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Abstract

Computational design is the study of how programmable computers
can be integrated into the process of design. It is not simply the use
of pre-compiled computer aided design software that aims to replicate
the drawing board, but rather the development of computer algorithms
as an integral part of the design process. Programmable machines
have begun to challenge traditional modes of thinking in architecture
and engineering, placing further emphasis on process ahead of the final
result. Just as Darwin and Wallace had to think beyond form and inquire
into the development of biological organisms to understand evolution, so
computational methods enable us to rethink how we approach the design
process itself.

The subject is broad and multidisciplinary, with influences from design,
computer science, mathematics, biology and engineering. This thesis
begins similarly wide in its scope, addressing both the technological
aspects of computational design and its application on several case
study projects in professional practice. By learning through participant
observation in combination with secondary research, it is found that
design teams can be most effective at the early stage of projects by
engaging with the additional complexity this entails.

At this concept stage, computational tools such as parametric models
are found to have insufficient flexibility for wide design exploration.
In response, an approach called Meta-Parametric Design is proposed,
inspired by developments in genetic programming (GP). By moving
to a higher level of abstraction as computational designers, a Meta-
Parametric approach is able to adapt to changing constraints and require-
ments whilst maintaining an explicit record of process for collaborative
working.
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1. Introduction

“Whilst this planet has gone cycling on according to the
fixed law of gravity, from so simple a beginning endless forms
most beautiful and most wonderful have been, and are being,
evolved.”

Charles Darwin, The Origin of Species,1872

When we think of architecture, images of pristine buildings often pub-
lished in a glossy magazine or website spring to mind. Whether these are
unrealised ideas or constructed projects, the observer from the outside
usually has access only to the finished article with any messy details of
how it got there in the first place obscured from view. On the inside
however lies a narrative that enables a deeper understanding of the work
- the struggle of how and why it came to be. It is this process of how the
building came into being that enables others to learn about the design
methods used, the intention of the work and how any collaboration
between individuals was actually achieved (if at all).

Similarly, this is probably the first part of the thesis you are reading but
the last part I am actually writing. Of course you wouldn’t have known
that had I not just told you (and indeed you may not really care), but it
might be useful to someone thinking about writing a thesis themselves.
The process of writing this thesis is somewhat similar to the content
it attempts to describe; not an investigation of a single idea, but the
process of gradually arriving at a final result through a series of insights
and decisions. Here we may use a natural analogy, for it is only by
considering the process of evolutionary development that one can begin
to understand how such “endless forms most beautiful” as Darwin put it
have come to exist today.

In the evolution and development of natural organisms we see a direct
comparison to computation, as manipulation takes place at the level
of process in the form of a program. This nature of computing is
enacting new ways of thinking about building design, especially within
a collaborative environment. Writing computer programs to perform
well defined tasks is actually relatively easy when compared to the
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challenge of interaction with multiple humans for creating and solving
design problems. Firstly, one is presented with changing people’s
existing working patterns so that new methods can become adopted.
The human aspect of integrating computers into the creative process of
collaborative practice is therefore of central importance to this thesis.
Computational power has increased, yet in the building industry we
are still predominantly working in the same ways as we have always
done. Instead of applying computational methods to existing workflow,
how might computation help us to rethink the practice of collaborative
design? That is the essence of this research.

1.1. EngD Beginnings

The first thing to point out to the reader is the inductive nature of this
thesis. When the journey began, I did not begin with a problem question
set by another person to form an hypothesis. I did not break this down
into sub-problems and solve them individually, ending with a neatly
packaged final result.

Instead, the initial research years allowed questions themselves to be
emerge and develop in industry, arising during participation on many
real projects that involved aspects of computational design. In this sense,
the thesis aims and methodology initially adopted were intentionally
loose, transforming to a more rigid structure as time progressed, much
like the design process itself. The work undertaken was initially broad
in scope, guided by the case study projects with questions and possible
solutions becoming more specific as time progressed. The resulting
outcome therefore bridges ideas from several disciplines to form a new
approach presented towards the end of this thesis.

1.1.1. Ramboll and I

My sponsoring company during the EngD programme was Ramboll,
an engineering consultancy founded in Copenhagen, Denmark in 1945.
They have offices around the world, including the UK where the head
office is based in London. At the time of writing, Ramboll has close to
10,000 employees worldwide, specialising in many disciplines of which
buildings are a subset.

In 2009, Ramboll decided to fund research into computational design
due to its growing importance in the wider community, resulting in
this EngD. The decision to sponsor an EngD was due in part to an
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increasing number of projects Ramboll were involved on with complex
geometry, made possible by recent advances in computer modelling tools
and fabrication methods.

During my research (and partly due to it), a small specialist team was
founded in 2011 known as Ramboll Computational Design (RCD). At the
time of writing, this team is still active and has gained wide acceptance
within the company. Internally, the team works closely alongside the
Structures, Building Physics and Façades teams at Ramboll (fig. 1.1)
although the amount of involvement from each varies depending on the
project. During my review period I actively attempted to become in-
volved in projects that covered all of these disciplines either individually
or through the course of several different projects.

1.1.2. Ramboll’s Initial Intentions

However broad the subject matter, one must begin somewhere. Figure
1.2 shows the initial starting point for the research set out by Ramboll.
The initial idea was to develop a generic multi-objective optimisation
process in order to make all of our projects better. To be more specific, this
meant making things perform better relative to measurable objectives,
therefore helping to make our designs perform more efficiently both in
terms of monetary costs (capital and operational) and environmental
ones. The goal was to find the perfect solution to each given project;
optimising until the computer reaches a single outcome - the perfect
building.

Such a problem makes an assumption that we can write software that
can optimise for anything, so long as we can put a number against it,
know whether to minimise of maximise it and make each of these design
objectives independent of one another. It soon became clear during my
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literature review that this situation is far removed from reality, and the
initial research diagram by Ramboll was somewhat idealistic. This led to
a broader overall thesis objective as described in Section 1.2.

Even if we assume we can find an optimal solution to the problem of
generating the perfect building, it may also seem tempting to think that
the process used could potentially be generalised for all projects. In
reality, there are always differences. Even if the final design is similar
to previous work, the people involved in making it happen are likely
to have been different. As engineers, the stage of involvement and
how much subsequent freedom there is to influence design development
becomes a dominating factor in setting up the problem, just as much as
the measurable entities such as the site dimensions, the price of steel
or the path of the sun. There exists a certain skill in understanding
what human aspects could be generalised from project to project and
which require bespoke treatment. In this regard, my initial review
in Chapter 2 focusses on this generalisability by keeping a record of
my primary experiences in practice combined with secondary research
sources when attempting to approach computational design from an
engineering perspective.

This inductive approach of letting the case studies guide the research
allowed an initial freedom in understanding where the industry and
myself were before making any purposeful interventions on future
projects. My personal EngD story can be seen as similar to the design
process itself; trying things out and allowing the direction to emerge over
time.

1.1.3. What is Computational Design?

Computational Design can be described as the use of computing ma-
chines as part of the design process. This is not simply the use of
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pre-compiled computer software such as CAD, but rather the creation
and application of computer algorithms themselves which enable the
vast numerical computing power of the machine to be utilised. In
architecture, the field is also known as Computer Aided Architectural
Design (CAAD), although Digital Design or Design Computing are
also commonly used. It is a broad topic, influenced by design theory,
computer science, mathematics, biology and engineering.

The term ’Parametric Design’ is also sometimes used interchangeably
with ’Computational Design’ although with the former there is often
more of a focus on the specific use of parametric modelling tools that
employ visual programming techniques as opposed to direct coding to
conduct design exploration. Indeed, there is still some misunderstanding
with the terminology in the community, so for the purpose of this
thesis I will state that parametric design is a subset of computational
design that utilises an explicit form of representation. This includes
dataflow programming, building relationships in a spreadsheet or a set
of explicit instructions laid out in code, but excludes emergent processes
inspired by biological systems (agent based models, cellular automata,
etc.) with complex outcomes. A similar definition can also be found
in the recent doctoral thesis of Davis (2013) who encountered a similar
problem with the terminology. As we will see in Section 2.4.1, this
thesis will eventually focus more heavily on the dataflow programming
approach to parametric design.

Those involved in computational design need to be able to handle code
(textually or visually), and know how to program computers to allow
them to perform calculations. The experience and skills required to work
with computational tools therefore may well be quite different to those
needed for traditional design processes (Lawson, 2006). Whilst at its
inception, human experimentation with computers used to be confined
to labouriously programming university supercomputers with punched
cards, advances in computer hardware have now made such machines
available to all. This availability has resulted in the development of
software applications to enhance our capability in existing design tasks
such as drawing and visualisation, however little has changed in terms
of how these machines influence design workflow in practice. Complex
projects are often simplified through the sequential ordering of tasks -
the extreme case being the architect developing the concept design in
isolation, the engineer then attempting to make it work followed by the
contractor and sub-contractors there to build it.

Computing however can offer new opportunities in questioning tradi-
tional thinking underpinning the design process in industry, allowing
better collaboration from day one by incorporating the multiple needs
of stakeholders (Shepherd et al., 2011). This is also the central idea of
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Building Information Modelling (BIM), however a BIM approach treats
the computer more as a slave and not an active participant in design. One
may contrast this perspective with Negroponte’s architectural machines
(1969) or Frazer’s electronic muse (1995); treating the computer not merely
as a clerk to human requirements and repetitive tasks, but rather a
collaborator in the creative process with a child-like innocence.

As computer algorithms calculate incrementally, defining a process be-
comes just as important as the final outcome. This focus on process
means computational design is frequently compared to the development
of natural organisms. Indeed, this link to biology has led to terms such as
Morphogenetic Design (Hensel et al., 2004) or more recently and almost
identically Digital Morphogenesis by Leach, who comments that archi-
tectural discourse in general is moving to “engage more with science,
technology and material behaviour” (2009, p.37). This is especially the
case in light of the current drive towards environmentally responsible
design and how computers can collaborate as part of the design process.
Here the engineer can begin to offer computational methods at the front
end of projects that go beyond the architect’s own knowledge, however
exactly how this is implemented in collaborative practice is a complex
task.

1.2. Thesis Objective

1.2.1. Computational Design

How can computational methods assist the design team within collaborative
practice?

As described in Section 1.1.2, although the initial thesis objective set out
by Ramboll was in multi-objective optimisation, it soon became clear
throughout year one that if the thesis was to be driven by the projects
then the problem statement would have to become more general. This
was because the people involved on the projects with their qualitative
judgements and intangible motivations were not a good fit for the cre-
ation of numerically optimised perfect buildings. Although the resulting
statement therefore became quite broad, it was still important to form at
least some initial boundary judgement (Churchman, 1970) to set out what
was to be included and excluded in my research.

Figure 1.3 shows where the initial problem question sits within the wider
context of the projects, and how this question is then broken down into
two sub-questions relating to hard and soft systems. The initial aim
was to investigate the current state of technology and its application in
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practice. It is clear that advances in computational design will affect the
project workflow, however the projects themselves will also influence the
technology that has been developed.

1.2.2. Meta-Parametric Design

The first part of this thesis (Chapters 2-5) records the development of a
more specific research topic through a series of case study projects. This
later work focusses on the Meta-Parametric approach and an associated
software application named Embryo, developed by the author and dis-
cussed at length in Chapters 6 & 7. The idea concerns the automatic
generation of parametric model definitions themselves, thus moving to
a higher level of abstraction to broaden their scope.

The thesis question to be addressed in Chapters 6 & 7 is the following:

How does the use of a Meta-Parametric approach assist design teams
at the concept design stage?

The parametric design software Grasshopper for Rhinoceros (Robert
McNeel & Associates) is adapted using Embryo in order to address
this question. We will see that enabling the automatic generation of
parametric model definitions leads to interesting questions of control,
ownership and understanding of the model. In the case study examples
given in Sections 7.1 and 7.2, a series of machine generated designs are
compared on real projects at the concept design stage. The suitability of
these generated designs is assessed in terms of the following aspects:

1. The design space of a generated model (variability).

2. The best fit to the objectives (performance).
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3. The complexity of the graph (intelligibilty).

We will see that simple parametric definitons with clear causality are
preferred by design teams so that control can be regained over the
generated models by understanding them. This desire is balanced
against generating suitably complex models for the design problem.
Essentially, Occam’s razor seems to apply to the parametric definition
even if the generated geometry itself is complicated, through choice
and/or necessity. This limits the scope of a Meta-Parametric approach
using software such as Grasshopper if one is to regain full control;
however if ’let loose’ so to speak, automatically generating models can
still have benefits as pure design explorers.

1.3. Methodology

Addressing the initial thesis objective sub-question 1 (fig. 1.3) requires a
traditional approach to the literature review, citing secondary sources in
order to see what has come before. These technologies are then applied
in practice in order to work on sub-question 2.

Sub-question 2 requires more consideration as to the application of
technology in its context, that is, not just the computational approach
but the consequences for the stakeholders involved as part of real-world
problems. Adequate understanding of the design process cannot take
place using reductionist methods alone. Instead, the use of inductive
reasoning in order to arrive at some broader generalisations will then
enable suitable interventions and response. This will be combined with
examples from industry in order to construct a sound base with which
to acknowledge design as an interpretive system. An interpretive systems
approach respects the world view of multiple stakeholders which may
well be pluralist, that is, participants do not necessarily share the same
values and beliefs (Jackson, 2000). Acknowledging multiple stakeholder
world views is crucial for understanding the problems and necessary
response when using computational design techniques in a collaborative
environment.

1.3.1. Data Triangulation

The concept of triangulation is that general conclusions made throughout
this thesis should come from three of more sources. Combining both
primary and secondary data sources is a good way of ensuring that
findings may well be general, as well as helping to remove researcher bias
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(Robson, 2002). As a general rule, within this thesis I have attempted to
combine one or two case studies with one or two findings from literature
of similar problems in industry in order to triangulate my results.

1.3.2. Primary Research Methods

Case study projects form the backbone of the initial primary research
into the current state of computational design in practice. There are 33
projects in all for which I was an active participant, most of which took
place in the first two years of the research. Each one involved different
stakeholders, some internal to Ramboll and some outside the company
such as architects and clients. At the end of the initial review period an
active effort was made to intervene at the earlier stages of projects (fig.
1.4).

The fact that I was involved multiple case studies and at different stages
is important. Multiple projects help to reveal general trends that are
common in the practice of computational design on live projects, not just
theoretical examples. This approach meant it was the case studies that
indicated recurring aspects of computational design methods, eventually
leading to the distinctions laid out in Chapter 2. Instead of hypothesis
testing as per the scientific method, the research direction emerges
inductively from a practice-based context (Fook, 2002). To this end, the
details of each project were recorded throughout, with a summary for
each project found in Appendix A. The information included for each is
the following:

• General project information (i.e. project sector, size, value, year of
my involvement, etc...)

• Stakeholders involved on the project, both internal and external to
Ramboll

• Any computational design approaches used.

• Relevant software/ programming language used.

• Short description of my involvement on the project

During the case study projects there were two main methods of un-
derstanding the human aspects when adopting computational design
methods: participant observation and semi-structured interviews (Robson,
2002). The former was conducted during project work and the latter
towards the end, and included stakeholders both internal and external
to Ramboll. Due to the nature of the projects, it became necessary to
declare my role as part of the EngD, and hence not become what is known

11



Figure 1.4: Case Study Projects:
initial involvement date and
design stages shown. Projects
shown in blue are major case
studies with the relevant thesis
chapter indicated

as a complete participant (Robson, 2002). It made no sense to conceal
my status as a research student because I was treated as part of the
Ramboll Computational Design team anyway by having worked for the
company before taking on the EngD. In addition, I quickly established
there was nothing to be gained from coercive behaviour because it is
clear that there would be a benefit to all parties should the research
be successful. As described in Section 1.1.1, my role as a participant
was from within the Ramboll Computational Design team. To better
understand the viewpoint of other stakeholders on projects, participant
observation alone would not have given a true understanding of the
whole picture, and so it was felt additional interviews were required.

In order to get the best results, semi-structured interviews were conduc-
ted with design team members in a setting familiar to them (Robson,
2002). The use of semi-structured as opposed to structured was to give
the interviewee freedom to take the direction of the conversation to places
that was unexpected. This approach was particularly successful on the
ENI project [20Eni] described in Chapter 5. First hand observations were
recorded using personal reflective logs, blog posts and by storing all
material from each project even if design directions were abandoned.

The primary methods used assisted my understanding beyond sec-
ondary research because participant observations and interviews with
stakeholders during actual projects can provide details that are not
often published through written material such as project write-ups or
academic papers. There may also be issues of confidentiality or issues
with divulging information on how particular projects are designed for
general publication. The real-time observation therefore helped to be
able to record real emotion and subsequently proved to give important
findings later in the research. By becoming a participant myself inside the
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system and not an outside observer, it was possible to better understand
what was really going on throughout projects and not just what people
were willing to tell me.

1.3.3. Secondary Research Methods

In addition to the case studies, peer reviewed published material forms
an important part of the research into the current state of practice. Such
research generally falls into the following two categories:

1. Research relating to a computational design approach (hard/struc-
tured)

2. Research relating to the application of a computational design
approach (soft/interpretive)

Clearly these two categories overlap. However, as discussed in Section
1.2, secondary research material relating to the hard aspects can often
exist without reference to its application in industry. This work tends
to be conducted in academia alone and formed a vital part of my own
learning and experience from a technical point of view. In contrast, the
softer social aspects of applying computational design techniques cannot
exist without reference to the particular hard technology that is used.
Secondary research sources commenting on application often cite project
case studies in order to illustrate why a particular approach has been
successful or not, describing in detail the limitations of the particular
software/approach used. For these soft aspects, gathering data from
industry about real-life computational design helps both remove bias
from participatory research and understand whether a project specific
method has a more general application elsewhere.

1.3.4. An Adaptive Methodology

This use of inductive reasoning is continual, with technologies, people
and their environment in a continual state of flux. Due to the nature of
the EngD, with such a mixture of hard and soft systems and no one clear
objective from the outset, it is somewhat inevitable that the research will
take unexpected turns along the journey. As Gill and Johnson state (2002,
p.9):

“The research process is not a clear cut sequence following a
neat pattern, but a messy interaction between the conceptual
and empirical world - deduction and induction occurring at
the same time.”
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The methodology attempts to look at the subject matter holistically and
always within a wider context. This isn’t without risk, and certain parts
of this research could no doubt have been investigated to a finer detail.
As Erwin Schrödinger remarks at the beginning of in his anti-reductionist
work ’What is life’ (1992, p.1):

“...some of us should venture to embark on a synthesis of
facts and theories, albeit with second-hand and incomplete
knowledge of some of them - and at the risk of making fools
of ourselves”

This is not an excuse for not adopting a strict approach, but rather an
early acknowledgement that when thinking laterally across disciplines,
knowing everything about everything is not a realistic proposition. In
view of the nature of an EngD, I therefore review the aims and objectives
at the end of each chapter as my research progresses. These changes
inevitably lead to supplementary literature reviews being undertaken
throughout the thesis. I have however attempted to retain a chronological
structure, accounting the progression of thoughts and findings through-
out the research journey.

1.4. Contribution to Knowledge

This work aims to contribute to the field of computational design in
general, but also due to the nature of the engineering doctorate, to my
sponsoring company Ramboll. As an EngD, an emphasis is placed on
the application of technology as well as the technology developed itself.
The key contribution areas are the following:

• Advancement of knowledge within Ramboll. Knowledge capture
by building a body of work for the company to be able to better
understand the application of computational methods in practice
and how to work with other consultants. This includes computer
programs and the learning from their application. Knowledge
shared more widely at Ramboll by presenting internally to the
company at the annual research conference.

• Advancement of knowledge to the wider construction industry.
The learning of other key stakeholders during the projects. Present-
ation and publication of findings within the industry. The general
release of computational software tools developed to other com-
panies and research institutions.

• Advancement of knowledge in academia. Papers and conference
presentations to the computational design community to dissem-
inate any relevant findings and approaches that might have wider
benefit.
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1.5. Chapter Outline

This thesis should be read as a continual narrative with changes in
direction along the way. A brief summary of the chapters is as follows:

Chapter 2 is a review of the current situation for engineers involved in
the field of computational design, both in terms of technology and its
application in practice. It looks at both direct methods which embed
engineering performance inside the algorithm in order to optimise per-
formance, and also methods which externalise objectives, using meta-
heuristic search algorithms. I conclude that in their current state, whilst
the methods developed are sophisticated, they do little to challenge the
linear design process already established between concept design and
problem solving (making the concepts work). This finding encourages
action to place myself further towards the front end of projects.

Chapter 3 involves purposefully working earlier in the design process as
an engineer, first by attempting to go alone in the development of compu-
tational design approaches for projects and then by developing software
for other consultants which embeds certain engineering constraints and
hence directs the design of form. Whilst this is successful, it is found
that such approaches are suitable to embedding only a single aspect
of building performance, and hence not allowing for the complexity of
architectural design. As a result, the next chapter investigates more
general modelling methods such as those used in parametric design.

Chapter 4 describes the experience of using of generic software such
as parametric models that can allow multiple stakeholder involvement
when investigating building concepts. It is found that although they
have a useful explicit representation, they are often inappropriate for the
concept stage due to their inherent topological inflexibility.

Chapter 5 describes the development of a complex modelling approach
that allows for flexibility in building typology in contrast to parametric
models. This is tested on a particular case study project. The approach
was not successful and the decision to reject using parametric models
outright was reconsidered.

Chapter 6 is the final proposed response, a dialectic meeting of Chapters
4 and 5, with the development of the ’Meta-Parametric’ approach, suited
to the early stage of design. This method involves the automatic
generation of the directed acyclic graphs used by popular parametric
modelling software (such a Rhino Grasshopper). A plug-in for Rhino
Grasshopper called ’Embryo’ is introduced.

Chapter 7 describes the testing of Embryo in three situations. The first
two involve real projects at the concept design stage, conducting a wide
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exploration of form with unknown goals. The third is using Embryo
on a shape analysis problem for a clearly defined goal, opening up the
possibility of generating alternative parametric definitions for existing
models.

Chapter 8 will discuss the findings of the research in relation to the meta-
parametric approach. Some suggestions for further work are proposed.
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Part II.

Review
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2. Post-Rationalisation

“I suppose it is tempting, if the only tool you have is a
hammer, to treat everything as if it were a nail”

Abraham Maslow (date unknown)

2.1. Introduction

This chapter covers an initial review of computational design with
respect to an engineering practice. This includes most of the case study
projects conducted at Ramboll within the first year of the doctorate, but
also a review of literature on both technical aspects (hard) and collabor-
ative aspects (soft) that are associated with computational design. The
initial set of case studies involved coming on board late in the design
process, taking existing architectural conceptual designs and improving
them in terms of environmental and structural efficiency. To begin,
Section 2.2 discusses case studies involving the engineering optimisation
of a single objective using a heuristic embedded in the computational
approach.

Section 2.3 describes several case studies where the engineering goals are
not embedded within an algorithm. Instead, a problem is formulated and
metaheuristic algorithms are used in order to search for solutions. The
formulation of the problem constraints and objectives become crucial to
finding an appropriate solution.

Section 2.4 discusses the use of parametric models in the context of
metaheuristic algorithms, whereby parameters can be adjusted manually
or automatically according to performance criteria. In Section 2.5 this is
extended by considering optimisation problems with multiple objectives
and their use within a collaborative environment. For such problems,
multiple performance criteria are often non-linear, non-mutually exclus-
ive, and driven by different stakeholders on the project.
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2.1.1. Building Models

In comparison to industries such as software engineering where the final
outcome can be modified and future releases made, getting building
design right is usually a one-time operation. Any subsequent changes
due to mistakes can become costly following handover. Likewise, one
cannot easily build a full-scale building prototype for testing, especially
if the project is complex and unique to its context. Getting things right
before commencing construction is therefore favourable and abstract
building models that simulate behaviour (aesthetic, structural, opera-
tional, etc...) are used. Architects and engineers typically rely on
computer building models in order to iterate through the design process
and finalise a set of drawings that are tendered for construction.

In recent years, advances in computer software have enabled architects
to investigate geometric forms that are only limited by their imagination.
This surge in form-making has led to interesting and challenging prob-
lems that engineers are there to solve. The following case studies high-
light this to be the case in industry. Building models are often received
from the architect following the completion of the concept design stage,
either in the form of raw geometry files or parametric models. Upon
receiving a model from the architect, the task of the engineer is often to
make the concepts work, with various computational processes deployed
in order to assess and if possible improve the engineering aspects of
the design. Such involvement can be classed as ’post-rationalisation’,
in that the design concept is already fixed. Building models received
from the architect already provide the problem constraints within which
an engineering objective is pursued. The use of computation to solve
such post-rationalisation problems in practice typically falls into two
categories: heuristic and metaheuristic algorithms which are discussed
in the following sections.

2.2. Heuristic Algorithms

2.2.1. Introduction

In computer science, heuristic methods are techniques for solving prob-
lems that include some sort of rules of thumb or experience embedded in
the algorithm. Such methods often attempt to optimise for a single goal.
They do not always guarantee a completely optimal result because com-
plete innocence of the engineer is not assumed. Instead, some experience
as to what direction to take is embedded into the computational process
itself in order to get results in a reasonable time. Based on the case study
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Figure 2.1: An architect’s model
is modified using an algorithm
with embedded engineering
knowledge. The grey shade
indicates engineer influence in
the process.

projects undertaken, the use of heuristic algorithms has been divided into
the following 3 categories:

1. Heuristic without external analysis: an algorithm that arrives at a
result independently of outside information.

2. Heuristic with consistent external analysis: an algorithm that uses
outside information that remains constant.

3. Iterative external analysis: an algorithm that uses changing external
information updated at each iteration.

2.2.2. Without External Analysis

Perhaps the simplest use of a computational method is where the engin-
eer deploys an algorithm in order to improve a current building model
(fig. 2.1). The algorithm used may embed some specialist knowledge
or experience in order to produce a desired outcome that is more or less
known and expected. The use of a computational approach is beneficial
in that outcomes can be reached that go beyond manual methods, due to
the iterative power of the computer. Structural form-finding algorithms
are a common example of heuristic methods that do not use any external
analysis, and were used in multiple case studies during my review
period. These algorithms tend to address problems that cannot be solved
analytically and require a numerical approach.

Form-finding Minimal Surfaces

Structural form-finding defines techniques for developing geometric
form by embedding structural heuristics. As opposed to manipulations
made externally by the design team to improve structural performance,
structural logic is instead embedded in the form-generation process
itself. One of the most famous examples in architecture is the problem
of finding a minimal surface within a set of boundary conditions. It
is known that for lightweight fabric or cable-net structures, minimal
surfaces give a constant tension form when pre-stressed (Lewis, 2003);
however, finding minimal surfaces for non-trivial boundary conditions is
not a simple problem and requires a numerical approach. The structural
heuristic that is used in this case relies on the relationship between
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Figure 2.2: Finding a minimal
surface for the Garden Festival
Pavilion

minimal surface geometry and the associated structural benefits for
lightweight structures.

The 1972 Munich Olympic Park tensile roofs by Frei Otto and Günther
Behnisch are perhaps the most famous examples of lightweight struc-
tures with form-found minimal surfaces (Otto & Rasch, 1995). Although
such forms were originally found using natural computing methods such
as physical models (in this case soap films), numerical methods using
computers are now favoured due to practical considerations such as the
ease of boundary condition manipulation and the input/output of data
(i.e. node positions).

For the Garden Festival Pavilion [11Gfp], an algorithm was used to find
a minimal surface from an initial best guess surface geometry. In the
approach, discrete triangular elements can approximate a continuous
surface using the triple-force method (Barnes, 1999; Lewis, 2003) in com-
bination with dynamic relaxation (Day, 1965). The equilibrium solution
is found through iteratively applying residual forces until the system
converges (fig. 2.2). For this particular project, a Java application was
written by the author that imports an initial mesh, finds the minimal
surface and then exports the result. The final geometry was then issued
to the architect.

Laplacian smoothing, a simpler form-finding process was required for
the Lusail Bridge Roof project [02Lbr]. This is a well-known process in
computer graphics that smooths an initial polygon mesh by averaging
the position of neighbouring vertices. Rather than solving for engin-
eering benefit in this example, the process was to generate a desired
anticlastic shape (i.e. with negative Gaussian curvature at all points)
as requested by the architect, in this case our own bridges team within
Ramboll. The final result is shown in fig. 2.3, with the final BSpline
surface form used for further design development. Laplacian smoothing
was also used on the Urban Bubble Gridshell project [08Urb] in order to
produce a smooth mesh for the underside of an ellipsoidal form which
had to met the ground at 4 locations. In these two case studies, aesthetics
was the main driver behind the mesh smoothing, although they also had
the added structural benefit of reducing discontinuities.
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Figure 2.3: Laplacian
smoothing on the Lusail Bridge
Roof

Funicular Form-finding

It is well known to engineers that for structures whose dominant load
case is self-weight, a system that works by transferring load using axial
forces is more attractive to those that work in bending in terms of
minimising material use. The method of finding such forms can be
traced back to Robert Hooke who once famously wrote (as an anagram)
“As hangs the flexible line, so but inverted will stand the rigid arch”
(1675). Antoní Gaudi’s physical hanging chain models (Collins, 1963)
have subsequently inspired many architects and engineers to use similar
methods in funicular form-finding including Heinz Isler (Chilton, 2000)
and Frei Otto (1995). A more detailed literature review of funicular form-
finding approaches can be found later in Section 3.2.1, where the subject
is addressed in more detail as a main driver behind the design process as
opposed to improving existing designs.

Directly replicating the behaviour of physical models in the computer
was applied during various case study projects using bespoke Java ap-
plications written by the author. This occurred both in two dimensions,
for example on the York Way Project [28Yor], and in three dimensions
for both the Markham Vale Sculpture [14Mvt] and The KREOD Pavilion
[12Kre] (fig. 2.4). For these particular case studies, an existing geometric
form was post-rationalised to improve its structural performance. An
initial structure supplied by the architect is freed at the nodes (creating
fully pinned connections), and subjected to an inverse gravitational
load. The resulting large displacements were solved using a relaxation
algorithm written by the author (See F.1) that treats bar elements as
stiff rigid springs, based on a similar real-time method by Kilian and
Ochsendorf (2005). When the gravitational field is reversed, the structure
works more efficiently under self-weight than before by increasing axial
force and reducing bending moment. For these three case study projects,
the resulting geometry was then sent back to the architect for approval.

Form-finding for Fabrication

As well as finding structurally efficient forms, several of the case study
projects involved discretising surface based geometries for fabrication
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Figure 2.4: Initial surface form
is relaxed on the KREOD
pavilion to improve structural
behaviour of the final design

Figure 2.5: Architectural
concept for The Astana
National Library

and construction. The heuristics used were again embedded in the
algorithm itself. For example, the distribution of nodes, bars and surface
elements to discretise a surface is a common problem in façade design.
In this section, form-finding on the projects occurs within a surface
embedding space.

On the Astana National Library, [01Anl] my involvement began after
the architect had already developed a continually twisting envelope
geometry by joining two Möbius strips along their boundaries (fig. 2.5).
This created surface geometry that although was ruled (and therefore
advantageous for the supporting steelwork), meant the façade surface
itself was doubly curved and therefore undevelopable, i.e. it could not
be unfolded to the plane without stretching or tearing Flöry & Pottmann
(2010). A triangular discretisation was therefore adopted, formed by
using the surface ruled lines. This approach however led to every façade
panel being a different size and shape (fig. 2.6).

In response, a short discretisation study was undertaken that used a
bottom-up repulsion based meshing algorithm without a fixed topology.
This approach is described by Turk (1992) in the generation of fair
meshes, and was later applied by Kanellos (2007) and Lewis (2011) in
generating three-dimensional structures. A particle repulsion method
with a fixed topology was used by Williams (2001) when relaxing the
triangulated mesh on the British Museum Great Court Roof.

Structural nodes are initially located randomly on the surface and are
then repelled from nearest neighbours iteratively. The strength of
repulsion is gradually damped until equilibrium is reached with an
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Figure 2.6: Initial Astana
National Library façade tiling.
Although the base surface is
rational, the proposed panels
were all a different size and
shape changing gradually as
they move around the surface.

equal force of repulsion between neighbouring nodes and therefore equal
distance. The approach is similar to the annealing of metals, whereby the
rate of cooling creates particular atomic spacings and therefore different
material properties. The manually defined damping rate must be above
a critical value, however this can usually be obtained through visual
inspection. This repulsion process is a form of self-organisation, because
global order arises out of the local interactions between the nodes which
are initially disordered. Figure 2.7 shows one section of the library façade
surface, indicating the stages of development with edges connecting
nodes neighbouring nodes that are currently influencing each other.

A final triangulated topology is then formed by finding the six nearest
neighbours for each node, and removing any edges above a certain cut-
off length. Due to the equal distance between nodes, this triangulation
has a high proportion of same sized edge lengths and equilateral tri-
angles, leading to manufacturing cost savings and reduced complexity
during construction. The amount of identical edge lengths for the Astana
National Library façade surface shown came to approximately two-thirds
of all 600 edges.

In such examples, an optimal solution may exist but in practice, simply
being able to achieve a better result than a more direct approach (such
as triangulating using an isocurve grid), can have a large impact. For
Astana, the knowledge of what the final geometry meant to the design
team was embedded in the algorithmic approach.

Even though improvements can be made, the nature of the shape meant
the façade complexity remained relatively high. Essentially, the underly-
ing concept geometry of the twisting form generated issues further down
the design process that were not initially apparent.
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Figure 2.7: Nodal repulsion
process on Astana National
Library (a) and the final
triangulated mesh (b)

Figure 2.8: Algorithm that
incorporates external analysis
information

building model heuristic building model*
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2.2.3. Consistent External Analysis

In the previous section, all of the engineering knowledge behind the
approach was embedded in the algorithm itself. However, other methods
enable external information such as structural analysis to take place
during computation. In this section, some type of external information
is required beyond what can be provided by the engineer within the
algorithm, with the condition that this external analysis information stays
consistent and does not change during an iterative process (fig. 2.8).

Façade Design

Curvature analysis of an architectural surface form can lead to fabrication
and structural benefits when discretising into smaller elements. For
example, aligning quadrilateral panel edges to the principal curvature
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Figure 2.9: A freeform doubly
curved surface (a) with
principal curvature lines
found (b) gives PQ mesh of
appropriate density (c)

Figure 2.10: Final design for the
Senate House glazed roof made
from planar quadrilaterals

directions (describing minimum and maximum curvature) leads to them
being planar, generating a Planar Quad (PQ) mesh. This planarity
and lack of triangular panels give cost benefit in terms of manufacture,
especially for glass. In addition to panel planarity, supporting members
are torsion free (i.e. no twist along its length) with the additional benefit
of members meeting at a common normal, thus improving the connection
detail both in terms of cost and complexity (Liu et al., 2006).

The principal curvature field for a freeform surface must be found
numerically, and hence an iterative approach is required in order to
generate the streamlines of the curvature field that generate the pattern.
A generic algorithm that generates the conjugate curve network using
surface curvature analysis was written by the author to assist on various
case study projects (fig. 2.9).

This approach was used and refined during various projects including
National Holdings HQ [06Nhq], London Foyer Sculpture [07Foy], initial
work on the KREOD pavilion [12Kre], Tivoli Edge Development [31Tiv]
and Senate House Roof [23Shr] (See fig. 2.10). The projects enabled close
collaboration between myself and the Ramboll UK Façades team during
the initial research period. The cost benefits of planar quadrilateral glass
panels as opposed to hot-bent glass is significant. As Mark Pniewski,
head of Ramboll UK Façades comments, “the cost difference between flat
and doubly curved panels is currently around 8-fold for the same given
area” (pers. comm., March 2014).

The Orchid House project [22Orc] gave a slightly different set of cir-
cumstances. For a doubly curved shape, a torsion-free member layout
was required for the timber frame, however the principal curvature
method produced an overly complex pattern (See fig. 2.11). By going
beyond our remit as engineers, I found that some small changes to
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Figure 2.11: Orchid House
[22Orc]. Initial torsion-
free member layout (a) is
rationalised through small
modifications to the underlying
form (b)

the surface geometry produced vastly different outcomes to the final
principal curvature field and hence the associated PQ mesh. These
modifications revealed a more rational member layout was within reach
without large changes to the form. Returning to the architect, we were
able to convince them that these modifications to the form should be
made.

Here was an example of the building form itself being allowed to be
manipulated by the engineer as part of a design exploration process,
with the fabrication and structural implications revealed using a com-
putational approach. This finding would go on to shape much of the
work in Chapter 3, in particular the KREOD pavilion [12Kre] whereby
the engineer attempts to get involved earlier in the design process before
surface geometries are fixed.

Structural Design

As well as geometric methods which indirectly pursue a particular heur-
istic, a computational approach may include integrating an engineering
property directly in order to propose an efficient solution. One such
example is with the efficient placement of material along the principal
stress trajectories of a continuum. This is known to occur in natural
systems, such as the distribution of bone material (Meyer, 1867). A more
detailed review of the subject is given in Appendix B.

Michell (1904) was the first to investigate using principal stress grids
for generating optimal cantilevers. Later work by the engineer/architect
Pier Luigi Nervi (1965) took inspiration from such natural processes and
explored the idea of minimising material usage by aligning concrete ribs
along lines of force, notably the application for the Gatti Wool Factory
along lines of principal bending stress. As well as flat slabs, more
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Figure 2.12: Helsinki Central
Library competition: conjugate
curves following the principal
bending stress field

recent work by Kaijima & Michalatos (2007) and Winslow (2009) has
investigated discretising freeform surfaces with principal stress grids.

I utilised this structural heuristic on several case study projects. These
included The Greenland National Gallery of Art [09Nuk], the Viiki
Synergy Building [10Vik] and The Helsinki Central Library competition
[26Hcl]. Such structural drivers behind design often gave aesthetically
interesting results (fig. 2.12), as well as encouraging the use of exposed
concrete soffits often used for passive ventilation in buildings.

Passive Solar Design

As well as structural concerns, some projects during my review invest-
igated using passive solar design principles to guide a computational
approach. Algorithmic methods for generating architectural surfaces
from solar paths have been used by Shepherd (2009) and Turrin et. al.
(2010), although there are countless more examples.

Working with the building physics team at Ramboll UK, the Maljevik Bay
Resort project [19Mjb] involved generating 30 roof designs for otherwise
identical villas that were orientated differently on a hillside. Knowledge
of passive solar design was incorporated in sculpting the roof forms
for the architect according to the path of the sun both in winter and
summer. In winter, sunlight into the building was maximised in order to
increase the amount of heat and light generated through natural means.
In summer the opposite is desirable. Solar gain and solar glare should be
avoided at peak times during the day, hence the roof form should shade
the main façade.

Figure 2.13 shows software developed by the author that carved an
existing roof profile supplied by the architect. The algorithm can be
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Figure 2.13: Java application for
generating passive solar roof
forms. Ray lines from a glazed
façade (a) intersect with an
extended roof surface (b). The
resulting point cloud forms the
new roof surface (c)

Figure 2.14: Maljevik Bay
Villas: roof shapes generated
for different orientation angles.

found in Appendix F. The generated roof form could then be exported
a CAD file for each unique roof profile. The algorithm works by
intersecting sun paths with an initial extended surface mesh (provided
by the architect), generating a point each time. Once all the specified
months, days and times have been calculated, the resulting point cloud
is converted to a revised mesh surface using a constrained 3d convex hull
(the constraint avoided large thin triangles). Figure 2.14 shows various
roof forms generated at various different orientations on the site.

2.2.4. Incremental External Analysis

In the previous section, all the algorithms developed used some sort
of external analysis, however this information was not dependent on
the changing state of the model after each iteration. There was no
coupling between the model and its environment. In this section, several
projects are described where the geometry model is linked directly to any
particular analysis so that any change to the model will affect the analysis
results (fig. 2.15). Likewise, these analysis results in turn affect changes
to the model. In terms of external information to the algorithm and its
environment, there exists a feedback loop in the process. This feedback
often gives greater uncertainty in terms of where the process is going
and hence the final results are often unexpected.

Structural Geometry Optimisation

One process utilised during my research was that of node pushing to high
stress areas, a heuristic method to improve structural performance of an
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Figure 2.15: Algorithm using
external analysis updated at
each iteration. A cycle between
modelling and analysis is now
present.

Figure 2.16: Node pushing for a
simply supported beam results
in a tied arch

existing node-bar configuration by altering its geometry (not topology).
The method I used was similar that described by Kajima and Michalatos
for the Land Securities Bridge project (2007), although instead of a
constant stress field the structure is analysed at each time step.

The approach works by pushing nodes towards topological neighbours
that are the most stressed at that iteration until a cut-off distance is
reached (to prevent the merging of nodes). This cut-off distance specifies
the maximum density of nodes in the structure. The algorithm written
by the author can be found in Appendix F).

An initial test example is shown in fig. 2.16. A simply supported truss
under self-weight morphs into a tied arch - a known efficient typology
this problem. Rather than suggesting a tied-arch using engineering
experience, it is interesting that a bottom-up approach results in an
identical solution. As the simple test arrived at a good result that is
validated by engineering experience it suggests that applying the same
general heuristic might have benefits for less trivial problems.

In addition to the nodal repulsion approach (see Section 2.2.2), nodal
pushing to high stress areas was also studied for the Astana National
Library A structural façade. A Java application was developed that
imported the library’s façade geometry from Rhino, ran the node push
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Figure 2.17: Nodal
displacements difference
between original and optimised
on Astana National Library.
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algorithm and exported the updated location information. By retaining
the same topology as the original model, only the xyz coordinates needed
to be updated.

For the project, the total façade area was over 20,000m2, with a total of
approximately 4500 nodes. The node pushing algorithm was used which
deformed the regular façade structure as proposed by the architect to a
more irregular panelling system. The façade remained constrained by
the doubly curved surface geometry that could not be altered. By using
this approach, we were able to reduce the total nodal displacement of
the structure under permanent loads by approximately 5% after only 100
iterations. Although some nodes actually decreased in performance (see
fig. 2.17), the overall result was favourable. Following this critical point,
the total performance (measured using the inverse of the total deflection)
began to drop off as the lengths of the members between the nodes
increased.

The final resulting geometry can be seen in fig. 2.18. Whilst improve-
ments could be made structurally, the increasingly irregular pattern came
at a cost to the fabrication efficiency. The façade panel sizes varied con-
siderably more after the structural optimisation and a subsequent design
review meant that the new geometry proved too costly to implement,
regardless of the structural improvement. This wasn’t a failure in terms
of the algorithm per se, but rather the reality that when applying a single
heuristic method such as pushing nodes to high stress, they do not easily
allow for any other performance objectives to be included. This was the
opposite problem with the node repulsion algorithm, whereby structural
concerns became secondary to fabrication efficiency. As more objectives
and constraints are included, the more complex the algorithm becomes.

Structural Topology Optimisation

Another structural optimisation approach used during my review period
was that of Topology Optimisation (TO), in this case during the Tallinn
Town Hall project [15Tth]. Similar to the principal stress method covered
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Figure 2.18: Astana National
Library: Initial geometry (a)
and optimised (b) following
node pushing
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Figure 2.19: Topology
Optimisation Experiment using
the Homogenization method on
Tallinn Town Hall

in Section 2.2.3, TO aims to find the optimal material usage for a given
structural problem, achieved using an iterative method.

TO approaches generally fall into two categories: homogenisation and
evolutionary methods (Bulman et al., 2001). Homogenisation methods (or
h-methods), work by optimising material distribution using an equality
criteria that aims to distribute stress evenly throughout a given volume of
material. The most popular h-method used is known as Solid Isotropic
Material with Penalisation (SIMP) (Bendsoe, 2003), solved using either
linear programming or optimality criteria methods (OC).

In architectural design, Michalatos and Kajima’s standalone software
application Topostruct (2011) employs homogenization methods to assist
the designer in finding structurally efficient form using SIMP. On The
Tallinn Town Hall [15Tth] project, an experiment was conducted using
Topostruct to find a structural solution to support a 15m cantilever made
from a steel frame. Although a continuous method, the results of the
topology optimisation process were used to inform the placement of
diagonal bracing for the steel structure. Here, a detailed h-method was
used to suggest good configuration for the project without the final result
necessarily being optimal (see fig. 2.19).

The second family of TO methods are known as evolutionary methods (or
e-methods). The most well known of these is the Evolutionary Structural
Optimisation (ESO) (Xie & Steven, 1997). Here, a structural heuristic is
applied that removes unstressed material at each iteration, achieved by
measuring the local strain energy for a given finite element and making
a relative comparison. The rate of material removal is gradually reduced
to zero. As well as material removal, the bi-directional variant (BESO)
adds material to avoid getting stuck in local optima (Huang & Xie, 2008).
As e-methods tend to be more accessible than h-methods, they have
increased in popularity in the building industry for bespoke applications,
for example in finding optimal structures form using fabric form-finding
techniques (Bak et al., 2012).
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2.2.5. Summary

Heuristic methods embed some form of human knowledge in order to
direct the computational process to a final result. Where there is no
feedback in the process, the result is often predictable. Where there is
feedback, such as incremental analysis, the result is less so. In general,
heuristic methods tend to be well suited to engineering problems that
can be easily stated and for which the method for getting a solution is
already well known. As found the Astana National Library project, if a
particular heuristic is adopted it becomes difficult to incorporate multiple
objectives, such as structural and fabrication aspects.

As such, heuristics can tend to dominate the design process, for example
on the Education City Convention Centre by Arata Isozaki. The large
’Sidra Trees’ that dominate the façade were designed using the SIMP
topology optimisation method, which then had to be subsequently post-
rationalised by Buro Happold’s SMART team. As Smith (2008, p.1)
recalls:

“...such an exercise does not account for the engineering
and fabrication challenges associated with a structure of this
size and complexity. The task of the design and build team
was therefore to navigate the technical realities in order to
realize Isozaki’s architectural vision”

With regards the Sidra-tree design, a particular heuristic dominated
the aesthetic and structural design and the fabrication logic followed
afterwards. The learning here is that although there is no right or wrong
approach to design, it is important to understand the effect of applying a
particular heuristic and the potential consequences of this further down
the line. It is clear that the use of a topology optimisation algorithm
that dominated the early design stage meant the process of design and
fabrication had to be conducted sequentially.

Heuristic methods are therefore tailor made for the engineer that loves
solving a well-defined problem where there exists a optimal solution
and the task is finding it using computing power. Although some of
these algorithms are technically complex and have whole individual
research areas devoted to them, from the point of view of collaboration in
practice they are simple in that the architect typically provides a problem,
the engineer develops and applies a computational approach and then
returns the resulting geometry back to the architect. In essence, the
engineering office acts as a black box with input and output.

Heuristic methods guide how a single problem is solved with the engin-
eer’s knowledge embedded in the algorithm itself. The next section looks
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at a different computational approach that externalises engineering per-
formance as measurable objectives. Within given constraints, objectives
are optimised using generic search algorithms known as metaheuristics.

2.3. Metaheuristic Search Algorithms

2.3.1. Introduction

In Section 2.2 a number of heuristic methods were reviewed where
knowledge of how to improve designs from an engineering perspective
was embedded in the algorithm itself. Such processes are only general-
isable if a similar problem arises. In this section the review moves onto
metaheuristic algorithms that distance themselves from how a problem is
solved.

Metaheuristic algorithms make no assumptions about the problem, and
therefore require searching through a very large space of candidate
solutions. Due to this non-reliance on the specific problem at hand,
metaheuristic methods are generalisable and interchangeable, with their
appropriateness for solving a particular issue investigated by comparing
different algorithms and parameters at a higher level of abstraction.
Metaheuristics are therefore more appropriate than heuristic methods
when it is not clear what direction will make improvements, i.e. a poor
knowledge of the possible space of solutions (Blum & Roli, 2003).

As we will see, the use of metaheuristics can be an appropriate choice for
a collaborative design team, because stakeholder knowledge sits outside
of the algorithm and can therefore be more easily modified than with
heuristic methods (fig. 2.20). In terms of engineering, quantitative
performance objectives are specified with the search algorithm using
(building) analysis results in order to search for good solutions. Con-
straints and parameters typically govern the space of possible solutions
that a metaheuristic search explores.

Unlike heuristic methods that embed engineering performance within
the process itself, metaheuristics must by their nature conduct some
sort of analysis at each iteration to understand the current state of the
proposed solution. The fitness of a candidate solution is therefore how
good it is either compared to a performance - either measured against a
given metric or relative to other designs.

Other than evaluating every possible solution exhaustively, metaheur-
istics cannot guarantee that an optimal solution has been found without
assessing the entire solution space. However, metaheuristic methods take
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Figure 2.20: Engineering
knowledge externalised as
performance objectives

short-cuts to find solutions. For example, many solutions can be either
ignored completely or ruled out more intelligently (depending on the
algorithm), narrowing the possible number of designs to be evaluated
whilst still ensuring a good solution is achieved in a reasonable time.

2.3.2. Metaheuristic Examples

The generality of metaheuristics mean that there are many options avail-
able to the computational designer, many with ornate natural metaphors.
A comprehensive review is given by Evins (2013), although a short list of
the best known approaches is as follows:

• Brute-force Search (exhaustive enumeration)

• Hill Climbing (Greedy algorithms)

• Tabu Search

• Evolutionary Algorithms (EA) of which Genetic Algorithms are a
subset

• Simulated Annealing (SA)

• Ant Colony Optimisation (ACO)

• Particle Swarm Optimization (PSO)

The choice of metaheuristic is often a trade off between computing
time and the nature of the solution space. For example, a brute force
search method looks at every possible solution with an equal chance of
optimality and uses no feedback in order to steer the search process. This
means that the whole design space is covered with equal computational
effort, leading to wasting computing time if a good solution is sufficient
for the problem (something highly likely for building optimisation).
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Figure 2.21: Brute-force
search for finding the optimal
placement of five supports. The
best found after 1000 guesses is
shown bottom right.

For simple problems, the use of a brute-force approach is acceptable.
Brute-force search was used on the Bath House project [04Bhc] to op-
timise the location of columns to minimise peak deflection (fig. 2.21).
Although, the total number of possible combinations was around 300
billion, the time it took to arrive at an acceptably good solution was
around 1000 iterations (effectively 1000 guesses). Here, the author wrote
a Java application that contained the model, analysis and metaheuristic
search.

For more complex problems, brute-force methods are often inappropriate
due to computing time, and hence feedback is required in order to direct
the search process. The simplest methods that incorporate feedback
are known as greedy algorithms (for example, hill-climbing methods).
If the change makes an improvement then the solution is kept, if it
makes things worse then another direction is taken. The disadvantage
of greedy algorithms is that they are unable to accept worse solutions,
and as a result are susceptible to get stuck in local-optima without fully
appreciating the fitness landscape of the solution space. A middle ground
therefore exists for metaheuristic methods that can avoid local maxima
without being too computationally expensive. An comparison of some
classic metaheuristic approaches is given in fig. 2.22, indicating two such
approaches: simulated annealing and evolutionary algorithms.

Simulated Annealing (SA)

Simulated Annealing (SA) can avoid local optima without taking an
inordinate amount of time to arrive at good solutions. The process begins
as a random walk with gradually reducing step size and increasing
propensity to move towards a local minimum (or maximum), hence the
gradual cooling analogy when annealing metals. Although there is no
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Figure 2.22: Comparison of
different metaheuristic search
algorithms. (a) Brute-force
search, (b) Hill climbing, (c)
Simulated annealing, (d)
Genetic algorithm. The best-
found solution is recorded at
each iteration, resulting in the
final design indicated by the
circle.
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Figure 2.23: The process of
genotype manipulation for a
typical GA

guarantee of success, by using the right parameters to explore the design
space local optima can be avoided and are therefore generally more
favourable than greedy algorithms if the nature of the solution space is
unknown.

Evolutionary Algorithms (EA)

Evolutionary algorithms are a class of methods inspired by biological
evolution. They commonly use a genotype-phenotype mapping, as-
pects such as crossover and mutation operating on the genotype, with
associated phenotypes assessed and retained based on a survival of the
fittest approach. The two most commonly used EAs are Evolutionary
Strategies (Rechenberg, 1973) and Genetic Algorithms (Holland, 1992).
Evolutionary strategies are very similar to genetic algorithms but favour
a floating point number encoding, whereas GAs tend to work with
discrete bits.

A popular form of a genetic algorithm is described by Goldberg &
Holland (1988). At each generation, a population of possible solutions
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Figure 2.24: Citylife Tower
Spire evolution to minimise
mast deflection (note
mechanism at first generation)

are evaluated, with the next generation selected using a weighted roulette-
wheel approach (Mitchell, 1998). This new population is then subjected
to gene crossover and mutation, artificially replicating a similar natural
process (fig. 2.23). Manipulation occurs at the level of the genotype, and
selection occurs at the level of the phenotype (i.e. the resulting organism).

As part of my review, genetic algorithms were used in order to optimise
three separate projects by assessing phenotypes using structural analysis.
These were The Vestas Blade Technology Centre [25Ves], The RIBA Pylon
Competition entry by Ramboll [18Pyl] and The Citylife Tower Spire
[27Cts] (fig. 2.24). For these projects, traditional topology optimisation
methods such as those described in Section 2.2.4 were not appropriate
because more flexibility was required over the modelling process to
better suit other aspects of the design, including aesthetic and fabrication
concerns. For example, the use of Delaunay triangulation when gener-
ating the geometry meant that no acute angles would be present in the
structure, something the design team also wanted for aesthetic reasons.

2.3.3. Mapping Process

Metaheuristic algorithms rely on a mapping between the data manipu-
lated by the algorithm itself and the resulting model that is generated
and evaluated. In the simplest case, this is a direct mapping between
the metaheuristic algorithm encoding and the geometry in the model.
This was the case for example when storing the column locations on Bath
House during optimisation [04Bhc] and on the Vestas Blade Technology
Centre project [25Ves]. For the latter, a bit string genotype directly
translated to a location of the nodes in Cartesian coordinates in the truss

40



point 01 point 02 point 03 point 04

0101   0111   0011   0110  1010   1111   1000   0110

5 7 3 6 10 15 8 6

X Y X Y X Y X Y

01

02

03

04X

Y

Figure 2.25: A bit string is
directly mapped to point
coordinates with subsequent
Delaunay triangulation
generating a truss structure

network (fig. 2.25). The final frame was then generated using a Delaunay
triangulation from the series of points.

As well as binary or integer based strings, under some circumstances
a floating point representation (FPR) is more appropriate to form the
genotype for a genetic algorithm, but requires slightly different treatment
in terms of crossover, mutation and selection as described by Janikow &
Michalewicz (1991). Indeed, such approaches bring Genetic Algorithms
closer to Evolutionary Strategies.

A natural analogy to this mapping process can be made by considering
the data manipulated by the algorithm itself as the genotype, and the
resulting form generated and evaluated as the phenotype. Although this
terminology is most commonly used with Evolutionary Algorithms such
as GAs, it is often convenient to maintain the analogy when considering
the use of other search processes. The form of encoding is either direct
(for example mapping a binary string to Cartesian coordinates as above),
or indirect - that is, there exists an additional process in-between the
genotype and phenotype during the development of form (Stanley &
Miikkulainen, 2003).

The geometry created by parametric models usually have an indirect
encoding, because an additional parametric schema exists (with its own
data flow) that translates genotype into phenotype. The genotype is
mapped to a set of numeric parameter values, not to the (visual) program
itself. This distinction and its implications will be covered in more detail
later in the context of Artificial Embryogeny (see Section 5.1.1).

2.4. Parametric Modelling

In the last section, computational processes were investigated that aim
to solve problems using metaheuristics with a direct mapping between
genotype and phenotype, or rather parameter and form. In this section I
review an indirect mapping as a computational process in itself, made
with a certain type of parametric modelling approach using dataflow
programming.
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Figure 2.26: Creation of a
simple building form using
a directed acyclic graph (a).
Manual modifications to the
‘twist angle’ parameter enables
new design options to be
explored within a user-defined
range (b).

2.4.1. Dataflow Programming

Parametric modelling is now a well-established in the computational
design community. Software applications such as Rhino Grasshopper by
Robert McNeel & Associates allow complex ideas to be explored quickly,
often able to explore designs beyond that using traditional methods of
hand sketching and model making, at least in any reasonable amount of
time.

Parametric models generate new geometry from input parameters (eg.
numbers or existing geometry) and by forming relationships between
functions that manipulate these initial inputs in some way. These
relationships may not be be explicit in their causal influence for all
parametric modelling software. As an example, Autodesk Revit allows
the user to manipulate existing geometry, and then uses a context-driven
change engine to determine which other elements need to be updated to
maintain a a consistent model Autodesk (2007). Parametric modelling
tools such as Grasshopper however are more explicit in how the user
forms relationships between objects. A form of dataflow programming,
primitive geometric functions and operations are connected with direc-
ted edges in order to form associations and describe a computational
process. As such, an associative process illustrating how to construct the
final model from geometric primitives can be made explicit in the form
of a directed network, or Directed Acyclic Graph (DAG) (Christofides,
1975).

Figure 2.26 shows a very simple DAG-based parametric model that
converts floating point numbers into a geometric form. In a collaborative
context, parametric models such as this example attempt make the
process of translating genotype to phenotype explicit to the design team
because of its visual form. Manual manipulations to any part of this
visual program can be made at any time by the user, both in terms of
the numeric parameters and the choice of topology and functions that
form the graph structure.

The Arts Alliance Travelling Theatre [05Aat] case study project is a
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Figure 2.27: Quickly exploring
different hexagonal pattern
densities (a) and the final
design (b) (Image courtesy
of Various Architects).

simple example whereby the author assisted the architect to develop a
parametric model to test out hexagonal patterns for a façade at varying
densities (fig. 2.27). An adjustable numeric parameter (sometimes
refered to as a slider) is translated into a continuous hexagonal patterning
on all surfaces using a component. The architect was able to adjust the
parameter dynamically whilst gaining information on the surface area of
the material required to realise the design. The final design balanced the
aesthetic requirement of the façade as well as the cost implications of that
particular density. One only has to think about conducting this process
manually (using CAD software for example) to see the advatages of using
parametric models.

2.4.2. Integrating with Building Analysis

The structure of the DAG representation is then that which guides
variation when parameters are adjusted. Following construction, a
combination of parametric modelling and performance analysis tools
allow a variety of design variations to be explored by adjusting numeric
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Figure 2.28: Real-time
structural analysis written
by the author used on the
Cheongna Tower parametric
model. The member radius
represents axial force.

parameters with performance information communicated to the design
team (Shea et al., 2005). This ‘slider tweaking’ can occur manually or
as part of an metaheuristic optimisation process guided via performance
feedback (fig. 2.29), whereby the parametric model parameters become
the decision variables of the search process.

Once a model is constructed, multiple design options be quickly be
investigated. Although it can sometimes take more time to create the
structure a the parametric model in comparison to traditional CAD
methods, it can significantly reduce the time required for exploration,
change and reuse (Aish & Woodbury, 2005). In an engineering context,
Holzer et al. (2007, p.627) state:

“Due to increased automation capabilities assisted by com-
putational means and the speed with which results can be
generated, structural engineers can now inform their design
process through optimisation results that can be generated in
parallel with structural design.”

In order to get performance feedback, a parametric model can either
communicate with a third party software application or integrate the
analysis as part of the parametric model itself. On the Cheongna
Tower case study project [03Cht], a real-time structural analysis package
written by the author was used. This took an existing parametric model
already constructed by the design team and performed a relaxation
based analysis with the tower subjected a large imposed wind load (fig.
2.28). The model generated a hyperboloid geometry with the parameters
altering the tower’s twist and surface discretisation density. Different
designs could be explored by adjusting these parameters and visually
inspecting the structural implications in real-time.
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Figure 2.29: Search algorithm
operating on parametric model
whose graph (DAG) is already
defined

2.4.3. Integrating with Metaheuristics

By setting an objective and attaching a metaheuristic algorithm an op-
timal design could be found automatically. Research in the built environ-
ment seems to favour the use of Evolutionary Algorithms because of their
generality and their appealing relationship to natural evolution (Turrin
et al., 2011; Evins et al., 2012), although the popularity of Simulated An-
nealing (SA) (See Section 2.3.2 ) is beginning to increase, perhaps because
the search process sometimes provides a more continuous visualisation
of the search struggle than with GAs.

Importantly with regards the industry, current parametric modelling
tools are beginning to include metaheuristic solvers as standard al-
lowing bi-directional graph associations, for example the Evolutionary
Algorithm Galapagos for Grasshopper by Rutten (Rutten, 2013). This
development of releasing solvers to the masses as opposed to academic
circles means that their application for architectural design problems is
only likely to increase in future.

Figure 2.29 shows the workflow used when an existing parametric model
generated by the architect is optimised using engineering performance
criteria. The concept is realised in the structure of the model, with
parameters optimised using a metaheuristic algorithm. Throughout the
process, the structure of the model belongs to the architect with only
parameters modified by the engineer to post-rationalise the design.

After the live project had been completed on Cheongna Tower, it was
decided to conduct a simple test to investigate what could have been
achieved by using a metaheuristic solver in the process. The Simulated
Annealing (SA) algorithm was chosen in order to optimise the tower
geometry according to a fitness value. The fitness chosen was given by a
combination of two performance objectives important to the engineer:

1. Minimise peak deflection of the tower when subjected to a prevail-
ing wind load.

2. Minimise the total length of steel members, thus giving an indica-
tion of steel tonnage.
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Figure 2.30: Single objective
results for Cheonga Tower
optimisation. Designs show
deflection and tension and
compressive elements
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The two objectives chosen were not mutually exclusive; a denser struc-
ture would lead to greater steel tonnage but deflection would increase as
a result due the exposed area of the structure picking up projected wind
loads. Crucially, as a single fitness value is required, the designer must
decide on the weighting between two objectives. This takes place inside
the parametric model definition by simply adding a weighting multiplier
to one of the objectives (see Appendix F). The decision variables were the
three parameters as used on the live project (fig. 2.28).

The results are shown in fig. 2.30. Early on in the process, the SA behaves
randomly and different designs are explored (a, b, c). The SA solver hits
a significant local optimum (d) but was able to break free and pursue a
different design direction resulting in the final best design (e) at around
160 iterations. Visual inspection found that the slight twist in the final
tower design aligned the widest part of the structure in parallel with the
wind load. Perhaps a less obvious finding was that the density of the
member spacing in the height direction was much greater than in the
horizontal direction.

The fitness axis is unit-less due to the weighting applied between differ-
ent objectives. Here we see the problem of judging the relative import-
ance when combining non-mutually exclusive objectives - i.e. which is
more important than the other and how do we reconcile different units
of measurement under a single objective? A higher level criteria such as
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cost can assist in combining objectives, however this may not be possible
in the general case. We shall see in the next section that when looking at
multiple objectives, we can still produce a wide collection of good designs
where the weightings between objectives are not set in advance.

2.5. Multi-Objective Optimisation

Due to the independence of metaheuristic algorithms, additional per-
formance objectives can be easily added or existing ones removed. This is
in contrast to heuristic methods that embed a particular direction to the
computational process. In Section 2.3, case studies were shown where
a single objective was to be optimised. In Section 2.4 I attempted to
combine several objectives into a single fitness value, for example by
using relative weightings on the Cheongna Tower Project. However,
if these weightings are not decided in advance, then there still exists a
method to display a collection of good designs, known as the Pareto
Efficiency approach (Deb, 2001), named after the economist Vilfredo
Pareto. Weightings between the performance objectives are not specified
exactly, but lie within a chosen range. The process rewards only those
solutions that are non-dominated, that is, for the case of two objectives
there exists a solution that is no better solution for one objective without
it penalising the other.

Figure 2.31 shows a simple example set up by the author to illustrate the
concept, consisting of a series of rectangular buildings all with the same
floor area that were randomly generated. A constraint on the column
grid and floor to floor height was applied, with each generated design
then evaluated for two performance objectives:

1. Total envelope heat loss (environmental): f (x1) = s−1 (where s is
the building envelope surface area).

2. Total column force (structural): f (x2) = c−1 (where c is the
cumulative force in all columns under self-weight).

The non-dominated subset of efficient solutions lies on the Pareto frontier
with examples indicated (a,b,c). Whilst solution (d) lies on the front, it
is heavily biased to one objective (structural performance), and through
inspection this is due to it being one storey. Solution (e) however
is inefficient both structurally and environmentally irrespective of the
weightings applied between the objectives. Even with a randomly
generated set of examples, it is easy to see how one might rule out a large
proportion of designs without setting the weightings between objectives,
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Figure 2.31: A simple multi-
objective performance study
showing Pareto concepts

so long of course the objectives are well-defined and will not change at a
later date.

As with single-objective problems, a suitable metaheuristic algorithm is
required to help arrive a optimal non-dominated set of solutions. Brute-
force search is obviously the simplest approach, but again easily the
most inefficient for most multi-objective problems. Again, evolutionary
algorithms appear to be the most popular form of metaheuristic in use.
Multi-objective evolutionary algorithms (MOGA) such as the Improved
Strength Pareto Evolutionary Algorithm (SPEA-2) (Zitzler et al., 2001)
and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al., 2002) all make use of the set of non-dominated solutions in order
to establish an elitist hierarchy for probability of selection for each new
generation. This approach is similar to using the fitness to give roulette
wheel weightings for a single objective problem (see Section 2.3).

As with single objective problems, the evolutionary algorithms use
performance feedback from the phenotype to help direct the search
process as time progresses. In a building design context, multi-objective
algorithms (with more than two objectives) have been used by Rafiq &
Beck (2008), and Evins et al. (2012). In terms of parametric models in
industry, the recently released Grasshopper plug-in ’Octopus’ (described
by Roudsari et al., 2013) uses SPEA-2, and has begun to open up multi-
objective approaches to a wider audience. In such a set up, setting the
problem constraints and the performance objectives becomes the task of
the design team, with the machine handling the evolutionary process
itself.

2.5.1. Adapting the Parametric Model

As described in Section 2.4.3, for The Cheongna Tower [03Cht] para-
metric model, a structural fitness score relating to peak deflection was
combined with the total member length. These fitness scores were
normalised and combined into a single objective a priori. However, if the
weightings between the objectives cannot be decided upon then a Pareto
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Figure 2.32: Multi-objective
optimisation on Cheongna
Tower

based approach will give a non-dominating set of good options to choose
from at a later stage.

The short experiment for the Cheongna tower was later expanded by
the author to include two performance objectives without prior determ-
ination of their relative weightings. A non-dominating set of designs
could then be put forward for further consideration by the design team,
essentially narrowing the search by eradicating poor designs whilst still
leaving weightings open to adjustment.

For this experiment, I decided to change one of the performance object-
ives to be member length distribution as opposed to the total member
length. This adjustment was simple to achieve. Instead of using a MOGA
for the search, a simple brute-force was adequate to generate a set of
solutions due to the relative simplicity of the problem. A non-dominating
set of 10 designs were identified using this method after assessing 500
different design options (fig. 2.32).

In terms of the designs explored by the algorithm, the building typology
was essentially pre-determined during the search process; i.e. all designs
were constructed from twisting elliptical floors. We have seen in the
previous two sections how easy it is to adapt an existing parametric
model to be optimised for different performance objectives and indeed
change the metaheuristic process used, however the parametric model
schema that describes the set of designs is difficult to modify once the
design team has established a concept geometry.

2.5.2. Handling Requirement Changes

The model structure gives a clear distinction between parameter con-
straints and objectives. It was found that modifying different objectives,
changing their relative weightings and adjusting the search process itself
is relatively straightforward.
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Figure 2.33: Cheongna tower
final structural analysis
showing high bending
moments at the base due to
the tower’s shape (a), and the
competition submission image
(b) (Image courtesy of Various
Architects).

In contrast, on the live project when the problem constraints changed, the
parametric model was unable to deal with it. During the concept design
stage, the requirements for the functional spaces increased in size after
the architect located a cinema complex at the top of the tower. This meant
the dead load increased relative to the wind, and proved to be an issue for
the tower’s elliptical shape that went into global torsion. Unfortunately,
due to time constraints it was decided by the project director Stephen
Melville that it would have taken too much effort to change our approach,
as the conceptual idea behind the geometry was already frozen (pers.
comm., June 2009) and had been agreed with the architect.

As a result of this inflexibility, for our final competition entry the
members became very large towards the base to deal with the global
torsion problem resulting in cost inefficiency and in the opinion of the
author, having a negative aesthetic impact on the design (fig. 2.33). Better
collaboration may have been possible had the modelling approach been
more flexible, exploring possible design solutions outside the bounds set
by the parametric schema.
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procurement for a design
competition involves the
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2.6. Discussion

The heuristic methods in Section 2.2 impose a particular direction on the
design process. Engineering knowledge is embedded in the computa-
tional approach and becomes integral to the development of form. In con-
trast, the use of metaheuristics mean that the engineering performance
objectives are externalised, and therefore can be easily altered as projects
evolve. The search process is restricted to the constraints and parameters
set up in the model, which can become frozen before the design problem
is properly known.

Although the computational methods used on Astana National Library
[01Anl] and Cheongna Tower [03Cht] could improve the designs from an
engineering perspective, in reality because the concept design approach
had been decided, the resulting outcomes were only suboptimal. Af-
fordances allowed by the parametric model were not sufficiently broad.
Although we were happy as engineers to have solved a problem, this was
“a false sense of having optimised a design which may be fundamentally
ill conceived” as Frazer puts it (1995, p.18).

In contrast to this, the Orchid House Project [22Orc] showed that if the
conceptual approach was open to manipulation and not frozen before
engineers are involved, perhaps new design directions can be explored.
This however must be allowed for in a computational approach geared
for collaborative working.

2.6.1. Engineer as Problem Solver

Figure 2.34 shows the typical workflow for a competition process in
design. Already successful architectural competitions are a common
start point for the involvement of engineers, often because speculative
competition work is done for no fee. Only when the client has bought into
the project, do we can actually start to think about the question: “OK, so
how are we going to build it!?” It is not realistic for architects or contractors
to pay engineers for bid work that more than likely will lead to nothing.
As Holzer at al. (Holzer et al., 2007, p.627) mention with regards the role
of the structural engineer:
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“Traditional engineering methods would see structural op-
timisation occur after the structural design is finalised; in
this sense the divergent and convergent processes occur as
consecutive steps.”.

This traditional way of working has also been reflected in our approach
to computational tools. As Menges and Ahlquist (2011, p.1) state:

“It is clear that in contemporary building design practice,
with very few exceptions, design computation still merely
serves the purpose of extending or accelerating well estab-
lished design processes.”

The use of computational methods as engineers seems to have assumed
the well known traditional problem-solving role, negating their true
potential. As Derix (2010, p.61) comments:

“Computation is seen as a ‘problem-solving’ tool to sup-
port structural, geometric, climatic, or statistical aspects of
traditional work stages, not questioning the stages through
the new medium.... academia deals with computation in an
either completely mystified or demystified way, reinforcing
the existing roles within design disciplines.”

If engineers are prepared to work with architects at the front end of
projects where financial risk is high, then their involvement must be
short but effective. Cross-disciplinary collaboration would involve more
stakeholders at the early stage of the design process, resulting in higher
complexity. The key question is how computers can give new strategies
in a collaborative environment where time is scarce.

2.6.2. Review of Aims & Objectives

The initial aim was to investigate how computational methods can
assist the design team within collaborative practice. During the first
year of participatory research on many projects it became clear that
collaboration was limited due to the fact that RCD came on board after
the conceptual design had occurred. This meant that the computational
methods applied were well defined, and classic problem solving methods
could be applied. The influence of the engineer however was relatively
small, as many of the key decisions had already been made in the project.

In terms of parametric models for example, this equated to the associative
model already being made, with the engineer left to ’optimise the sliders’.
I realised that if I was to better understand computational design as
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a collaborative exercise, I had to move further to the front end of the
process in my role as a participant observer. In terms of the RIBA work
stages used in the UK construction industry (Phillips, 2008), this meant
actively seeking projects at stages A-C as opposed to C-E. As part of a
computational process, pre-rationalisation as opposed to post.
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3. Pre-Rationalisation

“In print writing, the tools you generate are rhetorical; they
demonstrate and convince. In computer writing, the tools you
generate are processes; they simulate and decide”

Alan Kay (1990)

3.1. Introduction

During the initial review period, the engineer within computational
design was positioned as a problem-solver, there to improve or optimise
existing architectural projects in order to make relatively small perform-
ance gains. This suited a linear way of working which broadly speaking
allowed the architect to set up the problem, and the engineer solve it.
However, due to the problems experienced with being involved too late
on several projects, it became clear that continuing in this position for my
research and indeed the position of the RCD team would not address
the issue of collaboration in computational design. It was decided to
purposefully move further towards the front end of the design process.

Initially, this meant working without architects, and becoming a self-
contained design team working on projects from day one, developing
computational approaches appropriate to the early design stage. This
experience is covered in Section 3.2. A number of case studies were
conducted where interactive bespoke software applications were de-
veloped and used to find form, whilst crucially being able to alter the
model constraints during the process of design development as opposed to
previous projects that relied on existing ones set out by the architect. As
with Section 2.2.2, in this chapter engineering heuristics are embedded
in the development of form, however the resulting designs are assessed
from various design perspectives and not simply treated as problems to
be solved.

In Section 3.3, I document two case study projects whereby we received
a concept idea from the architect in order to make it work. Instead of
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Figure 3.1: A pre-defined
algorithm with embedded
engineering aspects
produces designs. Design
exploration involves altering
the parameters following
qualitative assessment. As
in Chapter 2, the grey shade
indicates engineer control.
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knowledge

previous
experience
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adopting the role of problem solver as in Chapter 2, the initial design
is instead challenged and the architect asked if they may reconsider their
own process of design and embed engineering principles earlier in the
development of form - essentially take one step backwards to avoid
problems later on in the project.

3.2. Engineering Led Design

By removing the architect completely, the engineer now acts as principal
designer on the project. This simplifies the process because there are now
less stakeholders with conflicting views during design development. A
computational algorithm that embeds engineering knowledge can now
be applied to different sets of parameters that create the model and sit
within the constraints defined by the client. The engineer must meet
client requirements by developing a design within the project constraints,
commonly positioned external to the algorithm.

The process shown in fig. 3.1 outlines two case study projects with
RCD in complete control: The London Foyer Sculpture [07Foy] and
The TRADA (Timber Research and Development Association) Pavilion
[24Tra]. These projects formed the key learning behind engineering led
design. Both began by implementing an funicular form finding process
(see Section 2.2.2), however instead of improving on an existing model,
the algorithm was used as part of an interactive design exploration pro-
cess whereby the parameters (such as support conditions, gravitational
loading, etc...) were adjusted in real-time during qualitative assessment.

3.2.1. Interactive Form-Finding

In Section 2.2.2, a series of case study projects were presented whereby
form-finding techniques were used in order to improve the structural
performance of an existing architectural concept. In this section, engin-
eering heuristics dominate the design approach. Such computational
design processes have made something of a comeback in recent years,
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Figure 3.2: The Ongreening
Pavilion realised in March 2014

with designers understanding the benefits of understanding material
in the development of form. Perhaps because material conservation is
becoming increasingly important, there is more need to justify how archi-
tectural forms are found (Leach, 2009). This development in architectural
discourse sits in contrast to deconstructivism and the unfortunate blob
period of the 1990s where function always followed form.

Recent project examples include numerous funicular gridshells (Adri-
aenssens et al., 2014), as well as so-called ’bending active’ structures
such as the ICD/ITKE 2012 Research Pavilion (Fleischmann & Menges,
2012) and the Ongreening Pavilion recently completed in 2014, for
which Ramboll Computational Design were structural and geometry
consultants (fig. 3.2).

One branch of form-finding is the generation of pure compression and
tension shells, so-called funicular structures. In this case the structural
material dominates the design process but in order to minimise the
amount of bending in the structure due to the self-weight of the material
being the dominant load case (usually concrete and brick for compressive
structures). Physical hanging net models working in tension under self-
weight are reversed to act in pure compression under the same loading,
a principle first discovered by Robert Hooke (1675) (also described in
Section 2.2.2). As the physical tension nets cannot carry bending, the
resulting compressive arch and shell forms also have zero-bending under
self-weight. The structure works axially with no out of plane forces,
enabling a thin structural depth and material efficiency.

Antoní Gaudi’s physical hanging chain models (Collins, 1963) have in-
spired many engineers to use similar methods in funicular form-finding
including Heinz Isler (Chilton, 2010), Felix Candela (Faber, 1963) and
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Figure 3.3: Frei Otto’s
Mannheim Multihalle hanging
chain model. Image courtesy
of the Stuttgart Institute for
Lightweight Structures.

Frei Otto (Otto & Rasch, 1995) (fig. 3.3). Such methods give a real-life
understanding of the behaviour of material subject to self-weight but at
the cost of having to model each design option individually which can be
extremely time consuming and constraining, especially if the boundary
conditions are complex or the exact requirements of the design are not
known.

In response to these difficulties, recent efforts have been made to re-
create the playfulness and intuition of 3D physical model interaction in
computer software applications for developing shells. These approaches
are similar to earlier computational design software for exploring light-
weight structures such as Tensyl by Buro Happold (Wakefield, 1985) and
Fablon by Arup (Simmonds et al., 2006).

Interactive software examples for funicular form-finding include directly
mimicking physical models with stiff springs (Kilian & Ochsendorf,
2005), as well as the more recent Thrust-Network Analysis (TNA) method
that combines linear optimization with projective geometry and duality
theory (Block & Ochsendorf, 2007). The computational method used for
the London Foyer and the TRADA Pavilion utilised a zero-length spring
approach with dynamic masses (Harding & Shepherd, 2011) , a technique
developed as part of this thesis. Appendix C gives more details on this
method.

For the TRADA pavilion, an initial hexagonal topology of zero-length
springs was established to the dimensions of the 8m x 6m site (fig.
3.4). Each node therefore consisted of 3 springs meeting at a pinned
connection. Nodal mass forces relative to the local area elements of the
shell were then applied perpendicular to a reference ground plane, with
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Figure 3.4: TRADA Pavilion
form-finding

equilibrium found using the dynamic relaxation method (Day, 1965). The
static determinacy of the hexagonal system is also useful during the form-
finding process, as it enables the designer to view local forces in real
time whilst the model is altered and new designs are explored. If the
springs are replaced with rigid bars after equilibrium is found, the forces
in the elements must remain as per the spring model in order to resist
the applied nodal point loads due to the uniqueness of the solution. By
reversing the direction of the point loads after finding a tensile form, a
purely compressive shell with zero-bending results.

Harding and Lewis (2013) give full details on the approach used for the
TRADA pavilion (a preprint is given in Appendix E).

3.2.2. Qualitative Assessment

In 1995, Frazer (1995, p.18) warned that if used unimaginatively, com-
puters “concentrate criticism and feedback on aspects of a problem
which can be quantified”. Likewise, Lawson (2006, p.81) argues that
“the attempt to reduce all factors to a common quantitative measure
such as monetary value frequently serves only to shift the [design]
problem to one of valuation”. It is easy to understand this point of
view, for an obsession with number and quantity are ways to make
explicit and therefore easily record the performance of a particular design
proposals. However, qualitative aspects of design such as what feels right,
or aspects such as human experience, aesthetics and symbolism should
be recognised even if they are not easily defined.

Without an architect, the engineer has complete control over the qualitat-
ive judgement of the design as well as the quantitative. For the TRADA
pavilion, the use of timber, demountability, dimensions of the small
site (8x6x4m), the small budget and the funicular form-finding heuristic
algorithm itself provided the quantitative constraints. Qualitatively, the
client and the RCD team wished to express what timber could achieve if
used to make a funicular shell structure and hence the final design had
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Figure 3.5: A qualitative
requirement for the TRADA
Pavilion (Venturi et al., 1972)

Figure 3.6: Design progression
for the TRADA Pavilion. The
final agreed form is shown on
the bottom right.

to reflect this. On the London Foyer Sculpture [07Foy], things were even
simpler because there was no client at all. For both projects, the engineer
could handle the qualitative aspects because of the relative simplicity of
the project.

Compared to buildings, the objectives of a pavilion that has no tangible
function other than to exist and attract attention is perhaps the simplest
form of architectural design. At this point, Robert Venturi’s famous
sketch immediately springs to mind (fig. 3.5) (Venturi et al., 1972).

3.2.3. Case Study Results

Figure 3.6 shows the design progression that took place over about a
month long period in our office. In dialogue with the client, various
forms were explored with different support conditions and gravitational
loads applied.

Reflecting on this project after the event, we can see how little design
variation there was between the proposals. This was because we had
embedded the form-finding heuristic in our computational approach and
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Figure 3.7: Completed TRADA
Pavilion located at the Timber
Expo, 2012.
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Figure 3.8: Two computational
heuristics run sequentially for
the development of the TRADA
Pavilion

as per some of the example projects in Section 2.2, the heuristic dictated
everything, essentially constraining the space of designs. Whilst this
made everything simpler to have such a clear focus, it was only really
possible due to the simplicity of the project and minimal requirements
that remained fixed throughout. Once the surface form was found,
planar re-meshing method (Cutler & Whiting, 2007) was applied in
order to discretise the doubly curved form to a thin shell made from
flat polygons. There were then two computational processes conducted
sequentially in order to arrive at the final design (fig. 3.8).

The London Foyer Sculpture [07Foy] project was similar in that it again
involved two separate sequential heuristics to generate designs. The
brief from Ramboll UK itself was for a sculpture promoting the use of
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Figure 3.9: Node detail on the
London Foyer Sculpture

digital design to be located in the entrance space for their main UK office.
The project was delivered for the launch of the Ramboll Computational
Design team in 2011. More details are given in Appendix D.

This time, a form-finding process was combined with the principal
curvature method (see Section 2.2.3) in order to realise the doubly
curved form at low cost. This enabled flat plywood elements to be
used with simple nodal connections (fig. 3.9). This process related
the two key design aspects sequentially: the funicular surface geometry
was found first and the discretisation/fabrication method was applied
second. Clearly, one could think about beginning with the fabrication
method and developing a funicular surface form as a result. Whichever
we do it, because of the nature of using structural heuristics, one becomes
subservient to the other unless they are embedded in the same algorithm.
This however, makes the process less generalisable for use on future
projects. For example, the planar re-meshing algorithm has since been
used multiple times on RCD project work without any funicular form-
finding being present. Likewise, the form-finding of shells does not
always require such a surface discretisation.

3.2.4. Summary

As with the TRADA pavilion, the simplicity of the brief and the lack
of stakeholders meant we as engineers could have full control over the
design process. A clear vision of producing a structurally efficient form
to fill the given volume was agreed on from the outset, and hence the
heuristics used in the computational approach were able to be developed
before design exploration. In this sense, there was no need to be agile
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with the process chosen to generate the design which was known from
the outset.

3.3. Introducing Stakeholders

Aside from these experimental projects, most work we deal with as
engineers involves multiple stakeholders each with their own view of
how design should progress. These include architects, multiple engin-
eering disciplines, clients, end user clients, etc... Moving to a larger
scale means working with consultants as part of a design team with
their own viewpoints that are not always quantifiable when engaged in
collaborative practice (Checkland, 1999).

The computational techniques developed on the experimental case study
projects described in Section 3.2 produced designs with sound engin-
eering and fabricational logic. This was because these aspects were
included from day one during design development. In this Section, I
detail two case study projects whereby similar heuristics developed by
ourselves for bespoke projects were handed to the architect in order to
attempt to integrate our knowledge into their design process at an early
stage. Here, the engineer aims to constrain the architect to a particular
development path, with other aspects of the design incorporated within
these constraints (fig. 3.10).

3.3.1. Air Baltic Terminal Competition

The Air Baltic Terminal Competition in Riga, Latvia [13Rig] was an
competition where I convinced an architect to employ a structurally
dominant heuristic algorithm during the conceptual design process. Like
the projects discussed in Chapter 2, our involvement as engineers initially
was to make a concept work, in this case a continuous 400m long roof
structure to be made as a timber gridshell (fig. 3.11). The geometry had
been developed in Rhino, and its undulating form had a relation to the
functional requirements of the terminal. Initially, the assumption was
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Figure 3.11: Architect’s initial
roof geometry proposal for The
Air Baltic Terminal

Figure 3.12: Java application
with embedded engineering
heuristic constraining roof
design exploration

that there was no need for us to understand why the form was this shape
as engineers and hence only the final surface geometry was sent over for
us to solve and produce a structure that worked.

The roof was to be supported at circular openings, with a complex doubly
curved form spanning between. Instead of following the traditional
route and deploying a sophisticated algorithm to discretise this surface
geometry (this was an attractive option, as solving problems and making
people happy feels good!), I encouraged the architect to look again at how
the geometry was constructed. I developed a bespoke Java application
for them to play with to generate structurally efficient funicular forms,
in this case a fully tensile gridshell. This software was similar to that
developed for the pavilion structures in Section 3.2, although it also
allowed the architect to investigate his own design objectives (functional,
spatial, appearance etc...) within a funicular constraint. The architect was
therefore forced to comply within an engineering constraint, albeit I had
convinced them to be willingly placed in such as position.

Figure 3.12 shows several screen-shots from the application. The architect
could add area loads (shown in blue) and change the gravitational field
applied in order to sculpt a new doubly curved form similar to the
original concept, whilst all the time it remaining funicular. The final
geometry was then be exported to dxf format, sent for member sizing and
analysis by the engineer and visualised by the architect. The resulting
structure performed very well structurally with minimal bending (fig.
3.13), as well as being able to meet the architectural requirements of the
brief.
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Figure 3.13: Structural analysis
of the Air Baltic terminal roof
(under self-weight only). The
final structure carries almost all
the force to the supports axially.

3.3.2. The KREOD Pavilion

The KREOD pavilion [12Kre] is a multi-use temporary grid shell struc-
ture constructed in 2012 for the London Olympics. My involvement
on the project began in 2011 when the architect required assistance to
make his initial scheme work. One approach used to improve the design
structurally was shown in Section 2.2.2, although this did not consider
fabrication aspects at the time that ended up becoming the dominant
design driver.

At the time of my involvement, the shell form created using parametric
design software had structural members both curving and twisting and
meeting at complex node junction. However, previous similar structures
such as the London Foyer Sculpture [07Foy] had shown that nodal
connections are often much cleaner if members are aligned using the
principal curvature approach (see Section 2.2.3), as well as resulting in
torsion-free members.

Unfortunately, the principal curvature field for the initial design gener-
ated a structurally poor outcome and the architect was also unhappy with
the visual appearance. As a consequence, I convinced the architect to see
if he would be willing to change the underlying surface, if the discret-
isation from the principal curvature fabrication heuristic was improved.
He was open to the idea, and I subsequently developed software that
automated the process of visualising the principal curvature field.

The surface form was created by the architect by lofting five freeform
curves. Tweaking these curves created different surfaces, for which the
software revealed the lines of principal curvature in real-time to the
designer (fig. 3.14). This meant that not just the form but the discretised
pattern could be assessed qualitatively. As with the Orchid House
Project [22Orc], it was found that small changes to the surface geometry
could produce vastly different principal curvature fields. The principal
curvature constraint meant the fabrication consequence for each surface
were made explicit to the architect. Applying this constraint made it
easier to remove the twist effect and simplify connections once the design
was finalised. In essence, the workflow was similar to the Air Baltic
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Figure 3.14: Surface/panelling
designs returned by the
architect on the KREOD
pavilion

Terminal roof, but with a fabrication constraint forced upon the architect
and not a structural one.

In the end, the method was not adopted by the architect who pursued
an alternative path, still working with the RCD team, but to develop a
hexagonal pattern on the surface. In effect, constraining to quads using
the fabrication heuristic would have perhaps been a mistake, since the
project was a success and has won multiple awards since completion in
2012.

3.3.3. Summary

The results from the two case studies were mixed. The Air Baltic Terminal
project was a success in that a structural heuristic could be introduced.
However, with KREOD the algorithm did little to influence the design. I
later asked the architects on the Air Baltic project, Allianss Arhitektid for
their opinion on the process with Ramboll (pers. comm., July 2013):

“This [engineering] feedback is definitely not seen as a con-
straint. Modelling capacity is limited, but digital technologies
and computational techniques can lead to discovering new
and better design options.”

Because the final design generated by the form-finding application was
similar to their initial concept, they seemed happy to integrate it. I later
asked the architect Chun Qing Li why he did not adopt the process. His
comments were that although he attempted to use the algorithm and
came up with some design options, they made him realise that he was
still quite attached to the original form (pers. comm., 3rd March 2012).
It is hard to make a general observation from these two case studies, but
there is obviously a certain attachment to initial designs from architects.

Alongside the two case study projects above, a similar problem existed
during the European Spallation Source (ESS) competition [30Ess], where
two perfectly funicular structures were proposed to the architect (fig.
3.15). Because they completely dominated the design, the architect
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Figure 3.15: Concept designs
developed by the author for
compressive and tensile shells
for the ESS Competition

did not adopt the ideas. It appeared from the case studies that if the
engineering heuristic applied does not change the project direction too
much, then it has a chance of being accepted. If not, the engineer is back
to post-rationalising geometry at a later date.

3.4. Discussion

This chapter covered four case study projects in which the engineer
moved to the early stage of the design process and applied a computa-
tional approach. For the first two case studies, the engineer had complete
control over the design process with the only additional stakeholder
being the client. Here the projects were sophisticated technologically, but
relatively simple in terms of workflow due to a shared understanding
of process within the team. That being said, even our own multiple
engineering objectives had to be incorporated sequentially in the design
process because of the computational heuristic methods used.

The latter two projects introduced stakeholders from outside Ramboll,
and therefore added complexity to the process. With the these collabor-
ative projects, it was not guaranteed that a particular heuristic could be
introduced because of the sense of loss of control from other stakeholders.

3.4.1. Primary Generators

Architectural projects often based around a central idea formulated early
on, a so-called ’primary generator’ (Lawson, 2006). If this is formed by the
architect, then a computational heuristic may override everything else.
For example, an agent based form generators based on circulation layouts
(Puusepp, 2011). If another stakeholder such as a structural engineer
formulates the central idea, they aim to embed their specialist knowledge
in the computational approach (for example, structural form finding) and
must attempt to convince the other stakeholders to be constrained.
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In effect, this Chapter highlights exactly the same issues as in Chapter 2,
but rather the architect now must follow the engineer, and not the other
way around. This linearisation of the design process into a sequential
workflow is just as constraining either way around. Of course, there is
no right or wrong way to design and heuristic algorithms can be applied
successfully in the right context. It is however crucial to understand the
implication on others if a particularly biased conceptual path is chosen
early in the process. Who is willing to be constrained?

3.4.2. Working Together

For larger more complex building design where multiple stakeholders
have differing views of how to design, the linearisation of roles described
above is often unrealistic. In comparing the development of buildings
to the development of natural organisms, Coates (2010, p.165) said the
following:

“There are hardly any things in the natural world whose
form/shape are the products of simple linear morphological
process. On the contrary, they all seem to be the result of lots
of things happening at once”

Although there may be architects that are receptive to the idea of for
example a dominant structural heuristic in order to formal geometries,
constraining an architect before design takes place is simply not realistic
on more complex projects. This fact is one of the main advantages of
Building Information Models (BIM) that aim to combine stakeholder
values in one model. Plume and Mitchell (2007) noting that good holistic
design is not achieved by breaking everything into parts due to their com-
plex inter-relationship. BIM systems currently struggle to incorporate
early-stage design exploration however, something discussed further in
Section 4.5.1.

If we are to think holistically about the task of concept design, it
appears that working together as a design team would be a beneficial
place to start without one stakeholder taking over with a particular
computational approach. This would go beyond collaborating on static
3D models, instead investigating collaborative processes during a wide
design exploration.

3.4.3. Concept Design Stage

Moving to the start of complex projects meant working at the conceptual
design stage with other stakeholders. This part of design process is
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freedom (Simpson et al., 1998)

both where there is most design freedom, but also where the most
influential decisions are made that will affect the whole process going
forward (Blockley & Godfrey, 2000, p.39). It is also the time when least
is known about the design ‘problem’ itself, with knowledge increasing
as the design process progresses (Paulson, 1976; Simpson et al., 1998) (see
fig. 3.16).

In reality, the process of design is often a messy iterative task full of
uncertainty (Schön, 1983). In architecture, Stanford Anderson (1975) for
example called design not problem solving but “problem worrying”,
going on to say that it is impossible to state all the problems that an
architectural object has to solve and that feedback from the act of design
exploration constantly modifies any initial problem statement. Similarly,
Menges (2012, p.4) states that: “evaluation criteria and design objectives
often co-evolve with the development of a project”. This is in keeping
with seeing design not as a fixed process of solving client requirements,
but engaging in conversation with the client and developing the brief in
parallel with solutions (Lawson, 2006, p.171).

As we have seen in Section 3.2.2, even if some quantitative design drivers
can be identified there exist many qualitative ones that cannot easily be
defined. Some objectives remain intractable, such as the nature of spatial
occupation (Perec, 1997) or the political influence of architectural form
(Leach, 2001). This intractability has led to architectural design at the
concept stage being likened to wicked problems (Rittel & Webber, 1973;
Rowe, 1991).

Poor early knowledge of a wicked problem means that a response
requires divergent or lateral thinking as opposed to convergent thinking
(De Bono, 2010). As Lawson (2006, p.168) states: “in general, the design
process needs to be more balanced and almost by definition less focussed
than some polemic work may require”. Design exploration should be
playful and not necessarily focussed on problem solving, allowing for
qualitative constraints and objectives as well as quantitative ones. One
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is reminded of Charles and Ray Eames’ so-called ’Solar Do-Nothing
Machine’ that had no function other than investigate the effect of possible
project constraints and objectives through play.

When addressing wicked problems, we need to investigate computa-
tional approaches that allow multiple stakeholders to engage with the
building model, open to changes in both constraints and objectives.
In short, we need to be agile with our computational process for the
complex task of early stage design, and not necessarily select a particular
computational heuristic or seductive geometry and stick with it come
what may.

As Rittel and Webber (1973, p.164) state, “part of the art of dealing
with wicked problems is the art of not knowing too early which type
of solution to apply”.

3.4.4. Review of Aims & Objectives

In this chapter, computational methods have been investigated for design
exploration with lose objectives, not just as problems to be optimised. It
was shown that for projects where a single stakeholder or team of like
minded individuals (RCD for example) is in control, a particular heuristic
can be used to generate a design space. When these methods are attemp-
ted where other stakeholders are introduced with their own motivations
and world views however, things can become problematic. Essentially
the design process must be linearised, with one computational approach
following another, and ownership of the design occurring sequentially.

Instead of forcing a concept geometry or computational approach onto
the design team, in a collaborative environment we require computa-
tional methods that are agile and must investigate frameworks that allow
for things to change and be more suitable for concept design problems.
In Section 2.3, it was found that by externalising project objectives,
modelling can occur independently and thus free itself from dominant
heuristics, allowing for better flexibility in the future. Likewise, the use of
a metaheuristic solver as part of a design exploration means externalising
objectives so they can be easily changed. This finding leads directly to the
next part of this thesis, a deeper investigation into the use of parametric
models with metaheuristics at the conceptual design stage.

By using collaborative parametric models, many different modes of ana-
lysis both quantitative and qualitative can potentially be included at the
conceptual design stage. This story then moves from an inductive meth-
odology (i.e. letting the projects openly guide the research direction), to
more of a deductive one with the statement that parametric models are
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more suitable for early stage collaboration. This is investigated in the
following chapter.

71





Part III.

Working Together
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4. Early Parametric Design

“We demand rigidly defined areas of doubt and uncer-
tainty!”

Philosopher 2, The Hitchhiker’s Guide to the Galaxy

4.1. Introduction

In Chapter 3 it was shown that for collaborative projects, the complexity
at the early stage increased with the number of stakeholders. The
engineer could no longer take on the role of lead designer worked
alongside other consultants within a design team. Instead of small
bespoke software applications that address relatively simple problems
by embedding a single heuristic, working on wicked problems means
considering the use of a collaborative model in practice from the early
stage of design. As discussed in Section 2.5, such models can give
an independent description of a geometric process whilst allowing for
multiple stakeholder input.

Potential designs can be generated that are analysed from different
viewpoints and objectives. The subsequent application of a metaheuristic
solvers is possible because most (if not sometimes all) engineering object-
ives can be quantified in terms of a fitness score. However, their relative
importance between the objectives is still left to human judgement..
Crucially, the same parametric model can also be used to incorporate
qualitative aspects as design drivers. In terms of workflow, externalising
objectives are then more appropriate earlier in the design process because
they are able to adapt, hence responding to the wicked nature of design.

4.2. Why Parametric Models?

In Section 2.4, we saw that a parametric model can investigate vari-
ous alternative complex geometries quickly by specifying relationships
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between numeric parameters and functions using an associative graph
schema. Variations of the parameters will then produce variations in
the form, and hence they seem an appropriate choice for early stage
design where a wide exploration of building geometries are required for
a healthy design search.

In this Section I will investigate in more detail the nature of using
parametric design for a collaboration at the early stage with multiple
stakeholders. I was fortunate that following our initial work on Astana
National Library [01Anl], Bjarke Ingels Group (BIG) architects invited me
to collaborate on the Escher Tower Project [16Esc], a design task in a very
early stage of development and requiring engineering support.

The opportunity arose following a presentation of my thesis work to date
at their Copenhagen office, formulating a shared desire to work on a
collaborative project. This case study was in contrast to the early review
period whereby the projects themselves guided the research direction
inductively.

4.2.1. Working with the Graph

A short introduction to parametric modelling was given in Section 2.4
with regards to mapping parameters to geometric form by forming
associative relationships. A particular type of parametric modelling uses
a Directed Acyclic Graph (DAG) representation to build associations
explicitly, with Rhino Grasshopper being the most popular parametric
modelling software using this approach. The final building model is
formed by computing this DAG, a process often sorted to linearise the
calculation process for a single-threaded machine (Cormen et al., 2001).
In Grasshopper, this calculation is repeated whenever any alterations
are made to the definition, thus meaning that parametric modelling is
interactive - i.e. the new generated model following changes to the graph
definition can be viewed in real-time.

The fact that there are no cycles in a DAG allows a hierarchy of
dependency in how geometry is constructed to be formed. By using
this parametric design approach, a single human user can therefore
administer top-down control by modifying the associations in the graph.
In essence, the act of parametric modelling using a DAG is nothing more
than writing an algorithm in visual form (Gürsel, 2012).

As relatively complex models can be created much faster than with
traditional computer aided design methods, the use of parametric mod-
elling tools such as Grasshopper have become increasingly popular at
the earlier stages of design. As these models further permeate the design
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Figure 4.1: Even simple
parametric models received
from others can often resemble
illegible spaghetti

process itself, so the term parametric design has arisen from parametric
modelling, some even arguing (albeit somewhat controversially), that
a distinct style known as Parametricism has been created as a result
(Schumacher, 2009). Unfortunately, this term is meant to include aspects
of complexity and feedback for which parametric models do not tradi-
tionally allow, serving only to compound the confusion over the term
’parametric’ in a design context as discussed in Section 1.1.3. Besides the
parametricism-as-a-style debate that will not be discussed further here,
it is certainly the case that adopting parametric modelling tools such as
Grasshopper at any stage of a project will have an implication on the
process of design, not least because unlike CAD systems, an historical
artifact of how the final geometry is formed is recorded, not simply the
final geometry itself.

4.2.2. A Collaborative Framework

The top-down nature of parametric design means that it can often be a
solitary exercise (Harding et al., 2013). Attempts to work with collaborat-
ive parametric models have been proposed however and implemented in
practice successfully. In such cases, the legibility of a DAG representation
has been key to enabling other consultants to understand and interact
with an existing definition. To this end, well structured parametric
models can enable all stakeholders to develop an understanding and
engage with the graph, as opposed to it resembling a tangled mess
of spaghetti, making it hard for team members to follow geometric
relationships that may have been created by others.

This was an issue when initially receiving a parametric model definition
on Astana National Library [01Anl] (fig. 4.1). As a response, good
structuring principles at different hierarchical scales inspired by modular
programming can assist with collaboration (Davis et al., 2011c) although
the reality of early-stage practice does not always allow for this. The
advent of clusters in recent versions of Grasshopper (at the time of
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Figure 4.2: Collaborative model
used on the Aviva Stadium
Project. Image: (Shepherd et al.,
2011)

writing) should make it easier for design teams to adopt such a modular
approach in the future.

A parametric model provides a collaborative framework of geometric
process for others to understand in different ways. As Williams and
Hudson (2011, p.27) state:

“Understanding involves producing a simple, coherent
mental model or framework to which new pieces of informa-
tion can be appended, including design decisions.”

Shepherd et al. (2011) describe the successful use of parametric models
for collaboration on a stadium design. It should be noted however
that this collaboration was beyond the conceptual design stage with a
’bowl’ stadium typology already established. Here, individual parts of
the whole model could be used by multiple stakeholders and fed-back
into the main model once completed (fig. 4.2), using modular principles
similar to that suggested by Davis et al. (2011b).

Holzer (2010) explains how decision support systems have been de-
veloped that link parametric models and BIM (Building Information
Modelling) and performative analysis using the DesignLink framework
for connecting several building disciplines.

In these examples, an explicit representation of process means that all
stakeholders can have access to how the building geometry and therefore
additional elements from other consultants can be added in a collaborat-
ive model. The graph’s explicit representation of geometric process is
important in facilitating collaborative understanding. In this sense, the
parametric model provides a common cognitive artifact (Norman, 1990)
between all stakeholders.

The level of interaction with a parametric model is addressed by Aish &
Woodbury (2005), where they argue that multiple modes of representa-
tion - not just the graph - are required because different people see the
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same task in different ways using their own mental models of perception
or world views (Johnson-Laird, 1983). This feature went on to become one
of the main features of Generative Components.

4.3. Design Exploration

As we saw in Section 3.4.3, the most important decisions in the design
process are made at the start of any project, and so tools which assist
in decision support at this early stage are of assistance to design teams.
It was stated in Section 4.2.1 that a recent rise in performance analysis
tools that can be used within the modelling program itself are becoming
more prevalent as computing power increases. Structural analysis using
the plug-in Karamba (Preisinger, 2013) and environmental analysis using
Ladybug (Roudsari et al., 2013) are two such examples for Grasshopper.
As computational analysis becomes faster for visualising performance
objectives, these are beginning to move to the early stage of the design
process.

It was shown in Chapter 2 that imposing a particular computational
heuristic too early in the project will constrain the design problem before
it is properly known. In this sense, it is better to externalise engineering
performance objectives as with our previous case study examples using
a metaheuristic approach shown in Section 2.4.3. This way, no particular
design objective rules over any other early on in the project - although
at the cost of additional complexity. Lawson (2006, p.63) indicates the
risks inherent with prioritising one aspect before another when assessing
design options:

1. The various performance criteria are not likely to be equally im-
portant, so some weighting system is needed.

2. Performance against some of the criteria can be easily measured
while in other cases this is more a matter of subjective judgement.

3. Finally, we then have the problem of combining these judgements
together into some overall assessment.

In relation to point 1, the design team will need to establish these criteria,
their relative weightings and the method of measurement. In addition
to manual methods, we saw in Section 2.5 that a multi-objective optim-
isation approach can leave weightings undecided whilst still excluding
poor (non-dominated) design solutions.

With regards point 2, in Section 3.2.2 it was argued that any computa-
tional strategy should respect that not everything can be measured with
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a ’fitness’ score. Some aspects will be qualitative and will change in time.
As an example, what if the most perfectly efficient building shape is a
swastika in plan, is this still a suitable option if you didn’t factor Google
Earth into your optimisation approach from day one?

Qualitative assessments from multiple stakeholders cannot be averaged
out unless one aspires to a design by committee approach. Clearly, being
able to predict how other stakeholders such as clients and architects will
behave on a project is impossible, and this fact needs to be respected
in any computational approach, especially those used in combination
with other design exploration techniques such as sketching and model
making. Building design is not an engineering problem to be solved from
day one, even if it may become so at a later date.

Finally, in relation to point 3, stakeholders should not attempt to impose
which design aspects are the most important too early. This process
should instead be formed throughout each project through discussion.
To this extent, for the early stage engineers should suggest but not impose
engineering aspects or risk alienating themselves. A good analogy in
this regard is the concept of smart power meters that constantly update
the user as to the impact of using power passively. Behaviour change is
not forced but rather encouraged by making users better aware of their
actions, otherwise known as nudge economics (Thaler & Sunstein, 2008).

4.4. Implementation

As a result of working with Bjarke Ingels Group (BIG) Architects during
my review period, an opportunity arose in May 2011 to join them at the
early stages of The Escher Tower Project [16Esc]. BIG were open to early
stage multi-disciplinary design and hence were the perfect partners for
this study due to our already established relationship from the Astana
National Library project [01Anl].

I acted as a participant observer during the project, aiming to learn about
the challenges that face the design team in the early stages when attempt-
ing to use a parametric modelling approach. Located in Copenhagen,
the proposed tower was to be mixed use (commercial/residential). The
architects had already attempted some initial formal studies using foam
models (fig. 4.3). These physical models were perfect for getting quick
formal massing studies on the site, enabling the architect to get a feel for
the impact of various geometries and their suitability in context.

The physical models and sketches offered a good sense of play and
exploration, crucial to the early design stage where all ideas should

80



Figure 4.3: Foam models
allowing exploration of
different design typologies
on the Escher Tower project.

be investigated, however it soon became clear that there was no way
to extract any quantitative information for each design (for example,
usable floor area or environmental performance), broadly speaking what
could be described as the aspects of design more related to engineering.
Establishing relative comparisons between different building typologies
therefore relied on only qualitative judgement alone and experience from
previous work. This project then offered an opportunity to how we could
be involved in the early stages and offer collaborative support using
computational methods.

4.4.1. Constraints and Objectives

At an initial design team meeting at the architect’s Copenhagen office in
April 2011, an initial set of constraints and objectives were formulated
for the tower (fig. 4.4). During these discussions, it became clear that to
enable healthy design exploration, as few constraints as possible should
be applied. Site dimensions, local infrastructure and local regulations
formed obvious boundaries simply because these were assumed as non-
modifiable. One additional client constraint was the required floor
area breakdown, 12,000m2 office and 3,000m2 residential. Certainly, no
structural heuristics were constraints from day one like those described
in Chapter 3. In terms of objectives, these were broken down into quant-
itative and qualitative categories, with no one aspect had dominance
over any other initially. No two objectives were assumed to be mutually
exclusive.
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Figure 4.4: Constraints and
objectives search
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4.4.2. Performance Evaluation

In order to obtain some quantitative performance data for each foam
model and relay to the wider design team, a computer modelling and
analysis process was required. By working with our Building Physics
team at Ramboll, I began by testing each option against various perform-
ance objectives in the short space of time the concept stage allowed. The
process required building a separate parametric model for each building
typology, with each evaluated for building performance by using either
direct information (such as floor area) from the parametric model itself,
or using simulation, both within grasshopper and through exporting a
model to another software package (fig. 4.5).

The first building massing model explored was a series of twisted boxes
that made up the tower, with a parameter controlling the angle of twist
between each subsequent box. By adjusting the parameter, real-time
feedback was given by the analysis package. For a single building
typology, this set up was therefore similar to the Cheongna Tower project
(Section 2.5.1).

In the short time available, we managed to explore three different
building typologies by varying model parameters. In reality, to test
every one of the BIG options that were made as foam models would
have taken far too long, and it proved to be impossible to provide
quantitative performance data for more than 3 typologies. Building many
different parametric models and not just adjusting numeric parameters
was required at this early stage and I simply didn’t have time to do it,
nor did the architect.

4.5. Observations

Once the models were constructed, the environmental and structural ana-
lysis provided quick results for parameter changes - indeed the software
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Figure 4.5: Early stage
performance feedback.
Tweaking a form with real-
time shadow casting analysis
on neighbouring buildings (a).
Structural façade deflection test
for a prevailing wind load (b).
Using Autodesk Vasari’s CFD
environment (c)

was fully capable of giving a good comparative measure of performance
if used correctly. However, it became clear that no modelling software
was available that could adequately generate models for each design
within a short period of time.

Although by using numeric parameters some variations to each design
could be explored, for each individual building type a completely new
parametric model needed to be built top-down to adequately represent
each design option – something that was impractical at the concept
design stage even though the parametric models required were relatively
small in size. In the end, the number of options had to be narrowed down
significantly before any structural analysis could be undertaken meaning
that potentially good design directions were missed.

The key learning points from this exercise were the following:

• BIG used foam models in order to be able to quickly explore design
directions, but they lacked the quantitative analysis that may assist
in deciding which design path to develop further.

• In contrast, the engineers had a good knowledge of which building
performance objectives to analyse, but the computer models were
not flexible enough to explore a wide variety of form.
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4.5.1. Concept Design Exploration

We have seen in Section 3.4.3 that the conceptual design stage is a
wicked problem. However, this fuzzy nature of the early stage ap-
pears to run counter to the reality of parametric modelling in practice.
Parametric models develop incrementally, and are constantly refined
during a project (Peters, 2007). Woodbury (2010) describes this as “erase,
edit, relate and repair”. Every addition makes the graph structure
more complicated, so the model’s flexibility and potential to adapt to
changing constraints and requirements gradually reduces. This problem
is compounded if the graph structure is poorly organised.

As discussed in Section 4.2.2, if put together quickly and without legibil-
ity for others in mind, the graph can often resemble a tangle of spaghetti,
making it hard to follow geometric relationships and thus interact with.
In terms of design exploration, we are left to merely tweaking sliders so
that nothing more than fine tuning can take place (Davis et al., 2011b). As
Aish and Woodbury acknowledge (2005, p.11):

“Nothing can be created in a parametric system for which
a designer has not explicitly externalised the relevant concep-
tual and constructive structure. This runs counter to the often-
deliberate cultivation of ambiguity that appears to be part of
the healthy design process”

This inflexibility is not necessarily a bad thing if the building typology
is already agreed upon - for example the rotating boxes concept (fig.
4.5) could have been easily explored and real-time results visualised as
decision support. Parameter changes are therefore limited to a single to-
pological graph structure for the parametric model. i.e. the components
and their relationship cannot change without top-down effort. Contrast
this to the speed in generating completely different solutions using hand
sketching or physical working models, and we see why they are so
popular at the concept stage where the design process jumps between
disparate ideas.

This isn’t to say we should ditch our machines and return to the sketch.
Firstly, parametric models can generate designs beyond models and
sketches. And, as I found on Escher Tower, extracting quantitative
performance is often impossible with sketches alone. This ability to
extract quantitative data does tempt the design team to begin with
computer models early on in the process. For example, clients will often
specify usable floor area requirements, and so having this information
available for possible designs is of benefit.

Turning to the computer from day one has been encouraged by de-
velopments in Building Information Modelling (BIM) and performance
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based design (Eastman, 2009), that champion the parametric model as
the suitable vehicle for design exploration at the concept design stage,
for example being the combination of Dynamo (parametric modelling)
and Autodesk Vasari’s real-time performance analysis tools (Boeykens,
2012). However the BIM community has run into the same limitations.
As Heumann (2012) states:

“Decoupling a model from its variables, breaking it out of
its fixed dimensions and dependencies, may be antithetical
to the efficiencies of BIM but may in fact be essential to the
creative process of design.”

Indeed, the level of detail required with building information models and
their resulting inflexibility makes more suited to the later stages of the
design process (Cavieres et al., 2011). Likewise, the topological inflexib-
ility of a parametric model goes against healthy design exploration that
helps form the design ‘problem’ itself as well as its solution. As Richens
(2011) states:

“There are many ways to construct and parametrise a
model, and the choice you make encapsulates a decision as
to which kinds of future change will be facilitated and which
not”

Building models can become over-parametrised, restricted to a single
design ’body-plan’. Coates (2010, p.105) gives a very good example:

“The great failing of these kinds of algorithms is that
while they are good at exploring the design space defined by
their parameters, they cannot transcend them. For example,
genetic algorithms can be used to design the hull of a sailing
boat, with parameters for curvature and a fitness function of
minimising drag, but such an algorithm would never come
up with a catamaran.”

4.5.2. A Fixed Body-Plan

In nature, the body-plan of an organism is how its main parts are laid
out during the development of form (Wolpert, 1991). A direct analogy to
building geometry is easy to make. With parametric design systems, the
associative DAG structure can be seen as the ‘body-plan’ of the building,
i.e. how it is formed from primitive component parts. We saw in Section
4.2.1 that parametric models have an encoding between parameter and
form that include elements such as repeatable parts, similar to those
found in nature. These have also been replicated in artificial systems,
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Figure 4.6: Body morphology
of three creatures. The author
has added the recursion depth
values. Source: (Sims, 1994)

such as Richard Dawkins’ Biomorphs (1986) and Karl Sims’ evolving
creatures (1994).

Sims used directed graphs in order to represent specific body parts
with repeatable elements (fig. 4.6) and therefore provided an explicit
representation of the body morphology. Sims’ graphs included simple
recursive elements, and while it is worth noting that traditional paramet-
ric models do not traditionally deal with cycles, recursive structures can
be explicitly represented because no additional information is required
to explain the entire process. A further discussion on this with regards
formal grammar rewriting can be found in Section 6.2.3.

Indeed, plug-ins to include recursive structures in parametric models
and hence increase their functionality have already been developed, for
example the ’Hoopsnake’ component for Grasshopper by Chatzikon-
stantinou (2013). It is now possible to integrate simple recursion into
a graph definition, replicating the capability of Sims’ networks made
almost twenty years earlier.

Unlike Sims’ networks that evolve alternative body plans, we have seen
that parametric models are by their nature are combinatorially inflexible
in any search process. By becoming locked-into a parametric structure
too early on in the design process, exploration becomes restricted to
certain building typologies instead of considering topological variations
to the body-plan. The philosopher Manuel DeLanda (2002) identified
this potential problem in the use of genetic algorithms in architecture,
encouraging designers to “think topologically” in order to explore a
space rich enough so that all possibilities can be initially considered by
the designer.

4.5.3. Design development

During design development, the topological inflexibility of parametric
models means design teams gradually become locked-in, with any large
changes to the requirements brief or constraints resulting in the time-
consuming rebuild of new definitions from scratch. This experience was
first documented by Burry (1996) when modelling part of La Sagrada
Família. In this case, a particular conoid surface geometry was not
fit for purpose, whereas paraboloids would have possibly offered an
alternative. However, in order to investigate their use there was no
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Figure 4.7: For an identical
final form, a different graph
structure representing
development leads to
exploration of different design
domains (a) & (b)

option other than to disassemble the model and restart from scratch. A
similar experience was found by Holzer et al. (2007, p.639) on a stadium
roof project “whereby changes required by the design team were of such
a disruptive nature that the parametric model schema could not cope
with them”. This is clearly a wider problem in industry and not just
through my own personal experience at Ramboll.

Often, a given design by itself will not provide obvious evidence for
this inflexibility. For example, the relationship between the graph
representation and the geometric model is many-to-one, that is, we can
create two graph structures that both produce an identical geometric
model. A simple example is shown in fig. 4.7 where a different graph
generates exactly the same geometry as in our earlier example shown in
Section 2.4 but in a different way. Instead of lofting through a series of
scaled rectangles, a cube is sliced with a plane.

Different graph structures make explicit different design intentions or
investigations. This means that although the initial form may be
identical, the way it is represented in the graph will influence its future
development. It is the explicit structural constraint of the component
functions and graph topology that guides subsequent variation that may
lead to a sub-optimal design. Choose the wrong structure too early, and
you limit your design exploration before you have properly explored the
space of possible designs as found with Escher Tower, or not be able to
adapt to changing requirements throughout at project as found on the
Astana National Library and Cheongna Tower.
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4.5.4. Possible Solutions

One response to the inflexibility of parametric models is to make the
graph representation more legible and therefore easier to return to and
make adaptations. Davis et al. (2011b) argue that by using better
structuring using principles from modular programming, enhances the
cognition of the parametric schema by others by working at different
scales of hierarchy (Simon, 1962). Conventional strategies of good source
code management and documentation can also help, although in reality
there is often little time to prepare such information within a concept
design environment.

Another approach to speeding up the parametric design process is by
identifying common ’design patterns’ (Woodbury et al., 2007), and then
re-using them on multiple projects. These become generic snippets of
visual program that solve common problems, rather like the copy and
paste of source code. Although certainly attractive to the time-pressed
designer, the encouragement of design patterns runs somewhat counter
to the idea of allowing for new ideas (unless they are strictly used to solve
well defined problems). A popular example of this effect is the overuse of
Voronoi diagrams in computational design. As Moussavi states (2011):

“parametric design as a style disposing itself of the re-
straints of external parameters and promotes the autonomy
of architectural forms, while it cannot advance beyond new
ways of shaping matter to produce unexpected spaces.”

One can easily become a slave to the pre-compiled tool because this is
the easiest thing to turn to when faced with the challenge of design.
Computers run the risk of distorting the design process to fit within the
limitations of the most easily available program (Frazer, 1995).

Another approach is to abandon the directed nature of parametric mod-
els, and shift instead to a constraint based logic programming approach.
Logic programming allows the user to set up undirected associations
between objects and allow the machine to interpret (using a metaheuristic
solver or otherwise) the dataflow through the graph. This approach
was first investigated by Swinson in the 1980s (1982) and led to further
academic developments in the 1990s for which a thorough review is
provided by Fudos (1995). Unlike parametric models, the directed flow
of the graph need not be specified in advance. Davis et al. (2011a)
have compared the use of Logic Programming to a traditional parametric
model schema for a simple design task and found a five-time increase in
speed in order to create the model. Although Davis does sound word
of caution that it is hard to generalise from such small studies (2013,
p.71), it does however still show a promising direction for improving
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parametric flexibility even if an (undirected) associative network must
still be specified in advance.

Strategies for implementing bi-directional constraint-based design ex-
ploration were proposed by Kilian (2006), and more recently developed
by Coenders (2012) for his ’NetworkedDesign’ framework. These ap-
proaches give more flexibility in changing constraints to objectives and
vice-versa, but still rely on predominantly top-down manipulation by the
designer.

4.6. Discussion

As we have seen, there exist methods that offer improvements to both
the speed of graph manipulation and their legibility as collaborative
models. However, most of these approaches are all still based around
wilful top-down modifications being made to a single graph topology
that must be explicit and legible. In this sense, they do not address the
problems found on the Escher Tower project where potentially millions
of different parametric schema are required that cannot be generated
manually. In summary, parametric design seems unsuited to healthy
design exploration because the design team must pick a limited number
of building typologies, or else engage in the laborious task of manually
creating different parametric definitions for each - an unrealistic task
at the conceptual design stage. Davis’ studies in Logic programming
suggest an alternative approach, but focussing on axioms and allowing
the machine to assist in constructing the relationships.

4.6.1. Relation to Software Development

In software development, two conflicting views of how to manage a
project are popular. The first, known as the ’Waterfall Model’ focusses
on a linear mode of development, investing time up front to understand
the problem before any design development takes place. In relation to
building design, this would see the design team fully understand the
brief before developing and then proposing a single design to the client.
The second is known as the ’Spiral Model’ of development (Boehm,
1988), which acknowledges that understanding requirements and project
goals evolve during the design process itself, and hence the design team
must be agile in how they approach a problem. In building design at
the concept stage we can see parallels with the latter, as architectural
problems are wicked in nature and require us to reassess project goals
and constraints iteratively. As Lawson (2006, p.56) states: “design
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Figure 4.8: A building model
develops alongside its
computational generating
process

problems are often both multi-dimensional and highly interactive”. We
can therefore say that unless our computational process is agile, it will
not be well suited to the complex task of building design.

As the building is the result of the algorithm, so modifications to the
algorithm will create modifications to the building (fig. 4.8). With
parametric models, both are visible to the design team. A computational
approach must also work alongside other modes of representation and
processes, such as the creation of physical models. Although the latter
is possible especially through developments in rapid prototyping, a
limited number of options can be feasibly realised using this method.
In practice, a combination of both computer and physical models helps
understanding from different stakeholder perspectives (Hanna & Turner,
2006).

As opposed to computational method that imposes a known heuristic,
here there is no such well defined approach from the outset. Instead
the approach must work as a structural coupling (Maturana & Varela,
1980) between humans and computers which influence each other in a
conversation during design development. Front ending design intent
as per the Waterfall method does not resolve the issue that earlier in
the project there is the more the potential for design constraints and
objectives to change. Indeed, it may be that specific design objectives are
left open for the building users to explore and interact with, as explored
by architect Cedric Price (Mathews, 2007).

4.6.2. Review of Aims and Objectives

In this Chapter, I have explored the use of parametric modelling at the
early stages of design. Through looking at case study projects both
myself and in literature, it is clear that there exists a conflict between the
inflexibility of the parametric model created top-down and the wicked
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problem of early stage of design. On a positive note however, shifting
to workflow that enabled constraints and objectives to change over time
was working successfully on the Escher Tower case study project.

In response to these findings, the exploration of computational modelling
methods that avoid fixed body-plan are explored in the next Chapter.
This involves moving away from explicit parametric models and towards
implicit complex development processes in generating form.
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5. Freeing the Body Plan

“Technology is the answer, but what was the question?”

Cedric Price, 1966

In the previous chapter, I argued that the inflexibility of the modelling
process becomes a significant stumbling block when attempting to ex-
plore a wide range of forms at the concept design stage. To this end,
the promise of parametric models to offer better design exploration was
in reality not the case because too much time was spent constructing
the associations that then constrain the design space too early. Instead,
I argued that the generative algorithm itself should be more adaptive
rather than just the parameters that control a model constructed with
assumed intent. On Escher Tower at least, we needed to become
more agile with the programs that generated the form during design
exploration.

Computational approaches that involve a flexible body-plan are therefore
more suitable than parametric models at the early stage. As we will see,
these approaches often incorporate implicit aspects that are not possible
with a DAG structure used by parametric models. By negating such a
fixed algorithm/structure in the generation of form, emergent processes
that adopt an implicit and not an explicit approach may offer a suitable
alternative where complexity and emergent architectural form are able
to develop (Frazer, 1995). Here there is a direct analogy to biology in the
development of form.

5.1. Introduction

Unlike parametric models, the study of development in nature from an
embryo to organism (embryogenesis) leaves no easily understandable
trace of how to build an organism. Instead, the DNA of a creature
contains rule based information that encodes an emergent process of
development of form from a single embryo, i.e. morphogenesis. The
genotype is the base level representation of the organism (for example
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Figure 5.1: The relatively
small set of hox genes play a
significant role in setting out
the body-plan of an embryo for
different creatures

DNA), with the phenotype being the final form following development.
The process from genotype to phenotype is implicit, with complex order
emerging from low level rules (Turing, 1952). Due to this complexity,
the process of building a living organism from its genotype even for the
simplest of creatures is only just beginning to be fully understood.

5.1.1. Evolutionary Development

The development process from genotype to phenotype is combined with
natural selection in order to evolve organisms capable of surviving in
their environment. This combination between individual development
(ontogeny) and the evolution of species and lineages (phylogeny) is
known as Evolutionary Development, or Evo-Devo for short. As a
complex adaptive system, natural systems are able to adapt the design
of living creatures to suit an ever-changing environment in a coupled
relationship (Carroll, 2005).

The complexity of an emergent process means that unlike with an explicit
one, small alterations to the genotype can lead to large changes to the
phenotype, for example its size, shape and number of repeating modules
in the living form (Weinstock, 2010). There exists a specific part of the
genome known as the Homeobox genes, a relatively small part of the
entire genotype, but in combination with morphogens play a significant
role in setting out the body-plan of the organism (fig. 5.1) (Wolpert, 1991).
This process regulates the growth rate of new cells, with timing changes
to these rates resulting in large phenotypic differences (Gould, 1977).
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5.2. Artificial Embryogenesis

The ability of natural systems to produce a great variety of ‘designs’ has
offered inspiration for computational designers involved at the concep-
tual stage (Steadman, 2008). Artificial Embryogenesis (AE) is the study
of taking natural evolutionary development and artificially replicating
it inside the machine to generate new designs automatically. In short,
AE consists of the use of a non-linear system to map from representation
to organism, inspired by the mapping from genotype to phenotype in
nature (Kowaliw, 2007).

Bentley & Kumar (1999) used the concept of Artificial Embryogenesis in
order to compare various ways of generating designs and assess how
appropriate they were for the task of wide exploration in combination
with an evolutionary algorithm. They found that an implicit repres-
entation gave rise to a much greater variety of designs than an external
embryogeny such as a fixed parametric model with only linear metric
parameter variation. With an implicit approach, small changes in the
genotype could give rise to large changes to the phenotype resulting in a
wider exploration of the problem domain.

Various studies in using an implicit embryogeny have been conducted
that aim to relax the body-plan by losing an explicit representation of
the generation process altogether. This was first explored by Bentley &
Wakefield (1998), Coates et al. (1996) and Frazer (1995) in the evolution of
rule based cellular automata (CA) that generate form. Here, the genotype
encodes the simple rules from which the CA simulates deterministically
to produce the phenotype. Multiple genotypes can then be manipulated
as part of a metaheuristic search by assessing the phenotypes and se-
lecting good solutions either artificially (Dawkins, 1986) or automatically
(Goldberg & Holland, 1988). As opposed to defining the body-type
explicitly, the idea behind such methods is to find a neutral description
of 3D form which is capable of embodying the widest possible range of
objects. Local rules can also embed design team heuristics as well as the
global assessment of the final form.

5.2.1. Local Rules

Due to a deliberate loss of control in using an emergent system, the
traditional role of architect as top-down ‘master designer’ is to some
extent replaced with bottom-up ‘systems designer’ (Kalay, 2004). In
reality, the designer or design team is still in charge of setting up a process
and assessing results, and hence must also assume some form of control.
However, by acting at this meta-level of abstraction, the machine is
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now in a position to suggest novel and perhaps well-performing designs
that may have been beyond the reach of the human with already pre-
conceived ideas. A bottom-up approach to design also changes the
emphasis to think locally about the rules that generate form, as opposed
to globally with a top-down system. As Coates (2010, p.167) states:

“The use of computers to explore emergent form has one
advantage that, in order to build the morphological system,
you have to define it in a formal language which brings the
structure and meaning of the model proposed into the realms
of expression and debate.”

The next section explains a case study project whereby local rules and
global outcomes are both influenced by the stakeholders and open for
change throughout the design process. In response to the inflexibility of
parametric models in the exploration of form, an emergent approach with
no fixed topology was then implemented with participant observations
recorded.

5.3. Implementation

Following the collaboration with Bjarke Ingels Group on the Escher
Tower Project and the subsequent findings, I was invited to work on
a further project at the concept design stage: the ENI HQ Competition
[20Eni] in Milan, Italy. The project was for a new commercial office on an
industrial park for which BIG wanted to reconsider the idea of a standard
office block typology to something that would also involve public space.

Their initial geometric concepts were based on the formation of graphs
representating spatial layouts (fig. 5.2), in reference to the existing ENI
owned buildings on the site which created some context to the proposed
intervention. These graph structures gave an abstract representation of
the spatial structure of the office and became a way of describing different
geometries using a different mode of representation. Although spatial
phenomena do not stop at some clearly defined geometric threshold such
as representations like graphs (Derix & Izaki, 2013), the specific nature
of this project made them an appropriate choice. Plan graphs of spatial
adjacency were first used by Steadman (1983) and later Jupp & Gero
(2003) and remain a useful method of generating and analysing spatial
aspects of design (Hillier, 2007).
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Figure 5.2: Graph representa-
tion of local buildings (Image
courtesy of BIG architects)

5.3.1. Modelling

As with Escher Tower, the architect’s initial foam models (fig. 5.3)
provided a visual guide in terms of the variety of forms to be produced
in the machine. The modelling process developed here is an example
of procedural modelling whereby a set of simple rules generate more
complex forms. The graph representation provided an abstract concept
for the formal development because although not being completely
unrestrained, it was still open to manipulations in body-plan. The project
therefore provided a good chance to escape the problem of parametric
modelling software at the concept design stage as discussed in Section
4.5.1.

Graph structures are relatively easy to manipulate geometrically and
topologically and therefore could produce a wide range of morphologies.
A similar approach to generating spatial structures with alternative topo-
logies were pioneered at the urban scale by Hillier and Hanson (1984) for
investigating “de-geometrised” village layouts and Coates (2010, p.153)
with his similar Alpha Syntax model by establishing a formal shape
grammar with simple geometric and topological rules governing the
growth of possible designs.

5.3.2. Local Rules

The rules used to generate various forms for the ENI HQ design were
based both on the molecule analogy from BIG and the requirement to
generate similar structures to those already made using foam models.
For example, local rules which generated angular forms similar to the
models were embedded in the graph structure generator.

An agent based model was used in order to control the node location
geometry using an attract/repel force similar to the self-organising
process used on Astana National Library [01Anl]. A stochastic shape
grammar was used to change the topology of the molecules similar to
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Figure 5.3: Initial foam model
concepts (Image courtesy of
Bjarke Ingels Group)

stochastic Lindenmayer Systems (Prusinkiewicz & Lindenmayer, 1990,
p.28). Nodes are able to attach and detach neighbours, as well as grow
new edges during the development of form. The generative process
therefore had seven parameters that control the development of form
over time:

1. Growth probability (0 - 0.05). Controls the probability at each
iteration for the graph to grow an extra edge and randomly located
an extra node.

2. Attach neighbour probability (0 - 0.1). Controls the probability at
each iteration for the graph to add an edge to its closest unconnec-
ted neighbour.

3. Detach neighbour probability (0 - 0.1). Controls the probability
at each iteration for the graph to remove an edge to its closest
connected neighbour.

4. Flesh width (0 - 14m). Adjusts the width of the buildings. An
assumption is made that every building has the same office floor
width.

5. Node height factor (0 - 40m). Controls the extrusion of each node
from the ground plane to form the 3d buildings.

6. Attraction/Repulsion strength (-0.05 - 0.05). Neighbouring nodes
influence each other with a push or pull force given by this
parameter.

7. System damping (0.95). A second order multiplier that damps
parameters 1, 2, 3 & 6 towards zero.

For the seven parameters, the range of values (bounds) were set manually
to give a range of outcomes similar to the physical models. They also
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initialise 6. repel 2. attach 1. grow 2. attach

3. detach 6. attract 4. flesh 5. extrude

Figure 5.4: Development of
form using the ENI graph
generator

embedded some architectural constraints, such as the maximum width
of the floor plate (for passive ventilation).

The reason to use a nearest neighbour approach to alter the topology
of the graph was partly due to planarity. Nearest Neighbour Graphs
(NNG) are known to be sub-graphs of Delaunay triangulation and there-
fore maintain planarity (Eppstein et al., 1997), meaning that buildings
would not usually intersect each other (this is not guaranteed, only
due to the continual movement of the nodes). This planarity property
has been useful in generating spatial layouts on the plane for other
architectural applications (Harding & Derix, 2011). The graph generator
was developed as a Java application and could be used manually or
automatically.

5.3.3. Performance Objectives

As with the Escher Tower Project, there were certain ideas that the
architect already had in mind that influenced the performance objectives
decided upon by the design team. For BIG, this didn’t simply mean the
local building geometry, but also the historical use of the site, leading
to an intent to have public gardens on the roofs of the buildings. Other
factors such as the site context and the local climate influenced the need
to reduce solar exposure and hence solar gain in the summer months for
the offices. The main initial objectives were as follows:

1. Minimise solar exposure. This was measured as an accumulative
value over the summer months by reusing the analysis algorithm I
had previously developed for the Maljevik Bay Project [19Mjb].

2. Maximise green roof area. This was seen as an important design
driver for BIG in attempting to change the concept of how a private
office building was used. Here, the public were permitted to walk
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Figure 5.5: Screen-shots from
the Java application

upon the building roof and hence maximising the amount of roof
area became an objective.

3. Minimise total heat loss. A good rule of thumb for building heat
loss is that it is proportional to its surface area Heywood (2012,
p.76).

5.3.4. User Control

The application was initially developed with manual controls, with
parameters adjusted and the growth process taking place until fully
damped (fig. 5.5). The design team was able to grow building forms
on the site and observe the status of the performance objectives in real-
time. However, when using the software it was difficult for the user to
understand how to control the results. Even by enabling a random seed
for the growth probabilities (thus making the algorithm deterministic),
the generator was found to have a high degree of epistasis, or in other
words, slightly different initial conditions led to completely different
results. Although this enabled a wide variety of designs to be generated,
there existed no strong connection between what adjusting parameters
was actually going to achieve in terms of the final design. The complex
process left the user somewhat distanced from the process, a finding
discussed further in Section 5.4.
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Figure 5.6: Brute-force search of
outputs with two objectives

5.3.5. Using a Metaheuristic

By setting the performance objectives outside of the main algorithm,
the task of generating designs could also be attached to a metaheuristic
algorithm to give the design team a good selection of designs. A
simple brute-force approach was used to uncover a good set of solutions
by sampling 3,000 different final design options explored within the
parameter limits. The results are shown in fig. 5.6, with two objectives
compared. A sample of design options close to the Pareto front could
then be selected and taken forward by the design team by recording the
initial condition (random seed) and the parameters that generated the
final result. Indeed, although not known beforehand, the results actually
showed a strong correlation exists between solar gain and heat loss,
meaning that they could perhaps be combined into a single objective.

As previously discussed, the system was highly sensitive to small
parameter adjustment especially with regards the topological controls,
meaning two similar designs were often generated using vastly different
parameters. This nature made it difficult to make any wilful impact on
the development process after the final network had been generated. Al-
though CAD files could be exported of good geometries for further work,
the graph generator application itself felt like a black box, distanced from
the design team.

5.4. Observations

Although the algorithm generated results similar to the foam models,
in the end BIG did not end up using the software application at all, as
either a manual application or as a generator of good designs. This
was disappointing, and can be seen as a failure of the approach, but it
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Figure 5.7: A sample of good
designs close to the Pareto front

highlighted a general problem with generating software applications that
generate design models where there is no engagement in the process by
some stakeholders. Control of the model becomes an important issue,
and although computational methods can support design, one must feel
connected to any process involving a machine. This is discussed further
in Section 5.4.2.

Understanding process and feeling involved is human nature. In 1997,
the chess champion Gary Kasparov lost a six game match against IBM’s
Deep-Blue, the first time a computer had defeated the best that humanity
could offer. Following the loss, Kasparov demanded to see the computer
logs to understand how the computer was thinking when a crucial
match changing move was played. Upon being denied the information,
Kasparov concluded (incorrectly) that the move had in fact been made
by a human to gain a territorial advantage. As well as its interesting
relation to the Turing Test, it also shows how false conclusions can occur
if process is not made explicit. The same can be said of emergent design
methods. Whilst it is true that such approaches help to quickly explore
vastly different designs and investigate novel design possibilities, an
important question is often overlooked. If the design team are in control
of setting up an implicit process and able to cognise the final results, what
level of intervention is possible during the design process itself if complex
processes are effectively a black box of irreducible complexity?

In Kumar’s AE example discussed in Section 5.2, whilst the implicit ap-
proach gave wide design exploration, only the final resulting phenotype
was then available with no simple description of the growth process (i.e.
genotype to phenotype) that could be understood by the designer. This
is exactly the same problem science has when attempting to understand
for example the complex system of embryogenesis. In effect, the entire
(evolved) simulation has to be run again from scratch and followed step
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Figure 5.8: Massing generation
using a cellular automaton with
simple low level state transition
rules

by step, and even then it is hard to see how the human can step in and
affect such a complex process because any intervention can still lead to
vastly different outcomes.

This is the case even with deterministic systems that display chaos, such
as the three-body problem (Poincaré, 1914). Any intervention at any
stage of the process (not just the initial conditions) can cause vastly
different outcomes at a later time, similar to the ENI graph generator.
This sensitivity is also found in artificial complex systems such as certain
class IV cellular automata (CA), for example Wolfram’s Rule 110 (1984)
or Conway’s game of life (Gardner, 1970) which are computationally
irreducible.

That is not to say complex processes should not be of fundamental
importance in computational design; far from it. Indeed, the massing
options quickly generated on the Pluit City project [32Plu] utilised a
complex approach to generate a wide range of results from very simple
density rules (fig. 5.8). One must however understand the implications
on collaborative practice, and why sometimes a more explicit description
of process can be beneficial.

5.4.1. Collaboration Issues

Why does an explanation matter? Although emergent processes are
certainly interesting and do have architectural applications, their appro-
priateness as part of a collaborative process is questionable, because the
generation process behind the form must to some extent be made explicit
so that we may interact with it, and not just initial conditions and/or the
final result. If humans and machines are to be used in a conversation,
then a language in which they communicate has to be understandable by
both, even if each will have a different interpretation, or form different
mental models. In essence, the computer must enable the human to
understand how it forms a particular result if it to be seen as a stakeholder
in the design process and not simply a slave.
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One only has to look at automatic plan generation (Jo & Gero, 1998;
Gero & Kazakov, 1998; Eastman, 1973; Grason, 1970) to see why this is
important. Although many papers have been written on this subject and
many efficient algorithms developed in isolation, hardly any applications
of such software have been implemented on real projects. As Liggett
(2000, p.213) concludes in her survey about layout automation at the turn
of the century:

“In spite of the long research history associated with auto-
mated layout and space allocation systems, in practice these
systems have not been utilized to their full potential.”

I would argue this is because design is a process of understanding wicked
problems, not something that is easily generalisable and hence wrapped
up into a tool. Black boxes for other designers to simply deploy ignores
the essential issue of control and inclusion; as Derix states (2010, p.61):

“technological ambition side-lines the designer into a seed
watch evaluate role who feels his/her intentions and heurist-
ics are not participating in the search.”

The software developer is the one attempting to emulate a typical human
designer, instead of setting up a system to enable him/her to engage in
conversation with a machine. This application of externally imposed
design management strategies from academia is still just as prevalent
even today (Ren et al., 2011).

Instead of developing software to automate the logic of architecture
(Mitchell, 1990) in a systematic general approach (Pahl et al., 2007), I
would argue that we need to look at communicating with machines not
using them to implement overriding frameworks that dictate the design
process. To this end, Building Information Models (BIM) have shown the
way for better understanding of geometry by allowing different semantic
data from different stakeholders, but they also make assumptions on
what geometry should be, for example by having ready made tools for
making ’walls’ and ’roofs.’ Whilst this is good for the standardisation
of building component, it is too specific for healthy conceptual design
(Cavieres et al., 2011).

Parametric models offer a way to engage at the level of process explicitly,
so long as they are flexible enough and legible to different stakeholders
(see Section 4.2.2), a point made by Coates (2010, p.167):

“The use of computers to explore emergent form has one
advantage in that, in order to build the morphological sys-
tem, you have to define it in a formal language (define an
algorithm) which brings the structure and the meaning of
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the model proposed into the the realms of expression and
debate”.

Effective communication between stakeholders during design develop-
ment requires understanding, and this comes at the cost of speed. In
machine learning in recent years, humans have begun to give up on
understanding how machines solve problems such as language transla-
tion, instead relying on complex statistical pattern matching processes.
With such systems, an explanation of how something has been solved
is not important, as long as the program works it doesn’t matter how
it did it (Russell et al., 1995). However, we have seen in architectural
design that it is important if humans are to be engaged in the process,
because of the equally complex nature of design itself and the importance
of explaining to others how (and sometimes why) something has been
done in a collaborative environment. A similar medical analogy given by
Heaven (2013, p.34):

“What if a machine learning system decides that you will
start drinking heavily in a few year’s time? Would doctors
be justified in withholding a transplant? It would be hard
to argue your case if no one knew how the conclusion was
arrived at.”

Understanding how in this medical example may lead to a suitable treat-
ment in the future. We have seen in Section 4.5.3 that with parametric
models it is the component functions and graph topology that guides
future variation. The result maybe the same form, but how it was
arrived at will govern any future development. As a final point, one may
note the similarity here to convergent evolution in natural systems - for
example the fact that vertebrates and octopuses developed the camera
eye completely independently. Or for example, the development of
placental and marsupial forms with completely different evolutionary
strands as described by Dawkins (1986). Understanding evolutionary
development gives a different categorisation for organisms, completely
different to that made by simply looking at them and recording features.

5.4.2. Case Study Evidence

Learned experience of individual stakeholders forms the main driver
behind the design process, and hence this must work alongside any
computational process not embedded in the algorithm itself using a
set of ’human instructions’. In an semi-structured interview conducted
with BIG employee Catherine Huang following the ENI project (21st
November 2011), she commented that [using the software described in
Section 5.3] they could not access the process itself and therefore the
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Figure 5.9: Geometric
operations on a later design
for ENI based on human
experience (Image courtesy
of BIG architects)

idea of other stakeholders writing software that conducted aspects of the
design for them without knowing how it was done was troubling. In
collaborative design, understand how leads to discussion as to why. These
may well be hard to define, involving tacit knowledge or otherwise but it
allows the stakeholders to at least consider the question. In essence, any
geometric process that gives rise to a building form being made explicit
can benefit collaboration, just as with the resulting building model itself,
because multiple stakeholders may view the reasons behind it in different
ways.

Huang stated that this explicit record of process was important to how
BIG explain the reasons behind the development of form in project re-
ports issued to clients and other consultants. Such “geometric gestures”
were part of a series of processes learned from previous projects and had
become a language of design specific to the architectural practice. This
was assisted by the saving of hundreds of foam models of old projects,
including designs that were not progressed. These acted as reminders of
the meaning behind the process for them. However, it would be wrong
to assume this language was fixed, indeed Huang commented that such
rules of thumb were in a constant state of flux and although they assisted
learning from their previous work, they were open to new directions as
to avoid becoming a fixed design system.

These gestures take on different meanings for different stakeholders.
For example, creating cantilevers at each level my help with shading
(fig. 5.9), however the structural engineer will immediately view this
gesture differently. The fact that BIG communicate how and why to
other consultants opens up the debate, as different stakeholders will have
different world views of a geometric process as well as the final resulting
form. Note how this differs from Sections 2 & 3 of this thesis, whereby a
single heuristic was embedded in the generation of form as opposed to
many (see discussion, Section 3.4.1).
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5.4.3. Evidence from Industry

Before the advent of parametric models, Peter Eisenman was one of
the first architects engage in generative process that could be recorded
as a cognitive artifact in the form of diagrams, able to be interpreted
differently by others. As he states (Eisenman & Somol, 1999, p.169),
“diagrams became a means to uncover something outside of my own
authorial prejudices”. In a series of projects including House VI, the
generative traces or diagrams of process are expressed in an explicit form
in the final construction itself. This purely geometric process is the
building and leaves itself open to interpretation by everyone, although
the level of collaborative engagement with a completed building is by
that time non-existent.

In contrast to Eisenman’s desconstructivist approach, when geometric
operations have associated meaning behind them during the design
process they are often governed by particular (human) motivations.
These are commonly known informally as rules of thumb or “guiding
principles” (Lawson, 2006). For example, architect Ken Yeang developed
and subsequently published a set of geometric principles for the design of
environmentally responsible towers after years of experience in the field.
Due to the measurable nature of the performance goals, the success of
such gestures could be isolated and measured, and therefore generalised
to some extent and used by other design firms. Likewise, the architect
Carlo Scarpa used to align geometric operations with how an object
would be sculpted by a craftsmen. Burry (2013, p.103) recalls how in
describing Gaudi’s process of designing a column, the computer script
becomes important in telling the story to others: “Scripting the narrative
seems crucial if we are to animate the sequence and afford more general
intelligibility.”

Parametric models with an explicit DAG representation allow stakehold-
ers to form their own mental models of design process (Checkland, 2000).
Again, this sits in contrast to Building Information Models that allow
stakeholders to work together only at the final building model level and
associated semantics (Succar, 2009). A word of caution should be soun-
ded however, in that parametric design software (such as Grasshopper)
currently has a strong bias to only geometric processes. Aspects such
as the placement of lighting or the choice of colour and material for
example will also affect the experience of space. In fairness, such features
are beginning to be made available to parametric models, however a
parametric model will rarely encapulate all aspects of a design and must
work alongside other phenomenological aspects that may not be explicit
in the program.
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5.5. Discussion

The crucial learning from this chapter was that BIG make explicit their
reasons for geometric gestures in order to explain how and why a
particular form comes into being. This “cognitive artifact” of process
helps designers learn from previous work as well as helping explain how
and sometimes why to other stakeholders. To obscure this using an implicit
process caused unforeseen problems on the ENI project. Stakeholders
were unable to understand how the machine had arrived at a particular
design and hence could not engage, instead feeling that the machine had
imposed a particular approach against their will.

As Frazer warned (1995, p.18), “If used unimaginatively, computers
distort criticism to the end product rather than to an examination of
process”. By obscuring the geometric process as with an irreducible
complex system, we are destined to focus only on the initial rules and
subsequent final outcomes and obscure the in-between. As the author
Douglas Adams writes (2002), “If you try and take a cat apart to see
how it works, the first thing you have on your hands is a non-working
cat”. Design is not attempting to replicate how cats are formed or how
cat consciousness works - that is the domain of science. Design is
about understanding to create new meaningful interventions. Here we
must begin to question whether the black box of self-organisation as
a collaborative design approach is compatible with humans that often
crave involvement and control.

By acknowledging this reality, it becomes clear that we should seek a
middle ground that offers the flexibility of an implicit approach with the
cognisability and common language offered by an explicit one. Perhaps
instead we need to remember the benefits of parametric models in
making process explicit, whilst somehow increasing their flexibility? In
response to both the problems encountered when humans attempt top-
down control of the explicit parametric graph, and the irreducibility of a
complex processes, might it be possible then to think topologically and
automate the generation of the graph itself? This would opening up
exploration of different building typologies as required at the concept
design stage whilst still maintaining an explicit representation of devel-
opment from genotype to phenotype (fig. 5.10). Such a process would be
analogous to a creating an explicit embryogeny in describing the process
of form-generation, sufficiently agile to adapt to the changing nature of
the design process.

108



Genotype

Genotype

CA rules Development Phenotype

PhenotypeDevelopment

(a)

(b)

Figure 5.10: Comparison
between an implicit (a) and
explicit (b) embryogeny process
for generating simple forms.
CA example taken from Coates
et al. (1996)

5.5.1. Reconsidering Parametric Models

A parametric model representation is often complicated but not complex,
and therefore theoretically knowable (Kurtz & Snowden, 2003). Form
generation from simple components is ordered in a hierarchical way.
Although a complex implicit approach gives more freedom, the complic-
ated explicit one gives better understanding. As Aish comments, (pers.
comm., 8th November 2012):

“Early code generators applications created code that
‘worked’ but code that was verbose and unfathomable by
‘human programmers’. The ‘holy grail’ for those of us
developing a code generation system was to create code
generators that in turn create code that was human readable..
i.e. understandable.”

As we have seen in Section 4.2.1, as well as the final form, an additional
parametric representation of how the form is made does indeed have
benefits in a collaborative environment and therefore to some extent
helps negate the problems that black-box processes such as automatic
layout planning run into in terms of adoption by others. Successful
collaboration has been made from the early stage by using parametric
models, however these have been limited to a single building typology
that has been defined from the outset - for example the stadium ’bowl’
typology (Hudson et al., 2011).

Certain standards must be made when generating a model that was
understandable as a collaborative artefact and not a tangle of spaghetti
(Davis et al., 2011c). By considering the machine as an additional
stakeholder, if parametric models are automatically generated we should
make sure they are ’clean’ and understandable so that interaction can
take place.
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Figure 5.11: Examples of
biomorphs. Source: (Dawkins,
1986, p.70)

5.5.2. Evolvability

In Section 4.5.2, it was discussed that Dawkin’s Biomorphs and Sims’
creatures could evolve a wide variety of forms even if their genotype
to phenotype mapping was explicit, because their topological structure
was free to change during a search process. However, another property
known as ’evolvability’ was also present due to this mapping. fig.
5.11 shows some Biomorph designs taken from The Blind Watchmaker
(Dawkins, 1986) laid out from left to right according to their similarity
in 9-dimensional genotype space (something Dawkins calls a “genetic
ruler”).

By visual inspection, we can also see that such a similarity is also present
in phenotype. Dawkins later remarks in his book The Evolution of
Evolvability (Dawkins, 2003), that the creatures were so easy to evolve
because they had this direct mapping between genotype and phenotype.
The closer relationship between the genotype and phenotype than with
an implicit approach leads to faster adaptation. This mapping does
however come at the cost of efficiency. Within biological organisms, we
saw in Section 5.1.1 that a small mutation in a single homeobox gene
can cause a large change in the body plan. With an explicit system
however, a larger genotype is required because no instruction can emerge
autonomously with an explicit embryogeny (Senatore, 2009).

Kumar & Bentley (2000) have also found that achieving evolvability with
an implicit embryogeny is more difficult than for explicit one because
of the discontinuity it causes in the search space, i.e. a high degree of
epistasis. Epistasis is the degree of dependency between the genes in a
genome.
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This distinction between explicit and implicit is also known in the Artifi-
cial Embryogeny community is known as the Cell Chemistry Approach
vs Grammatical Approach to encoding (Stanley & Miikkulainen, 2003),
and in neural networks as the difference between non-modular and
modular designs. If we look to nature, we may think that the emergent
process of development from genotype to phenotype is completely impli-
cit, however it has recently been found that a key driver of evolvability
in natural systems is the widespread modularity of biological networks
- their organization as functional, sparsely connected subunits (Clune
et al., 2013). In reality then, a mix of explicit and implicit embryogenies
is probably how natural systems can have such complexity whilst still
remaining highly evolvable.

Although an explicit parametric DAG is not technically complex but
instead complicated, if its structural development is combined with a
metaheuristic search such as a genetic algorithm, complexity lies not at
the level of generating geometry, but in what happens during design
exploration, i.e. in the generation of good explicit embryogenies quickly
and efficiently. This suggests a direct mapping between genotype and
phenotype (low epistasis) makes such a process easier to follow and
engage with. As Derix states (2010, p.65):

“...the designer can better interfere with computational
heuristics and understand the search struggle, offering the
opportunity for identification between designers’ analogue
and computational heuristics, thus enabling the validation for
wicked problems when no explicit goals are set.”

5.5.3. Review of Aims and Objectives

In Chapter 2 it was argued that our current role as engineers had
to move to the front end of the process in order to be effective in
computational design. In response, Chapters 3, 4 and 5 documented
several different approaches to early stage collaborative design using
alternative computational methodologies that influence the workflow
between stakeholders. The key learning points from each chapter are
as follows:

• We should not embed a particular heuristic too early and therefore
impose an overriding idea before the design problem is known
(learning from Chapter 3)

• We should allow large body-plan variations for healthy design explor-
ation of different building typologies (learning from Chapter 4)
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• We should provide an explicit representation of the geometric process
for better stakeholder collaboration (learning from Chapter 5)

If we cannot achieve the last of these, the key question becomes do we
attempt to make the complex approach more understandable, or the
complicated approach more flexible? For this research, I decided to take
the latter approach due to the known benefits of existing parametric
modelling software in a collaborative environment. However, this
decision was a conscious choice, acknowledging that this may come at
a loss to the amount of complexity an implicit system brings.

The next chapter explores methods in making the parametric model more
flexible by investigating ways to alter the graph functions and topology
in addition to metric parameters. Here I turn to Genetic Programming,
the study of generating programs with programs. In this context, this is
development of programs that generate visual programs.
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Part IV.

Bridging The Gap
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6. Meta-Parametric Design

“There is one possibility that has always intrigued the lazy
coders, what if we could get the computer to write the code
for us - so we can just write one program that evolves a
program, and then we can all go back to sleep!”

Paul Coates (2010)

6.1. Introduction

We have seen in Section 4.2.1 that parametric design software allows a
visual representation of a geometric process, formulated during design
development. It was argued that whilst the creation of the parametric
graph structures remains predominantly under top-down control, the
vast search space at conceptual design stage cannot be properly explored
due to topological inflexibility. However as shown in Section 4.2.2, the
explicit nature of parametric models does have collaborative benefits. In
response, by thinking at a higher level of abstraction, the generation of
the parametric graph structure itself can be agile alongside modifications
to the metric parameters (Harding et al., 2013).

Such an approach takes inspiration from Genetic Programming (GP)
whereby the automatic generation of computer programs takes place
as opposed to simply adjusting variables. Automatic generation of
parametric graph structures would enable different building typologies
to be explored, even if the variation of the graph structures was fairly
minimal. It is proposed that such a system could either be controlled
manually, be incorporated into a feedback loop using a metaheuristic
solver or indeed include aspects of both.

The crucial aspect to emphasise is that such a system is not proposed to
replace a design team, but instead enhance its capabilities through com-
putation by approaching design problems at various levels of abstraction.
Far from ’all going back to sleep’ as the lazy coder might dream, we still
need to be very much awake... if not more so!
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Figure 6.1: Plateau’s problem
for minimising a surface area
involves finding a surface
function. A soap film can solve
the problem by assuming a
surface of minimal energy

6.2. Genetic Programming

Genetic programming (GP) is the automatic generation of computer
programs by computer programs, and therefore requires moving to
a higher level of abstraction. As such, instead of investigating the
implications of altering parameters to explore the possible outcomes of
a single computational process, GP investigates altering entire processes
themselves as well as the lower level parameters. GP is very closely
related to Artificial Embryogeny, because computer programs that gen-
erate computer programs can be seen as analogous to evolutionary
development, that is, the evolution of the process of developing form
(see Chapter 5.2). In GP, explicit embryogenies are commonly produced
because the developmental process that are evolved can be understood,
either in the form of computer code or as a visual graph or tree structure.

Werner (2001) draw parallels with GP and the development of the
calculus of variations in mathematics. Whereas traditional differential
calculus is concerned with finding the maxima and minima of functions,
variational methods search for mathematical functions themselves using
functionals. An early example in variational calculus is Plateau’s problem
from 1760 where one must find the function of a surface with the
minimal surface area given a boundary condition (fig. 6.1). Both GP and
variational calculus share the same underlying principle of broadening
the scope of the solution space beyond numeric variables.

6.2.1. Tree Representation

Cramer (1985) first developed an adaptive system for generating math-
ematical functions with an explicit tree representation which were then
evolved using genetic algorithms to solve specific problems. Computer
programs are however more general than mathematical functions. Koza
(1994) went on to develop Cramer’s ideas further by utilising the tree

116



x 1

+

-

0

x x

1

+

* 2

+

0

-1 -2

x

*

-

x+ 1 x2 + 1 2 x

x 1

+

-

0

x 1

+

-

0

x 1

+

-

0

x x

1

+

*

Crossover Mutation

Selection

x

x

1

+

*

x 1

+

-

0

x 1

/

-

0

x 1

+

-

0

x+ 1 x2 + x+ 1 x x

Figure 6.2: A classic GP
example. Operations are
organised in a tree structure,
with terminal nodes
formulating a mathematical
equation

structure of the LISP programming language, in doing so established
GP as a serious research discipline. Here the genotype is the tree itself
consisting of nodes with mathematical variables and operators, and
the phenotype the resulting function from this grammar. The classic
operations of a genetic algorithm such as selection, crossover and muta-
tion are applied directly on this structure (fig. 6.2). The term genetic
programming infers that a naturally inspired metaheuristic is used to
breed the programs, however (confusingly) the term GP can encompass
the use of other search methods such as Simulated Annealing (Miki et al.,
2007).

The explicit mapping between genotype and phenotype with Koza’s tree
representation, means that ’bloat’ is a commonly recognised problem.
Tree structures will tend to increase in size and thus cause problems when
computing certain programs. As Poli et al. (2008, p.101) state:

“Bloat is not only surprising, it also has significant practical
effects: large programs are computationally expensive to
evolve and later use, can be hard to interpret, and may exhibit
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poor generalisation”

The problem of bloat was acknowledged by Sam Joyce and myself when
first outlining the possibility of a Meta-Parametric approach as opposed
to using trees (Harding et al., 2013). As we will see later on, this means
incorporating an upper limit the number of components on a generated
DAG structure and hence control bloat.

6.2.2. Generative Grammars

In linguistics, a generative grammar system is an explicit definition of
how words are put together to form sentences and hence language.
Noam Chomsky (1957) showed how natural languages could be de-
composed into their syntactic components whose structure represented
trees similar to those used in LISP (see above). Language was therefore
a combination of low level rules that arranged words whose resulting
structure from those rules which had a tree representation known as
parse or syntactic trees. Syntactic trees include words and the structure
lays out their combination explicitly which then forms a linear sentence
(Fischer, 2001).

It is natural to extend the idea of a grammar to geometry. For example,
we can think of a parametric schema constrained to a tree structure as
a geometry language made up of component functions (words) with
certain methods of creation (rules) and edges (location in a sentence).
In computational geometry the data type of the primitives (Point, Line,
Surface) have similar logical rules associated with their creation set out
by their constructors (Point by XYZ, Line by Points, Surface by Loft,
etc...). Although not popularised in mainstream parametric modelling
software, the field of shape grammars has already explored architectural
applications of generative grammars.

Generic Semantics

The idea of automating parametric model generation can in some ways
be seen as similar to shape grammars that set to establish an architectural
language which is then assembled combinatorially (Stiny et al., 1978).
Such systematic approaches to design attempt to emulate architectural
expression and add semantic meaning to certain geometric shapes and
processes in a reductionist fashion before the design process begins
(Alexander et al., 1978; Mitchell, 1990). However, as Derix (2008, p.23)
states, this means that “shape grammars do not provide any alternative to
the algorithm; the expressions are already embedded in the description.”
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Figure 6.3: Senatore’s Tower
Generator (2009). A production
rule generates an explicit
sequence (shortened here)
that describes the form

This particular approach constrains design exploration before it begins
because answers to questions of why are already pre-supposed and
considered to be general. The use of geometric primitive components in a
Meta-Parametric approach should therefore not impose meaning behind
the geometric gesture but leave it open to interpretation for different
stakeholders to form their own perspectives (see Section 5.4.3). The
nature of these gestures should be left open to the design team, because
as we have seen they cannot always have a straightforward explanation
as to why. For example on the ENI collaboration with BIG (see Section
5.3), some of the geometric operations were made for tacit reasons based
on their own experiences as a practice, specific to the project and context.

In light of the above, a general system for automatically generating
parametric model definitions was therefore pursued that could explain
how but not why, leaving that open to the specific design team.

6.2.3. GP for Design Exploration

Generative shape grammars that do not impose a pre-supposed architec-
tural expressions have been previously explored by Coates (1999) using
Lindenmayer Systems. As with all formal grammars, L-systems use
low level rules to generate an intermediate explicit sequence (known as
rewriting) which is then read by the machine sequentially. Recursion
therefore forms a short-cut to generate repeating sequences similar to the
limb generation on Sims’ (1994) creatures as discussed in Section 4.5.2.

The work by Coates has inspired recent work by Senatore where an
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Figure 6.4: Example objects
evolved using a CPPN. Source:
(Clune & Lipson, 2011)

explicit embryogeny that included recursive structures similar to Linden-
mayer Systems was used to generate tower forms (Senatore, 2009) (fig.
6.3). Again, Senatore found that the direct mapping of a formal grammar
helped with the evolvability of the generated phenotypes, and a tree
representation could also be generated to assist with human legibility.
Coates (2010) has also investigated the use of simple geometric boolean
operations arranged in trees as part of his GP Dom-ino project, although
these take the form of tree structures used by Koza and not DAG
structures as used with parametric models.

Evins (2012) has recently investigated the evolutionary development of
building forms for multi-objective problems. This work uses the Com-
positional Pattern Producing Network (CPPN) representation proposed
by Clune and Lipson (2011) (fig. 6.4). The CPPN uses combinations
of simple mathematical functions similar to Koza’s LISP trees in order
to map point locations to a voxel boolean state. Although a wide
number of forms can be developed using CPPN and high evolvability
can be achieved due to its explicit formal logic, it was not clear how
such a process would be integrated into existing collaborative parametric
modelling systems, the motivation behind this work.

6.2.4. Cartesian Genetic Programming

Similar to Coates’ ideas on the Dom-ino project (2010) that were limited
to tree based structures, the question of how to replicate a similar process
with a parametric model DAG is a compelling one. In computer science,
as well as Koza’s tree structures that represent computer programs,
the automatic generation of directed acyclic graphs was first attempted
shortly after due to their close relationship to computer algorithms (van
Leeuwen, 1991) and historical use in project management known as the
Program Evaluation and Review Technique (PERT) (Boulanger, 1961).
Such automatic DAG generators tended to have complicated encodings
and never (until recently) found widespread application.

Fundamentally, any DAG representation (with Grasshopper no excep-
tion) can be rewritten as a tree, however the nature of the DAG gives
several advantages. Firstly, the combinatorial logic means that outputs
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Figure 6.5: Grasshopper
definitions as a DAG and as
a tree that give an identical
outcome

can be used by more than one input, increasing the likelihood of element
reuse. Complex structures can therefore be created with less information
and computed in less time Woodward (2006). This is highlighted in the
example shown (fig. 6.5), whereby a simple DAG Grasshopper definition
(a) gives an identical outcome to a tree with repeated elements (b).
The DAG representation reduces the dimensions of the solution space,
from ten to five, and crucially builds shared dependencies in the model
altering its variability. In the example, both the sphere and the pipe share
a dependency with the point (highlighted *).

A DAG interpretation of L-Systems is described by Boers and
Sprinkhuizen-Kuyper (2001) similar to a another method known as
Cartesian Genetic Programming (Miller & Thomson, 2000) (CGP). The
latter has recently gained popularity due to its apparent ease of use
and integer based encoding. This process generates explicit structures
very similar to those used in parametric modelling systems such as
Grasshopper. Primitive functions are housed in component boxes which
are then associated to each other in a dependency hierarchy. The Cartesian
term simply means that each component box has a presence on a two-
dimensional canvas as a form of visual representation.

A typical CGP set up is shown in fig. 6.6. A single integer string genotype
is capable to storing metric, topological and functional information that
make up each unique DAG that is computed to formulate a set of
equations. Modifying the genotype means the resulting phenotype is
not just changed in terms of the parameters, but also the structure of the
graph itself.

Crucially, because the mapping between genotype and DAG phenotype

121



Figure 6.6: A Cartesian Genetic
Programming example

is direct and explicit, better evolvability can be achieved (see Section
5.5.2) The closer relationship between the genotype and phenotype (low
epistasis) leads to faster adaptation to the current problem. CGP has
been successfully implemented for the evolution of electrical circuits in
combination with genetic algorithms (Miller & Thomson, 2003; Vassilev
& Miller, 2000). In addition, CGP has been shown to be easily imple-
mentable in a wide range of fields. These include machine learning,
neural networks, data mining, financial prediction, function optimiza-
tion, classification, medical diagnostics and evolutionary music. It is not
a big leap to see how Cartesian Genetic Programming could be applied to
parametric models, increasing their topological flexibility and therefore
making them more suitable to the conceptual design stage.

6.3. Embryo

6.3.1. Introduction

Embryo is the name given to a plug-in to Grasshopper written by
the author in C# that combines genetic programming with parametric
models. The approach involves using a similar mapping method to CGP
for encoding a parametric model schema, thus enabling its structure to
be agile as part of a wide design exploration. To the author’s knowledge,
no attempt to generate parametric model definitions automatically has
been previously attempted.

Instead of developing an autonomous stand-alone application, it was
purposefully decided to develop software that would work within an
existing environment as a plug-in. Rhino Grasshopper was chosen first
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Figure 6.7: A typical
grasshopper component defines
its input and output parameters
and their preferred data type

because of its current popularity as a visual programming environment,
and hence a meta-parametric approach would be akin to a trojan horse,
attempting to modify the process of model generation from the inside.
Secondly, due to its geometric primitive components having an explicit
single constructor, for example ‘line by points’ is a separate component
to ‘line by origin, direction and length’ (fig. 6.7).

This meant each component encapsulates the grammar rule behind how
a geometric primitive is created, and not just its final presence in the
model. Many additional third-party components are also available for
Grasshopper and as of writing, these are increasing in number. In
reality, any parametric modelling software could be used that utilises a
graph based approach and many of the principles developed here would
equally apply to other parametric software (such as Bentley Generative
Components or Autodesk’s Revit with Dynamo).

6.3.2. Generating DAGs

Embryo generates DAGs automatically by allowing the user to work at a
higher level of abstraction. Instead of defining the graph top-down, the
user can define the conditions that limit the graph definitions generated.
These include what components are to be included, the number of
components, the number of numeric parameters, the parameter domains,
etc... As with CGP, a numeric genome encodes the generation of a
graph structure from these conditions. Once the system is prepared, the
generation of different DAGs from base level components is simple, and
when calculated, different forms are easy to explore quickly.

A typical Embryo set up in Grasshopper is shown in fig.6.8. The
grasshopper canvas is now divided up into separate areas. The main
Embryo control component sits on the usual place in grasshopper, able
to be manipulated top-down by the user. The input components (or in-
gredients) that will make up the generated graph are located off the main
canvas to the left. The generated parametric model is above the main
canvas and includes metric parameters, components and the topological
structure of the graph. Embryo can include existing components (as well
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Figure 6.8: Typical Embryo set
up in Grasshopper generating
simple tower forms
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as generating new ones) by simply dragging them above the main canvas
before the process is run.

The outputs from generated components can be referenced back to the
main canvas shown on the right. This geometry can be used in any
usual Grasshopper definition, for example in visualising performance as
shown in the example. So long as the geometric expressions housed in
components are sufficiently primitive, the design domain can now be
explored in a more healthy manner as topological inflexibility can be
released during a search process.

6.3.3. Embryo Components

As a plug-in to Grasshopper, Embryo exists a series of components that
can be placed on the main canvas and control the nature of the generated
graph definition (fig. 6.9). These are divided into the following five
categories:

1. Parent components that are used on the usual Grasshopper canvas.
These include the main Embryo controls, settings component and
three components used to tag outputs and inputs to be included in
the generated definition.

2. Child components that can be added to the generated graph.
Currently this only includes a single component to block outputs
of the generated definition.

3. Cognition components that assist with human understanding of
the generated graph. The use of these components are discussed
further in Section 6.3.8.

4. Utility components - non specific components including one to
reveal the data type of a component output and another to unfold
a design to a net for physical model making.

5. Visualisation components - a series of components that display
charts for viewing performance data of the generated models in
real-time.

6.3.4. Constraints and Parameters

As well as creating their own parametric models top-down, the design
team can now work at a higher level of abstraction by manipulating
the Embryo component. The main limitation that Embryo currently
imposes is that each input has only one incoming edge. It is hoped that
future versions will address this issue as it has implications such as the
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Figure 6.9: Embryo component
list

1. 2. 3.

4. 5.

Main(control(component

Additional(settings(for(
graph(generation

Gets(geometry(from(the(
child(canvas

Tags(a(parameter(input(
on(the(parent(canvas(to(
be(included(in(the(
generated(graph

Tags(a(parameter(output(
on(the(parent(canvas(to(
be(included(in(the(
generated(graph

Tags(a(parameter(output(
on(the(child(canvas(to(be(
plugged(Ri.e.(no(output(
edgesB

Displays(all(components(
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the(dependence(hierarchy
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component(index
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impossibility of list structures being formed as inputs to a parameter. One
example in Grasshopper is with the Bezier Curve component that needs
a list of different input points instead of just one.

An additional built in constraint avoids the creation of null data, for
example zero-length lines. This helps to cut the amount of error strewn
parametric models and is specific to Grasshopper. Outside of these
constraints, the design team can control several settings options to
manipulate graph generation including the following:

• Number of Slider Parameters (integer)

• Number of Components (integer)

• One-to-one: an output parameter can/cannot be included more
than once (boolean)

• Grid size of displayed components (integer)

• View failed components (boolean)

• Preview components (boolean)

• Display only terminal components (boolean)

6.3.5. Encoding and Generation

The generation of the graph is a direct mapping from the genotype to
the graph, and similar to CGP the explicit grammar includes numeric,
functional and topological information. This is reflected in three inputs
for the main Embryo component as shown in fig. 6.10, Metric, Function
and Topology gene inputs for which Grasshopper ’gene pool’ compon-
ents (shown pink) can be used as list inputs. In addition, the ’Random
Override’ input can be used to override these three genes and create a
random graph from an integer seed - this is useful for initially exploring
a solution space as we will see later.

Assuming the random override is not used, the three inputs that control
how the graph is generated as follows:

1. Metric genes control the parameter values for the sliders and have
a direct numerical mapping. These can be integer or floating point
values and the number of numeric parameters are generated are
in accordance with the settings specified by the user. These metric
parameters are the first things generated by Embryo.
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Figure 6.10: The main Embryo
component with metric,
topological and functional
genes coming from separate
gene pools.

2. When a component is added to the graph, the functional genes
control which type of component is selected from the ingredients
pool.

3. The topological genes are integer based and map the output loca-
tion for each input when forming the graph. Altering these genes
therefore changes the topology of the graph structure generated.

Figure 6.11 shows how a simple graph is generated step by step using
the three sets of genes. The numeric parameters are generated first and
their outputs labelled. Components are then added by using a functional
gene to select its type (shown in blue), and the topological genes (shown
in red) to connected each new component’s input to an existing output.
In the example shown, box component that requires two points as inputs
is selected, however as there are not enough outputs at this stage of a
suitable data type, the component is removed from the canvas. Similar to
CGP, this generation method ensures that the graph is always a DAG
and therefore non-cyclic, able to be computed as a new solution by
Grasshopper as with a standard parametric definition.

Algorithm 6.1 shows in more detail how the graph definition is achieved
by Embryo. The outputList stores possible outputs that can be connected
to by any new component. When a new component is created, its outputs
are added to this list so that they may be used by any future components.
The dependency rank is stored to sort the graph into dependencies to
attempt to make it legible to the human (see Section 6.3.8).
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Figure 6.11: Graph generation
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components using functional
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Algorithm 6.1 The DAG generating process used by Embryo
object[] outputList
for all newComponents c do

c.selectIngredient(functionGenesc)
for all c.Inputs i do

bool typeCheck = false
while !typeCheck do

Inputsi.selectOutput(outputList, topologyGenesc*i,int k)
typeCheck = Inputsi.datatypecheck(outputListk)

end while
int Rank = Inputsi.DependencyRank(outputListk)
if Rank > c.DependencyRank then

c.DependencyRank = Rank
end for

if c.warning = null then
outputList.add(c.outputs)

else
canvas.remove(c) //remove the component if it failed

end if
end for
topologySort(newComponents) //arrange the final graph

When a new component input selects an existing component output, the
data type check makes sure that the connection is not meaningless. The
syntactic rules of the parametric grammar are specific to the data type
of the parameters and have a direct correlation to the constructor. As
previously mentioned, Grasshopper is useful for this task because the
rule system is explicit in the component itself; for example, a ’line by
points’ component can use a Grasshopper Point data type input, but not
a Number or a Surface one.

The data type check is done with component output type and not volatile
data types at present due to speed. In Grasshopper, volatile data is
that which flows through the model when the DAG is computed, but
to compute the graph after every additional component is added or edge
is connected is comes at high computational cost. This means that the
Grasshopper in-built casting procedure is ignored and instead a look-up
table was created by the author that compares output parameter types.
Whilst this can sometimes result in failed components, it does means the
DAG does not have to be computed until the end of the graph formation
process and hence is much faster.

6.3.6. Some Simple Examples

Even for just a small selection of components, the combinatorial pos-
sibilities are huge (Harding et al., 2013), however the solution space
of possible definitions with given conditions can be explored. In its
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A B C D

s = 4, c = 8

s = 4, c = 16

s = 16, c = 16

Figure 6.12: Three generated
graph structures. ’s’ represents
the slider number and ’c’
component number (some have
been removed upon failure)

simplest form of user interaction, the random override mentioned in the
previous section can explore the solution space quickly by randomising
the gene pool. Figure 6.12 shows some examples of randomly generated
parametric definitions made from four components: A) Point by xyz,
B) Box by two points, C) Line by two points, D) Divide curve. Further
examples of graphs generated with these 4 primitive components can
be found in Appendix G. We can see by visual inspection how the
complexity of the model increases with the complexity of the graph, both
in terms of the number of numeric parameters and components. The
interaction of the user now takes place at the level of selecting a suitable
set of components, adjusting the size of the generated graph and finally
choosing the random seed that generates the parametric model.

The phenotypes generated by the parametric model are limited by the
modelling environment itself, i.e. Grasshopper. Figure 6.13 shows
resulting phenotypes from such relatively small sized graph structures
generated from just a few different component sets. These geometries
are all generated almost instantly by Embryo, with control shifting to the
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Figure 6.13: Phenotype
examples generated from
different component functions
(ingredients). The bottom
row shows manual parameter
adjustments to a chosen form
following initial generation.
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selection of appropriate components and tinkering with the Embryo set
up parameters, and away from direct top-down parametric modelling.

Although the resulting forms are made only from simple boxes, we can
see from visual inspection how the variety goes beyond the adjustment of
parameters alone, with various different topological structures (or body-
plans) being generated both in the genotype and the phenotypes. The
speed of generation is also rapid for this example, with designs available
within seconds of opening a blank Grasshopper canvas. As we have seen,
this is important at the conceptual design stage where many possible
design directions need to be investigated in exploring a wicked problem.
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Figure 6.14: Junk DNA being
used in the next generation:
Two failed components come
alive for the same graph when
single parameter becomes
positive

6.3.7. Combining with Metaheuristics

Figure 6.10 showed how the main Embryo component takes three sep-
arate gene pools for metric, topological and functional aspects of the
graph. The evolutionary solver Galapagos can be connected to the genes;
indeed, metaheuristic solvers can be incorporated with Embryo. The
mapping process is direct, similar to Koza LISP trees that have high
evolvability success and a wide variability (Wagner & Altenberg, 1996).
A random override input is however provided in case the user wishes to
simply randomly generate graphs and get a feel for the solution space.

If a metaheuristic solver is incorporated, then this will govern develop-
ment. For example, single point crossover of topological genes using a
genetic algorithm will result in completely different graph structures.

In Section 5.5.2 the importance of an explicit representation was dis-
cussed for evolvability if used as part of a feedback process such as
natural or artificial selection. By eliminating bad solutions and promot-
ing good (as opposed to finding the best), parametric definitions that
generate meaningless outcomes are less likely to remain, though not
eliminated completely. There is a parallel with natural systems that carry
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Figure 6.15: Metaheuristic
algorithm operating on
parametric model including
its graph structure

graph

performance

stakeholder knowledge
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metaheuristicparameters

graph*

parameters*

building model building model*

junk DNA that maybe utilised at a later generation to maintain diversity,
and in CGP is also known as the propagation of schema or neutrality
(Miller, 2001). The influence of neutrality in CGP has been investigated in
detail and has been shown to be extremely beneficial to the efficiency of
the evolutionary process on a range of test problems (Miller & Harding,
2008). As an example, fig. 6.14 shows an example of a parametric model
that contains junk components that at the next iteration come alive. Here
the change in the graph is minimal but the parameter values have a large
impact on the resulting phenotype when one becomes positive.

In combination with existing performance analysis tools, computational
analysis can now provide decision support for various building types
and not just those set by an initial parametric concept. As well as
generating parametric models one-by-one, due to the encoding of the
graph structure into a string, the generation of the parametric models can
be combined with a metaheuristic algorithm such as genetic algorithm or
simulated annealing. fig. 6.15. An example of combining Embryo with
a metaheuristic is given in Section 7.3, where parametric model is found
that defines a target geometry.

6.3.8. Cognition

As we have seen, although the generation of forms is automated with
such a system, crucially each design also has an explicit parametric
definition which can be visually inspected and integrating into an ex-
isting model. Embryo generates a DAG that is already topologically
sorted. This means the dependency hierarchy and hence how the final
geometry is constructed through a series of algorithmic steps can be
better understood by the user. Interestingly, attempting to understand
how the machine has constructed the final model is actually the same
as understanding how other humans and hence other consultants have
gone about their parametric models. As we saw in Section 4.2.2, the
legibility of the graph is an important aspect to a parametric model for
good collaboration. As with coding standards for clean collaborative

134



code in software development, so parametric modelling standards can
help in communication of not just final forms, but how they were arrived
at and at what scale each geometric operation occurs.

Derix and Izaki (2013, p.44) state that “by visualising the processing of
an algorithm step-by-step, its components and data in a diagrammatic
near-notational form, the logic and behaviour of the system become
transparent”. Although Grasshopper restricts interaction only at the
level of the graph, the model can still be observed simultaneously when
attempting to understand a particular model. As such, cognition of the
computer’s geometric process doesn’t just mean having to untangle the
spaghetti, but also just observing the model construction in the model
view as it is built up step by step. This encompasses two ideas behind
Generative Components (GC) (Aish & Woodbury, 2005), in that there
should be more than one mode of representation for the process of
form development and that the linear build of the model itself can be
recreated and thus explained, a process in GC known as ’transactions’.
As opposed to Grasshopper when one is presented with the entire graph
’as is’ upon opening, GC features the undervalued transactions concept
whereby discrete pieces of logic are recorded at key stages of graph
development. Here, a stakeholder unfamiliar with the model can step by
step go through its construction in a sequential manner, thus replicating
its construction and previous modifications.

Embryo employs a similar concept to GC’s transactions by making
transparent the code that has evolved (i.e. the code that generates
the building), but in a structured hierarchical order by conducting a
topological sort of the parametric schema. The cognition set of tools
then allow the user to run through a model step by step and therefore
attempt to understand how it is been constructed (fig. 6.16). Although
the topological sort and step by step previewing used by Embryo can
help matters, there is however no escaping the fact that spaghetti is still
created and will require effort on the part of the user to understand.
In response, one could imagine some method of untangling the spaghetti
according to a standardised procedure similar to the graph planarity
problem. Indeed, manipulating a parametric model sometimes feels like
trying to solve John Tantalo’s online planarity game (Verbitsky, 2008)
whereby increasingly complex graphs have to be untangled. Although
not covered further here, this would be an interesting unexplored area to
address using Embryo’s cognition tools.

In addition to the topological layout, Embryo also has user options to
help with graph cognition, such as removing failed components (junk
DNA) if required just for visual purposes, changing the spacing of the
component layout and the option to only display terminal components.
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Figure 6.16: Embryo creates a
topologically sorted parametric
model which can be previewed
step by step. This reveals
hierarchical dependencies
and explains visually how the
final form is constructed to the
user.

Finally, the choice of component primitives will influence the cognisab-
ility of the visual program once generated. For example, it is true that
a whole geometric process can be compiled into a single component,
and therefore be somewhat inaccessible for understanding. It is therefore
the responsibility of the user to deploy which set of components he/she
thinks will generate a sufficient number of designs to suit the specificity
of the design problem. The important thing is that the design team is
able to decide this for themselves and is not locked into a set number of
functions created by others.

6.3.9. Working In-Between

The computational design community can arguably be divided into two
camps. The first, those concerned with top-down parametric modelling
or computer programming. Second, those concerned with procedural
modelling methods based on bottom-up rule systems. There is no right
or wrong approach, and design often requires both of these aspects
under one system. Human designers form their individual design
experiences into generalised concepts or groups of concepts at many
different levels of abstraction (Gero, 1990). By deploying Embryo on an
existing parametric software package, working between both top-down
and bottom-up generative processes becomes possible for the reasons
given at the end of Chapter 5.

We will see in Section 7.1 an example whereby Embryo was able to
incorporate an existing parametric process and therefore mix top-down
and bottom-up methods of visual program development. I believe that
this inter-changeability is crucial in allowing such an approach to be used
at various stages of design development. Design works at multiple scales
and sub-problems tend to be resolved not at once but piece by piece,
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Stakeholder objectives

Parametric model

Model analysis / Visulisation

Model evaluation

Meta-Parametric model

Project constraints

Figure 6.17: Layered model
showing visualisation and
subsequent interaction possible
at various levels of abstraction

hence one must consider the effect of scale and dealing with complexity
at different levels of hierarchy (Simon, 1962). Through a Meta-Parametric
approach, the design team can work at different levels of abstraction
within the building model appropriate to the current design task (fig.
6.17).

6.4. Discussion

This chapter has introduced a plug-in for Grasshopper (itself a plug-in
for Rhino) based on meta-parametric thinking. Inspired by genetic pro-
gramming, Embryo automatically generates parametric design models
enabling exploration of different combinatorial options (and not just by
adjusting numeric parameters).

By remaining within an explicit DAG representation, models automatic-
ally generated can potentially be understood by design teams and there-
fore understandable as collaborative artifacts. This claim is a hypothesis
that requires testing however, and the effectiveness of a meta-parametric
approach is therefore explored in the next chapter on a series of real
projects. Can models be generated by Embryo actually be understood
by design teams and used in an effective way? If so, it offers an example
of machines working with human designers in order to explore design
problems and not simply as problem-solving slaves.

In addition, can Embryo be used for target based evolution, evolving
parametric models for a given geometry, perhaps even a geometry made
by a different parametric structure and thus open up new avenues for
exploration?
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7. Embryo Experiments

“One really interesting possibility that has been under-
explored is using the exact same tools not to generate pat-
terns, not to generate cold-blooded efficiency, but to discover
things that you want that wouldn’t have occurred to you
otherwise. It’s basically a way to enhance your creativity and
to show you something new.”

David Benjamin (2014, p.36)

Embryo is a plug-in for Grasshopper that aims to automatically generate
parametric models with particular application at the concept design
stage. In this chapter, Embryo is tested in three scenarios. The first two
concern real-life projects with two different architectural practices. In
both of these examples, Embryo is used as part of an early-stage design
process with a mixture of known and unknown objectives. The third
explores Embryo as a pure problem solver, attempting to match a target
geometry with a parametric model definition.

7.1. Experiment 1: AG5 Architects

The first experiment was a collaboration between Ramboll and AG5
Architects. Based in Copenhagen, AG5 were a practice that Ramboll
had already worked with previously. The Gran Rubina Tower 3 case
study project [29Grt] was for the design of a new office tower in Jakarta,
similar in scale and scope to the Escher Tower Project [16Esc] discussed
in Chapter 4. In that example, wide design exploration was difficult
due to the limitations of parametric modelling. The similarity of the two
projects is useful, as it provided a good benchmark against which to test
an alternative approach using Embryo in a collaborative environment.

7.1.1. Set up

We agreed to work together with the architect in exploring a wide
range of tower typologies, evaluating each design against quantitative
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Figure 7.1: Formulating
constraints and objectives
on Gran Rubina Tower 3
in collaboration with AG5
architects

performance objectives alongside the architect’s own evaluation methods
and design processes. AG5 were slightly different to Bjarke Ingels Group
in terms of their design methods, working less with physical foam
models and more with CAD in combination with hand sketching. Initial
meetings with AG5 at their Copenhagen office helped to establish an
initial set of constraints and objectives as we knew them at the time (fig.
7.1) whilst acknowledging that these would no doubt change during the
design process.

The initially identified constraints for the tower were the following:

• Site dimensions, tower location, local infrastructure, local planning
authority.

• Gross external floor area (36,000m2).

• Floor to floor height set at 4m.

• Concrete frame and core due to local labour experience and the
high cost of importing steel to the region.

The initially identified objectives, six quantitative and two qualitative
were the following:

• Maximise net to gross floor area (a method of estimating concrete
core size was developed by Mark Pniewski at Ramboll).

• Minimise structural concrete volume (a method of estimating con-
crete volume was developed by Mark Pniewski at Ramboll).

• Minimise heat loss (surface area to volume ratio).

• Maximise similarity between floor plans.

• Minimise façade complexity (estimate amount of doubly curved
surfaces).
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• Minimise Solar gain (should be minimised in warm climates such
as Jakarta, either through building form or façade shading ele-
ments).

• Create something we all feel is right (this objective evades a better
description).

• Create an icon - the client required a tower that should not be the
tallest in the region, but still be distinct in the region.

7.1.2. Modelling

At the start of the collaboration, AG5 already had some ideas that had
been translated into CAD geometry, and these were to be included in
any comparisons with towers generated by Embryo.

At a series of design team meetings at AG5’s Copenhagen office, Embryo
was used to quickly generate additional tower forms by using the
random override input (see Section 6.3.5). This option negates the use of
genes for each aspect of the DAG (i.e. metric parameters, functions and
topology), instead generating random graphs to explore the design space.
To encourage tower-like geometries, we decided to restrict some aspects
of the design exploration by creating a line subdivided by planes with
their outputs tagged (i.e. to be included in the generated definition). This
gave geometric repetition going up the tower that could be controlled by
a standard numeric parameter on the parent canvas (fig. 7.2),

A series of primitive Grasshopper input components were used inter-
changeably during design exploration. In the example shown, the ’Point
by xyz’, ’Plane by 3 points’, ’Box by centre plane’ and the operator ’Rotate
geometry’ are shown. By adjusting the existing numeric parameter (a) for
this graph structure, variations for a particular tower typology could be
explored alongside parameters generated by Embryo.

Embryo’s ’GetGeometry’ component (see fig. 6.9) was used to automat-
ically pull any geometry from the generated model back to the parent
canvas for further manipulation. This post-production work included
scaling the form to fit the site, orientating the tower and scaling the
generated model in the z-axis to meet the gross external floor area
constraint. This process meant that all the tower designs that were
generated met constraint requirements and could now be compared
according to the objectives. Similar to the Escher Tower Project [16Esc],
real time analysis could be performed but this time on a wide range of
designs against the objectives indicated in the previous section. This
enabled stakeholders in the design team to get a better grasp of the
possibilities within the design constraints.
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Figure 7.2: Embryo set up
on Gran Rubina Tower. A
particular phenotype with
metric variations is shown.

Input components Existing definition

Generated definition

Embryo control

Post-production work

*
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7.1.3. Model Examples

Four example towers generated by Embryo are shown in fig. 7.3, refer-
enced A to D. For each parametric model, five variations are shown made
from manually adjusting the generated numeric parameters. Each of
these models met the required floor area exactly and were within the site
boundary constraint. Figure 7.4 shows the associated graph definitions
that use four identical input components (Towers A-C) and fig. 7.8
shows an alternative set of component inputs. Each model generated
is of increasing complexity, also reflected in the phenotype itself - indeed,
there appears to be a general correlation between graph size/complexity
and that of the generated phenotype - perhaps an expected result due to
the explicit grammar of Grasshopper definitions.

7.1.4. Performance Evaluation

Following generation of a large range of different tower forms, these
were stored as meshes could be assessed qualitatively and quantitatively
by the design team. The quantitative performance objectives listed
in Section 7.1.1 were measured using additional processes by different
stakeholders. For example, façade complexity was measured by Ramboll
façades team by finding the total area of Gaussian curvature above a
given threshold (thus giving an estimate of required hot-bent glass).
Comparison of the designs was then achieved by collating data and
ranking them for each objective. Radar plots showing the relative trade
of of multiple objectives was developed as part of Embryo to enable the
design team to better understand how different designs compared relative
to one another (fig. 7.5).

As well visualising multiple objectives, single objectives could be isolated
and a selection of the tower designs ordered in terms of performance.
Figure 7.6 shows a some designs proposed by the architect manually and
how they compared to several designs generated by Embryo in terms
of two measures: building height and solar exposure. Instead of being
used to find the optimal result, such visualisations act as nudges (Thaler &
Sunstein, 2008) towards pursuing efficient tower forms, without forcing
a particular direction onto the design team.

Following this initial generation, a smaller selection of towers were to
be selected by AG5 architects for further manual development. Unfortu-
nately at this time the live project went on hold, however I subsequently
asked AG5 if they could attempt to take forward some of the tower
models anyway as a hypothetical exercise. I was interested to see if
the generated parametric definitions could be understood and used after
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Figure 7.3: Tower phenotypes A
to D
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Figure 7.4: Tower graph
definitions A to C
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Figure 7.5: Different tower
designs with identical gross
external floor areas are assesses
for multiple performance
objectives.

Figure 7.6: Eight architect
designed towers with 22
Embryo designs compared.
Solar exposure is taken at
Summer Solstice throughout
the day
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being created by a machine, and hence attempt to justify my earlier
decision to manipulate parametric models with an explicit embryogeny
(see Section 5.5.3 for the discussion). I contacted Daniel Nielsen of AG5
architects and Mark Pniewski at Ramboll to see if they could progress
some of the Embryo generated models. Daniel and Mark had both
worked on the project since its inception and had a good working
knowledge of Grasshopper.

7.1.5. Model Cognition

Nielsen and Pniewski were given the four parametric models examples
from Section 7.1.3 and asked to answer the following questions:

1. By adjusting the generated numeric parameters, do you understand
their influence or is the experience essentially meaningless?

2. Is it possible to understand how the model is built up hierarchically
by looking at the graph or do you just see ’spaghetti?’

3. Can you use the graphs to add additional features post-generation?

Q1:

Nielsen and Pniewski could understand how parameters varied the
model for graphs A and B and felt in control of the model, however
both struggled to understand the consequence of adjusting the numeric
parameters for graphs C & D. As Nielsen commented following the
study: “as complexity increases, it becomes difficult to understand what
the slider does”, although for all examples they could potentially be
understood over time: “If you are used to work with Grasshopper it
gets more understandable after a while when looking at the relations.”
Pniewski particularly struggled with the graph for Tower C. For example,
when adjusting parameters additional geometry would just appear and
disappear unexpectedly. This effect relates to the preservation of ’junk’
components (p.134), that whilst useful for evolvability may cause issues
when manually adjusting models.

Q2:

In terms of the legibility of the graphs themselves, again parametric
model ’C’ became the limit of legibility. Both mentioned however that
in time all of the definitions be understood, but Pniewski felt “daunted”
by the prospect. Disappointingly, the Embryo cognition tools that step
through the graph did little to enable the understanding, because al-
though stepping through the dependency structure they gave no insight
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into the relative associations when doing so. Stepping through the
hierarchy dependencies from each parameter could be a better method
in this regard.

Nielsen commented that “...where the [graph] shape is little bit complex it
is always difficult to understand graphs other people have done. I think
it is a common issue even though visual programming should make it
easier for people to understand the relations.” Organising the graphs
so that numeric parameters have logical names (relating to their inputs)
was suggested by Nielsen, with Pniewski suggesting it would be useful
for them to be closer to the first input in the hierarchy (as opposed to
them being lined up on the left hand side of the canvas).

There was also an issue with the component choices themselves. Nielsen
stated that “in the case where the graphs/geometry is little bit complex, it
is a challenge to understand why something is rotated or why there is used
a 3pt circle”. Here the question was why a particular geometric primitive
component was being used at all and how to form a relationship to the
chosen functions: “Basically I think the challenge is related to the choice
of geometrical generation.”

Q3:

When asked to use the models post-generation, Nielsen commented on
the advantage of having the model within a parametric environment
where there was already a wide range of analysis tools available: “I
like to have stuff parametrically, it is easy to put parametric energy,
structural optimizations or whatever kind of parametric optimizations
on top of the geometry.” Pniewski managed to take the simpler graph for
model ’B’ forward, firstly by deleting some components and then adding
new ones to define new geometry but still based on the original rotated
angular forms and GEA constraint (fig. 7.7). Feedback from the analysis
criteria within Grasshopper helped guide the modifications, something
not present when using Embryo to initially generate the parametric
definitions.

7.1.6. General Observations

During the collaboration with AG5, Embryo made it possible to generate
many different tower typologies in a minimal amount of time, and in-
clude in a comparison to some of the architect’s own designs. In a single
design team meeting we were able to investigate multiple performance
criteria for various building typologies. This also included completely
impossible designs to construct, but they all helped to investigate the
solution space for the problem. This small experiment showed the
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Figure 7.7: Pniewski
modifications to design ’B’

potential of using a Meta-Parametric approach, however there were
difficulties in understanding the graphs that were generated as we saw
in Section 7.1.5. Some general observations were the following:

1. Embryo could quickly generate thousands of designs to explore the
design space and thus give an idea of the multitude of possibilities
within the set constraints. Even if not used as final designs, these
could be used to provide a relative comparison to designs arrived
at using traditional methods.

2. At times, the solution process wasn’t as fast as expected. Embryo
often got held up computing complicated geometry instead of
moving onto the next design. This was especially the case with
computationally intensive functions such as boolean operations.
Bloat, a common issue with genetic programming (Poli et al., 2008)
occurred several times and crashed Grasshopper. A possible fix for
this issue would be to discount solutions that are taking a long time
to solve and simply move onto the next design, although this may
preference a certain set of solutions.

3. As Brian Sheldon at AG5 architects later commented, “The process
will be even more useful when looking at relations between build-
ings.” (pers.comm.22/03/2013). Although the radar plots gave an
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idea of relative building performance for multiple objectives they
were limited to a small number of designs with visual comparison
then required. Relative comparison of multi-objective criteria
between a larger set of designs could be made by mapping options
associatively to a lower dimensional space (for visual comparison)
- for example using a self-organising map (Kohonen, 2001) or
principal component analysis (Hanna, 2007).

4. The process was sequential. A single collection of designs were
generated and then evaluated instead of an interactive or evolution-
ary approach. We saw that Pniewski would modify the generated
graphs being guided by the analysis, but this was after Embryo
had finished. A more interactive method may have been more
appropriate in terms of guiding the process iteratively through the
paradox of choice (Schwartz & Ward, 2004), engaging in a wide
design exploration with quantitative and qualitative objectives that
changed over time. We will see in the next experiment (Section 7.2)
how this experience was improved.

5. The cognition result was slightly disappointing. There became a
limit on the complexity of the graph and the connection to the
human design team. For this study, a limit of approximately 20
components seemed to be the maximum.

For the last point with regards cognition, the following improvements
are proposed.

7.1.7. Improvements

1. Make the graphs more legible:

In light of the suggestions by Nielsen and Pniewski, a manual clean
of graph D was made post-generation (fig. 7.8) with the result being
more legible for them both. For instance, locating parameters closer
to inputs (not lined up on the left hand side) and removing terminal
components that were not used for anything (such as vectors) seem to
be good advancements in generating legible graphs. Better methods
to untangle graphs post-creation must be considered, or else integrated
when graphs are being constructed.

2. Use components that embed a particular heuristic developed by the
design team (as opposed to any-old geometry):

The use of geometric primitives for no reason left Pniewski and Nielsen
distanced from the graphs. As well as setting up constraints and ob-
jectives in early design team meetings, some thought to the components
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7.4

Figure 7.8: Manually
untangling the Option D graph
and removal of superfluous
parameters and components

chosen and why would help with this. We will see in the next example
with 3DReid that building up a set of components (or rules) that embed
heuristics developed by the design team offer a better connection at
this level and therefore help when attempting to understand the final
definition (refer to the earlier discussion on this in Sections 5.4.2 & 5.4.3).

3. Build up complex graphs over time instead of being presented with
one immediately:

If graphs of higher complexity are to be generated with Embryo, this
needs to happen progressively in order to form a narrative (not simply
Embryo presents the human with the graph and wishes him/her good
luck!). Again, one possible option could be using an evolutionary
method with artificial selection in order to develop graphs of higher
complexity over time whilst retaining a connection to the design team.
Regardless of complexity, a more interactive experience during graph
generation would help the design team use Embryo to better understand
the performane criteria and their relative weightings.
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7.2. Experiment 2: 3DReid Architects

A second chance to test Embryo arose in late 2014 for a high density
residential project in Tower Hamlets, London with 3DReid Architects
[33Tow]. The project was at the concept design stage and therefore
another good opportunity for assessment. The site is a 20,000m2 flat
plot of land just north of the Thames with a series of medium to large
sized buildings surrounding the site. A series of design team meetings
(which included some Embryo training) were held from December 2014
- January 2015. These meetings resulted in the development of a concept
scheme that was developed from a Grasshopper initially generated by
Embryo.

7.2.1. Set up

As opposed to randomly producing a series of models that were then
tested post-creation (as with the previous experiment) in this case the
performance of each model was updated in real-time. This brought
the experience closer to the software developed in Section 5.3 for the
ENI Headquarters competition [20Eni], but with the added benefits of
a parametric definition. There were two quantitative aspects explored
through the models:

1. A target number of residential units (transformed into a target gross
external floor area of approx. 100,000m2)

2. Proportion of residential units with an unobstructed view towards
Central London (classed as St.Paul’s Cathedral)

As well as these identified quantitative objectives, the design team were
free to qualitatively assess the designs that were produced using Embryo.
In short, we were looking for designs that were mixed density, produced
well-lit courtyard spaces and had high spatial connectivity at ground
level (no cul-de-sacs). Although one could potentially conduct spatial
analysis Hillier & Hanson (1984) for the latter, it was thought that manual
observation and judgement were adequate.

The set up enabled the design team to assess the performance criteria
in real-time in Grasshopper. During the initial search, we were also
aware that the model could potentially be adjusted (using the numeric
parameters) post-generation to meet the requirements. The set up in
Grasshopper can be found at Appendix H.1.
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Block01 Block02 Link01

Figure 7.9: Grammar rules
specific to the project made into
Grasshopper components

Figure 7.10: Concept design
option for a previous project:
Putra Heights, Malaysia (image:
3DReid Architects)

7.2.2. Modelling

The architect was interested in being able to model different orthogonal
designs using a computational approach that incorporated apartments
of a specific size. In response to the issues with Gran Rubina Tower,
this time we worked together with the architect to set up a series of
apartment block shape grammars that would incorporate this logic and
create different combinatorial options within a parametric modelling
environment. The rules manifested as Grasshopper components (fig. 7.9)
with heuristics both specific for this project and based on the experience
of 3DReid. This included two types of residential block: one with a
set minimum height of 12m reflecting 4 storeys and one with a variable
height. An additional third component formed a link bridge between
residential blocks and contrast the orthogonality of the block layout. This
was a socially driven heuristic based on previous work by the architect
(fig. 7.10), providing connection to isolated residential cliques inspired
by small world networks (Watts & Strogatz, 1998).

The three shapes each had input and output planes where connections
were made, essentially setting up the growth rules for the system. It was
simple to set up these rules within a parametric modelling environment
like Grasshopper that allowed custom components to be made and
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Figure 7.11: Two example
designs with the two
performance criteria shown.
Apartments with unobstructed
views to St.Pauls are indicated
with a dot

(a)
1. 108,000m2

2. 45%

(b)
1. 118,000m2

2. 31%

developed quickly - indeed this ease of adaptability at the level of es-
tablishing the rules is important to avoid a generic ’logic of architecture’
to creep in to such systems (see Section 5.4.1 for further discussion on
this). The generated graphs used starting seed planes to grow designs, set
as tagged parameter outputs from the parent model. Once created, post
production work included adding some notional columns to support the
structure if it was raised from ground level.

7.2.3. Design Exploration

During design team meetings with the architect, the use of Embryo
was relatively undirected. We found ourselves first playing with the
random override and then making minor adjustments to models using
the directly encoded genes (see Section 6.3.5). We could quickly alter
the probability of generating models with less or more blocks of certain
types by altering their number in the ingredient component section of
the Grasshopper canvas. At times we explored using a metaheuristic
(Galapagos) to generate schemes with a high percentage of ’rooms
with a view’, but for this project we soon found that this had a direct
correlation to very high towers which were overruled by knowledge of
local planning conditions in the area. Instead, we relied much more on
the real-time analysis to guide our search alongside viewing the scheme in
model view (fig. 7.11). Although only massing models were generated,
it was possible to get a feel for the space and how each design worked as
an overall scheme.

A selection of some of the designs progressed of varying complexity can
be found in Appendix H.2. One such example is shown in fig. 7.12,
showing both the graph and associated phenotype.

Designs could be generated that were not contained within the site, and
generated parameters then adjusted post-creation whilst maintaining
associative relationships between components. An example is given in
fig. 7.13, whereby Option ’C’ is adjusted to meet the site boundary
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Figure 7.12: Graph and
phenotype for Design ’A’
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Figure 7.13: Manually adjusting
Option ’D’ post creation

Figure 7.14: Graph from Design
’A’ manually untangled.
The diamond in the DAG is
highlighted

constraint and get to achieve the desired approximate volume to meet
the residential unit number objective.

The link bridges form circulation pathways between residential blocks.
As components, these required two ’Point’ data type inputs supplied by
the residential blocks, resulting in ’diamonds’ in the DAG and a joint
dependency structure not found with a tree (see fig. 7.14 and previous
discussion in Section 6.2.4).

7.2.4. Graph Complexity as an Objective

It was found that generating simpler graph definitions was a factor in
the design search but without compromising the nature of the generated
designs. As with the previous experiment on Gran Rubina, there was
an approximate correlation to the complexity of the graph and the
complexity of the associated phenotype due to the explicit nature of
Grasshopper. Indeed, Charlie Whitaker of 3DReid later commented
that he was “actively looking for simpler graph [definitions] whilst
maintaining interesting designs of sufficient complexity” (pers.comm.,
21/01/2015).

This meant arriving at definitions with around 15-20 components (Design
’C’ for example, as opposed to Design ’F’ which was too complex).
Although reducing components was preferred, this wasn’t necessarily
the case for the numeric parameters. As Whitaker commented, “After a

156



while, I had the thought that the more child sliders the better; provides a
greater choice of starting values and seems to generate richer models.”

Issues arose when one parameter could control completely different func-
tion inputs that were part of disparate dependence structures through
the graph. In such cases, it becomes hard to have any meaningful
connection when making manual adjustments after generation. As
Whitaker commented for such definitions, “I think most of my time has
been spent in a ‘tweak slider and observe’ behavioural pattern.”

Again, it was interesting that increasing the number of variables whilst
increasing the size of the graph did give a better feeling of control. The
’one-to-one’ setting in Embryo (see Section 6.3.4) was used to good effect
in this regard, and one can see for designs A to F how one numeric
slider is associated with one component input in the graphs generated
(note: this does not generate trees, because components generally have
more than one input and output). In reality there is a balance to be
struck between having too few metric parameters to understand their
influence and too many to keep track of. As Davis (2013) states: “An
ideal parametric model would encompass all the variations the designer
wants to explore within the smallest dimensionality possible.”

7.2.5. Post-Generation

As with Gran Rubina, we attempted to take one of their preferred
Embryo designs forward and use it as a regular Grasshopper definition.
Charlie Whitaker of 3DReid selected one the models generated using
Embryo that he thought had potential to be developed. This time, instead
of building on a parametric model made by another consultant, this was
one made with the help of a machine. Whitaker made the following
amendments to the model (in order):

(a) Understand an initial definition and model by Embryo

(b) New building and three link bridges added

(c) Additional long building added to the north and parameter (*)
adjusted (to constrain design to site)

(d) Generated building made taller (to meet GEA objective) and
moved above ground level (to increase circulation to south)

(e) Entrance space created (to open courtyard space)

(f) Graph clean and post-production work (façade patterning)

(g) Final analysis against quantitative criteria
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Figure 7.15: Taking an Embryo
design forward

(a) (b)

(c) (d)

(e) (f)

(g)

1. 104,000m2

2. 30%

The alterations to the model can be seen in fig. 7.15 with the associated
graph change from (a) to (e) shown in fig. 7.16 (the full process can
be found in Appendix H.3). During the modifications, the design was
assessed against the performance objectives, with the final results shown
in (g).

The result was successful, at least for this relatively simple definition.
Whitaker was able to use the parametric definition to add additional as-
pects to the model and adjust sliders in order to meet the site constraints.
For the latter, we can see the advantage of the parametric definition
that makes such adjustments possible whilst maintaining the definition
structure. Whitaker later commented that he felt he had joint-ownership
of the model due to an understanding how it worked. Although the
example is a simple one, it shows the potential of keeping graphs legible
if generated (at least in part) by a machine.
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(a)

(e)

Figure 7.16: Manual
developments to an Embryo
model by 3DReid Architects
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7.3. Experiment 3: Shape Analysis

In the previous two examples Embryo was used to generate multiple
parametric models as part of a design exploration exercise. In this
experiment, I generate parametric models and combine them with a
metaheuristic solver in order find a given single objective - a target
geometry. The combinatorial problem of generating a parametric model
definition that will itself generate a target dumb CAD geometry is
an interesting challenge as it offers the possibility of generated new
parametric models in place of existing ones for the same geometry, thus
offering new possibilities for design development outside of existing
parametrisations (see the earlier discussion on page 105).

An initial test implementation was conducted to show the capability of
Embryo to generate parametric models from scratch that generate a target
geometry. This geometry was presented to Embryo, with a shape analysis
conducted as a performance criteria. Shape analysis is the study of shape
matching and recognition of geometry (Costa & Cesar Jr, 2000). The first
test used a simple target geometry of two forms, one on a box on a twisted
plane, and one a trapezoid aligned with the WorldXY plane.

The shape analysis I used in the study was a simple point cloud compar-
ison summarised as follows:

1. For each vertex in the generated model, find closest vertex in the
target geometry and record the distance.

2. For each vertex in the target geometry, find the closest vertex in the
generated model and record the distance.

3. Sum all recorded distances.

The task then became to minimise the distance total between closest
vertices. The parameters used by Embryo to attempt to solve the problem
were the following:

• 20 Sliders.

• 20 Components.

• Three input components: Point by XYZ, Plane by 3 points, Centre
Box by Plane & XYZ.

7.3.1. A Suitable Metaheuristic

Even for such a simple set up, the number of possible parametric models
is vast, not even taking into account the infinite possibilities for the slider
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values. Assuming only a single connection per component input, there
are ((12 + 8)! − 8!) · 312 = 1024 possibilities, more than all the grains of
sand in all the world’s beaches combined! Clearly a brute force search
process is not suitable for such a large design space.

Simulated Annealing was therefore selected as a suitable metaheuristic
(see discussion Section 2.3.2), namely the Galapagos Component (Build
0.2.0448). At the time of writing, this solver is included with Grasshopper
and hence can be incorporated into a parametric model schema very
easily. As the author of Grasshopper and Galapagos David Rutten
comments, (pers. comm., 20th December 2014), simulated annealing in
Galapagos is a good candidate for finding many promising optima, while
simulated evolution is much better at refining a single solution.

The simulated annealing solver was set up with a cooling rate of 0.97 and
a drift rate of 0.55 (the drift rate controls the odds are that more than one
variable is changed in Grasshopper).

7.3.2. Results

The results of the simple initial experiment were encouraging, with the
SA solver able to find a parametric model that got very close to the
target geometry in approximately 200 iterations (fig. 7.17). It became
clear that a perfect match was impossible due to the limitations of the
input components being just boxes (and not being able to match the
trapezoid). However, setting the ingredient component geometry to
just boxes showed how that a more primitive set of components could
still evolve closely to a target geometry that included more complicated
shapes. The parametric model generator did the best it could with the
components at its disposal.

Figure 7.18 shows the resulting grasshopper definition following the
manual removal of junk components. Firstly, we can see that the first
box is simply generated from three number parameters as the target
geometry was based on the XYPlane. Secondly, we can see how three
points have been made that define a new plane in R3, which then defines
the second box. It is interesting to note that some numeric parameters are
shared, i.e. “G_Slider6” is used to set out both a point used for the plane
and for the first box.

7.3.3. Increasing Complexity

A second experiment was conducted to test the whether Embryo could
use a ’divide’ component that subdivides a line into a series of points.
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Figure 7.17: Shape matching
history using Embryo with
the Galapagos Simulated
Annealing solver. The target
shape is top left.

Figure 7.18: The generated
graph for the first problem
following a manual clean. p

162



A more complicated target geometry with a tapering staircase and a
separate block was used. The challenge was to see whether a parametric
definition could be found that acknowledged the repeatable pattern of
the staircase. The parameters used by Embryo to attempt to solve the
problem were the following:

• 16 Sliders.

• 32 Components.

• Four input components: Point by xyz, Line by 2 points, Box by 2
points, Divide curve.

The simulated annealing solver was set up with a cooling rate of 0.93 and
a drift rate of 0.70. The faster cooling rate was selected so that many runs
could be made with the annealing solver, as it was thought more local
optima would be present in the solution space. It took several attempts
for the solver to find something close to a global optima with the results
of one of the successful annealing runs is shown in fig. 7.19. We can
see from the top view that the solver managed to generate the tapering
staircase quite well.

The generated definition for this solution following a manual clean is
shown in fig. 7.20. The first box is generated using two points. The
second box has a forth-order dependency rank, made from two points,
a line and a divide component (labelled G17). We can also see how this
is a DAG - for example the numeric parameter “G_Slider10” being used
as an x-coordinate for a point and also to set the number of divisions for
the divide component. The parameter controls two distinctly different
things which on the one hand reduces the amount of elements on the
graph (DAG is more efficient than a tree), but on the other leads to more
difficult understanding of the graph and usability - something discovered
on both the Gran Rubina and the Tower Hamlets project. Legibility in this
sense is not simply measure in terms of the amount of nodes in edges
in the graph, but rather the effect the numeric parameters have on its
subsequent variation.

Although these are relatively simple examples, the power of being able to
generate a model automatically has repercussions that have not yet been
explored. One could even use Occam’s razor to generate the simplest
model for a given geometry by incorporating graph complexity into the
search. This could potentially clean some of the spaghetti of overly
verbose parametric definitions that could have a simpler representation,
and therefore enable better collaboration between stakeholders.
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Figure 7.19: A more
complicated example involving
a series component.

Figure 7.20: The final generated
graph for the second problem
following a manual clean.
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7.3.4. Opening Dead-ends

In Section 4.5.3 it was found that the topological inflexibility of para-
metric models meant that design teams gradually become locked-in, with
any large changes to the requirements brief or constraints resulting
in the time-consuming rebuild of new definitions. By using a meta-
parametric approach to search for definitions, new parametric schemas
for individual designs could in theory be formed and thus open up new
possibilities for parameter variation. A natural analogy to convergent
evolution was given, showing that although two forms may be identical
at a given time, how they got there will affect future development.

An example of generating a new model was conducted by taking the
tower model ’B’ generated by Embryo in Section 7.1 and attempting
to find a new parametric definition using different numeric variables,
functions and topological structure. This is similar to the previous shape
analysis examples, other than in this case a comparison can be made
between two definitions and the space of designs they cover (i.e. within
their parameter space).

The originally generated model was made from the following compon-
ents: Point by xyz, 3d rotate transformation, Centre box by plane &
Plane by 3 points. As well as these generated components, the model
used existing outputs and post-production work such as site rotation and
slicing. The new definition was a reduced set of components: Point by
xyz, Plane by 3 points and Box by 2 points.

Figure 7.21 shows a simulated annealing run after approximately 300
iterations. From visual inspection, the results were far from perfect, but a
reasonably good match for the phenotype although improvements could
be made. For example, the fine detail around the tower corner points has
to some extent been lost. Nevertheless, for this example it is possible to
evolve a parametric definition of similar complexity to the original but
with different components, variables and topological structure (fig. 7.22).

This new definition now can be adjusted within the new parameter
space to formulate alternative design options. The result of adjusting the
parameters in the new model are shown in fig. 7.23. One can compare
these designs to that previously shown for Option B in fig. 7.3, as well
as a simpler graph structure (albeit with more numeric parameters).
Although this is a simple example, it does show that it is feasible -
the question then becomes one of legibility, essentially raising the same
questions as the previous experiments with AG5 and 3DReid.
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Figure 7.21: Searching for the
target geometry from one of the
Gran Rubina Option B towers
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Figure 7.22: A different way of
arriving at a similar phenotype
for parametric model “B” for
Gran Rubina discovered by
Embryo.

Figure 7.23: Alternative
solution space from the new
definition

7.3.5. Forget about Legibility

In Section 7.3.4, Embryo was shown to generate a new parametric
definition for an existing model. This has been within the constraint
of relatively simple graphs to maintain legibility, however if one were
to give up on trying to understand the model, is parametric model
generation with DAGs useful in its own right? One could argue that
being implemented in a environment such as Grasshopper enables the
easy use of low-level functions specific to architectural design.

As an example, fig. 7.24 shows a complicated model incorporating
the three components developed for the Tower Hamlets project. Using
a brute-force search by automatically incrementing the Embryo ran-
dom override seed, this complicated structure (generated in seconds)
was found to get within 1% of a target volume objective set at 4.0 ×
106m3. Clearly this graph, whilst theoretically possible to understand is
practically useless as a cognitive artifact. It does however extend the
possibilities of Embryo and Grasshopper as a shape grammar tool in its
own right. Here, working at the low level rules and the global objectives
become the important areas for the design team with the generated graph
being essentially a black box (something I was trying to avoid!).

Even if one cannot understand the graph, we have also seen in terms of
evolvability the advantages of an explicit embryogeny (Section 5.5.2).
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Figure 7.24: An unintelligible
graph and phenotype made by
Embryo with Galapagos
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7.4. Discussion

In this chapter, I have taken inspiration from Genetic Programming in
order to generate parametric models automatically, and think topolo-
gically in the creation of form. This has resulted in a Meta-Parametric
approach, realised in Rhino Grasshopper by writing a custom component
called Embryo. Healthy design exploration using parametric models has
involved working at a higher level of abstraction, whilst retaining legible
graph structures. The ’body-plan’ behind the development is now free to
evolve with the final result understandable, at least for relatively simple
graph definitions. By incorporating a metaheuristic search or simply
by randomising the generated results, wide design exploration can take
place either to meet a pre-defined geometry or as part of a non-goal
orientated design process.
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Part V.

Conclusions
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8. Conclusions

“There is a great gift that ignorance has to bring to any-
thing”

Orson Welles, 1960

Computational design is a broad subject, and likewise this thesis has
been broad in its initial scope. The research has been a journey both in
academia and practice, attempting to understand and clarify concepts in
the subject, identify issues inductively and propose and test solutions on
real collaborative projects. In the spirit of the Engineering Doctorate, the
industrial relevance of the work has played a major part in shaping the
academic research and vice-versa.

In Chapters 2 & 3, through the use of case study projects at Ramboll I
began to uncover some common themes that dependant on the stage
of involvement and nature of each project. In short, the earlier I was
involved, the less applicable standard ’problem solving’ approaches
common to an engineering practice applied. This translated into using
parametric modelling tools in Chapter 4, but these were found to be too
inflexible for the concept design stage. However, some of the alternatives
to parametric design suitable for the complexities of early stage were not
suitable in a collaborative environment (Chapter 5), leading to a return
to parametric models and the development of Meta-Parametric design
(Chapters 6 & 7). This ’trojan horse’ approach of manipulating an existing
software such as Grasshopper for wide design exploration was final part
of this story.

8.1. Meta-Parametric

8.1.1. Summary

In response to Chapters 2-5, this work aimed to combine parametric
legibility to multiple stakeholders with an increase in flexibility for the
early design stage. Concept design is a complex wicked problem that has
largely been avoided by software developers. As Mueller (2011, p.21)
states:

173



“Intelligent conceptual design tools will support early
design as the anticipation of various futures in multiple ways.
They will include parametric engines for rapid development
of design variants that allow exploration of a larger solution
space at a finer granularity, and perhaps encourage para-
metric extrapolation beyond the pre-design or preconceived
solution space”

This is the aim of a Meta-Parametric approach, to avoid taking a path
down a design route before understanding the problem whilst still
having a strong focus on process. Addressing this issue is becoming in-
creasingly important, because of the direction parametric design is taking
and its increasing mainstream popularity. In Grasshopper for example,
decision support tools are becoming better integrated and are moving
earlier and earlier in the design process. In addition, an increasing
number of third-party components can offer quantitative feedback on
building performance.

These will only increase in the future due to improvements in computing
power and software capability. In addition, metaheuristic solvers linked
to parametric models are becoming available to the masses. Previously,
(including at the start of this thesis) one had to program their own
metaheuristic or at least know how to import and implement an ap-
propriate library which required knowledge of programming in itself.
However, the 2011 release of Galapagos for Grasshopper was an import-
ant moment, because knowledge of coding was no longer necessary for
designers wishing to engage in metaheuristic search processes, just an
ability to understand a visual programming environment. Solvers for
other associative modelling packages such as Autodesk DesignScript and
Dynamo for Vasari are surely inevitable in future years.

8.2. Embryo Results

Chapter 6 of this thesis introduced Embryo, a Meta-Parametric plug-in
for Rhino Grasshopper developed by the author. In Chapter 7, this was
tested on a number of projects in relation to the thesis question set out in
Section 1.2.2:

How does the use of a Meta-Parametric approach (using Embryo)
assist design teams at the concept design stage?

This was broken down into three sub-questions regarding how designers
were using Embryo which were explored on the Gran Rubina Tower
[29Grt] and Tower Hamlets [33Tow] projects:
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1. The design space of a generated model (variability).

2. The best fit to the objectives (performance).

3. The complexity of the graph (intelligibility).

8.2.1. Model Design Space

In Section 4.5.3 the limits of parametric models were discussed in terms
of the design domain traversed by their parameters. How the model is
parametrised describes it variability. Following generation, design teams
were able to explore this domain by adjusting sliders and thus gaining
feedback on the nature of the model.

It was found that understanding the design space was purely a human
task, and took time. On Gran Rubina Tower, issues arose when one
parameter could control completely different function inputs that were
part of disparate dependence structures through the graph. In such cases,
it becomes difficult to have any meaningful connection when making
manual adjustments after graph generation. It was therefore found that
by increasing the number of parameters helped with this understanding,
decreasing the amount valency of each parameter. The one-to-one setting
on Embryo helped achieved this. There was a balance to be struck
between having too few metric parameters to understand their influence
and too many to keep track of.

Models that had ’junk’ components that would suddenly become active
under certain conditions and change the model unexpectedly gave a feel-
ing of loss of control. Essentially, the parameter space was discontinuous.
Whether or not this is good or bad is uncertain, but perhaps an additional
setting for Embryo could remove the possibility of such models being
generated by checking multiple parameter values for each design and
checking whether the same components remain valid or generate errors
for all. Having this as a user control means junk components can still be
used during metaheuristic search (see Section 6.3.7).

This limitation also arose in a different context during the experiments.
Essentially, the design space for each generated model was not evaluated
during the process but afterwards. Sampling the nature of the parametric
model with a random set of parameters could be an interesting approach.
Indeed, Hornby (2003) has already explored this whereby parametrised
designs are evaluated multiple times for different input parameters as
part of an evolutionary search.
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8.2.2. Model Performance

One of the main advantages of using Grasshopper was not just in terms
of modelling but also analysis. It was possible to incorporate both quant-
itative and qualitative analysis, firstly after many parametric models had
been generated and reduced to mesh geometry (Gran Rubina), and also
during a parametric model search as part of an interactive experience
(Tower Hamlets). For the latter, a metaheuristic solver was explored
during the search (and then able to be easily discarded).

With Gran Rubina Tower, Embryo presented a range of options to the
design team. This left the participants more distant from the parametric
models produced, as well as how each performance criteria should be
weighted. Tower Hamlets however provided a richer experience because
our motivations could change during the model search, and help us
to explore the design problem and our relative weightings between
objectives. In short, we were discovering what was most important whilst
using Embryo and not afterwards like on Gran Rubina. This relates well
to the earlier discussion in Section 4.3, when addressing the problem of
combining [objectives] together into some overall assessment (Lawson,
2006).

For Tower Hamlets, the performance of the model was not limited to
the geometry created but also the parametric model definition itself.
Simpler parametric DAGs were preferred so as to provide the possibility
of understanding them, whilst not becoming too simple as to limit the
complexity of the phenotypes explored.

8.2.3. Graph Intelligibility

As mentioned above, as well as the performance objectives, the level
of graph complexity became a major factor in designers choosing one
design over the other. For both projects, graphs of around 20 components
seemed to be the limit, restricting Embryo to simple concept design
studies if the definitions are to be understood. Clearly better methods
are required for Meta-Parametric working at higher levels of complexity,
and some possibilities are put forward in Section 8.3.

As mentioned in 8.2.1, it was found that increasing the number of para-
meters helped to create clearer graphs, decreasing the amount valency of
each parameter.

The use of geometric primitives whilst offering multiple interpretation,
actually left the designers more distant from the graphs on Gran Rubina
(see 150). On Tower Hamlets, the components embedded some of the
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design team’s experience and hence the components themselves had
some meaning, both at the level at the component and their use within
the generated graphs. This relates to the discussion at the end of Chapter
5 (see Section Discussion), where understanding not just low-level rules
but how they are combined explicitly was argued as being useful in a
collaborative context.

8.3. Further work

8.3.1. Better Cognition tools

As mentioned in Section 7.1.5, somewhat disappointingly the Embryo
cognition tools that step through the graph did little to enable the
understanding. This may be because although stepping through the
dependency structure, they gave no insight into the relative associations
when doing so. Instead, highlighting the hierarchical dependencies
from each numeric parameter has much more potential in understanding
the graph and its hidden structure. In Section 6.3.8, the ’transactions’
approach by Generative Components seems to be a good reference in
this regard.

Methods to untangle the spaghetti and provide a better layout of numeric
parameters as discussed in Section 7.1.6 would also be useful additions.

8.3.2. Recursive & Cyclic Structures

As discussed in Section 6.2.3, recursive structures were used by Coates
and Senatore in generating L-System models, using rewriting whilst still
maintaining a low degree of epistasis in genotype-phenotype mapping
for good evolvability. Sims (1994) also used recursive structures for the
creature generation. It would be interesting to explore such an approach
in terms of DAG structured parametric models - indeed directed graphs
with cycles have been manipulated this way in other fields such as
artificial neural networks (Boers & Sprinkhuizen-Kuyper, 2001) (fig. 8.1).
One could imagine perhaps incorporating cycles in Grasshopper using
components such as ’Hoopsnake’ (Chatzikonstantinou, 2013) but as part
of a recursive graph structure. As well as reducing encoding length, this
rewriting a different scales may also help with cognition for example with
regards evolving more complex structures with repeated sub-graphs.
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Figure 8.1: An example of a
recursive ’Graph-L-System’
(Boers & Sprinkhuizen-Kuyper,
2001, p.17)
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8.3.3. Hierarchies of Scale

The greatest strength of parametric modelling tools is that they make
explicit the geometric process. Their greatest failure however is that
graph structures can quickly become illegible to anyone other than
the author, fast resembling ’spaghetti’ that cannot be easily untangled.
Indeed, sometimes the author of his/her own model can struggle! As
an example, throughout the case studies in Sections 7.1 and 7.2 it was
found that only simple models using primitive components were useful
post-generation. For the Tower Hamlets case study, sticking to relatively
simple definitions that could be understood became one of the objectives
during the initial exploration.

This suggests that if more complex graphs are to be understood and
used in any meaningful way, they should be broken down into parts at a
series of scales that make up a whole similar to dynamic programming.
This could be recursive structures as above, or distinct modular sub-
graphs each being generated by Embryo and populated as part of a larger
system with complexity at different hierarchies of scale (Simon, 1962).
Grasshopper already uses a modular structure in the form of ’clusters’,
so one could imagine Embryo generating graphs within clusters. Again,
there is years of development in artificial neural networks to learn from
in this regard (Roberts & Turega, 1995).

8.3.4. Artificial Selection

Throughout this thesis, it has been argued that an explicit representation
of the development process should be retained so that any evolved para-
metric models by the machine may be cognised by human stakeholders.
However, although touched upon during the Tower Hamlets experiment,
how multiple stakeholders can engage in the generation of parametric
models in a staged process has not properly been explored. This was
suggested at the end of the design exploration experiment (Section 7.1)
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Figure 8.2: William Latham:
generative art. Source: (Todd &
Latham, 1994)

as a better approach than simply the random generation of many models
and the paradox of choice (Schwartz & Ward, 2004) this entails. Using an
evolutionary method with artificial selection is one possible alternative.

The Blind Watchmaker (Dawkins, 1986) is perhaps the best known
example of an artificial selection process in computer science. In a
design context, human feedback could steer the process without having
to give an explanation of why, thus incorporating tacit knowledge and
drivers. In addition, the motivation for steering the process in a particular
direction can change during the process of evolution. As Senatore (2009,
p.14) states:

“Creative evolutionary systems usually do not have a static
criteria objective function but rather multiple and dynamic
ones to explore alternative search spaces”

The artist William Latham pursued such tacit artificial selection methods
in the development of his art. In collaboration with Stephen Todd
from IBM in 1980s, the software ’mutator’ enabled Latham to breed his
sculptures and furthermore, explicitly record the process of development
(fig.8.2). The process itself became the artwork just as much as the final
sculpture itself.

In a design context, Piasecki and Hanna (2011) have explored how
meaningful options can be better explored with the aid of evolutionary
algorithms with artificial selection. With such a process, the user selects
designs from a given generation to move forward to the next, in contrast
to an automated process such as roulette wheel selection. Likewise,
Steadman(2008) has discussed similar artificial evolutionary processes
and the benefit of communicating explicit past design decisions in an
evolutionary system. Future work would therefore be the development
of an artificial selection engine that could work alongside Embryo within
Grasshopper.
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8.4. Final Comment

One could argue that as the author of a tool such as Embryo I am
imposing a particular meta-parametric approach on anyone that wishes
to use the component. As a response, I hope that others will begin
to to write their own meta-level components that generate topological
variants. The tool presented here is not meant to be an end result,
but intended to open debate about computational design strategies at
the conceptual design stage before the dystopian vision of completely
automated building design becomes true.

Embryo is not intended to be a problem solving tool but more like a toy
capable of opening up new problems and possibilities to design teams at
different levels of abstraction. If it really is turtles all the way down then
at least let’s try and say hello to them.
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A. Case Study Details

The case study projects are ordered chronologically and this appendix
contains the following information:

• Project information.

• Internal collaborators.

• External collaborators.

• Software used on project.

• Short description of work conducted.
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[01Anl]

Astana National Library, 2009

Project Information

• Internal Collaborators: Structures: Stephen Melville, Duncan Hor-
swill, Tom Foley. Façades: Neesha Gopal, Will Stevens, Mark
Pniewski.

• External Collaborators: Bjarke Ingels Group Architects

• Location: Astana, Kazakhstan

• Floor area: 45,000m2

• Project type: Public building

• Software/language used: Rhino Grasshopper

Description of work

Ramboll were employed by the architect to provide structural engineer-
ing and facade services. The initial geometric concept of the Möbius
strip had already been developed by the architect, inspired by some of
their own recent work using a continuous circulation concept. This was
sent via a parametric model definition. The form was geometrically pure
and frozen which enabled stakeholders to easily use a common model
in order to conduct experiments, such as computational heuristics that
embedded structural and fabrication logic in order to improve on the
current design. In the end, even though improvements were made, the
facade cost was still high due to the underlying geometry.
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[02Lbr]

Lusail Bridge Roof, 2009

Project Information

• Internal Collaborators: Bridges: Stephen James.

• External Collaborators: None

• Location: Lusail, Qatar.

• Bridge span: 120m

• Project type: Footbridge

• Software/language used: Microstation Visual Basic

Description of work

Working with our in-house bridges team, I provided the form-finding
of the doubly curved roof form using the Laplacian smoothing process.
The geometry was imported as a surface, and due to the algorithm being
written directly in a CAD environment (Microstation), could be be easily
exported to the architect in the same format.
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[03Cht]

Cheongna Tower, 2009

Project Information

• Internal Collaborators: Structures: Stephen Melville.

• External Collaborators: Various Architects (Jim Dodson)

• Location: Cheongna, Korea

• Tower height: 450m

• Project type: Observation tower (Competition)

• Software/language used: Rhino Grasshopper, Generative Com-
ponents

Description of work

This project began life as a hyperboloid tower concept, which then
developed into a form made from lofted ellipses that rotated. It is
an example where I used the concept of a parametric model with
multi-objective optimisation to find a collection of good designs. In the
end, these ’optimial’ designs were actually quite poor because of the
underlining geometry of the tower. Although aesthetically pleasing, the
form created structural inefficiencies that could not be resolved.
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[04Bhc]

Bath House Columns, 2010

Project Information

• Internal Collaborators: Structures: Iain Sproat, Kevin Hares.

• External Collaborators: None (directly)

• Location: London, UK.

• Floor area: 20,000m2

• Project type: Office/Commercial

• Software/language used: Java/Processing

Description of work

This project used a simple brute-force method for solving a practical
engineering problem. In this case, it was to locate a given number
of supports in order to minimise the deflection of a roof space frame.
Structural analysis was conducted at each iteration using the dynamic
relaxation method implemented in a Java application, with the best
design recorded if an improvement was made on the current best.
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[05Aat]

Arts Alliance Travelling Theatre, 2010

Project Information

• Internal Collaborators: Structures: Stephen Melville.

• External Collaborators: Various Architects (Jim Dodson)

• Location: (mobile venue)

• Venue size: 450m2

• Project type: Performance venue

• Software/language used: Generative Components.

Description of work

The Arts Alliance Project is a case study in the traditional use of
Parametric Design. We investigated different surface patterns on a given
doubly curved form using the parametric model, before arriving on
a good compromise with the architect between visual appearance and
fabrication cost. The final design was then exported to CAD for further
detailed work.

206



[06Nhq]

National Holdings Headquarters, 2010

Project Information

• Internal Collaborators: Structures: Stephen Melville, Duncan Hor-
swill, Harri Lewis. Façades: Neesha Gopal, Mark Pniewski.

• External Collaborators: Zaha Hadid Architects

• Location: Abu Dhabi, UAE

• Floor area: 44,000m2

• Tower height: 14 Storey

• Project type: Office/Commercial

• Software/language used: Rhino Grasshopper, C#

Description of work

The NHHQ was a complex doubly curved building envelope which
required post-rationalisation to reduce facade cost. Hot bent doubly
curved glass is expensive to manufacture, and hence a method to
produce flat quadrilaterals was adopted. This involved using the facade
surface principal curvature field to generate a Planar Quadrilateral (PQ)
panelling layout.
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[07Foy]

London Foyer Sculpture, 2010-11

Project Information

• Internal Collaborators: Structures: Duncan Horswill, Stephen
Melville, James Solly.

• External Collaborators: None

• Location: Ramboll UK Head Office, London, UK

• Size: 5m x 5m x 3m

• Project type: Timber gridshell sculpture

• Software/language used: Generative Components, Java/Pro-
cessing

Description of work

The first independent project by Ramboll Computational Design. See
Appendix D for a detailed explanation.
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[08Urb]

Urban Bubble Gridshell, 2010

Project Information

• Internal Collaborators: Structures: Yanchee Lau, Stephen Melville.

• External Collaborators: None

• Location: London.

• Size: Unknown

• Project type: Continuous timber gridshell

• Software/language used: Microstation Visual Basic

Description of work

The application of Laplacian smoothing to generate a doubly curved
timber soffit around four external columns.
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[09Nuk]

National Gallery of Greenland, 2010

Project Information

• Internal Collaborators: Structures: Duncan Horswill, Ross Smith,
Tom Foley.

• External Collaborators: Bjarke Ingels Group Architects

• Location: Nuuk, Greenland

• Size: 3000m2

• Project type: Public building

• Software/language used: Rhino Grasshopper

Description of work

With our structural engineers in Bristol, a ribbed soffit was generated that
followed the lines of principal stress in order to improve the efficiency of
the roof structure.
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[10Vik]

Viikki Synergy Building, 2010

Project Information

• Internal Collaborators: Structures: Stephen Melville, Duncan Hor-
swill.

• External Collaborators: (Ramboll Denmark)

• Location: Viikki, Helsinki, Finland

• Size: 13,500m2

• Project type: Office building

• Software/language used: Rhino Grasshopper

Description of work

With our structural engineers in Denmark, a ribbed soffit was generated
that followed the lines of principal stress in order to improve the effi-
ciency of the roof structure. In this case the repeatable units and regular
column grid gave rise to similar results to Pier Luigi Nervi’s famous Gatti
Wool Factory (1951).
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[11Gfp]

Garden Festival Pavilion, 2011

Project Information

• Internal Collaborators: Structures: Stephen Melville.

• External Collaborators: None

• Location: Unknown

• Size: 170m2fabric structure.

• Project type: Small temporary shelter

• Software/language used: Java/Processing

Description of work

The form-finding of a minimal surface using dynamic relaxation for a
continuum utilising the triple-force method.
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[12Kre]

KREOD Pavilion, 2011-12

Project Information

• Internal Collaborators: Structures: Harri Lewis, Stephen Melville.

• External Collaborators: Pavilion Architecture

• Location: Greenwich Peninsula, London, UK

• Project type: Temporary pavilion (3 identical structures)

• Software/language used: Rhino Grasshopper, Microstation VBA

• Involvement: RIBA Stage D

Description of work

The architect’s initial design created complex joints at each node due to
the surface form and the diagrid discretisation method. We attempted
the principal curvature approach for generating planar quadrilaterals
and clean node connections by developing software and handing it to
the architect. This method was not adopted due in part because I was
attempting to apply a heuristic to constraint the designs for my own
benefit, which overruled the architect. Although technologically sound,
the approach was unsuccessful because of the way it was integrated in
the design process. The final design itself was a success, showing that
trying to force a particular heuristic (in software) early on was probably
the wrong approach in a collaborative environment.
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[13Rig]

Air Baltic Terminal, Riga International Airport,
2011

Project Information

• Internal Collaborators: Structures: James Norman.

• External Collaborators: Allianss Arhitektid, Estonia.

• Location: Riga, Latvia

• Project type: Airport terminal

• Footprint: 25,000m2

• Software/language used: Java/Processing

Description of work

Similar to the KREOD pavilion [12Kre], an attempt to develop a software
application and hand it to the architect to constrain the design. The
project was successful as the imposed heuristic meant the design was
similar to the original intentions of the architect.
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[14Mvt]

Markham Vale Tower, 2011

Project Information

• Internal Collaborators: Structures: Tom Foley.

• External Collaborators: Local artist

• Location: Markham Vale, Chesterfield, UK

• Project type: Sculpture

• Tower height: 40m

• Software/language used: Java/Processing

Description of work

An artist sculpture with a relaxation method applied to help reduce
bending moment in the structure. The resulting geometry was similar
in shape to the original whilst improving the structure.
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[15Tth]

Tallinn Town Hall, 2011

Project Information

• Internal Collaborators: Structures: Harri Lewis, Stephen Melville,
Tom Foley, Duncan Horswill.

• External Collaborators: Bjarke Ingels Group Architects

• Location: Tallinn, Estonia

• Project type: Administrative building

• Floor area: 28,000m2

• Software/language used: Topopt

Description of work

The project contained a series of cantilevered boxes supported by large
steel trusses within their facades. The final layout of these trusses was
assisted by using a topology optimisation solver; not to find the perfect
result necessarily, but rather to guide the design team towards a good
design whilst balancing other objectives such as fabrication complexity.
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[16Esc]

Escher Tower, 2011-12

Project Information

• Internal Collaborators: Structures: Duncan Horswill. Building
Physics: Tom Shilton.

• External Collaborators: Bjarke Ingels Group Architects

• Location: Copenhagen, Denmark

• Project type: Hotel

• Floor area: 15,000m2

• Tower height: 100m

• Software/language used: Rhino Grasshopper, Ecotect.

Description of work

A first attempt at using parametric design at the early stage of design
in collaboration with an architect. Our involvement was not a success
because although we had the analysis tools, existing top-down modelling
processes could not quickly jump between different building topologies.
This project led to a rejection of parametric design in favour of a
procedural modelling approach.
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[17Fsc]

Forgotten Spaces Competition, 2011

Project Information

• Internal Collaborators: Structures: Stephen Melville.

• External Collaborators: Texere Studio Architects

• Location: Kentish Town, London, UK

• Project type: Urban regeneration

• Software/language used: Java/Processing

Description of work

The use of an agent based model to simulate the effect of flocking
sheep when introduced to an urban environment. The positioning of
feeding stations throughout the site was influenced by feedback from the
simulation.
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[18Pyl]

RIBA Pylon Competition, 2011

Project Information

• Internal Collaborators: Structures: Stephen Melville, Duncan Hor-
swill.

• External Collaborators: None

• Location: UK

• Project type: Electricity pylon ideas competition

• Software/language used: Java/processing

Description of work

Structural optimisation of a new pylon structure using a genetic al-
gorithm.
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[19Mjb]

Maljevik Bay Resort, 2011

Project Information

• Internal Collaborators: Structures: Stephen Melville, Duncan Hor-
swill. Building Physics: Tom Shilton.

• External Collaborators: Foster + Partners

• Location: Maljevik Bay, Montenegro

• Project type: Resort Villas and Apartments.

• Software/language used: Java/processing

Description of work

Working with passive solar design principles in the design of several
Villas all orientated slightly differently on a site. A computational
method was developed that accumulated the incident sun angles for
summer months and used this to form an optimal roof design. Each roof
allowed a large amount of sun light for winter months, but restricted the
sun in the summer months to avoid solar gain.
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[20Eni]

ENI Exploration and Production HQ, 2011

Project Information

• Internal Collaborators: Structural engineering: Duncan Horswill,
Building Physics: Tom Shilton.

• External Collaborators: Bjarke Ingels Group Architects

• Location: Milan, Italy

• Floor area: 20,000m2

• Project type: Office/Commercial (Competition)

• Software/language used: Java/Processing

Description of work

Competition project with BIG, described fully in Chapter 5. I developed
a computational approach that generated forms and integrated real-time
analysis. The black-box complexity of the geometry generation meant
meaningful interaction was hard and the architect did not eventually
adopt the approach. The issue of control was an important factor in our
collaboration and led to a return to parametric modelling in my research.
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[21Chs]

Cockaigne House Shell, 2011

Project Information

• Internal Collaborators: Structures: Rob Harrold.

• External Collaborators: None

• Location: Hatfield, UK

• Footprint: 50m2

• Project type: Timber gridshell structure

• Software/language used: Java/processing, Rhino Grasshopper

Description of work

Form-found timber roof for a private client with a dominant structural
heuristic. As I was the only designer involved on the project, a clear
computational approach was easy to achieve.
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[22Orc]

Orchid House, 2011

Project Information

• Internal Collaborators: Structures: Duncan Horswill, Andreas Bak.

• External Collaborators: Featherstone Young Architects, Cowley
Timber.

• Location: Cirencester, UK

• Project type: Private house

• Software/language used: Microstation Visual Basic

Description of work

A house which had already been designed that we had to ’make work’
structurally. For the facade, the use of a principal curvature approach
discretised the architect’s fixed surface inefficiently. Small modifications
to the underlying surface however gave rise to drastic changes in the
discretisation pattern for which the architect was happy to compromise.
This inspired wrapping a similar heuristic and handing it to the architect
on the KREOD pavilion A.
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[23Shr]

Senate House Roof, 2012

Project Information

• Internal Collaborators: Structures: Kate Waldron, Duncan Hor-
swill. Façade engineering: Neesha Gopal.

• External Collaborators: Carey Jones Architects

• Location: London, UK

• Size: 28m x 21m (perimeter)

• Project type: Glass atrium roof

• Software/language used: Processing/Java, Rhino Grasshopper

Description of work

Form-finding of a steel gridshell and discretisation to planar quadrilat-
eral panels.
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[24Tra]

TRADA Pavilion, 2012

Project Information

• Internal Collaborators: Structures: Stephen Melville, Harri Lewis,
Duncan Horswill, Andreas Bak, Emily Scoones.

• External Collaborators: Timber Research and Development Associ-
ation (TRADA)

• Location: Various

• Project type: Timber Plate Shell

• Size: 8m x 6m x 4m

• Software/language used: Rhino Grasshopper, Java/Processing, C#

Description of work

Form-found trade fair pavilion made from timber panels for the Timber
Research and Development Association (TRADA). See Appendix E for
more detailed description.
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[25Ves]

Vestas Blade Technology Centre, 2012

Project Information

• Internal Collaborators: Structures: Duncan Horswill.

• External Collaborators: None

• Location: Isle of Wight, UK

• Project type: Offices/Manufacturing

• Floor area: 29,000m2

• Software/language used: Java/Processing, C#

Description of work

2D topology optimisation for a repeated truss form. I wrote a bespoke
Java application to optimise different topological structures using a
genetic algorithm.
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[26Hcl]

Helsinki Central Library, 2012

Project Information

• Internal Collaborators: Structures: Tom Foley, Duncan Horswill.

• External Collaborators: Alison Brooks Architects

• Location: Helsinki, Finland

• Project type: Public library

• Floor area: 10,000m2

• Software/language used: Microstation Visual Basic, Java/Pro-
cessing

Description of work

Finding principal stress lines for a random distribution of columns. These
lines set out ribs on the soffit.
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[27Cts]

Citylife Tower Spire, 2012

Project Information

• Internal Collaborators: Structures: Mark Pniewski.

• External Collaborators: Isozaki & Associates Architects

• Location: Milan, Italy

• Project type: Tower spire

• Software/language used: Java/Processing

Description of work

The use of a genetic algorithm to generate designs for a tower spire. An
example of using a metaheuristic and not a heuristic to incorporate other
knowledge into the process. Deflection was chosen as the fitness criteria
because a stress based approach rewarded mechanisms with the highest
fitness. A Java application was written by the author that combined a
modelling, structural analysis and a genetic algorithm.
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[28Yor]

York Way Apartments, 2012

Project Information

• Internal Collaborators: Structures: Sebastian John Wood.

• External Collaborators: None

• Location: London, UK

• Project type: Residential

• Size: 25,000m2

• Software/language used: Java/Processing

Description of work

Form-finding of a large two-dimensional arch structure with asymmet-
rical loads. Simple application of the dynamic mass method for finding
an efficient arch shape.
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[29Grt]

Gran Rubina Tower 3, 2012-13

Project Information

• Internal Collaborators: Structures: Duncan Horswill. Building
Physics: Tom Shilton. Façades: Mark Pniewski.

• External Collaborators: AG5 Architects: Brian Sheldon, Daniel
Nielson, Oliver Wong, Marc Wilson.

• Location: Jakarta, Indonesia

• Project type: Commercial/Office

• Gross external area: 36,000m2

• Software/language used: Grasshopper + Embryo

Description of work

Design exploration incorporating a meta-parametric approach using
Embryo. Early stage decision support feedback automatically was given
to the design team for different tower designs of identical gross extenal
area. The towers were produced using both manual methods and by
using Embryo with the relative performance of each design compared.
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[30Ess]

European Spallation Source (ESS) Building,
2013

Project Information

• Internal Collaborators: Structures: Rob Harrold. Façades: Mark
Pniewski.

• External Collaborators: Foster + Partners

• Location: Lund, Sweden

• Project type: Research facility (invited competition)

• Floor area: 100,000m2

• Software/language used: Java/Processing

Description of work

Support to Foster+Partners on the development of a large roof structure
to house internal buildings. Form-finding software by the author was
used to develop two different funicular designs, both of which were not
progressed.
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[31Tiv]

Tivoli Edge Development, 2013

Project Information

• Internal Collaborators: Structures: Duncan Horswill. Façades:
Mark Pniewski.

• External Collaborators: (Ramboll Denmark)

• Location: Copenhagen, Denmark

• Project type: Retail/Other commercial

• Façade area: 1,800m2

• Software/language used: Rhino Grasshopper

Description of work

Façade discretisation of a freeform doubly curved facade to a planar
quadrilateral (PQ) mesh.
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[32Plu]

Pluit City, 2013

Project Information

• Internal Collaborators: Structures: Duncan Horswill. Infrastruc-
ture: Guy Collingwood.

• External Collaborators: SOM

• Location: Jakarta, Indonesia

• Project type: Urban Development

• Software/language used: Processing/Java

Description of work

Assisting the architect in generating urban layouts using low level rules.
By using a ’class-II’ cellular automaton, two-dimensional configurations
met all local rule conditions when the system reached equilibrium. The
complex nature of the process meant exactly how the configurations were
being generated was practically impossible to follow.
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[33Tow]

Tower Hamlets, 2014

Project Information

• Internal Collaborators: None.

• External Collaborators: 3DReid Architects: Charlie Whitaker, Ant-
onios Lalos, Olympia Katsarou.

• Location: London, UK

• Project type: High density residential

• Software/language used: Grasshopper + Embryo

Description of work

Embryo was used to explore designs for a high density residential
scheme. A formal grammar based on project-specific rules was construc-
ted and combinations of parametric models explored. It was found that
post-creation, the models could be understood and developed by the
design team.
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B. Principal Stress Trajectories

This section includes a short paper presented at the Ramboll Technical
Forum in 2010.

Abstract

This paper presents an approach to the design of floor slabs, façades and
roof structures based on principal stress directions for a continuum under
self-weight. Examples of test projects are given including an installation
design for the London Ramboll office foyer space. Bespoke software
developed by Ramboll Computational Design (RCD) is shown which
creates principal stress fields in real-time in order to present constant
feedback to the designer as boundary conditions are adjusted. In this
sense, structural performance is set as a constraint before the initial
concept design stage has begun, and an afterthought once the geometry
is frozen.

The work presented here was conducted with assistance from the
Ramboll Computational Design team, namely Tom Foley and Stephen
Melville. John is studying for an Engineering Doctorate (EngD) at the
University of Bath in computational design with academic supervisors
Paul Shepherd and Chris Williams. The work is supported by the EPSRC
and Ramboll.

Figure B.1: Concrete slab
(Viikki Synergy Building
[10Vik]) with ribs aligned with
principal bending stress paths
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Figure B.2: Wolff’s sketch of
the femur showing material
alignment

B.1. Introduction

As early as 1800s, biomedical engineers Culmann & Von Meyer (1867)
had proposed the ‘trajectorial theory of trabecular bone structure.’ This
analysis showed that material appeared to be aligned along the principal
lines of force going through the bone allowing for high efficiency of
material whilst keeping a single bone as lightweight as possible overall.
Following on from this work, the German anatomist Julius Wolff pro-
posed that not only that trabeculae were aligned along principal stress
lines (fig.B.2), but that these orientations could adapt dynamically over
time should the bone be used in a different way.

The work of the engineer/architect Pier Luigi Nervi took inspiration
from such natural processes and explored the idea of minimising material
usage by aligning concrete ribs along lines of force, notably in his Gatti
Wool Factory project whereby lines of principal bending stress were set
with deep ribs, all within a fully repeatable unit (Nervi, 1965). The Swiss
Engineer Heinz Isler also found that reinforcing concrete shells along the
lines of principal stress was a very good way to improve efficiency by
minimising the amount of steel used, and hence reduce additional weight
(Gruber, 2011).

Modern day research in this field includes the work of Kaijima &
Michalatos (2007) and Winslow et al. (2007) whereby aligning material
to principal stress lines on a pre-determined free-form surface shell has
been found to have structural benefit.

B.2. Real-time Software

Following this research it was decided that RCD should investigate the
benefits of this approach. Rather than use standard analysis software for
a predetermined problem, software was developed that finds a principal
stress vector field in real-time for a given set of adjustable boundary
conditions. Ribs or members (dependant on the design problem) are then
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Figure B.3: Screen-shots from
the software for solving plane
stress problems in real-time

Figure B.4: Spring finite
element

orientated along the principal stress field using a streamline integrator
with a seeding method to ensure equal density (Mebarki et al., 2005).

Different streamline patterns can be explored with their aesthetic qualit-
ies assessed before design freeze. This is due to the software’s ability to
calculate the stress field rapidly using a form of the dynamic relaxation
method (Day, 1965). This speed means the designer is able to investigate
the effect of different loads, supports, boundaries, etc. and receive real-
time feedback to better guide the placement of material along sound
structural principles. The simulation does not need to be calculated
from scratch each time like traditional FE methods should boundary
conditions change.

B.3. Calculation Method

The software uses a special type of element made from a braced rect-
angular framework of springs (fig.B.4) which make up the plane. The
number of rectangles used depends on the accuracy required. From this
orthogonal base, principal directions and magnitudes are derived using
the values of normal and shear stress for each node and its adjoining
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Figure B.5: Identical volume
of concrete and rib depth
for waffle and ‘Nervi’ slab
leading to a large deflection
reduction at centre and better
stress distribution

springs. Normal stresses are calculated using the rectangular spring
grid whereas shear uses the diagonal bracing springs. The streamlines
generated from the calculated stress field are orthogonal and known as
conjugate curve networks, meaning intersections are always perpendic-
ular. This gives benefits in terms of fabrication especially for roof designs
made of discrete elements, but also for the design of concrete formwork
as there are no acute angles.

B.4. Principal Bending Stress

Aligning material along the principal bending stress lines was proposed
for use on the Viikki Synergy Building [10Vik]. By increasing the overall
depth slightly to 50mm and removing material, there was found to be a
33% concrete saving and a small reduction in the required reinforcement
(tableB.1) for a similar deflection.

A early design for the London office foyer project [07Foy] was also
proposed using lines of principal bending stress (fig.B.6).
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Property Flat slab Optimised slab

Maximum depth (mm) 300 350

Concrete Volume (m3) 182 120

Reinforcement weight (kg) 6450 6400

Table B.1: Viikki typical slab
comparison

Figure B.6: Ribbed slab
design for foyer installation
with simply supported outer
boundary perimeter and inner
void
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B.5. Conclusion

This paper outlines a simple method of aligning material along principal
stress lines and introduced a real-time software application to explore
designs. Clearly, the fabrication of such designs is more complex than
traditional corrugated or waffle slabs and hence the efficiency savings
will need to be measured against these by talking to specialist contractors.
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C. Structural Form-finding using
Springs and Dynamic Weights

This section describes the dynamic mass method for real-time funicu-
lar form-finding. The trivalent network approach to finding three-
dimensional shell structures (Section C.4) builds on work by the author
first published at the International Association for Shell and Spatial
Structures Annual Symposium in 2011 (Harding & Shepherd, 2011).

The approach can be implemented in two or three dimensions. The
resulting found geometry consists of purely axial forces under self-
weight, with zero bending moment at nodes for both shells and tension
net forms. A real-time dynamic relaxation solver is used to achieve static
equilibrium. By using a relaxation method, the designer is able to alter
the gravitational field or apply new point loads without re-starting the
analysis, thus leading to a more interactive experience during design
exploration.

C.1. Background

The form-finding of funicular structures has long been advantageous for
designers of compression shells and tension nets due to their zero out-
of-plane bending moment property under self-weight. There are many
examples from the past of attempts by designers to generate such effi-
cient funicular forms within certain boundary constraints including both
physical and computational models or combinations of both. Antoní
Gaudi’s physical hanging chain models have inspired many engineers
to use similar methods in funicular form-finding including Heinz Isler
(Chilton, 2010), Felix Candela (Faber, 1963) and Frei Otto (1995) to name
but a few. Such methods give a real-life understanding of the behaviour
of material subject to self-weight but at the cost of having to model each
design option individually which can be extremely time consuming and
constraining, especially if the boundary conditions are complex or the
exact requirements of the design are not known.

Recent advances in computing power have made design exploration
possible using direct simulation. Active statics (Greenwold et al., 2003)
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for example is a development of Culmann’s graphic statics (1875) that
allows the user to interact with the system and directly see the feedback
from various actions, although it is limited to solving problems in two
dimensions. In three dimensions, Killian and Ochsendorf (2005) have
employed particle spring systems with stiff springs in order to approxim-
ate rigid links. By using a real-time solver, the designer is able to explore
different funicular designs quickly by changing boundary conditions and
adding or subtracting additional links. Such software aims to mimic
simulations of natural systems such as Gaudi’s hanging chain models.
More recently Block and Ochsendorf (2007) have developed Thrust-
Network Analysis (TNA) using linear optimisation in order to explore
funicular forms in real-time, in particular vaulted masonry structures.

C.1.1. Zero-length springs

In 1932, the physicist Lucien LaCoste (1935) first discovered zero-length
springs and applied them to the design of seismographs and gravimeters.
The force exerted by such a spring is exactly proportional its length which
is also its extension. As length is always positive, so zero-length springs
are always in tension. This paper explains how zero-length springs
may be used in particle spring system in order to form-find funicular
structures by varying the lumped nodal weight applied at each node in
real-time.

C.2. Two-dimensional systems

C.2.1. Method overview

A simple particle-spring system is constructed with nodes joined with
zero-length springs (fig.C.1). An equal mass is lumped at each node and
stays constant for each node in the system.

The springs are equally stressed at the initial condition (a) with nodes
equally spaced along the x-axis. The property of zero-length springs
mean that we then need only solve for the y component of the force when
a gravitational field is applied in the negative y direction. For each node
we therefore have the residual vertical force in y given as:

FV
i = k · (yi−1 + yi+1 − 2yi)− mg (C.1)

where yi+1 and yi-1 are the coordinates of adjacent nodes, k is a global
stiffness constant equal for all the springs in the system and g is the
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Figure C.1: Zero-length springs
form a parabola with equal
masses

gravitational constant. The system of nodes can be solved iteratively
using a numerical method such as dynamic relaxation (Day, 1965) in
order to reach static equilibrium. As the system is statically determinate,
upon reaching equilibrium the springs may be replaced with idealised
rigid bars with the pin joints remaining. The forces in these bars will be
identical to the springs, and the system remains in static equilibrium for
resisting the loads. As the zero-length springs are always tensile, so the
bars will all be in tension. Consequently, reversing the gravitational field
gives compression-only funicular forms.

C.3. Extension to funicular forms

C.3.1. Dynamic Weights

By making the lumped mass applied at the node proportional to the
length of the adjoining zero-length springs, we essentially retain the same
mass per-unit length for the springs - much like a catenary cable. This
mass in turn affects the length of the spring itself and hence a coupled
relationship is formed between the two. Indeed, the mass term can now
be substituted, giving the following non-linear equation:

FV
i = k · (yi−1 + yi+1 − 2yi)−

g · (l1 + l2)
2

(C.2)
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Figure C.2: Exploring catenaries
by varying the gravitational
field

l1 =
√
(yi−1 − yi)2 + (xi−1 − xi)2 (C.3)

l2 =
√
(yi+1 − yi)2 + (xi+1 − xi)2 (C.4)

The spring system can be solved numerically as before. The mass term
will overpower the spring forces should g > k as the nodes continue to
accumulate mass too quickly for the springs to resist the extra force. Even
if this condition is met, the system can also be too stiff and not converge.
In practice this is rectified by choosing a stiffness constant appropriate
for the time-step used. This is easily done manually by visual inspection.

Again, we may replace the springs with bars due to the static determin-
acy if the system. This time, the nodal weights balanced are based on the
weight of the bars themselves (assuming an equal mass per unit length).
Again, as the springs were in tension, so the forces in the bars will be
identical and compression-only if the gravitational field is reversed.

C.3.2. Real-time exploration

Various forms may now be explored within the two pinned boundary
conditions simply by varying the gravitational field. Figure C.2 shows
different length discretised catenaries formed quickly in real-time with
the user varying the gravitational constant.

C.3.3. Catenary Comparison

An analytical solution to the continuous catenary in two dimensions is
well known and is given by the hyperbolic cosine function. The method
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Figure C.3: 17 node system
compared to an actual catenary

Figure C.4: Increasing of nodes
reduces error to zero

generates accurate funicular forms for discretised catenaries with straight
members. By increasing the number of nodes in the system we can very
closely approximate a continuous catenary with even a relatively small
amount of nodes.

Figure C.3 shows the form-finding of a 16m high catenary arch with
nodes at unit spacings along the x-axis. With this problem, the maximum
error was found to be only 3mm where the curvature of the catenary was
greatest. By increasing nodes this error converges monotonically to zero
(fig.C.4).

C.4. Three-dimensional systems

So far approaches to 2D problems have been investigated and hence have
no additional value in terms of finding form. However, the method
applied to 3D systems has much more use for the design of funicular
shells in compression or tension. As has been discussed, transferring
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from 2D to the complexity of doubly curved structures embedded in 3d
space can be challenging for some other approaches.

C.4.1. Using a Trivalent Topology

By using a hexagonal starting mesh (fig.C.5), statically determinate
systems can be solved for equilibrium in three dimensions and hence
unique funicular solutions found. The lumped mass applied at the node
is related to either the three adjoining springs (for discrete systems) or
adjoining areas (for continuous shell form-finding). It is known that a
3d system in equilibrium will also be so as a 2d system when projected
to any plane embedded in 3d space (Henrici & Turner, 1903). As the
gravitational force becomes zero when projected to the ground plane
for every node, it follows that the system is statically determinate for
3-valance nodes. This property is also used by Thrust Network Analysis
(Block & Ochsendorf, 2007).

This determinacy is important for this method because if the springs in
the system are replaced with rigid bars, the system is a unique solution
for the given masses that now reflect the weight of the bar or areas
elements. In addition, the determinacy enables the designer to view the
final axial member forces in real time whilst relaxation is taking place,
and as loads as boundary conditions are modified.

Instead of dynamic weights relating to the length of the springs, area
loads may be applied in order to find continuous shell structure thrust
networks as well as discrete ones. Appropriate areas are easily found
by using the triangular dual network from the hexagonal topology. The
zero-length springs mean that a smooth shape always results, reducing
discontinuities in the final shell form.
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Figure C.5: Trivalent spring
network. Varying spring
stiffnesses gives different
results that are still funicular
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D. The London Foyer Sculpture

D.1. Introduction

In April 2011 a plywood gridshell sculpture was constructed at the
Ramboll UK main office in London [07Foy]. Located in the entrance
foyer space, the installation was designed to implement and evaluate
some of the recent research conducted by the newly launched Ramboll
Computational Design (RCD) group. The foyer sculpture is designed
for both structural and fabrication considerations simultaneously. This
makes it conceptually different to the current trend of architectural free-
form surface modelling where structural and fabrication performance is
post-rationalised following concept design.

D.2. Design Strategy

The first step was to find a funicular compression shell to sit perfectly
within the confined boundary conditions and allow the current use of the
space as an entrance foyer to be uninterrupted. This was achieved using
in-house software (Harding & Shepherd, 2011), allowing the design team
to explore various design options in real-time (fig.3.2.1).

Following the form-finding stage a member discretisation of the doubly
curved form was undertaken. Members were aligned along the principal
curvature network which was also found to be similar the principal stress
field for a continuous shell. Such a strategy thus resulted in structural
efficiency as well as being simple to fabricate from standard sized timber
sheets.

Figure D.1: Funicular form-
finding approach
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Figure D.2: Members set out
following surface principal
curvature field

D.3. Material & Fabrication

All members in the shell were laser cut from standard sized flat pieces of
6mm FSC sourced Malaysian red hardwood WBP exterior plywood. The
type of wood was chosen due to its low cost, appearance, sustainability
credentials, compressive strength and ease of fabrication with a laser
cutter.

Due to the principal curvature orientation of the members there was zero
twist required along their length in order to form the doubly curved shell
(fig.D.2). As the members are also aligned with the principal stress field
the self-weight of the structure travels mostly in axial compression to
the supports. The density of the member discretisation is kept constant
allowing the self-weight to be similar to that of the continuous shell.

To achieve the desired form, although flat, each member was unique and
hence a laser cutter was used to cut the standard sheets of plywood.
Due to each member being a constant depth, efficient nesting of the
elements on each sheet was a simple task, allowing for minimal material
wastage during manufacture. Reference numbers were scorched onto the
members during the cutting process to assist with assembly.

D.4. Connection Details

Every node connection is also laser cut plywood, connecting adjoining
members and transferring load using a single bolt normal to the surface
continuum. By locating nodes on the funicular form, the bending
moment is virtually zero allowing for a small size and reduced material
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Figure D.3: Foyer sculpture
connection detail

Figure D.4: Final constructed
gridshell

usage. In theory, the bolt is not required under self-weight, but are
located purely for accidental load. Similar to the members, the node
connections are numerically referenced using the laser to make assembly
on site straightforward (fig.D.3).

D.5. Assembly

The project was constructed in two days with the final result shown
in fig.D.4. The whole structure is able to be unbolted, flat packed and
transported using only a medium sized car, thus meaning the sculpture
will have a life beyond that of its existing home at the Ramboll office.
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E. The TRADA Pavilion – A
Timber Plate Funicular Shell

This section is a preprint of a paper co-authored by the author and
presented at the International Association for Shell and Spatial Structures
Annual Symposium in 2013 (Harding & Lewis, 2013). It describes the
process used on the TRADA pavilion project by Ramboll Computational
Design.

Abstract

This paper describes the design and construction of the TRADA (Timber
Research and Development Association) Pavilion by Ramboll Computa-
tional Design. The design process combined a zero-length spring funicu-
lar form-finding approach with a planar polygon discretisation method,
thus enabling the final structurally efficient but complex geometric form
to be realised with low-cost materials. The timber plate shell is fully
demountable and has been assembled at several separate locations since
being completed in September 2012. To the authors’ knowledge, the
structure is one of the largest free-form faceted thin shell structures
ever to be constructed. It is hoped that the project inspires a new
approach in realising complex funicular shapes with low-cost materials
and fabrication methods

E.1. Introduction

The TRADA Pavilion was designed and first constructed by the Ramboll
Computational Design (RCD) team in 2012. The structure is a doubly
curved compressive shell assembled entirely from flat timber panels and
stainless steel hinges. Designed as temporary trade fair stand, the shell
is fully demountable. This allows it to be used at various trade events
across the UK, promoting the use of timber as a building material. At
the time of writing, it has been assembled at three different locations.
The design of the pavilion was separated into two main stages. Firstly,
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the form-finding of a funicular compression-only shell was undertaken.
The form-finding approach chosen was a zero-length spring system with
dynamic nodal masses. Its use is explained in Section 2 of the paper.
Secondly, a surface discretisation into planar polygons with tri-valent
nodes was made in order to cheaply and efficiently realise the doubly
curved form with flat timber panels. This discretisation had to be
sufficiently fine in order to maintain a similar structural behaviour to the
continuous shell. This process is covered in Section 3 of the paper. This
combination of techniques meant that a structurally efficient compressive
shell with a complex form could be realised using low-cost off-the-shelf
materials and well known fabrication methods, as well as providing a
demountable structure as required by TRADA.

E.2. Funicular Form-finding

The form-finding of funicular structures has long been desirable for com-
pression and tension shells. Antoní Gaudi’s original physical hanging
chain models have inspired many designers to explore similar methods
for finding efficient shells, with notable work by the engineers Isler,
Candella, Torroja, Nervi and Otto to name only a few. Physical hanging
nets working in tension-only under self-weight are reversed to act in
pure compression under the same loading, a principle first discovered
by Robert Hooke in the 17th century. As the physical tension nets cannot
carry bending, the resulting compressive forms that result also have zero-
bending under self-weight, with the structure working axially with no
out of plane forces thus enabling a thin structural depth for the shell.

E.2.1. Computational Approach

Whilst using physical form-finding models give a real-life understanding
of the behaviour of material subject under self-weight, the cost of having
to model many design options individually can be both time consuming
and constraining if the problem’s boundary conditions are complex
and/or the exact design requirements are not known a priori. In response
to these difficulties, recent efforts have been made to recreate the playful-
ness and intuition of 3D physical model interaction in computer software
applications. Interactive software examples include directly mimicking
physical models with stiff springs (Kilian & Ochsendorf, 2005), as well as
the more recent ‘Thrust-Network Analysis’ (TNA) method that combines
linear optimization with projective geometry and duality theory (Block
& Ochsendorf, 2007).
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E.2.2. Zero-Length Spring System

The computational method used for the TRADA Pavilion utilises a zero-
length spring approach with dynamic weights (Harding & Shepherd,
2011). Zero-length springs by their nature must always be in tension,
and hence any resulting form in tension will result in a compression
only-structure when used appropriately during structural form-finding.
An initial hexagonal zero-length spring system was established to the
dimensions of the 8m x 6m site. Each node thus consisted of 3 springs
meeting at a pinned connection. Nodal mass forces were then applied
perpendicular to a reference ground plane, with equilibrium solved for
using the dynamic relaxation method. With such an approach, funicular
forms were able to be generated so long as the lumped nodal masses
applied are updated at each time-step.

As the TRADA shell was to be a continuous surface as opposed to a lat-
tice, the lumped mass applied at each node was proportional to the local
surface area. This proportionality assumed that the material thickness
was constant throughout, although exactly what thickness did not need
to be known at this stage. The local area was easily approximated by
using the hexagonal mesh dual which is a triangle. Within a gravitational
field, the mass therefore exerts a point load perpendicular to the ground
plane in an upwards direction, whose magnitude is proportional to this
local area. This force is therefore resisted by the adjoining springs.

Because this applied nodal force vanishes to zero when projected to the
ground plane, the system is statically determinate for 3-valance nodes,
so long as all of the applied nodal forces are indeed perpendicular
to the ground plane. This condition is true for the form-finding of
funicular structures where self-weight is the dominant load case, a fact
also utilised by Thrust Network Analysis (Block & Ochsendorf, 2007)
when unique solutions are sought, inspired by the work of Williams
(1986) on reciprocal structures.

The static determinacy of the hexagonal system is useful during the form-
finding process, as it enables the designer to view local forces in real
time whilst the model is altered and new designs are explored. If the
springs are replaced with rigid bars after equilibrium is found, the forces
in the elements must remain as per the spring model in order to resist
the applied nodal point loads due to the uniqueness of the solution. By
reversing the direction of the point loads after finding a tensile form, a
purely compressive shell with zero-bending is the result (fig.E.1).

255



Figure E.1: Shell form-finding
using the dynamic weights

E.2.3. Software Application

By incorporating the form-finding method into a Java application, spring
stiffnesses, the gravitational constant and boundary conditions could be
adjusted on the fly during design development. Various funicular forms
could therefore explored during the early design phase. This included the
introduction of a negatively curved area at the centre of the site, and the
four free edges around the perimeter of the shell. By using zero-length
springs, not only were all elements guaranteed to be in tension, but also a
much smoother shell resulted than was the case by using natural lengths
set by the initial line lengths with no gravitational field applied, i.e. on
the ground plane.

A real-time approach meant that the effect on curvature could be quickly
assessed by changing the boundary conditions. For example, one of the
main problems of the design was to ensure a sufficient amount of double
curvature was present in the 4 corner legs to counter buckling effects.
However, the support areas were limited by their size as the structure
had to be accessed by the public. By adjusting the size and shape of
the legs as they meet the ground, the overall effect on the shape could
be assessed quickly until a satisfactory compromise was found. Once
the form was finalised, rather than having to painstakingly measure a
complex physical model, a fine triangulated mesh could be exported
ready for the next stage of the process (fig.E.2).

E.3. Planar Re-meshing

Due to their double curvature, compressive shell structures have tra-
ditionally been constructed from concrete or masonry. For the former,
bespoke formwork is required in order to accurately provide a reference
surface before the pour is made. Reinforcement is also necessary to resist
live load cases due to concrete’s poor performance in tension, and must
follow the curvature of the shell - often a complex and time-consuming
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Figure E.2: Final fine
triangulated mesh sent for
re-meshing

process. Such cost implications have seen the popularity in thin concrete
shell structures fall in recent decades. Timber on the other hand, works
well in tension and compression if cross-laminated, and hence as a shell
material does not require extra reinforcement. However, forming doubly
curved timber surfaces becomes prohibitively expensive as each panel
would have required a unique jig or be highly wasteful of material. A
suitable compromise therefore was to discretise the shell into flat panels
of timber, whilst remaining close to the original surface so as not to
introduce significant bending moments into the structure. This approach
also allowed the structure to be demountable and flat packed for easy
transportation.

E.3.1. Triangles & Quads

The simplest planar discretisation possible is to form triangular panels
from the initial surface mesh. Nodes are 6-valent, that is, 6 edges
are incident per node. This was the first method attempted (fig.E.3).
However, although the result follows the form closely, there were a
number of structural concerns about adopting this solution.

The triangulated mesh was found to have lines of edge continuity
throughout the surface which allowed the shell to fold as it deforms
under both dead and live load cases, a situation not helped by the free
edges. It therefore required stiff connections to resist this bending action.
Discretising the shell into planar quads with 4-valent nodes by aligning
edges to the principal curvature of the surface (Liu et al., 2006) was also
ruled out for a similar reason.
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Figure E.3: The funicular
surface discretised with
triangular plates

Figure E.4: The three-plate
principle. Unlike a 6-valent
triangular mesh, a 3-valent
planar mesh requires no edge
restraint in order to remain
locally stable

By using a trivalent node however, local stability can be maintained even
with an entirely hinged edge that offers no bending resistance, (fig.E.4).
Any loads applied out of plane are taken via torsional restraint along
each edge, i.e. where two plates meet. Ture Wester incorporated this
property of 3-valent plate shells in his plate-lattice dualism approach
(Wester, 1992). Less edges incident per node also led to neater details
over the whole structure and perhaps visually a more interesting result.

Hexagonal 3-valent plate structures that utilise this property can be
found in nature, for example, the tessellation of plates on a sea urchin
(Wester, 2002) and the formation of ‘scutes’ on turtle shells. Interestingly,
although this approach also uses the underlying structural properties of a
3-valent system as with the form-finding stage, for the planar re-meshing
it does so in a completely different way.
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The benefits of a 3-valent plate system have also been investigated
extensively by Bagger et al. in relation to structural glass shells (Bagger,
2010). With triangular plates (6-valency), load concentrates in the edges
of the elements whereas with a 3-valent system, load is transferred
through the structure via in-plane stresses, thus acting similarly to a
continuous shell. This better distribution of stress therefore allows for
a thinner material to be used for the plates themselves.

E.3.2. Tri-valent Planar Polygons

Discretising a doubly curved surface into 3-valent plates has only re-
cently been achieved. Cutler and Whiting (Cutler & Whiting, 2007)
were the first to adapt a technique developed in the computer graphics
industry known as Variational Shape Approximation (Cohen-Steiner
et al., 2004) for use in the architecture by integrating the approach
with intersecting planes. Around the same time, Troche (Wang et al.,
2008) independently developed a similar Tangent Plane Intersection (TPI)
approach specifically for hexagons. More recently, Zimmer et al. have
investigated generating dual supporting structures for flat plates using
Variational Tangent Plane Intersection (Zimmer et al., 2013).

Using the same approach as Cutler and Whiting, the RCD team de-
veloped their own software in C# for use in Rhino Grasshopper. This
meant that discretisations of varying densities could be quickly assessed
in terms of assembly time, fabrication costs, overall appearance and
structural behaviour, i.e. its deviation from the original smooth form.

The final discretised mesh consisted of 152 flat panels, each of which
was unique. Although the appearance was irregular, each panel’s shape
was related to the curvature of the surface, see fig.E.5. In areas of
positive Gaussian curvature, such as the dome-like areas at the top of the
structure, the panels are convex. In areas that are close to cylindrical or
have approximated zero Gaussian curvature, such as the legs, the panels
are generally rectangular. Finally, in areas of negative curvature such as
the central funnel, interesting concave “bow-tie” shapes are present.

E.3.3. Free Edges

Although the tri-valent mesh provided sufficient restraint for the internal
shapes, the free edges however were not sufficiently restrained and hence
vulnerable to buckling. Perpendicular edge stiffeners were therefore
required to ensure stability, similar to the upturned edges used by Heinz
Isler on his concrete shells (Chilton, 2000).
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Figure E.5: Plan view of the
final discretisation. Each
panel’s shape reflects the
underlying curvature of the
surface at that location.

Figure E.6: Edge of the
structure resisting accidental
point load through an
edge stiffener at a free edge
(exaggerated deflection shown)

Non-linear analysis of the structure was conducted to validate the ap-
proach and ensure that the same plate thickness could be used as per the
main shell (fig.E.6). This analysis was combined with full-scale physical
testing of a leg before committing to the design.

E.4. Fabrication & Assembly

By discretising the shell form into planar polygons the shape could
then be realised with flat timber panels. 15mm thick birch plywood
was chosen due to its strength and ease of use with a 3-axis CNC
machine. The timber could be fire-treated before cutting commenced,
greatly simplifying the process. By designing with just a 3-axis machine
in mind, fabrication costs were significantly lower as well as reducing the
amount of information required by the fabricator from the design team.
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Figure E.7: Identical hinges
were used to connect every
panel

E.4.1. Connection Detail

As already discussed, the nature of the 3-valent shell discretisation
provides sufficient geometric restraint to allow a completely hinged
connection to be used, thus reducing the costs required in fabricating
bespoke connections. Adjacent timber plates were therefore joined using
a standard stainless steel hinge connection along each edge (fig.E.7).

Although the angle between every pair of plates is different throughout
the entire structure, the hinge could easily adapt to suit both the positive
and negatively curved areas. Recesses to locate the hinges were milled
into each plate with each hinge then fixed to each by using a s/s M4 bolt
countersunk on the outside face of the shell (fig.E.8).

E.4.2. Assembly

The final pavilion consisted of 152 panels, 900 hinges and 3600 bolts.
The entire shell was flat packed and delivered to each site on two 2.4m
x 1.2m x 0.9m palettes, and takes a single day to be assembled by 4
people. The speed of assembly is mainly due to the fact that no setting
out information other than the support locations is required. Each panel
contains a numerical reference, and so as each piece is connected the form
begins to emerge as a natural consequence of the doubly curved shape
and its discretisation.

Unlike concrete and masonry shells, no formwork was required. Instead,
vertical props to support the structure were proposed, although at this
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Figure E.8.: Assembled node
detail

scale it was found that the fixed base supports allowed the legs to simply
cantilever before they were joined. At the base supports, hinges were also
used to provide a shadow gap of identical width to that between each
panel in the main structure. These hinges were screwed into a plywood
base in order to provide suitable horizontal restraint.

The final shell form (fig.E.9 & fig.E.10) covers 8m by 6m and is 4m tall
at its highest point, governed by a planning requirement should the
structure be used externally in the future.

E.5. Conclusion

The design of the TRADA Pavilion highlights how a new combina-
tion of computational design techniques can be used to incorporate
structural and fabrication logic into the design of shell structures and
allow different materials to be considered in realising such forms. The
recent rise in free-form surface geometry with little structural logic has
given prominence to geometric post-rationalisation methods. However,
when similar techniques are applied to structurally efficient shell forms,
perhaps new and interesting ideas with regards to realising free-form
funicular shells become possible.
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Figure E.9: Completed Shell
at the Surface Design Awards
(2013)

Figure E.10: Completed Shell at
the UK Timber Expo (2012)
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F. Selected Algorithms

Dynamic Relaxation

A simple algorithm that simulates large displacements to a structure
using a non-linear numerical method. This was used in order to improve
the structural performance of models under self-weight by applying the
’hanging chain’ principal in order to reduce bending moments.

Algorithm F.1 Typical dynamic relaxation algorithm
importData(nodes)
importData(bars)
float minKineticEnergy
%Convergence criteria
while systemEnergy < minKineticEnergy do

for all bars b do
%Exert forces on connected nodes based on current bar strains
barsb.influence(nodes)

end for
for all nodes n do

nodesn.gravity(9.81) %Apply external loads on nodes
nodesn.damp(0.95) %Apply viscous damping
nodesn.update() %Integrate positions based on residual forces

end for
drawSystem(nodes, bars)
calculateTotalEnergy(systemEnergy)

end do
exportData(nodes)
exportData(bars)

Node Pushing

This algorithm uses a structural heuristic to push material towards areas
of high stress and therefore improve the performance of the structure
from an imported geometry.
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Algorithm F.2 Node pushing to high stress areas
importData(nodes)
float distThreshold
bool isImproving = True
while isImproving do

for all nodes n do
for all otherNodes o do

calculateDistance(nodesn, otherNodeso)
if distance < distThreshold

neighbours.add(otherNodeo)
end if

end for
findStressCentroid(neighbours, stressCentroid)
move(nodesn, stressCentroid)

end for
analyseStructure(isImproving)

end do
exportData(nodes)

Passive Solar Design

By using knowledge from our environmental engineers, a computational
approach was developed that assembles a roof form based on an initial
surface geometry provided by the architect and the position of the
summer sun. The roof therefore provides adequate shade for summer
whilst allowing the winter sun to strike the façade.

Algorithm F.3 Creating an optimal roof form using an environmental
heuristic

importData(roofSurface)
importData(facadePanels)
float[] newNodes
for all summerDays d do

for all peakHours h do
for all facadePanels f do

Point iPoint = intersectSunRay(facadePanelsn, roofSurface)
if iPoint != null

newNodes.add(iPoint)
end if

end for
end for

end for
newRoofSurface = createRoof(newNodes)
exportData(newRoofSurface)
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Cheongna Tower

This visual program in grasshopper is included to show how numerical
parameters, geometry, structural analysis and metaheuristic solver can
be included in a single graph representation.

Embryo

Embryo itself is currently around 10,000 lines of code and hence will not
be included here. I have instead chosen to include the DAG generation
routine, with some of the key methods excluded (they should be self-
explanitory). This code has been converted from C# to Python, and then
further modified for clarity.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Embryo : DAG generator f o r Grasshopper
∗ Copyright ( c ) 2013 John Harding
∗ c l a s s EmbryoMain : Grasshopper Standard Component
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

# Key v a r i b l e s
canvas # The g r a s s h o p p e r canvas
myComponents # L i s t o f Embryo components
mySliders # L i s t o f Embryo s l i d e r s
outputStash # L i s t o f a l l p a r a m e t e r o u t p u t s
componentGUIDs # L i s t o f i n g r e d i e n t i d s
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# Document o b j e c t l i s t s
w i l l i n g O b j e c t s # L i s t o f Par en t canvas o u t p u t s
PlugObjects # Plugged o u t p u t s on c h i l d canvas
ParentInputParams # L i s t o f Input p a r a m e t e r s
ParentInputComponents # L i s t o f Input components
getGeometryComponents # Components t h a t c o l l e c t geometry
l o c a l S e t t i n g s # Embryo s e t t i n g s

# I n p u t s from u s e r
rMetr ic # Seed f o r s l i d e r s
rTopolo # Seed f o r t o p o l o g y / f u n c t i o n s
sCount # Number o f s l i d e r s t o g e n e r a t e
cCount # Number o f components t o g e n e r a t e

# D e f a u l t c o n s t r u c t o r
def EmbryoMain ( ) : base ( )

# S o l u t i o n method c a l l e d by g r a s s h o p p e r
def So lve Ins tance (DA) :

# Get i n f o r m a t i o n from u s e r
get Inputs ( rMetric , rTopolo , sCount , cCount , l o c a l S e t t i n g s )

# Embryo works a t t h e end o f a c u r r e n t s o l u t i o n .
mySolution = Document . SolutionEndEventHandler ( DAGgenerator )
canvas . Document . SolutionEnd += mySolution

# S e t Embryo component o u t p u t s
setComponentOutputs ( myComponents , masterCounter )

# The DAG G e n e r a t o r
def DAGgenerator ( ) :

# C l e a r on ly t h e p r e v i o u s l y g e n e r a t e d components
ClearGeneratedSolut ion ( )

# I f f i r s t i t e r a t i o n then g e t i n f o r m a t i o n
i f ( masterCounter == 0) :

ClearEverything ( )

# Get a l l t h e t h i n g s o f f t h e canvas
canvasObjects = GrasshopperActiveObjects ( )

# S t o r e t h i n g s b a s e d on t h e i r document o b j e c t t y p e
foreach ( canvasObjects ) :

i f ( canvasObject i s in bottom l e f t quadrant ) :
i f ( canvasObject i s unlocked )

componentGUIDs .Add( canvasObject . componentGUID )
e l s e :

switch ( canvasObject . GrasshopperType ) :
case ( I s a Parent Output ) :

w i l l i n g O b j e c t .Add( canvasObject )
case ( I s a Child OuputPlug ) :

PlugObject .Add( canvasObject )
case ( I s a Parent Input Component ) :

canvasObject . RemoveAllSources ( )
ParentInputComponent .Add( canvasObject )
ParentInputParam .Add( canvasObject . Param )

case ( I s a get geometry component ) :
ParentInputComponent .Add( canvasObject )

# E x i s t i n g components p l a c e d in c h i l d quadrant
i f ( canvasObject i s in top r i g h t quadrant ) :

myComponents .Add( canvasObject )

# R a i s e some e r r o r s i f we haven ’ t c o l l e c t e d enough t h i n g s
i f ( componentGUIDs . Count == 0 and cCount > 0) :

# Get out o f h e r e
AddRuntimeMessage ( " Error 01 " )
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re turn # Get out o f h e r e
i f ( myComponents . Count = 0 and cCount == 0) :

AddRuntimeMessage ( " Error 02 " )
re turn # Get out o f h e r e

# Now b e g i n t o add t o t h e ou tpu t p a r a m e t e r s t a s h
foreach ( w i l l i n g O b j e c t s ) outputStash .Add( w i l l i n g O b j e c t . output )

# Make t h e s l i d e r s , add t o canvas and add t o t h e o u t p u t s t a s h
f o r ( sCount ) :

mySlider = new Grasshopper_NumberSlider
mySlider . setminmax ( mySettings . data )
mySlider . S e t S l id e rV a l ue ( rMetr ic . Next∗domain )
mySliders .Add( mySlider )
Document . addObject ( mySlider )
outputStash .Add( mySlider . output )

# Make t h e NEW components and add them t o t h e canvas
f o r ( cCount ) :

s e l e c t i o n = rTopolo . Next ( 0 , componentGUIDs . Count )
myComponent .Add(new Component ( componentGUIDs . s e l e c t i o n ) )
Document . addObject (myComponent )

# I d e n t i f y a s a g e n e r a t e d component
myComponent . Component . Message = "G"

# S h u f f l e t h e d e c k
ShuffleComponents ( myComponents , rTopolo . Next )

# Wire up e a c h i n p u t
foreach ( myComponents ) :

# Avoid h o o k i n g up t o same ou tpu t
stashRecord = new L i s t

foreach ( myComponent . Inputs ) :
WireUp (myComponent . Input , rTopolo , stashRecord , isCD )

# Get r i d o f t h e component i f i t f a i l e d .
i f (myComponent f a i l e d to c o l l e c t data ) :

myComponent . Alive = f a l s e
i f ( mySettings . RemoveDead ) :

Document . RemoveObject (myComponent )
e l s e :

myComponent . Component . Hidden = mySettings . Preview
foreach ( getGeometryComponents ) :

geometryOut ( getGeometryComponents [ i ] )

# Add t h e o u t p u t s t o t h e s t a s h
foreach ( myComponent . Outputs ) :

i f ( plugObjects . conta in (myComponent . Output )
outputStash .Add( myComponent . Output )

# F i n a l l y , c o n n e c t any p a r e n t i n p u t s
S h u f f l e O b j e c t s ( outputStash , rTopolo )

foreach ( ParentInputParams ) :
WireUp ( null , rTopolo , stashRecord , isCD )
myObjects = ParentInputComponent . AllDownstreamObjects ( )
foreach ( myObjects )

myObject . ComputeData ( )

# Per form t o p o l o g i c a l s o r t and
# add t o canvas in dependency o r d e r f o r e a s i e r c o g n i t i o n
TopSortComponents ( myComponents , mySettings . Car tes ian )

# I t e r a t e t h e c o u n t e r
masterCounter++
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# Method which h o o k s up an i n p u t t o an e x i s t i n g ou tp ut
def WireUp ( th is Input , rTopolo , stashRecord , isCD ) :

f l a g = f a l s e
s = 0
Friends . S h u f f l e O b j e c t s ( outputStash , mySeed )
while ( ! f l a g )

# Paramet e r t y p e
# TODO: Perhaps use v o l a t i l e d a t a t y p e i n s t e a d
myType = t h i s I n p u t . ParameterType ( )
yourType = outputStash [ s ] . ParameterType ( )

i f (myType i s a S l i d e r ) :
i f ( SliderTypeCheck . i s V a l i d (myType , yourType )

and ! stashRecord . Contains ( outputStash [ s ] ) ) :
t h i s I n p u t . AddSource ( outputStash [ s ] )
f l a g = true
i f ( isCD ) : outputStash . RemoveAt ( s )
e l s e : stashRecord .Add( outputStash [ s ] )

e l s e i f (myType i s a Component ) :
i f ( ComponentTypeCheck . i s V a l i d (myType , yourType )

and ! stashRecord . Contains ( outputStash [ s ] ) ) :
t h i s I n p u t . AddSource ( outputStash [ s ] )
f l a g = true
i f ( t h i s I n p u t != n u l l ) :

foreach ( myComponents ) :
foreach ( myComponent . Outputs ) :

i f ( myComponent . Outputs . Equals ( outputStash [ s ] ) )
t h i s I n p u t . AddInput ( myComponent . Output )
i f ( mySettings . OnlyTerms ) :

myComponent . Hidden = true
i f ( isCD ) : outputStash . RemoveAt ( s )
e l s e : stashRecord .Add( outputStash [ s ] )

# I f we ’ ve t r i e d e v e r y t h i n g , th en g i v e up
i f ( ! f l a g and s == outputStash . Count − 1) :

# I n d i c a t e f a i l u r e t o t h e u s e r
i f ( thisComponent != n u l l ) thisComponent . Message += "X"

f l a g = true

# E l s e k e e p t r y i n g . . .
e l s e :

s++
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G. Embryo Examples

A series of generated Grasshopper definitions using four primitive
components: Point by xyz, Box by 2 points, Line by 2 points, Divide
curve.
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Figure G.1: Different examples
for 8 sliders and 16 components

s = 8, c = 16

s = 8, c = 16

s = 8, c = 16

s = 8, c = 16
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s = 16, c = 32

s = 16, c = 32

s = 16, c = 32

Figure G.2: Different
examples for 16 sliders and
32 components
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Figure G.3: Examples for 80
sliders and 100 components

s = 80, c = 100
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H. More Embryo Examples

H.1. Tower Hamlets: Embryo Setup

H.2. Tower Hamlets: Examples

H.3. Tower Hamlets: Graph Edit
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Figure H.1: Grasshopper/Embryo
setup on the Tower Hamlets
residential project [33Tow].
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Figure H.2: Design ’B’
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Figure H.3: Design ’C’
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Figure H.4: Design ’D’
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Figure H.5: Design ’E’
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Figure H.6: Design ’F’
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Figure H.7: Graph
Development post-Embryo
(1/2)
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Figure H.8: Graph
Development post-Embryo
(2/2)
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