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ABSTRACT 

Non-recurring disruptions to traffic systems caused by incidents or adverse conditions can result 

in uncertain travel times. Real-time information allows travelers to adapt to actual traffic 

conditions. In a behavior experiment, subjects completed 120 “days” of repeated route choices in 

a hypothetical, competitive network submitted to random capacity reductions. One scenario 

provided subjects with real-time information regarding a probable incident and the other did not. 

A reinforcement learning model with two scale factors, a discounting rate of previous experience, 

and a constant term is estimated by minimizing the deviation between predicted and observed 

daily flows. The estimation combines brute force enumeration and a subsequent stochastic 

approximation method. The prediction over 120 runs has a root mean square error of 1.05 per day 

per route and a bias of 0.14 per route. 

Keywords: experiment, uncertain network, reinforcement learning, real-time information   
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1. INTRODUCTION 

Every traveler makes route choices in an inherently uncertain environment. The 

uncertainties in a traffic network come from either unpredictable disturbances (incidents, vehicle 

breakdowns, inclement weather, special events, and work zones), or, more frequently, the 

unpredictable behavior of other travelers. By acquiring real-time traffic information from 

information communication technologies (ICT), a traveler can make more confident decisions 

even in uncertain environments. 

Behavior studies with experimental data can help provide a better understanding of 

travelers’ learning and choice behavior under uncertainty. We distinguish between two types of 

experimental settings: competitive and non-competitive. In a non-competitive experiment, the 

experimenter generates the alternative attribute values which subjects have no knowledge of and 

cannot influence, such as route travel times, through an underlying sampling process. In a 

competitive experiment, subjects make decisions simultaneously and the behavior of the group 

determines alternative attributes. For example, in a route choice experiment, the experimenter 

sets up volume-delay functions for each link, but calculates the actual travel times by applying 

the total number of subjects choosing a particular route as an input to the delay functions. 

Barron and Erev (2003) and Erev and Barron (2005) find the effects of payoff variability 

and recency to be robust across a large number of non-competitive experiments on binary 

choices with uncertain payoffs. Recency effect is a cognitive bias, indicating more recent 

outcomes having a larger effect in decision making. Selten et al. (2007) find that, in a 

competitive experiment with a hypothetical two-route network, subjects’ choices reveal 

sequential dependencies. They capture this effect by defining contingent decision strategies in a 
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reinforcement learning model. The aforementioned studies do not use real-time information. 

However, they provide insights into repeated decisions under uncertainty.  

Avineri and Prashker (2006), Bogers (2006), Ben-Elia et al. (2008), Ben-Elia and Shiftan 

(2010), and Razo and Gao (2010, 2011) analyze the effects of real-time traffic information, travel 

time variability, and feedback mechanisms in non-competitive environments. Avineri and 

Prashker (2006) find that providing static information on the mean travel time on risky and fast 

routes makes subjects more likely to choose another route. Ben-Elia et al. (2008) find that 

accessing real-time information on the travel time range increases risk-seeking behavior, and that 

this effect increases when the subject lacks long-term driving experience. Razo and Gao (2010) 

find that some subjects plan ahead in anticipation of future real-time information.  

 Mahmassani and Liu (1999) conduct competitive experiments in a three-route highway 

network with connectors between the routes. They find that pre-trip or en-route real-time 

information on prevailing traffic conditions increases the route switches at the point of information 

provision. Lu et al. (2011) introduce en-route real-time information on the occurrence of an 

incident and feedback information on non-chosen routes in a pilot competitive experiment. 

En-route real-time information improves network travel time and reliability; but extra feedback 

on non-chosen alternatives has the opposite effect. However these results have no statistical 

significance due to the small sample size.  

We refine the experimental setup of Lu et al. (2011) by increasing the sample size and 

providing feedback only on chosen alternatives. An experiment with both random capacity 

reductions and competitive route choices captures the sources of random travel times from both 

the supply and demand sides. To the best of our knowledge, no other travel behavior researchers 

have explored this type of experiment. We fill the gap, and provide insights through both 
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non-parametric statistical analysis and modeling.   

2. EXPERIMENTAL DESIGN 

Recruited subjects were students at the University of Massachusetts Amherst. Each 

session had sixteen participants. Figure 1 shows the experimental network screenshot. We asked 

subjects to make work-to-home trip on a “day-to-day” basis. The map of the network showed the 

free flow travel time of each road. Participants were expected to have preferences among 

highways, arterials, and local roads from their long-term driving habits. We asked the subjects to 

make choices solely based on a particular network condition, so as to best track and model their 

habit-forming process. The risky route (Interstate 99) has a one out of four chance of having an 

incident. We notified the subjects of the incident odds and its potential consequence. We 

randomly generated the position of an incident in each 4-day block. All subjects’ route choices 

collectively determined the travel time, and they were made aware of the actual travel time of the 

chosen route after the trip. We presented the information of the route traveled on the previous 

day for all sessions. Subjects made route selections for a total of 120 days. We did not notify the 

subjects of the total number of runs, but only a rough estimate of the duration of the experiment, 

in order to reduce the likelihood that the participants would make “rushed” choices during final 

runs. 

 There were eight sessions in total, with four using real-time information (information 

scenario) and four that did not (incident scenario). In the information scenario, a variable message 

sign (VMS) just before the second bifurcation informed drivers whether there was an incident on 

I-99 or not. This piece of information was only available for those choosing the lower bifurcation. 

To allow for comparison, we used the same incident profile for each pair of incident and 

information scenarios.   



6 

 

2.1 Equilibrium design 

We use the following notation: 

y : name of link  

i : index of path (routing policy)  

xy : flow on link y  

fi : flow on path (routing policy) i  

Cy(xy) : link travel time as a function of flow on link y.  

The travel time (in minutes) on a given link is a function of the link flow specified as follows Eq. 

(1):  

CPark Avenue(xPark Avenue) = 33.5 +2xPark Avenue, CLocal 1(xLocal 1) = 0.5xLocal 1,  

Clocal2(x Local 2) =36.5+3.82x Local 2,  

CI-99(xI-99) = 20+0.5xI-99, with probability 0.75 (normal condition) 

          20+27.5 xI-99, with probability 0.25 (incident condition).     (1) 

Starting from the uppermost one in the map, we define the three paths as: 

Path 1: Park Avenue (safe branch or route) 

Path 2: Local 1 followed by Local 2 (detour, as part of the risky branch) 

Path 3: Local 1 followed by I-99 (risky route, as part of the risky branch). 

A routing policy is to describe a strategic route choice, which defines condition-action 

pairs with different traffic conditions revealed by the VMS (Gao et al., 2009). A fixed path is a 

special routing policy where any action is independent of traffic conditions. In the experimental 

network, the three fixed paths are also routing policies 1 through 3. The two additional adaptive 
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policies are Routing Policy 4: “First take Local 1, and if the incident has occurred, take detour 

Local 2, otherwise take the risky route I-99.” The policy will result in Path 2 under the normal 

condition and Path 3 under the incident condition. Routing Policy 5 states, “Take the detour 

when no incident is present, otherwise choose the risky route.” Such strategies exist only in the 

information scenario. In the incident scenario, only three fixed paths are available. 

We develop the user equilibrium principle in a static and deterministic network assuming 

risk neutral travelers. Traffic conditions under such equilibrium conditions can serve as a 

benchmark for analyzing the results of the experiment.  

In the incident scenario, the user equilibrium condition is such that all used paths have the 

same and minimum mean travel times. The equilibrium path flows are: f1 = 9, f2 =3, f3=4, where 

the corresponding path travel time is 51.5 minutes.  

In the information scenario, the routing policy-based user equilibrium condition is such 

that all used routing policies have the same and minimum mean travel times. There are five 

possible routing policies in the network, including the three fixed paths and two adaptive paths. 

The equilibrium flows are: f1 =4, f2 =0, f3=2, f4 =10, f5=0. Splitting the flow on Routing Policy 4 

onto Path 2 with probability 0.25, and Path 3 with probability 0.75, obtains the mean path flows: 

f1 =4, f2 =2.5, f3=9.5. The equilibrium mean travel time is 41.5 minutes.  

3. EXPERIMENT RESULTS 

3.1 Route Flows 

Figure 2 shows the average total number of subjects on each of the three routes for both 

scenarios over five days. The dots indicate days with incidents. Table 1 summarizes the average 

flow on each route over 120 days and their standard deviations (SD) for all sessions. The route 
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flows in both scenarios fluctuate towards the end, and there are no steady states (constant flows). 

The fluctuation is more obvious in the information scenario, where subjects can change routes 

based on real-time information. At a more aggregate level, the average route flows in the 

information scenario are close to the equilibrium solutions, likely due to the significant reduction 

of uncertainty by real-time information. In contrast, the average route flows in the incident 

scenario differ significantly from the equilibrium solutions; for example, the average flow on the 

safe branch is 6.98 and the equilibrium value is 9. Figure 2 shows the safe branch flow gradually 

increasing, although it is still lower than 9. These findings are expected, as an uncertain 

environment lacks that perfect network knowledge required for both homogeneous risk neutrality 

and a functioning equilibrium model. 

With the Wilcoxon-Mann-Whitney test, we reject the null hypothesis of no route share 

difference between the incident and information scenarios at the 5% level for both the safe 

branch and risky route. This suggests that the potential of real-time information availability 

downstream influences travelers’ decisions at the origin (when the information is not yet 

available). A network traffic prediction model should incorporate such look-ahead behavior. 

However, most conventional traffic assignment models under real-time information assume 

myopic behavior. 

With the Wilcoxon–Mann–Whitney test, we reject the null hypothesis, which states that 

there is no difference in route flow SDs between the incident and information scenarios at the 5% 

level for the two routes of the risky branch. Subjects can change their route based on real-time 

information, and the resulting flows have more fluctuations than when no real-time information 

is available. Selten et al. (2007) also find that information increases flow fluctuations, although in 

their experiment information is a feedback on un-chosen routes. 
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3.2 Route Switches 

 Figure 3 shows the 5-day average total number of route switches at the origin and branch 

nodes for the same pair of incident and information sessions in Figure 2. Table 2 presents the 

averages over all days for all sessions. Route switches at the origin node are significantly more 

frequent in the incident scenario than in the information scenario. The trend is opposite at the 

branch. With the Wilcoxon–Mann–Whitney test, we reject both null hypotheses at 5% 

(one-sided). This suggests that real-time information significantly reduces the level of 

uncertainty and helps subjects learn about the decision environment more quickly. 

 In the information scenario, 90% of subjects follow Routing Policy 4 (taking the risky route 

in a normal situation and the detour if an incident is revealed). In Information Session 4, 94.8% 

of subjects follow Routing Policy 4. This indicates that when provided with real-time 

information, travelers will trust the information they receive and apply it to their 

decision-making.  

3.3 Average Trip Time 

 Table 3 shows the average trip times for all sessions. The incident scenario has an average 

length of 60 minutes, while the information scenario has an average length of 42 minutes. With 

the Wilcoxon–Mann–Whitney test, we reject the null hypothesis of no difference at 5% 

(one-sided), and confirm the positive effect of real-time information in reducing average network 

travel time. 

 We measure the reliability of the network by the standard deviation of the network travel 

time for each session. With the Wilcoxon-Mann-Whitney test, we reject the null hypothesis at 5% 

(one-sided). The trip time reliability of the information scenario is significantly higher than that 
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of the incident scenario, both statistically and numerically. The results are similar to Lu et al. 

(2011). 

The value of information in improving network efficiency and reliability cannot be 

independent of the network context, including network topology, road characteristics, and 

information type (Arnott et al., 1991; Gao, 2005). Lu et al. (2011) have shown that where the 

Braess Paradox exists, extra feedback information on non-chosen alternatives has negative 

effects on the network performance, including increased trip travel time and variability. 

4. SIMULATION OF THE LABORATORY EXPERIMENTS 

We developed a reinforcement learning model with an exponential probabilistic response 

rule similar to that in Brown (1951), Erev and Roth (1998), and Barron and Erev (2003). As our 

primary focus is the effect of real-time information on route choice behavior and network-level 

conditions, we only modeled the information scenario. 

4.1 The Reinforcement Learning Model 

 4.1.1 Strategies at the Origin and Branch 

At the origin, a subject does not necessarily choose a single path to the destination. The 

incident indicator at the branch allows the subject to make a secondary route choice at the branch. 

We simulate each subject’s route choice as a two-stage process.  

We define an action as a physical link from a decision node, and a strategy as a set of 

rules specifying the action to take under each condition. The condition can be the outcome of the 

real-time information or the subject’s previous choice.   

Initially, the subject takes one of the two branches. There are four strategies at the origin, 

which are similar to Selten et al. (2007); the first two are unconditional and the remaining two 

are conditional on the subject’s previous day’s experience.  
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1) Safe Branch (SB): take the safe route, Park Ave.;  

2) Risky Branch (RB): take the risky branch, Local 1;  

3) Direct: compare the travel time from the last chosen branch to median travel time 

from all previous periods. If it is lower than the median, change to another branch. 

Otherwise, continue on the same branch. 

4) Contrary: if the travel time of a subject from the last chosen branch is lower than the 

median, stay on the same branch. Otherwise, change to another one. 

The Direct and Contrary Strategies are conditional strategies capturing the sequential 

dependencies of choices according to Selten et al. (2007), who find that positive outcomes can 

result in both positive and negative responses. The contrary strategy might seem to violate the 

win-stay, lose-change dependency in reinforcement learning; however, in a competitive 

environment, a subject might expect many others to take the best route, and attempt to counter 

with the opposite strategy. Rapoport and Budescu (1992) articulate similar findings in their 

competitive experiment.  As both of these strategies require travelers to have prior knowledge 

and experience, they are only possible after the first day of the experiment.  

At the branch, a subject takes an action by choosing one of the two continuing routes. 

There are four strategies at the branch; the first two are unconditional and the remaining two are 

conditional on the outcome of the real-time information:  

1) Risky Route: take the risky highway, I-99;  

2) Detour: take the detour route, Local 2;  

3) Avoid Incident (the same as Routing Policy 4 in the equilibrium design): take the 

detour if the real-time information indicates that an incident has occurred. Otherwise, 

take the highway;  
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4) Ignore Incident (Routing Policy 5): take the highway if an incident has occurred and 

take the detour otherwise.  

4.1.2 Travel Time Updating Mechanism 

On each day t, a subject chooses among the strategies based on  𝐶𝑗(𝑡), the weighted 

average (or perceived) travel times of strategy j from the current decision node to the destination 

based on experience. We update the weighted average travel times of related strategies after the 

subject takes an action and is made aware of the travel time. The result of an action influences the 

perception of two strategies: conditional and unconditional. For example, if a subject takes the 

detour and an incident occurs, the perception of both Strategy Avoid Incident and Strategy Detour 

might change, as they involve the same action (taking the detour on that day). As long as a 

strategy j is to take the actual action 𝐴(𝑡 − 1) on day t - 1, we update it on day t, regardless of 

whether strategy j is chosen. If strategy j leads to 𝐴(𝑡 − 1), 𝜃𝑗(𝑡 − 1) is 1, otherwise zero.  

Define 𝑐(𝑡 − 1) as the experienced travel time of the action 𝐴(𝑡 − 1) and 𝑄(𝑖) as a set 

of strategies at a given decision node 𝑖. Weighted average travel time update equations for 

strategies at either the origin or branch are in Eq. (2). 
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where γ is a discounting factor applied to previous experience, ranging between 0 and 1. The 

effect of previous experience decreasing at an exponential rate (with more recent outcomes 

having a larger effect) is a cognitive bias known as recency.  

The experienced travel time of the action of taking the risky branch has two components. 

One is the experienced travel time of the action itself, which is the travel time of Local 1 on the 
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previous day, c(𝑡 − 1). The other component is the best-perceived travel time from the branch to 

the destination, min𝑗′∈𝑄(intermediate) 𝐶𝑗′(t), as we assume that the subject is aware that she could 

have another chance at the branch. We update strategies in a backwards fashion. That is, we first 

derive the perceived travel times of the four strategies at the branch on day t, and then use the 

minimum perceived travel time among the four strategies at the risky branch to update strategies 

at the origin. min𝑗′∈𝑄(intermediate) 𝐶𝑗′(t)  already includes the latest experience from the 

intermediate node to the destination, and there is no need to multiply it by a discounting factor 𝛾.  

The travel time variability, 𝑆(𝑡), of the subject in Eq. (3) and (4) accounts for the payoff 

variability effect, where high payoff variability seems to encourage random choice and 

occasionally reduces the effects of very high travel time. Travel time variability 𝑆(𝑡) measures 

a subjects’ overall experience with the decision environment, rather than with any particular 

strategy.  

 𝑆(𝑡) = 𝛾𝑆(𝑡 − 1) + (1 − 𝛾)|𝑑(𝑡 − 1) − 𝐷(𝑡)|                               (3)  

   𝐷(𝑡) = 𝛾𝐷(𝑡 − 1) + (1 − 𝛾)𝑑(𝑡 − 1)                                      (4)                                                                 

𝑑(𝑡 − 1) is the experienced origin-destination (OD) travel time from the previous day and 𝐷(𝑡) 

is the weighted average experienced OD travel time.  

4.1.3 Exponential Probabilistic Response Rule 

Similar to Erev and Barron (2005), we assume an exponential probabilistic response rule. 

At the origin, the probability that a subject takes strategy j on day t is 

𝑃𝑗(𝑡) =

{
  
 

  
 exp (−𝛼 

𝐶𝑗(𝑡)

𝑆(𝑡)
)

∑ exp (−𝛼 
𝐶𝑗(𝑡)

𝑆(𝑡)
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𝐶𝑗(𝑡)

𝑆(𝑡)
)𝑗∈𝑄(Origin),𝑗≠RB + exp (−𝛼

𝐶RB(𝑡)

𝑆(𝑡)
+𝜔RB)

(5) 
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where α is an exploitation-exploration parameter at the origin, where low values imply more 

exploration, such as random choice, and we need to calibrate a positive scale from the data; 𝜔𝑅𝐵 

is a constant that captures the bias of subjects on the risky branch.  

At the branch, the probability of choosing strategy j on day t is: 

                              𝑃𝑗(𝑡) =
𝑒𝑥𝑝 (−𝛽 

𝐶𝑗(𝑡)

𝑆(𝑡)
)

∑ 𝑒𝑥𝑝 (− 𝛽
𝐶𝑗(𝑡)

𝑆(𝑡)
)𝑗∈𝑄(intermediate)

                                                        (6) 

where 𝛽 is a scale parameter at the branch.  

Initial Travel Times and Variability 

On the first day, the subject has no prior experience, so the calculation of travel times and 

variability depends solely on the free flow travel times (FFTT). The subject is aware of a 

probable incident on the risky highway route. To reflect this effect, we add a positive number to 

the travel time of strategies that involve the risky route. The number is set manually to match the 

average predicted route flows with observed flows.  

The initial S is the same for all strategies and the calculation is in Eq. (7).  

                          Initial S = ∑ |AverageFFTT − FFTT(route)|/3

3

route=1

= 6.78                               (7) 

4.1.4 The Simulation Procedure 

 As in the experiment, each simulation run includes sixteen participants who interact for 120 

trial periods, using a given incident profile with real-time information. On each day and for each 

subject, we update the weighted average travel time and travel time variability for strategies 

using Eq. (2), (3), and (4) and calculate the strategy probabilities using Eq. (5) at the origin. For 
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each day, we draw a strategy at the origin at random, and then again at the branch based on the 

strategy probabilities calculated in Eq. (6). After processing all sixteen subjects and obtaining 

route flows, we calculate the travel times for the day using the link performance functions. Then 

we switch to the next day. 

4.2 Model Calibration and Simulation Results  

𝛼  and 𝛽  are the scale coefficients in the exponential probability function, which 

indicate the subject’s sensitivity to travel time in making route choice decisions. 𝛾 is the weight 

of previous experience. 𝜔RB is the constant term in the utility function of Strategy RB. We first 

conduct a brute force enumeration varying α from 0.5 to 3.5 with a step size of 0.5 (7 values), 𝛽 

from 0.5 to 10 with a step size of 0.5 (20 values), γ from 0.1 to 0.9 with a step size of 0.1 (9 

values) and 𝜔RB from -4 to 4 with a step size of 1 (9 values). We select the ranges of 

parameters α, 𝛽 and 𝜔RB through trial-and-error to ensure that the optimal values fall within 

the ranges. For each session and parameter combination, we carry out 1,000 simulation runs. 

There are two measures to evaluate the simulation results. The first is root mean square error 

(RMSE) at the day level. 

RMSE

= (∑ ∑(
(∑ Predicted Flow simulation )

#of simulations
− Observed Flow)

2

trialroute

(No. of routes × No. of trials)⁄ )1/2(8) 

  The other measure is the bias, or the distance between predicted and observed flows 

averaged over all 120 days: 
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Bias

=
∑ ∑ |Average Predicted Flow − Average Observed Flow|routesimulation

No. of simulations × No. of routes
                     (9) . 

The calibration problem is to find the parameter values minimizing RMSE+Bias. The 

current model provides predictions which reduce the discrepancy to less than 1.05 per route and 

day. 

After applying the brute force method, we apply a simultaneous perturbation stochastic 

approximation (SPSA) method to solve the minimization problem, using starting values 

generated with the brute force method. SPSA is suitable for optimization problems where the 

objective function evaluation involves considerable complexity, such as in a simulation. Spall 

(1998) has a detailed discussion on the subject, and Balakrishna (2006) reports applications in 

traffic model calibration. In our case, SPSA does not provide significant improvements, largely 

because the parsimony of the model provides adequate starting values. Table 4 shows the final 

calibration results, with an average RMSE of 1.05 and a bias of 0.14.  

At the final branch, the average combined percentage of choosing the risky route and 

avoid incident strategies is over 98%, providing more evidence of the significant influence of 

real-time information on route choice behavior.  

Figure 4 shows an example of flow comparison between the observed and calibrated 

simulation results. The route flows are five-day averages, where the dashed line represents 

observed data and the solid line represents the simulation result. Simulation results capture both 

the fluctuations and trends on the two routes of the risky branch. 
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Cross-validation shows that the model estimated from one session gives accurate 

predictions of flows in each of the other sessions. This suggests that the parameter estimates are 

robust, and the model has good transferability over subjects. 

5. LIMITATIONS AND MODEL APPLICABILITY 

Our experiment is a simplified representation of a real-life traffic scenario. The 

simplifying flow-delay functions control all external influences such as traffic lights, intersection 

delays, route characteristics, and so forth, as our primary goal is to understand how subjects learn 

and deal with the flexibility of downstream information. This allows for the observation of 

human behavior under a clearly specified environment. Accordingly, in the later simulation 

model, we only calibrate parameters capturing travelers’ learning and decision making 

procedures. 

Secondly, the experimental network contains only three routes, allowing for a focused 

examination of the factors influencing subjects’ decision-making processes, and the development 

of a model to describe how they learn and form travel habits. Although the simplicity of the 

network topology restricts its general use, it provides an excellent starting point to incorporate 

strategic behavior in a more realistic experiment environment. 

In a simulation experiment, subjects do not have to bear the real-world consequences of 

their behaviors, such as arriving late to an appointment due to traffic congestion or becoming lost 

on an unfamiliar route. In order to gain more accurate experimental data, we asked participants at 

the beginning of each session not to treat the experience as a game or test. Nevertheless, we 

suspect that subjects are generally more risk-seeking in the laboratory, making the calibrated 

parameters inappropriate for general use.  
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Despite the simple design of the experiment, it has significant implications. Most notably, 

it verifies the need to include strategic behaviors in route choice modeling. In the experiment, 

over 90% of participants chose Routing Policy 4. Moreover, the significant difference between 

scenarios in route flows on the safe branch indicates that travelers do consider the flexibility of 

information downstream. In the simulation, the high percentage of subjects choosing the avoid 

incident strategy also supports that finding.  

6. CONCLUSION 

With the emerging application of Information Communication Technologies (ICT) in 

transportation, there is a growing need to understand and assess the possible effects of real-time 

information on user behavior and network performance. We obtained experimental observations 

on a day-to-day traffic pattern variation in a simple congested network with random disruptions. 

Comparing the traffic patterns with and without real-time information, we found that real-time 

information significantly reduces network travel time and its variability. However, we did not 

observe equilibrium in any of the experiment sessions. Participants switch more often in the 

information scenario at the branch than in the incident scenario. However, this trend is reversed 

at the origin. It is plausible that route switching may permit information gathering when 

real-time information is unavailable. The significant difference in route flows on the safe branch 

between scenarios verifies the need to consider travelers’ long-range planning behaviors in a 

traffic assignment model. 

These results have particular relevance for the future development of smart traveler 

information systems. Over 90% of participants chose Routing Policy 4, which suggests a route 

switch at the branch in response to an incident alert. We also performed simulations based on an 

exponential probabilistic reinforcement learning model and compared to daily and overall 
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prediction flows with the observed experiment data in the information scenario. Despite its 

relative simplicity, the simulation model performed well when compared to observed experiment 

data. 

As the simulation model captures participants’ travel characteristics under specific 

conditions, we cannot yet apply it directly to a general network traffic assignment model. 

However, the qualitative trends in route flows and switches, the methodology of updating 

perceived travel times of conditional and unconditional strategies, and the discovery that some 

travelers use strategic thinking when making route choices, provide important insight into the use 

of real-time information.  
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TABLE 1: Route Flows Mean and SD for All Sessions 

Scenario Session 
Safe Branch Detour Risky Route 

Mean SD Mean SD Mean SD 

Incident 

1 7.48 1.92 1.72 1.12 6.80 2.08 

2 7.19 1.65 2.08 1.45 6.73 1.72 

3 6.27 1.83 1.85 1.21 7.88 1.83 

4 6.98 1.77 2.56 1.42 6.46 1.61 

Average 6.98 1.79 2.05 1.30 7.02 1.81 

Equilibriu

m 9  3  4  

Scenario Session 
Safe Branch Detour Risky Route 

Mean SD Mean SD Mean SD 

Informatio

n 

1 4.2 1.66 2.43 3.73 9.37 4.50 

2 3.75 2.39 1.8 3.10 10.45 4.86 

3 4.79 1.51 2.15 3.37 9.06 3.93 

4 4.09 1.73 2.70 4.47 9.21 4.62 

Average 4.21 1.83 2.27 3.67 9.52 4.48 

Equilibriu

m 4  2.5  9.5  

Statistic 

Analysis 

Null 

hypothesis 

(5% one 

sided) 

Rejecte

d 

Not 

rejecte

d 

Not 

rejecte

d 

Rejecte

d 

Rejecte

d 

Rejecte

d 

 

TABLE 2: Route Switch Mean and SD for All Sessions 

Scenario Session 
Origin Branch 

Mean SD Mean SD 

Incident 

1 4.04 1.87 0.83 1.09 

2 4.13 1.75 2.17 1.40 

3 5.54 2.20 0.75 1.18 

4 6.08 2.20 1.08 1.20 

Average 4.95 2.01 1.21 1.22 

Scenario Session 
Origin Branch 

Mean SD Mean SD 

Information 

1 4.79 1.99 3.37 3.50 

2 3.63 2.73 3.50 3.19 

3 3.79 2.09 3.04 3.16 

4 3.17 2.27 4.54 4.16 

Average 3.84 2.27 3.61 3.50 

Statistic 

Analysis 

Null 

hypothesis 

(5% one 

sided) 

Rejected  Rejected  
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TABLE 3: Average Trip Time Mean and SD for All Sessions 

Scenario Session 
Average Trip Time (min) 

Mean SD 

Incident 

 

1 58.17 39.23 

2 58.77 39.76 

3 64.66 51.99 

4 57.52 34.62 

Average 59.78 41.40 

Scenario Session 
Average Trip Time (min) 

Mean SD 

Information 

 

1 42.16 18.10 

2 40.92 19.31 

3 42.36 17.86 

4 43.08 18.85 

Average 42.13 18.53 

Statistic 

Analysis 

Null 

hypothesis 

(5% one 

sided) 

Rejected Rejected 
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TABLE 4: Simulation Results for All Information Sessions 

Session 
Scale 

α 

Scale 

β 

Discounting 

Factor 

γ 

Constant 

ωRB 
RMSE Bias 

1 1.00 7.03 0.81 1.01 1.18 0.21 

2 0.49 2.50 0.89 1.00 0.99 0.11 

3 1 3.01 0.90 0.50 0.84 0.10 

4 0.50 2.00 0.91 1.00 1.19 0.11 

Average 0.75 3.63 0.88 0.88 1.05 0.14 

 

 


