the ‘what if’ stories are closely
linked to the robot’s actions. By remembering the ‘what if’
sequence that led to a particular action a robot is, in effect,
recalling the reason it chose that particular action. Although
less useful we could also store the ‘what if’ actions that
were tested but not selected.

When it comes to deciding how to select which of a robot’s
stories it should narrate, we have several options: (i) we could
use the same strategy as the Copybots and choose one from
the robot’s memory at random with equal probability. If we
also limit the Storybots memory, as suggested by the Copybots
experiments of Erbas et al. [21], then we might expect that—in
time—some stories become dominant in the collective memory
of the group of Storybots, for no other reason than they happen
to have been selected then re-told with high fidelity. Of more
interest would be (ii) selecting stories by content, for instance
those that point out hazards, so that telling (for the first time)
or re-telling the story is, in effect, ‘spreading the word’. The
robot would run each of the stories it has heard and remem-
bered, in its CE, and select the one that it ‘imagines’ as the
most dangerous, using exactly the same evaluation mechanism
the robot would use when (generating and) testing its own
possible actions. A third interesting option (iii) would be to
select stories to re-tell on the basis of which other robot told
the story. One strategy would be to choose to re-tell stories
told by the robot whose stories have been re-told the most
often in the group, thus introducing a frequency bias. Another
would be to re-tell stories from the robot whose stories are
judged the most impactful in the sense outlined in strategy
(ii). If we introduce new robots into the group at different
times we might see the emergence of an ‘elder’ storyteller
robot that is accorded a prestige bias. Is it possible that we
might also see the emergence of both ‘cultural ratcheting’ and
collective ‘memory splitting’ (unlike in figure 3) [43]? There
are many interesting options to be explored within strategy (iii).

Also important is how a robot decides when to tell the
story it has selected for re-telling. Since our Storybots will,
like the Copybots, be moving around in their shared environ-
ment they will encounter each other quite frequently. These
encounters present opportunities for Storybots to tell new
stories or re-tell previously heard stories. How, on meeting
each other, would robots agree which one will be the storytel-
ler (as in figure 6) and which the listener (figure 7)? A simple
mechanism would be for both robots—on meeting—to start
an internal timer, choosing at random, the number of seconds
to wait. If a robot has not heard the other one speak before its
timer runs out then it will speak first, taking the role of story-
teller. The other robot will hear the storyteller start to speak
while its timer is still running and adopt the role of listener.
If the experiment uses selection strategy (iii) then a robot
could, on encountering a ‘prestigious’ storyteller, add a few
extra seconds to its randomly chosen wait-before-speaking
timer. We could call this a ‘deference’ value.

By integrating an autobiographical/episodic memory
within the CE of the Storybots, we are in effect providing the
robots with what Conway [44] calls a self-memory system.
Arguably our Storybots will have sufficient cognitive machin-
ery for the emergence of an artificial ‘narrative self’3 that will
become, in a short time, unique to each robot. The directions
we have outlined here suggest the exciting possibility that
we can, with our embodied simulation, experimentally
explore the relationship between the developing ‘narrative
selves’ of the individual robots and their evolving shared nar-
rative, i.e. oral culture. What might such an experiment tell us
about animal or human cultural evolution?
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Figure 10. The work areas of the two e-puck robots used in the imitation-enhanced reinforcement learning experiment. Note the small gaps in the bottom left of
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Endnotes
1We also wish to honour Richard Gregory who first suggested story
telling robots—see Acknowledgements.
2Which would provide an interesting model of remembering by
re-imagining [42].
3Noting that Conway [44] uses the term ‘working self’.
Appendix A. Imitation in the copybots
In this appendix, we outline how the Copybots learn move-
ment-memes by imitation. This algorithm solves the so-
called ‘correspondence problem’, a term which refers to the
learner’s problem of translating a set of perceptual inputs to
motor actions that correspond with the perceived actions of
the teacher [45].

To simplify the process, each movement-meme consists
only of turns (in which the e-puck robot rotates on the spot)
and straight line segments of a given length. Thus the
‘triangle’ meme seeded into e-puck A, in figure 2 (meme 1),
is described by the list of three pairs (60, 15), (60, 15), (60,
15), where (60, 15) means ‘rotate 60° then move 15 cm’.

The e-pucks are fitted with red ‘skirts’, so that when the
learner robot observes the teacher robot with its camera the
learner ‘sees’ the teacher’s skirt as a red rectangle in its
field of vision. While the teacher is enacting the movement-
meme, the red rectangle will both move within the learner’s
field of vision and sometimes get larger or smaller—as the
teacher moves either nearer to or further away from the lear-
ner. The learner robot uses vision processing to estimate the
position of the teacher robot, relative to itself, as x,y
coordinates. Such a list of coordinates is shown on the left
of figure 8. This list is the input to the algorithm.

The first stage of the algorithm ‘detect turns’ is to identify
when the teacher robot is turning, by finding pairs of similar
x,y coordinates. These are circled in figure 8. The turns mark
the beginning and end of each straight line move. The second
stage is to then use a line-fitting (regression) algorithm to
estimate each straight line move. An illustration is shown in
figure 9. The final stage is to put each turn and estimated line
together as a reconstructed trajectory—a list of pairs of turn
angles anddistancesmoved. In thisway, the imitationalgorithm
enables the learner robot to infer the teacher robot’s sequence of
moves. For a more detailed explanation, see Erbas et al. [21].
Appendix B. Imitation-enhanced reinforcement
learning
In this experiment, each robot has its own work area, as
shown in figure 10, and must—using individual (reinforce-
ment) learning—learn how to navigate from the top
right-hand corner, to the bottom left-hand corner of its area.
Learning this way is slow, taking several hours. But in this
experiment the robots also have the ability to learn socially,
by watching each other. Periodically one of the robots will
stop its individual learning and drive itself out of its own
area, to the small opening at the bottom left corner of the
other robot’s work area. There it will stop and simply
watch the other robot while it is learning for a few minutes.
Using the same movement imitation algorithm outlined in
appendix A, the watching robot will (socially) learn a frag-
ment of what the other robot is doing, then combine this
knowledge into what it is individually learning. The robot
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then runs back to its own work area and resumes its individ-
ual learning. We call the combination of social and individual
learning ‘imitation-enhanced learning’. For a more detailed
explanation, see Erbas et al. [25].
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