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6 Results

6.1 Distributional analysis of hBCATc, hBCATm and hPDI proteins to

the aged human brain

To define the cellular distribution of the BCAT proteins in the human brain,
sections from 12 donated brains were labelled with antibodies specific to the
hBCATc or hBCATm proteins. Previous work has focused on rodent model
distribution, which demonstrated BCATc localisation to neurons, with recent
work finally confirming the mapping of BCATm to the rat astrocytes (Bixel et
al., 2001; Bixel et al., 1997; Cole et al., 2012). However, BCATc has also
been described at low levels in certain astrocyte populations in a human cell
culture model that was not reported in rat models (Bixel et al., 2001; Bixel et
al., 1997). Here, we investigated the distribution in the hippocampus,
temporal, frontal, parietal and occipital lobe, cerebellum, mid brain, pons and
medulla. A sub aim of this work was to investigate the localisation of hPDI to
the temporal cortex and hippocampus as this protein i) has yet to be mapped
to the human brain, ii) in vitro work has demonstrated association with

hBCAT, iii) altered hPDI has been associated with AD.

6.1.1 Antibody specificity

Western blot analysis was utilised to assess the specificity of the rabbit
raised antibodies to hBCATc and hBCATm. Purified overexpressed hBCATc
and hBCATm protein, in addition to control homogenates demonstrated
antibody specificity. No cross reactivity between isoforms was reported at
the antibody concentrations utilised in these experiments (Figure 6.1), and

distribution throughout the brain was identical when compared to
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commercially available antibodies (Abcam, Cambridge, UK). For further
confirmation, antigen absorption (at 200x molar excess) control was analysed
during IHC (Figure 6.2 C, Figure 6.3 B, Figure 6.5 C, Figure 6.6 B, Figure 6.7

B, Figure 6.12 E+G, Figure 6.13 H, Figure 6.15 B+E, Figure 6.16 B+E).

6.1.2 Distribution of hBCATc within the human brain

Labelling of hBCATc was largely confined to neurons, and detected in all
regions of the brain examined (Table 6.1). The cerebral cortex, hippocampal
formation, subdivisions of the basal ganglia and diencephalon, the midbrain,
cerebellum, pons and medulla all contained hBCATc-positive neurons. The
antigen was largely confined to the neuronal soma and proximal dendrites
but there was occasional focal labelling of axons and scanty weak labelling of

oligodendrocytes.

The cerebral cortex is the outermost tissue of the human brain. It is divided
into the left and right hemisphere and functions in attention, memory,
thought, perceptual awareness and language. In the cerebral cortex,
hBCATc positive neurons were predominantly small (Figure 6.2 A+D) but the
antibody did label scattered larger pyramidal (Figure 6.2 B+D) and multipolar
neurons (Figure 6.2 B). These pyramidal neurons are the primary excitatory
neurons of the prefrontal cortex and function in cognition (Elston, 2003).
Multipolar neurons possess a single axon and constitute the majority of
neurons in the human brain. Both these neurons may use either glutamate

or GABA as a neurotransmitter. Immunopositive neurons were numerous in

Jonathon Hull (2014) Page 80



Results

Table 6.1 An overview of hBCATc immunoreactivity throughout the human brain

(n'=12,n®=35).

Area

¥Amount of staining in

§Intensity of stained

a cell population cells

Temporal lobe
-Hippocampus:
oGABAergic interneurons +++ +++
oPyramidal neurons +(+) ++++
oDentate gyrus (neurons) + +
-Cortex:
oNeurons +++ ++
oSubiculum sub-population of neurons ++ ++
oLamina Il neurons ++ ++
Cortex and white matter
-Cortical pyramidal cells + +++
-Cortical neurons ++ ++
-Axonal staining -/+ ++
Cerebellum
-Oligodendrocyte staining in the white matter. -I+ ++
-Purkinje cells +(+) +
-Stellate cells ++ +++
-Golgi cells ++ ++
-Swollen axon terminals -+ ++
-Interneurons ++ +
-Neurons in the dentate nucleus ++ +
-Inferior olivary nucleus ++ ++
Putamen and Basal ganglia
-Large neurons + +++++
-Small neurons +++ +
-Insular cortex (small neurons) +(+) ++
-Thalamus (neurons) +(+) ++
-Caudate nucleus (neurons) +(+) +
-Lateral geniculate nucleus (neurons) + +(+)
Medulla
-Hypoglossal nucleus (neurons) +(+) ++
-Dorsal motor nucleus (neurons) +(+) ++
-Supraoptic nucleus (neurons) + +
-Nucleus ambiguus (neurons) ++ ++
-Gracile nucleus ++ ++
-Inferior olivary nuclei (neurons) ++ ++
-Inferior olivary nuclei neuropil ++ ++
Midbrain
-Widespread neuronal staining ++++ +++
-Periaqueductal grey matter (neurons) ++ ++
-Neuropil staining ++ +
-Inferior colliculus (nerve cells) +(+) +++
Pons
-Pontine nuclei (neurons) +(+) ++
-Tegmental neurons +(+) ++
-Neuronal processes (nigro striatal processes) ++ +
-Raphe nuclei (neurons) + ++
-Nucleus basalis of Meynert (cholinergic neurons) +(+) ++++
-Supraoptic nucleus of the hypothalamus +(+) ++++
-Paraventricular neurons of the hypothalamus +(+) ++++

¥Amount of staining: (-), no staining observed; (-/+), staining observed but not
consistent and not in the majority of subjects; (+), minimal staining; (++), low but
convincing amount of neurons stained; (+++), moderate amount of neurons stained,;

(++++), Complete staining of neuron population.

8Intensity of staining: (+), minimal staining; (++), low but convincing amount of staining;
(+++), moderate staining; (++++), strong staining; (+++++), very strong staining.
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Figure 6. 2 Human cytosolic branched chain aminotransferase (hnBCATc) staining in
the temporal lobe and cerebellum (n' = 12, n® = 6). A: The temporal neocortex (inferior
temporal gyrus) showing immunopositive neurons. B: Hippocampal region CA1 showing
negative pyramidal cells and positive interneurons. C: Antigen incubation of serial section
of B, at 200X molar excess. D: Small immunoreactive neurons and a large pyramidal
neuron (large arrow) with visible processes. E: Granular cell layer with positive basket,
golgi cells (*) and stellate cells (small arrows). F: Purkinje cell bodies shown to be weakly
immunopositive with strongly labelled golgi cells. G: Intermittent staining of axons within
the white matter (large arrows). Magnifications: A and E, X10; B, C, D, F and G, X40.
Scale bars: A, 200 um; E, 100 ym; B, C, D, F and G, 50 um.
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lamina 3 (the pyramidal layer) but were also present in lamina 2 (external
granular layer) and the deeper layers (Figure 6.3 A). These layers (or
lamina) of the cortex separate the cortex into 6 different segments with

different populations of neurons.

The hippocampus is part of the cerebral cortex (specifically the limbic
system) located within the temporal lobe. It is separated into Cornu
Ammonis (CA) subdivisions and functions in memory and navigation. In the
hippocampus there was variable labelling of pyramidal cells and strong
labelling of multipolar interneurons (Figure 6.2 B+D, Figure 6.3 A). Strongest
labelling occurred in the CA4 region and decreased towards the CA1 region
(Figure 6.4). Throughout the cerebral cortex both large and small neurons
were labelled for hBCATc (Figure 6.2 A-D, Figure 6.3 A, Figure 6.5, Figure
6.6, Figure 6.7 A+E). White matter labelling was almost completely absent
however labelling of axons occurred in some individuals (Figure 6.2 G, Figure
6.7 C+D). Axons are the processes which extend from the neuron cell body
(or soma). Presence of hBCATCc labelling in the processes supports the role
of glutamate production for neurotransmission, whereas hBCATc labelling
within the soma supports the production of glutamate as a metabolite for the

production of other neurotransmitters.

The putamen is one of the structures that make up the basal ganglia. The
predominant function is to regulate movement and learning. Neurons of the
putamen employ GABA, acetylcholine or encephalin neurotransmitters. In

the putamen, large (aspiny) neurons were strongly labelled and there was
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also weaker labelling of smaller neurons and numerous processes within the
surrounding neuropil (Figure 6.8 A+C). The nucleus basalis of Meynert is
part of the basal forebrain and is the predominant source of acetylcholine
projections in the cortex; therefore neurons are cholinergic in nature. The
nucleus basalis of Meynert also has a functional role in perception. The
nucleus basalis of Meynert contained large hBCATc positive neurons
supporting the role of the hBCATc protein in the production of intermediates

for acetylcholine production.

Neurons in the globus pallidus were weakly labelled. The globus pallidus is
part of the basal ganglia which regulates voluntary movement. Neurons of
the thalamus were also weakly labelled however strong labelling of neuronal
somata and processes were observed in the hypothalamus (Figure 6.9),
particularly in the supraoptic and paraventricular nuclei. The thalamus
processes sensory information, but the hypothalamus (localised just below
the thalamus) creates a link between the nervous system and the endocrine
system via the pituitary gland. The hypothalamus synthesises and secretes
hormones (such as growth hormone releasing hormone) and these alter
pituitary function. The specific function of the supraoptic and paraventricular
nuclei is the production and release of oxytocin and vasopressin. The
function of hBCATc in this instance is likely to be one of metabolite
production for hormone manufacture, transamination for energy production
from BCAASs, or as a protein that aids secretion. These functions are not

mutually exclusive.
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Figure 6. 8 Human cytosolic branched chain aminotransferase (hBCATc) staining in
the Basal ganglia (putamen) (n' = 12, n® = 6). A: The capsula externa (*) of the basal
ganglia showing staining of large neurons (small arrow) and surrounding processes. B:
Antigen incubation of serial section of A, at 200X molar excess. C: Increased
magnification of a single large neuron (small arrow). Magnifications: A and B, X4; C, X40.
Scale bars: A and B, 200 um; C, 50 ym.
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Figure 6. 9 Human cytosolic branched chain aminotransferase (hBCATc) staining in
the hypothalamus (n' = 4, n® = 4). A: The optic tract (*) and the supraoptic nucleus
(small arrows) of the hypothalamus. B: Increased magnification of the neurons of the
supraoptic nucleus. C: Increased magnification of A to show clear neuronal cell body
staining of neurons (large arrow) and process staining. Magnifications: A, X4; B, X10, C,
X40; Scale bar: A, 200 um; B, 100 ym; C, 50 pm.
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Due to the brown pigment in neurons of the midbrain, substantia nigra and
locus coeruleus, sections were stained with AEC (red) in place of DAB
(brown). In the substantia nigra, hBCATc was detected in the nerve cell
bodies and processes (Figure 6.10). The substantia nigra functions in eye
movement and learning and serves as a source of GABAergic inhibition to
other brain regions. It is therefore likely that hBCATc is producing
intermediates for the production of GABA. Labelled neurons were observed
throughout the midbrain with strongly labelled nerve cells in the inferior
colliculus and relatively weakly labelled nerve cells in the periaqueductal grey
matter. The inferior colliculus is part of the auditory pathway whereas the
periagueductal grey matter functions in the modulation of pain and defensive

behaviour.

Within the granule cell layer of the cerebellar cortex the somata of basket,
stellate and Golgi neurons were strongly immunopositive (Figure 6.2 E, 6.3
B). The cell bodies of the Purkinje cells were weakly immunopositive, as
were the glomeruli (Figure 6.2 E+F, Figure 6.11). In some cases, there was
distinct focal labelling of axons in the white matter, in a pattern suggesting
nodal distribution (Figure 6.2 G), in addition to possible oligodendrocyte
labelling. Basket cells, purkinje cells and golgi cells are all GABAergic
inhibitory neurons. These cells make up the predominant neurons of the
molecular and golgi cell layer and function in movement control. Purkinje
atrophy occasionally occurs in domestic animals where it causes ataxia,
tremors and an inability to determine space and distances (Sandy et al.,

2002).
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The pons functions as a connection between different brain regions, for
example the cerebellar peduncles connect the cerebellum to the midbrain.
Within the pons, hBCATc-positive neurons were present in the raphe nuclei
and locus coeruleus both of which are hormone producing and secreting cells
(Figure 6.12 B-D). The raphe nuclei function to produce and secrete
serotonin so are serotonergic in nature. The locus coeruleus neurons are the
primary site for the production and secretion of noradrenaline. There is up to
70% loss of these locus coeruleus neurons in AD (Bondareff et al., 1982).
Labelling also occurred in the basal pontine nuclei that contrasted to the lack
of antigen in the corticospinal tract fibres (Figure 6.12 F). The pontine nuclei
functions in motor activity and connect the primary motor cortex with the
cerebellum whereas the corticospinal tract fibres connect the motor cortex to

the spinal cord.

The medulla refers to the lower part of the brain stem and participates in
autonomic, involuntary functions such as respiration, heart rate and reflexes.
Additionally, the medulla connects the brain and spinal cord. In the medulla
there was strong labelling of neurons in the gracile and cuneate nuclei,
hypoglossal nucleus, the nucleus ambiguus and dorsal motor nucleus of the
vagus nerve. The gracile and cuneate nuclei participate in fine touch and
proprioception. The hypoglossal nucleus and the dorsal motor nucleus of the
vagus are related to the cranial nerves the hypoglossal nerve (XII) and the
vagus nerve. The hypoglossal nerve controls tongue movement, food
manipulation and swallowing. The dorsal motor nucleus of the vagus nerve

relays parasympathetic output of the brain to the viscera (particularly the
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intestines) whereas the nucleus ambiguus innervates the heart. Both resting
heart rate and digestion are expected to be altered by hBCATc activity. The
medulla also contained many hBCATc-positive neurons and nerve cell

processes in the inferior olivary nucleus (discussed later) (Figure 6.15 A-C).

6.1.3 Distribution of hBCATm within the human brain

Immunoreactivity for hBCATm was present throughout the brain (Table 6.2)
with consistent labelling of vascular endothelial cells in the grey and white
matter (Figure 6.13 A-C E-G, Figure 6.14 A, B+D). A small population of glial
cells in the subpial region in the inferomedial part of the temporal lobe
showed coarse granular immunopositivity but this was not present in all
brains. The endothelium of capillaries and larger blood vessels were
immunopositive for h(BCATm and showed punctate labelling in keeping with
the mitochondrial location of this enzyme (Figure 6.14 A, B+D). The role of
the vasculature in the human brain is as a separation device between the
serum and the cells of the brain. The vasculature protects the brain from
toxic substances within the blood and supplies the brain with nutrients and
oxygen (Persidsky et al., 2006). Transport across the vasculature is
extremely limited and requires a great deal of energy, it is estimated that the
cerebral vasculature has five times the mitochondria per cell than the

vasculature of skeletal muscle (Oldendorf et al., 1977).

Labelling of blood vessels was noted surrounding the hippocampus (Figure
6.13 A-C) and throughout the temporal cortex (Figure 13.E-G). There was

also some labelling of the tunica media and occasional neuronal labelling
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Table 6.2 An overview of hBCATm immunoreactivity throughout the human brain
(n'=12, n®=35)

¥Amount of §Intensity of
staining in a cell stained cells

population

Temporal lobe

-Neuronal staining -/+ +
Cortex and white matter

-Capillaries/Endothelial cells (white matter and cortex) ++ +++
Cerebellum

-Purkinje cells -/+ +

-Capillaries/Endothelial cells. ++ +++

-Basket cells. -+ +

-Luminal staining -/+ +

-Bergmann astrocytes (Purkinje cell layer) -/+ +
Putamen and Basal ganglia

-Tunica media + ++

-Smooth muscle nuclei + ++

-Pencillar fibres (white matter oligodendrocytes) ++ ++

-Substantia innominata (hypothalamic neurons) ++ ++(+)

-Mammillothalamic tract (hypothalamic neurons) ++ ++
Medulla

-Vessel/endothelial staining ++ +++
Midbrain

-Supraoptic nucleus of the hypothalamic tract + ++

-Periaqueductal grey matter (neurons) + +
Pons

-Axons +(+) +

¥Amount of staining: (-), no staining observed; (-/+), staining observed but not
consistent and not in the majority of subjects; (+), minimal staining; (++), convincing
amount of staining.

8Intensity of staining: (+), minimal staining; (++), low but convincing amount of staining;
(+++), moderate staining.
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Figure 6. 14 Human mitochondrial branched chain aminotransferase (hBCATm)
staining in the human brain (n' = 12, n® = 6). A: Punctate staining (arrowhead)
appearing in small vessels in the Temporal lobe. B: Punctate staining (arrowhead)
appearing in small vessels of the parietal lobe. C: Labelling of pencillar fibres (large
arrowheads). D: Staining appearing in the vasculature of the parietal lobe.
Magnifications: C, X4; A, B and D, X40. Scale bars: C, 200 ym; A, B and D, 50 ym.
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Figure 6. 15 Human cytosolic branched chain aminotransferase (hBCATc) and
human mitochondrial branched chain aminotransferase (nBCATm) staining in the
inferior olivary nucleus (n' = 4, n® = 4). A: Staining of hBCATc in the inferior olivary
nucleus. B: Antigen incubation of serial section of A, at 200X molar excess. C:
Increased magnification of the inferior olive showing staining of small neurons (large
arrow) and neuropil staining (small arrow) along with immunonegative hylum (*). D:
Staining of hBCATm in the inferior olive. E: Antigen incubation of serial section of D, at
200X molar excess. F: Vessel staining (*) within the amiculum of the inferior olivary
nucleus. Magnifications: A, B, D and E, X4; C and F, X10. Scale bar: A, B, D and E,
200 ym; C and F, 100 ym.
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(Figure 6.13 D). The pencillar fibres in the basal ganglia were weakly
positive in some brains (Figure 6.14 C) but elsewhere the white matter was
unlabelled. These pencillar fibres (also referred to as pencil fibres of Wilson)
are myelinated fibres that connect the striatum to the globus pallidus. This
connection is important in learned movement (Kimura et al., 1996). The
striatum showed weak hBCATm labelling of neuronal cell bodies and there
was further weak labelling of neurons in the hypothalamus, periaqueductal
grey matter and inferior olive that was reduced but not entirely removed by

antigen incubation (Figure 6.15 D+E).

The distinct patterns of labelling for hBCATc and hBCATm are shown in
Figure 6.15 and Figure 6.16. In Figure 6.15 hBCATm can be observed in the
walls of blood vessels in amiculum of the inferior olivary nucleus (Figure 6.15
D-F) with hBCATCc localised to the neurons and neuropil (Figure 6.15 A-C).
The inferior olivary nucleus is closely associated with the cerebellum so
functions as part of coordination of movements. Lesions to the inferior
olivary nucleus have been associated with a decreased ability to perform
specialised motor tasks (Martin et al., 1996). In Figure 6.16 hBCATm is
localised to the endothelial cells of the vasculature in the parietal cortex
(Figure 6.16 D-F), with surrounding neurons labelled for hBCATc (Figure
6.16 A-C). The parietal lobe integrates sensory information and contains
predominantly cholinergic neurons. The association of both hBCATc and
hBCATm described here provides evidence of a BCAT shuttle between the

two proteins and between the two cell types.
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In summary, hBCATc was observed in all brain regions and was largely
neuron-specific throughout apart from occasional oligodendrocyte and axon
labelling within the white matter. The intensity of hBCATc labelling varied
between individuals; however, there was strongest labelling in putatively
GABAergic neurons in the hippocampus, neocortex, putamen, hypothalamus,
pons and medulla, with weaker labelling of putatively glutamatergic neurons.
The hBCATm was predominantly vessel-associated, involving the
endothelium and tunica media, with no labelling of astrocytes (with the
exception of a small population of Bergman astrocytes observed in one
individual). There was some labelling of neurons for hBCATm in the deep
cerebral grey matter and brain stem but this was to a much lesser degree
than that for hBCATc and was absent altogether from the majority of brains.

Both hBCATc and hBCATmM never co-localised within the same cell.

6.1.4 Distribution of hPDI within the human brain and co-localisation
with hBCAT

A sub-aim of this work was to investigate the expression of hPDI within the
human brain and to observe whether hPDI occurred in the same cell types as
the hBCAT proteins. Further to this aim, electron microscopy was utilised to
demonstrate co-localisation on the subcellular level. The human hPDI family
contains over 20 proteins and has oxidoreductase, isomerase and chaperone
function. In the human brain, hPDI and thiol proteins act as redox signalling
buffers, which monitor changes in the redox environment, maintaining cell

homeostasis (Laurindo et al.,, 2012). Although hPDI affects signalling
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throughout the cell, it is predominantly expressed in the lumen of the

endoplasmic reticulum (0.2-0.5 mM) (Lyles et al., 1991; Zapun et al., 1992).

The hippocampus showed hPDI labelling of all pyramidal cells and many
interneurons, all large neurons were labelled (Figure 6.17 B+C). Granule
cells of the dentate nucleus also showed positive labelling (Figure 6.17 A).
The dentate nucleus is part of the hippocampal formation and functions in the
formation of new memories. These granule cells are glutamatergic in nature.
The temporal cortex showed almost all neurons labelled positive for hPDI
(Figure 6.17 D-F) with some glial labelling in the white matter (mostly
attributed to oligodendrocytes). However, it was noted that astrocyte

labelling was absent.

In the cerebellum, blood vessels were labelled with vessels of the white
matter also strongly labelled (Figure 6.18 B). Throughout the cerebellum
purkinje cells were strongly labelled for hPDI, with labelling strongest in the
cell body and weaker in the processes (Figure 6.18 A+B, D-F). Some
labelling of hPDI was observed in the white matter (although axons were
occasionally labelled); this was again attributed to oligodendrocytes and
vessels (Figure 6.18 C). Blood vessels were also labelled, particularly in the
white matter, with the labelling endothelial in nature. Labelling was complete
compared to that observed for hBCATc and hBCATm, with the majority of
vessels and neurons throughout the sections examined positive for hPDI.
The hBCAT proteins were also localised in the same cells, as demonstrated

by serial sectioning (Figure 6.19).
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PDI =

hBCATm

Figure 6. 19 Co-localisation of human cytosolic branched chain aminotransferase
(hBCATc) and human mitochondrial branched chain aminotransferase (hBCATm)
with human protein disulphide isomerase (hPDI) to the same cell types in the
cerebellum, temporal lobe and hippocampus (n' = 4, n® = 4). Human brain sections
were taken from 2 subjects (1 AD, 1 control). A-D show localisation of hPDI and hBCATc
to the purkinje cells (small arrow) of the cerebellum. E-H shows the localisation of hPDI
and hBCATm to the endothelial layer of vessels (large arrow) on serial sections of the
temporal cortex (E+G) and the CA4 region of the hippocampus (F+H). Also shown in E+F
is hPDI labelling of neurons of the temporal cortex (E) and granule cells (*) of the dentate
nucleus (F). Magnifications: A and C, X10; B, D, E, F, G and H, X40. Scale bars: A and
C,100 um; B, D, E, F, Gand H 20 ym.
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Electron microscopy observed hPDI localisation to the mitochondria (Figure
6.20) and co-localisation with the hBCATm protein. The ability of hPDI to
localise to the mitochondria is likely related to mitochondrial associated
membranes (MAMs). These MAMs serve as direct connections between the
ER and the mitochondria, are increased under conditions of oxidative stress
and facilitate the transfer of proteins from the ER to the mitochondria
(Simmen et al.,, 2010). It is also noted that hPDI has previously been
reported in MAMSs, and although it is predominantly an ER protein hPDI has
previously been localised to the mitochondria, nucleus and cytosol (Hoffstrom
et al., 2010; Rigobello et al., 2001; Turano et al., 2002; Wilkinson et al.,
2004). Electron microscopy work also observed clustered formation of hPDI
(Figure 6.20). The hPDI protein has the capacity to multimerise to >600 kDa
multimers (Solovyov & Gilbert, 2004) and the role of hPDI in chaperone
mediated autophagy is already well established (Bejarano & Cuervo, 2010;
Rich et al., 2003). These clusters may represent the initial multimerisation of
the protein for chaperone mediated autophagy, or a response to an oxidative

environment.

In summary, the labelling for hPDI was extensive, particularly when
compared to that of either hBCATc or hBCATm. Labelling for hPDI was in
every section of the slide but was largely absent from white matter except for
occasional axonal labelling. Localisation of hPDI to mitochondria, in close
proximity to hBCATm suggests that the two proteins may interact in vivo. As

hBCAT have thiol isomerase activity and are expressed in the same brain
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cells as hPDI, these studies suggest that their redox role in cells may be

physiologically relevant.
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<hPDI
hBCATm?O

Figure 6. 20 Transmission electron microscopy showing PDI localisation to the
mitochondria of IMR-32 neuronal cells. IMR32 cells were fixed using 2%
formaldehyde and 0.2% paraformaldehyde, cells were then processed for sectioning at
the Wolfson bioimaging institute (University of Bristol). Sections were then treated with a
rabbit polyclonal antibody specific to hBCATm (PA1/10) (Insight biotechnologies,
Wembley, UK) and a mouse polyclonal antibody to PDI (1/10) (Abcam, Cambridge, UK)
as described in Method 3.6. Images were acquired using a Technai 12 (FEI) transmission
electron microscope at University of Bristol. Abbreviations: hBCATm — mitochondrial
branched chain aminotransferase, M — mitochondria, PDI — protein disulphide isomerase.
Scale bars: A, 200 nm.
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6.2 Investigation of protein alteration in Alzheimer’s disease

With the proposed role of the hBCAT proteins in glutamate signalling it was
hypothesized that their expression in diseases where glutamate toxicity
features, such as AD and MND, would be altered. As changes in the redox
environment is another key pathological mechanism of AD, the presence of
S-glutathionylated protein was also investigated. This was further correlated
with other variables such as tissue integrity (i.e. tissue pH, PM delay),
physiological factors (i.e. age, brain weight, sex), genetic factors (i.e. ACE
genotype, IRAP genotype, APOE genotype) and pathological features (i.e.
Braak stage, Tau %, AB %) to investigate what factors were associated with

hBCAT or S-glutathionylated protein expression.

The key features of AD pathology are amyloid deposition and hyper-
phosphorylated tau. The Braak staging system is a post-mortem
differentiation of AD pathology into seven stages of increasing severity of
neurofibrillary changes (0-VI) (Braak & Braak, 1991). The cohort database
was characterised by correlating Braak stage of the complete database
cohort with both AB average (%) and Tau average (%) of the temporal cortex.
Sections were labelled with antibodies raised to the AR peptide (or hyper
phosphorylated tau) and used for analysis of parenchymal AB load.
Parenchymal AB plaque load was calculated utilising Histometrix software,
driving a Leica microscope with a motorized stage, as percentage area of
cerebral cortex (measured in the temporal lobe) immunopositive for AR (or
tau) after manual editing for exclusion of AP-laden vessels. It was

demonstrated that both AB (Figure 6.21 A, p = 3.19 x10”, p +0.358) and
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Figure 6. 21 Scatterplots of Braak staging correlated with Amyloid 8 average (%)
and Tau average (%) of the temporal cortex. Sections were stained with the anti-AB or
anti-hyper phosphorylated tau antibody. Amyloid 8 and hyper phosphorylated tau average
(%) was calculated using Histometrix software, driving a Leica microscope with a
motorized stage, as the percentage area of cerebral cortex (measured in the temporal
lobe) immunopositive for AR senile plaques (M0872, Dako) or hyper phosphorylated tau
(BRO3, Autogen Bioclear). This work was carried out by the SWDBB. Data was then
analysed for significance using Spearman’s rho test in Minitab™.
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hyper phosphorylated tau (Figure 6.21 B, p = 8.32 x10%, p +0.623) positively
correlated with Braak stage, with hyper phosphorylated tau demonstrating

stronger correlation.

6.2.1 The effect of post-mortem delay and pH on hBCAT expression

Subject post-mortem delay is the length of time it takes from death to storage
of the tissue at -80°C. As post-mortem delay increases the proteins in the
sample degrade, however the speed of this degradation can vary wildly and
is likely to be specific to the protein (Siew et al., 2004). Subject post-mortem
delay has no correlation with either frontal expression of hBCATc (Figure
11.1 A, p = 0.632, p -0.055), frontal and temporal expression of hBCATm
(Figure 11.2 A, p = 0.620, p -0.056 and Figure 11.2 B, p = 0.419, p -0.092
respectively) or temporal expression of S-glutathionylated proteins (Figure

11.3 B, p = 0.937, p -0.014).

The post mortem delay was mimicked in individual subjects by extracting
tissue from the frontal cortex of frozen brain sections and storing them at 4°C
for increasing time points (representing post-mortem delay). Western blot
analysis demonstrated a 10% decline in hBCATc expression with 72 hour
post-mortem delay (Figure 6.22 A, Figure 6.23 A). Expression of hBCATm
also demonstrated a larger effect of 15% decrease in expression (Figure 6.22
B, Figure 6.23 B). However, it should be noted that the post-mortem delay
was on average 4.5 hours longer in the AD cohort compared to the control

cohort. This implies that a supposed detrimental effect on expression caused
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Figure 6. 23 Scatterplots of frontal hBCATc and hBCATm protein levels with
increasing PM delay (n' = 2, n® = 2). Frontal cortex tissue was acquired from South
West Dementia Brain Bank. PM delay was mimicked by the cutting of frozen tissue and

then leaving the tissue aTt 4°C (to mirror morgue conditions). The density of bands were

M
measured using ImageJ
and expressed relative to the density for GAPDH.

experiments were then averaged. Abbreviations: PM — post mortem.

software (Wayne Rasband, National Institute of Health, USA)
The results from two PM delay
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by post-mortem delay could potentially lower the AD cohort levels and mask

slight increases in expression.

To further investigate tissue quality, tissue pH was investigated, with
decreased pH associated with poorer quality tissue (Stan et al., 2006).
However this decrease in tissue quality is not associated with a decrease in
protein degradation but mRNA degradation. Frontal cortex tissue was
homogenised in a neutral buffer and the pH was measured. However in this
study, none of the variables investigated correlated with tissue pH (Figure
11.4, Figure 11.5, Figure 11.6). This is likely due to the more stable nature of

proteins when compared to mRNA.

6.2.2 Effect of AD on hBCAT protein expression

Alzheimer’'s disease is an age related neurodegenerative disorder. This
pathology follows a characteristic pathway, starting in the hippocampus and
progressing to the temporal and frontal cortex. Protein density of hBCATCc,
hBCATm and S-glutathionylated proteins was calculated utilising ImageJ™
software (Wayne Rasband, National Institute of Health, USA) and these
protein levels were normalised relative to GAPDH. This was used as an
internal control as GAPDH levels have been used previously as a loading
control in this disease and appears to have unaltered expression in AD
(Grathwonhl et al., 2009; Hebert et al.,, 2008; Smith et al., 2006). Frontal
protein expression of hBCATc was increased in AD subjects by 32%, when

compared to matched controls but was not mirrored in the temporal cortex

and also did not reach significance (Figure 6.24 A, Figure 6.25 A, p = 0.079
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Figure 6. 25 Boxplots of frontal and temporal hBCATc protein levels in AD subjec%

compared to matched controls. The density of bands were measured using ImageJ
software (Wayne Rasband, National Institute of Health, USA) and expressed relative to
the density of GAPDH. Data was then analysed for significance using a two way anova

test in Minitab™.

median (horizontal line within the interquartile range).

Panels show interquartile range (box) sample range (whiskers) and the
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and Figure 6.24 A, Figure 6.25 B, p = 0.357 respectively). However, protein
expression of hBCATm was significantly increased in the frontal and
temporal cortex by 117% and 143%, respectively relative to age and gender
matched control subjects (Figure 6.24 B, Figure 6.26 A, p = 2.29 x 10* and
Figure 6.24 B, Figure 26 B, p = 7.70 x 10®). Furthermore, levels of S-
glutathionylated protein were observed to be significantly decreased by 36%
in AD compared to controls in the frontal cortex (Figure 6.27 A, Figure 6.28
A, p = 0.023). However, the decrease of 10% observed in the temporal

cortex did not reach significance (Figure 6.27 B, Figure 6.28 B, p = 0.580).

In summary, increased levels of hBCATm by over 140% indicates that this
protein may have a role in the regulation of brain glutamate through
metabolism in the endothelial cells in AD. An increase of hBCATc was also
observed within the frontal cortex, although this did not reach statistical
significance. It is probable that this would impact neuronal glutamate pool
within neuronal cells. Furthermore, the decreased level of S-glutathionylated
proteins potentially relates to a decrease in free GSH occurring in AD, rather

than a decreased rate of S-glutathionylation (Bermejo et al., 2008).

6.2.3 Effect of MND on hBCAT protein expression

The disease MND is a rapidly progressive neurodegenerative disease
characterised by progressive muscle weakness, muscle atrophy and difficulty
breathing. The defining pathology of MND is a loss of upper and lower motor

neurons of the motor cortex (Deng et al., 2011). Individuals with MND have
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Figure 6. 26 Boxplots of frontal and temporal hBCATm protein levels in AD
subjects compared to matched controls. The density of bands were measured using

ImageJTM software (Wayne Rasband, National Institute of Health, USA) and expressed
relative to the density for GAPDH. Data was then analysed for significance using a two
way anova test in Minitab™. Panels show interquartile range (box) sample range
(whiskers) and the median (horizontal line within the interquartile range).
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Figure 6. 28 Box plots of frontal and temporal glutathionylated protein levels in AD
subjects compared to matched controls. The density of bands were measured using

Image\]TM software (Wayne Rasband, National Institute of Health, USA) and expressed
relative to the density for GAPDH. Data was then analysed for significance using a two
way anova test in Minitab™. Panels show interquartile range (box) sample range
(whiskers) and the median (horizontal line within the interquartile range).
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higher levels of glutamate in their serum and spinal fluid (Al-Chalabi et al.,
2000). This led to the hypothesis that hBCAT is altered in this disease and a
pilot study investigated if the effect on hBCAT expression was mirrored in
other diseases where glutamate was a pathological mechanism or whether
the effect was specific to AD. It was demonstrated that overall levels of
hBCATc were non-significantly increased by 18% (Figure 6.29 A, Figure 6.30
A, p = 0.529) and levels of h(BCATm were non-significantly increased by 38%
(Figure 6.29 B, Figure 6.30 B, p = 0.548) in MND motor cortex samples
compared to controls. This indicates that either the sample set is too small to
detect the difference (significantly) between MND and controls, or that
expressional alteration to the hBCAT protein is unique to AD. It should be
noted that the samples were gender matched, however the control cohort
was on average 4.4 years older and the post-mortem delay 4 hours shorter.
It should also be noted that one of the MND control cases also had mild
Braak pathology. When this study is expanded upon in the future it is
necessary that all controls are absent of Braak pathology and appropriately
age, gender and PM delay matched (at least in terms of the complete cohort)

— in part due to what has been demonstrated in this work.

6.2.4 Distribution of the hBCAT proteins in AD compared to controls

To evaluate the increased expression of hBCAT demonstrated utilising
Western blot analysis, immunohistochemistry was used. The aims of
immunohistochemistry analysis were (i) to evaluate the cellular distribution of
the increased expression observed using Western blot analysis and (ii) to

evaluate expression in the hippocampus. It is known that neuronal, glial and
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Figure 6. 30 Interval plots of motor cortex hBCATm and hBCATc protein expression
in MND subjects compared to matched controls. The density of bands was measured

using ImageJ software (Wayne Rasband, National Institute of Health, USA) and
expressed relative to the density for GAPDH. Data was then analysed for significance
using an unpaired t-test in Minitab™. Interval plots show 95% confidence interval and the
mean.
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vascular cells all have different roles in AD pathology with neuronal pathology
initiating in the hippocampus in a well-defined manner but both vascular and
glial abnormalities considered prior events. Therefor it is appropriate to
observe which cell type contain hBCATm and whether a new cell type is

observed in AD pathology.

In the hippocampal region, labelling for hBCATc in AD sections was
pronounced relative to the equivalent section from control subjects in both
the CA4 (Figure 6.31 A, Figure 6.31 F, Figure 6.35, p = 0.026) and the CAl
region (Figure 6.31 B, Figure 6.31 G, Figure 6.35, p = 0.011); with no
observable increase in labelling within the temporal cortex (Figure 6.31 C-
E+H-J, Figure 6.32, Figure 6.35, p = 0.496). Increased presence of hBCATm
labelling in the vasculature relative to matched controls was also noted within
the CA4 region of the hippocampus (Figure 6.33 A+E). For hBCATm the
increase in expression was observed in the vasculature of AD subjects in the
temporal cortex (but also throughout the brain), where the expression of
hBCATm was pronounced in AD subjects relative to control subjects (Figure
6.33, Figure 6.34, Figure 6.35, p= 0.025). These results demonstrate that
the increased expression of hBCATm is not occurring in a new cell type but
remains restricted to the vasculature. It is also proposed that hBCATc
expression in the hippocampus is increased in AD subjects relative to

controls.
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Figure 6. 32 Neuronal staining of hBCATc in the temporal cortex of AD and control
individuals (n' = 60, n® = 30). Panel A: hBCATc staining in a control subject. Panel B:
hBCATCc staining in an AD subject. Panel C: Antigen incubation of serial section of B, at
200X molar excess. Scale bar: A, B and C, 50 uM.
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Figure 6. 34 Vessel staining of hBCATm in temporal cortex of AD and control
individuals (n' = 60, n® = 30). Panel A: hBCATm staining in a control subject. Panel B:
hBCATm staining in an AD subject. Panel C: Antigen incubation of serial section of B, at
200X molar excess. Scale bar: A, B and C, 50 uM.
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Figure 6. 35 Histograms of temporal and hippocampal hBCATc and hBCATm
protein level scores in AD subjects compared to matched controls (n' = 60, n® = 30).
The staining score of cell types were repeated by another individual for consistency and
analysed for significance using Wilcoxon-Mann-Whitney test in Minitab™.
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In conclusion, this work demonstrates that increased expression observed
using Western blot analysis was not occurring in a new cell type — hBCATm
expression remained vascular in nature and the increased expression was
replicated in this work. It is further observed that hBCATc expression was
significantly up-regulated in the hippocampus of AD subjects relative to
controls and this may have pathological implications for BCAA metabolism

and glutamate production in AD.

6.2.5 Correlation of hBCATc, hBCATm and S-glutathionylated protein to
key physiological and genetic factors

Relative densitometry was comparable across Western blots, therefore
expression of hBCATc, hBCATm and S-glutathionylated protein were
compared to data stored at the SWDBB. For AD it is already known that the
greatest risk factor is age, with increasing age increasing the risk of AD
(Lindsay et al., 2002). Further to age, the most common risk factors include
gender, levels of education and APOE genotype (Launer et al., 1999;
Lindsay et al., 2002). For gender it appears that females are at greatest risk
of AD pathology although it is suspected that this increase in incidence of AD
was due to the increased life expectancy associated with females (Hebert et
al., 2000). Molecular genetics has revealed risk factors for sporadic AD in
the form of alipoprotein E (APOE), BIN1, CLU, CR1 and PICALM genotype in
addition to positive family history (Bertram et al., 2010). The strongest
association is with the APOE genotype, the €4 genotype associated with an
increased risk of AD by approximately 4-fold (reviewed by Brouwers et al.,

2008). Finally, increasing age is associated with a decrease in brain weight.
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This decrease is exacerbated in AD and is thought to relate to a functional

loss of brain mass (Fox & Schott, 2004).

Age is the largest risk factor for AD (Lindsay et al., 2002). Increasing age
increases the risk of AD due to an increased oxidative stress associated with
aging and the key role oxidative stress is thought to play in disease
manifestation. Although a negative correlation between hBCATc expression
in the frontal cortex and age was observed (Figure 6.36 A, p = 0.004, p -
0.342) there was no significant correlation between hBCATc or hBCATm
expression in the temporal region or the frontal region for hBCATm (Figure
6.36, p = 0.305, p -0.120 B; Figure 6.37 A, p = 0.137, p +0.168 and Figure
6.37 B, p = 0.142, p +0.166 respectively). However, levels of S-
glutathionylated protein significantly increased with age in both the frontal
and temporal region (Figure 6.38 A, p = 0.012, p +0.354 and Figure 6.38 B, p
= 0.042, p +0.340 respectively). It is probable that this correlation is related
to the oxidative stress associated with ageing. It follows that this increased
S-glutathionylated protein levels would correlate with a decrease in free S-

glutathione levels observed in the aged brain.

Brain weight showed no correlation with frontal and temporal hBCATc (Figure
6.39 A, p = 0.658, p -0.055 and Figure 6.39 B, p = 0.777, p -0.034) or S-
glutathionylated (Figure 11.7 A, p = 0.350, p -0.141 and Figure 11.7 B, p =
0.997, p -0.00073) protein levels but negatively correlated with hBCATm
expression (Figure 6.40 A, p = 9.3 x 10, p-0.438 and Figure 6.40 B, p = 2.3

x 103, p-0.349). This implies a physiological relationship between hBCATm
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Figure 6. 36 Scatterplots of frontal and temporal hBCATc protein levels correlated

™
with age. The density of bands were measured using ImageJ software (Wayne
Rasband, National Institute of Health, USA) and expressed relative to the density for

GAPDH.
Minitab™.

Data was then analysed for significance using Spearman’s rho test in
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Figure 6. 37 Scatterplots of frontal and temporal hBCATm protem levels correlated

with age. The density of bands were measured using ImageJ software (Wayne
Rasband, National Institute of Health, USA) and expressed relative to the density for
GAPDH. Data was then analysed for significance using Spearman’s rho test in
Minitab™.
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Figure 6. 38 Scatterplots of frontal and temporal glutathionylated proTtSin levels

correlated with age. The density of lanes were measured using ImageJ software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Spearman’s rho test in
Minitab™.
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Figure 6. 39 Scatterplots of frontal and temporal hBCATc protein IeveIsTﬁ:ﬂorreIated

with brain weight.

The density of bands were measured using ImageJ

software

(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Spearman’s rho test in

Minitab™.
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Figure 6. 40 Scatterplots of frontal and temporal hBCATm protein levels correlated

™
with brain weight. The density of bands were measured using ImageJ software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Spearman’s rho test in
Minitab™.
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and brain weight; however it may also be related to the progression of AD or
the aging process itself (i.e. increased AD or age progression, decreased

brain mass due to atrophy, increased hBCATm expression).

Females are at additional risk of AD than males, although this is not the
largest of predisposing factors (Launer et al., 1999). Differences in
female/male expression of hBCATc, hBCATm or S-glutathionylated protein
reached significance in one instance —frontal expression of hBCATm was
increased by 71% in females (Figure 6.42 A, p = 0.010). It was further noted
that frontal and temporal hBCATc was non-significantly 25% and 11% higher
in males respectively (Figure 6.41 A, p = 0.179 and Figure 6.41 B, p = 0.471
respectively) with S-glutathionylated protein consistently higher in females by
26% and 8% respectively (Figure 6.43 A, p = 0.122 and Figure 6.44 B, p =

0.905).

Genetic factors currently linked with AD pathology or possible treatment
include Angiotensin converting enzyme (ACE), insulin regulated amino-
peptidase (IRAP) and Alipoprotein E (APOE) genotypes and were correlated
with hBCAT expression. In addition to this, family history of AD was also
correlated with hBCAT expression as a positive family history is a
predisposing factor to the disease (Lindsay et al., 2002). The ACE protein
converts angiotensin | to angiotensin Il which constricts vessels but there is
also evidence that the protein can cleave AB. The ACE genotype is
separated into D (deletion) allele and I (insertion) allele, with | associated with

a lower activity of the ACE protein and a higher risk of AD (Zhang et al.,
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Figure 6. 41 Interval plot of frontal and temporal hBCATc protein levels in females

compared to males. The density of bands were measured using ImageJTM software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using an unpaired t-test in
Minitab™.
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Figure 6. 42 Interval plot of frontal and temporal hBCATm protein IeveIsTihr} females

compared to males. The density of bands were measured using ImageJ software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using an unpaired t-test in
Minitab™.
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Figure 6. 43 Interval plot of frontal and temporal glutathionylated protein levels in

females compared to males. The density of lanes were measured using ImageJTM
software (Wayne Rasband, National Institute of Health, USA) and expressed relative to
the density for GAPDH. Data was then analysed for significance using an unpaired t-test
in Minitab™.
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Figure 6. 44 Individual value plots of frontal and temporal hBCATc protein levels

with ACE genotype. The density of bands were measured using ImageJ software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Kruskal-wallis test in
Minitab™. Abbreviations: ACE — angiotensin converting enzyme, D — absent ACE allele
insertion, | — present ACE allele insertion.
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2003). The inheritance of one | allele results in a 2.43 increased observed
risk of AD (reviewed by Kehoe, 2003). It was however not associated with

the variables considered in this study (Figure 6.44, Figure 6.45, Figure 11.8).

The IRAP gene codes for the insulin responsive aminopeptidase enzyme
which was first described as a Glut4 vesicle marker protein. The IRAP
proteins proposed function is to decrease the degradation of Glut4 (Abel et
al.,, 2004). So far no genotype of IRAP has been associated with AD;
however the enzyme has been associated with improved cognition so the
genotype may still be associated with AD mechanisms in the future (Chai et
al., 2004). However, this variable did not correlate with alteration in hBCATCc,
hBCATm or S-glutathionylated protein levels (Figure 6.46, Figure 6.47,

Figure 11.9).

The APOE genotype has the clearest association with AD. With an observed
risk of 3.98, the €4 has the largest positive association with AD and the €2
allele is considered protective (Corder et al., 1994; Sadigh-Eteghad et al.,
2012). In the human population the frequency of the €2, €3 and €4 alleles are
8.4%, 77.9% and 13.7% respectively, but in AD they are 3.9%, 59.4% and
36.7%, representing a strong €4 association in AD (e4€4 genotype results in
an increased observed risk of 14.9) (Farrer et al., 1997). No effect of APOE
genotype was observed except for one instance where APOE €4¢4 genotype
was associated with a higher expression of the hBCATm protein in the
temporal cortex (Figure 6.49 A, p = 0.047) with the frontal cortex (Figure 6.49

B, p = 0.230) similarly increased (Figure 6.48, Figure 6.49, Figure 11.10).
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Figure 6. 45 Individual value plots of frontal and temporal hBCATm proTt’&:‘in levels

with ACE genotype. The density of bands were measured using ImageJ  software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Kruskal-wallis test in
Minitab™. Abbreviations: ACE — angiotensin converting enzyme, D — absent ACE allele
insertion, | — present ACE allele insertion.
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Figure 6. 46 Individual value plots of frontal and temporal hBCATc protein levels

with IRAP genotype. The density of bands were measured using ImageJTM software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density

Data was then analysed for significance using Kruskal-wallis test in
Abbreviations: A — A allele, G — G allele, IRAP — Insulin responsive
aminopeptidase.

for GAPDH.
Minitab™.
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Figure 6. 47 Individual value plots of frontal and temporal hBCATm protein levels

with IRAP genotype. The density of bands were measured using ImageJTM software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Kruskal-wallis test in
Minitab™.  Abbreviations: A — A allele, G — G allele, IRAP — Insulin responsive
aminopeptidase.
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Figure 6. 48 Individual value plots of frontal and temporal hBCATc pro%ain levels

with APOE genotype. The density of bands were measured using ImageJ  software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Kruskal-wallis test in
Minitab™. Abbreviations: 2 — e2 allele, 3 — e3 allele, 4 — e4 allele, APOE — alipoprotein.
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Figure 6. 49 Individual value plots of frontal and temporal hBCATm protein levels

with APOE genotype. The density of bands were measured using ImageJTNI software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Kruskal-wallis test in
Minitab™. Abbreviations: 2 — e2 allele, 3 — €3 allele, 4 — e4 allele, APOE — alipoprotein.
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Positive family history is another correlative factor of AD, with one first
degree relative increasing the relative risk to 3.5 and two further increasing
the relative risk to 7.5 (Van Duijn et al., 1991). The role of family history was
consistent, with frontal and temporal hBCATc protein levels non-significantly
decreased by 25% and 11% respectively (Figure 11.11 A, p = 0.448 and
Figure 11.11 B, p = 0.705 respectively) and hBCATm protein levels non-
significantly decreased by 30% and 12% respectively (Figure 11.12 A, p =
0.133 and Figure 11.12 B, p = 0.372) in individuals without a family history of
AD. These results suggest that the increased expression of h(BCATm in AD
is not predominantly caused by a genetic factor although some genetic

characteristics appear to affect hABCATm.

6.2.6 Correlation of hBCATc, hBCATm and S-glutathionylated protein to
key pathological features of AD

It was a sub-aim of specific aim 2 to correlate the hBCAT and S-
glutathionylated protein levels with key features of AD. These features
included Braak stage, disease duration, hyper phosphorylated tau average
(%), soluble and insoluble AB, small vessel disease, perineuronal net and
parvalbumin positive neurons. There was a small positive correlation
between frontal hBCATc protein levels and Braak stage but this was not
replicated within the temporal cortex and did not reach significance (Figure
6.50 A, p = 0.062, p +0.224 and Figure 6.50, p = 0.902, p +0.015 B
respectively). However, there was a positive correlation of hBCATm
concentration with increasing Braak stage in the frontal and temporal cortex

(Figure 6.51 A, p = 1.2 x 10®, p +0.468 and Figure 6.51 B, p = 3.4 x 10,
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Figure 6. 50 Scatterplots of frontal and temporal hBCATc protein levels correlated

™
with Braak stage. The density of bands were measured using ImageJ software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Spearman’s rho test in
Minitab™.
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Figure 6. 51 Scatterplots of frontal and temporal hBCATm protein levels correlated

™
with Braak stage. The density of bands were measured using ImageJ software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Data was then analysed for significance using Spearman’s rho test in
Minitab™.
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p+0.391 respectively), and a decrease of S-glutathionylated protein (Figure
11.13 A, p = 0.038, p -0.351 and Figure 11.13 B, p = 0.147, p -0.237
respectively), rather than altered protein levels correlating with disease onset.
However, no variable correlated to disease duration (Figure 11.14, Figure
11.15, Figure 11.16). Disease duration is difficult to account for due to the
variable time of the diagnosis and the varied rate of progression of AD. It is
therefore considered that Braak staging is a better estimation of disease

progression.

Relating to AD pathology, it was observed that Tau (%) positively correlated
with hBCATm in the frontal cortex (Figure 6.53 A, p = 0.029, p +0.405) but
not with other variables (Figure 6.52, Figure 6.53, Figure 11.17). Other key
pathological events in AD, such as the production of soluble and insoluble
AB, also correlated (at least partially) with hBCATm expression but not
hBCATc (except in one instance) or S-glutathionylated protein levels (Figure
6.54, Figure 6.55, Figure 11.18, Figure 6.56, Figure 6.57, Figure 11.19).
Expression of hBCATm in the frontal and temporal cortex positively
correlated with both soluble (Figure 6.55 A, p = 0.355, p +0.193 and Figure
6.55 B, p = 0.042, p+0.409 respectively) and insoluble amyloid (Figure 6.57
A, p =0.0023, p +0.506 and Figure 6.57 B, p = 0.248, p +0.203 respectively).
Expression of hBCATc was only observed to correlate in the frontal cortex

with soluble AB (Figure 6.54 A, p = 0.024, p -0.434).

Small vessel disease score is (similar to Braak stage) a progressing system

(O-111) to measure disease of the small vessels. This is not unique to AD and
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Figure 6. 52 Scatterplots of frontal and temporal hBCATc protein levels correlated

with Tau average (%). The density of bands were measured using ImageJTNI software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Hyper phosphorylated tau average (%) was calculated using Histometrix
software, driving a Leica microscope with a motorized stage, as the percentage area of
cerebral cortex (measured in the temporal lobe) immunopositive for hyper phosphorylated
tau (BR0O3, Autogen Bioclear). Data was then analysed for significance using Spearman’s

rho test in Minitab™.
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Figure 6. 53 Scatterplots of frontal and temporal hBCATm protein levels correlated

with Tau average (%). The density of bands were measured using ImageJTNI software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Hyper phosphorylated tau average (%) was calculated using Histometrix
software, driving a Leica microscope with a motorized stage, as the percentage area of
cerebral cortex (measured in the temporal lobe) immunopositive for hyper phosphorylated
tau (BRO3, Autogen Bioclear). Data was then analysed for significance using Spearman’s
rho test in Minitab™.
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Figure 6. 54 Scatterplots of frontal and temporal hBCATc protein levels correlated

with soluble AB. The density of bands were measured using Image\]TM software (Wayne
Rasband, National Institute of Health, USA) and expressed relative to the density for
GAPDH. Soluble AB was measured by sandwich ELISA on frontal homogenate extract
that was soluble in detergent (1% NP-40). Data was then analysed for significance using
Spearman’s rho test in Minitab™.
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Figure 6. 55 Scatterplots of frontal and temporal hBCATm proteiqwlevels correlated

with soluble AB. The density of bands were measured using ImageJ

software (Wayne

Rasband, National Institute of Health, USA) and expressed relative to the density for
GAPDH. Soluble AB was measured by sandwich ELISA on frontal homogenate extract
that was soluble in detergent (1% NP-40). Data was then analysed for significance using

Spearman’s rho test in Minitab™.
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Figure 6. 56 Scatterplots of frontal and temporal hBCATc protein levels correlated

with insoluble AB. The density of bands were measured using ImageJTM software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Insoluble AR was measured by sandwich ELISA on frontal homogenate
extract that was insoluble in detergent (1% NP-40), but was soluble upon guanidine HCI
extraction. Data was then analysed for significance using Spearman’s rho test in
Minitab™.
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Figure 6. 57 Scatterplots of frontal and temporal hBCATm protein levels correlated

with insoluble AB. The density of bands were measured using Image\]TM software
(Wayne Rasband, National Institute of Health, USA) and expressed relative to the density
for GAPDH. Insoluble AR was measured by sandwich ELISA on frontal homogenate
extract that was insoluble in detergent (1% NP-40), but was soluble upon guanidine HCI
extraction. Data was then analysed for significance using Spearman’s rho test in
Minitab™.
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occurs in other diseases such as vascular dementia. Small vessel disease
score positively correlated with frontal and temporal hBCATm (Figure 6.59 A,
p = 0.154, p +0.239 and Figure 6.59 B, p = 0.019, p +0.353 respectively) but
no other variables (Figure 6.58, Figure 6.60), despite hBCATm not solely
restricted to the smaller vessels. Finally, despite the fact that perineuronal
net and parvalbumin positive neurons are decreased in AD no variable
correlated with either (Baig et al., 2005; Satoh et al., 1991) (Figure 11.20,

Figure 11.21, Figure 11.22).

In summary, this work demonstrates increased hBCATm expression in the
frontal and temporal cortex of AD compared to matched controls. This
increased expression was localised to the vasculature, with an additional
increase in hBCATCc in hippocampal neurons also observed. Levels of S-
glutathionylated proteins were observed to be decreased in AD compared to
matched controls. It is expected that this related to an increased oxidative
stress and a decreased presence of free S-glutathione occurring in diseased
tissue. The effect of genetics on variables studied demonstrated singular
significance in the APOE genotype (increase hBCATmM expression
associated with €4¢4 genotype). By far the strongest correlative factor for
hBCATm expression was Braak staging, with soluble A, insoluble AB, small
vessel disease score and tau (%) also strongly correlating. These results
suggest that hBCATm expression is correlating with the pathology of the
disease, rather than the onset of the symptoms. It is already known that

alterations to the vasculature are early events in dementia pathology but this
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work also suggests a possible role for BCAA and glutamate metabolism

(reviewed by Torre, 2004).
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Figure 6. 58 Scatterplots of frontal and temporal hBCATc protein levels correlated
with small vessel disease (SVD) score. The density of bands were measured using

™
ImageJ software (Wayne Rasband, National Institute of Health, USA) and expressed
relative to the density for GAPDH. Data was then analysed for significance using
Spearman’s rho test in Minitab™. Abbreviations: SVD — small vessel disease.
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Figure 6. 59 Scatterplots of frontal and temporal hBCATm protein levels correlated
with small vessel disease (SVD) score. The density of bands were measured using

™
ImageJ software (Wayne Rasband, National Institute of Health, USA) and expressed

relative to the density for GAPDH.

Data was then analysed for significance using
Spearman’s rho test in Minitab™. Abbreviations: SVD — small vessel disease.
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Figure 6. 60 Scatterplots of frontal and temporal glutathionylated protein levels
correlated with smalln\n/essel disease (SVD) score. The density of lanes were

measured using ImageJ software (Wayne Rasband, National Institute of Health, USA)
and expressed relative to the density for GAPDH. Data was then analysed for
significance using Spearman’s rho test in Minitab™. Abbreviations: SVD — small vessel
disease.
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6.3 Functional analysis of hBCAT in the neuroblastoma cell line IMR32

Increased hBCAT expression could potentially lead to an increase in
metabolites such as leucine, glutamate, or BCKASs. The human
neuroblastoma cell line IMR32 were incubated in a time and concentration
dependant manner to observe the effect of metabolites on cell morphology
and viability. Previous work has demonstrated hBCATc association with a
cell surface receptor protein (sodium channel type 10 a-subunit) therefore a
method for flow cytometry analysis was developed and demonstrated cell
surface expression of hBCATc (Coles et al., 2009). This was further
investigated with regards to receptor function. Finally, an hBCAT
radioactivity assay was developed for cultured cells and this was compared

with results obtained via Western blot analysis.

6.3.1 Neuroblastoma cell line IMR32 is sensitive to glutamate and KIC

Glutamate is the major excitatory neurotransmitter of the human brain and
has a vital role in learning and memory. The concentration of glutamate
within the human brain is 5-15 mM with the vast majority localised at nerve
terminals inside synaptic vesicles. The extracellular concentration is much
lower (3-4 uM) with signalling concentrations usually less than 1 mM
(Danbolt, 2001). Ketoisocaproate is the keto acid of leucine when
metabolised by BCAT. Concentrations of KIC are usually less than 1 mM,
but capable of reaching 10 mM in MSUD (Tavares et al., 2000; Zielke et al.,
1997). Cells were treated with toxic levels of both glutamate and KIC to

determine the morphological effects of glutamate and KIC on the IMR32
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cells, and phase-contrast microscopy was used to morphologically examine

cell treatments.

It was examined if the toxicity of glutamate (at 12 mM) was impacted by the
metabolic environment. Decreasing serum from 20% to 10% or 0% in the
media had a detrimental effect on IMR32 cell number and morphology, as did
the addition of 2 mM glutamine (Figure 6.61 A-D). However, the use of
EMEM over RPMI demonstrated little effect on overall cell morphology with
12 mM glutamate insult (Figure 6.61 E). The effect of varying concentrations
of KIC was measured over time on IMR32 cell morphology and at 4 mM KIC
a growth inhibitory effect was observed at 24 and 72 hours (Figure 6.62
A+B), with 8 and 12 mM concentrations causing significant deleterious

effects to cell morphology and number (Figure 6.62 C+D).

Even modestly uncontrolled MSUD can lead to increased BCKA
concentration (similar to that observed in this work), long term neurological
impairment and reduced 1Q scores. Likewise, stroke and other neuronal cell
death events can subject the surrounding tissue to large amounts of pooled
glutamate (up to 12 mM). The fact that glutamate toxicity is ameliorated with
serum concentrations of 10 and 20%, and exacerbated with the presence of
2 mM glutamine implies that glutamate is directly toxic but other factors
define the full effect. For example, the detrimental effect of 2 mM glutamine
can be attributed to the decreased capacity to convert glutamate to the

(relatively) physiologically inert glutamine within the cell through enzymes
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such as glutaminase. Serum likely protects cells by the sequestration of

glutamate or promotes cell survival via growth factors.

6.3.2 Investigation of IMR32 cell line differentiation

Human IMR32 cells are adherent neuroblast cells derived from a 13 month
old Caucasian neuroblastoma (Tumilowicz et al., 1970). These cells are thus
undifferentiated and not truly neuronal cells. Therefore, cellular
differentiation of the IMR32 neuroblastoma cell line was investigated for the
best morphological and expressional characteristic of the hBCATc protein. In
the undifferentiated state IMR32 cells do not possess neuronal morphology;
they also have an altered expression of hBCATc — with the presence of an
additional undefined 35 kDa band likely the product of a splice variant.
Phase-contrast microscopy was again used to determine the best
morphological differentiation of five commonly used differentiation treatments

and Western blot was used for expressional analysis.

Treatments such as 1 mM dibutyryl cCAMP + 10 pg/mL Papaverine and 1 mM
dibutyryl cAMP + 4 uM 5-bromo-2’-deoxyurisine (in the serum deprived
medium) caused substantial neuronal loss (Figure 6.63 A+El). The
differentiation in media containing FCS had a larger cell number; however
morphological characteristics were improved in the absence of FCS (Figure
6.63). The best morphological differentiation condition was considered to be
2 mM sodium butyrate in serum deprived medium, as IMR32 cells were

morphologically similar to adult neurons, and neuronal clusters were
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numerous and interconnected (Figure 6.63 D1). Western blot analysis was
also performed on these cell treatments and it was observed that in the
presence of serum, two distinct bands for hBCATc were consistently
observed (Figure 6.64 A). In the serum deprived state, despite the decrease
in the overall level of hBCATc, 10 UM retinoic acid + 1 mM dibutyryl cAMP
and 2 mM sodium butyrate in serum deprived medium treatment resulted in a
loss of the 50 kDa band (Figure 6.64 B). This loss of the 50 kDa band makes
the Western blot comparable between that observed at cell culture and that
in human cortex homogenates. This indicates that, at least in the context of
morphology and hBCATc protein expression, 2 mM sodium butyrate
improves differentiation of neurons compared to other treatments used.
Sodium butyrate is the sodium salt of butyric acid and promotes
differentiation of cell cultures by the alteration of gene expression and histone
hyper acylation (Candido et al., 1978; Davie, 2003; Kruh, 1981). These
experiments imply that nutrient signals, possibly even relating to nutrient

deprivation, are necessary for the differentiation of these neurons.

6.3.3 Investigation of cell surface expression of hBCATc

Previous work by this group using confocal microscopy alluded to the
presence of hBCATc close to or at the cell surface of IMR32 cells. Also,
hBCATc has seven possible N-myristoylation sites (prosite.expasy.org).
However, the functional relevance of these sites has so far not been
investigated and the presence of hBCATc at the cell surface has yet to be
considered in other work. These experiments were performed to confirm that

hBCATc has cell surface expression and to investigate whether the
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metabolites glutamate and leucine affected this expression. Flow cytometry
confirmed the presence of hBCATc at the cell surface membrane with both
primary and secondary antibodies having a concentration dependant effect
(Figure 6.65). Cell detachment methods were investigated to increase the
live cell population compared to that of the cell scraping technique, in
addition to see if detachment treatments improved the detectable levels of

cell surface hBCATc expression.

The first experiment demonstrated that Trypsin increased the live cell
population by 65% when compared to scraping. It was also observed that
this moderately improved median fluorescence for cell surface hBCATc by
21% (Figure 6.66 A+D). Citrate and Dispase 2 detachment methods also
improved cell survival by 51% and 19% respectively, and median
fluorescence compared to scraping but to a lesser degree than Trypsin
(Figure 6.66 B+C). Cell surface detachment methods were further
investigated with a trial of the Split Kits from Sera Labs (Crawley Down, UK).
The weak, medium and strong Split Kits all improved cell survival compared
to scraping by 47%, 69% and 121% respectively. The weak Split Kit caused
a decrease in median fluorescence observed by 35%, whereas the medium
and strong Split Kits both improved median fluorescence significantly by 17%
and 62% respectively (Figure 6.67). Although experiments demonstrated
that the strong Split Kit improved cell survival in this technigue, at the time of
experimentation they were not available for continued purchase. For all

future experiments Trypsin was used.
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Next it was investigated whether cell surface hBCATc expression was
specific to IMR32 cells or whether this was a characteristic held by other cell
types. Despite the neuronal specificity of hBCATc, the presence of hBCATc
in immortal/ rapidly proliferating cells has been observed (Zhou et al., 2013).
For this the cell lines Jurkat (T cell leukaemia cell line), PC3 (prostate cancer
cell line), U261 (myeloma cell line), RPMI (myeloma cell line) and Jim3
(myeloma cell line) were used. Flow cytometry data demonstrates that live
cell surface hBCATc expression is unique to IMR32 cells when compared to
these cell lines (Figure 6.68). However, when investigating Pl positive cells
hBCATc cell surface expression is indeed present in a subpopulation of
U261, RPMI and Jim3 cells (Figure 6.69). This raises the possibility of cell

surface hBCATc expression triggered by apoptosis processes in these cells.

Finally, it was investigated whether two key substrates of hBCATc (glutamate
and leucine) altered cell surface expression of hBCATc and (in the case of
glutamate) whether time had an effect on this altered expression. It was
demonstrated that 10 and 20 mM glutamate caused a decrease in cell
surface hBCATc expression after a 30 minute treatment, with a decrease in
median fluorescence of 8% and 45% respectively (Figure 6.70). Contrary to
this, 24 hour treatment (10 mM and 20 mM glutamate again) caused an
overall increase in median fluorescence of 59% and 76% respectively (Figure
6.71). The effect of leucine was modest in comparison, with 24 hour
treatments with 20 mM and 40 mM causing an increase in median
fluorescence of 27% and 12% respectively (Figure 6.72). The immediate

initial decrease of cell surface hBCATc upon 30 minute glutamate treatment
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implies that the hBCATCc is acting as a receptor, internalising upon glutamate
binding. Longer treatments of 24-hours of both glutamate and leucine are
likely the result of a self-propagating mechanism. In this context it is
probable that the hBCATc is acting as a receptor sensing external

concentrations of either the BCAAs or glutamate.

6.3.4 Expression and activity of hBCAT in the IMR32 cell line

The cytokines TNFa and IL1a are both involved in systemic inflammation and
were investigated for an effect on hBCAT expression and activity due to their
association with AD (Griffin & Mrak, 2002; Swardfager et al., 2010). For
example, IL1 overexpression in the brains of AD subjects has been observed
to relate directly to the development and progression of neuropathological
changes in AD (Griffin & Mrak, 2002). It has been further observed that
TNFa levels are increased in AD and it is probable that these increased
levels, along with increased IL1, represent a low level immune response
occurring throughout the AD process (Swardfager et al., 2010). Expressional
analysis of human samples observed that h(BCATm levels were 70% higher
in the frontal cortex in females compared to males; therefore a key gender
related hormone, 17 oestradiol, was used to see if this mediated change in
hBCAT expression. A radioactivity assay was developed to measure the
activity of hBCAT within IMR32 cell lysates. Intermediates of hBCAT, along
with insulin and TNFa were used to observe the effect on hBCAT activity.
This experiment was performed to compliment expression analysis to

determine whether the alterations in expression correlate with activity.
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The radioactivity assay was developed by utilising variations of previous
buffers that have been used to extract BCAT or other proteins whilst
maintaining enzyme activity. Buffer 2 (25 mM HEPES; 1% Triton X; 20 mM
EDTA; 20 mM EGTA; 1x protease inhibitor; 5 mM DTT; 0.5 mM PLP, (pH
7.5)) was the appropriate buffer to extract hBCAT whilst maintaining optimum
activity (Figure 6.73). Also noted was the complete loss of activity with buffer
4 (20 mM Tris-HCI (pH 8.0); 50 mM ammonium acetate; 2 mM EDTA; 1x
protease inhibitor; 20 mM DTT; 0.5 mM PLP) (Figure 6.73). This relates to
previous work demonstrating that Tris inhibits the hBCAT proteins (Yennewar
et al., 2001). Buffer 2 was further improved by the relatively acidic pH of 6.5,

rather than 7.5 that was used by Suryawan et al. (Figure 6.74).

This established method was subsequently used to assess the activity of
hBCAT after treatment with hBCAT substrates (glutamate and leucine) or
immune components (TNFa). Glutamate treatment produced a decrease in
hBCAT activity at both 2 mM (p = 0.031) and 20 mM (p = 0.062) by 8% and
11% respectively (Figure 6.75). This is contrary to what was observed on
Western blots where glutamate caused an increase in hBCATc expression by
260% (Figure 6.78 B+C). A decrease in hBCAT activity was also observed
with TNFa, with a decrease observed at 1 ng/mL (p = 0.008) and 5 ng/mL (p
= 0.065) of 17 and 20% respectively (Figure 6.76). This was a smaller
decrease than the decrease in expression observed at Western blot of 80%

(Figure 6.78 D+F).
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The effect of leucine and insulin (either individually or in combination) was
complex. Individually their effect on hBCAT expression and activity was
seemingly lower than in combination. For activity, leucine (p = 0.097), insulin
(p = 0.013) and the combination of both (p = 0.068) resulted in an increase in
hBCAT activity by 8, 21 and 41% respectively (Figure 6.77). This was
mirrored in the Western blot where leucine and insulin treatment alone
resulted in a minimal increase in expression and the combination
demonstrating a much larger increase of 270% (Figure 6.77 B+C). This
indicates that the effect of leucine and insulin operates synergistically for both
expression and activity. Additionally, Western blot analysis observed that
178 oestradiol had no effect on hBCATc expression (Figure 6.78 A) but the
immune factor IL1a produced a dose dependant decrease in hBCATc
expression similar to that observed with TNFa (Figure 6.78 E+F). This
implies that immune factors can significantly down regulate hBCATc
expression, although it is not entirely apparent what role this would have in
the nervous system. This will likely allow immune cells to alter neuronal

function but will also allow neurons to alter immune cell function in turn.

In summary, hBCAT substrates tested (glutamate and KIC) have a
detrimental effect on cellular morphology. Cell surface expression of
hBCATc was confirmed and this expression was sensitive to substrates of
hBCATc with glutamate differentially altering cell surface expression
depending of the treatment time used. Activity of IMR32 hBCAT was also

altered by hBCAT substrates although these were not always directly
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comparable with the expressional studies. Aspects of the immune system
(TNFa and IL1a) altered the expression (as measure by Western blot) and (in
the case of TNFa) hBCAT activity however the mechanism and function of

this is unclear.
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