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Abstract

Background: Social behavior has long been known to influence patterns of genetic diversity, but the effect of social
processes on population genetics remains poorly quantified – partly due to limited community-level genetic
sampling (which is increasingly being remedied), and partly to a lack of fast simulation software to jointly model
genetic evolution and complex social behavior, such as marriage rules.

Results: To fill this gap, we have developed SMARTPOP – a fast, forward-in-time genetic simulator – to facilitate
large-scale statistical inference on interactions between social factors, such as mating systems, and population
genetic diversity. By simultaneously modeling genetic inheritance and dynamic social processes at the level of the
individual, SMARTPOP can simulate a wide range of genetic systems (autosomal, X-linked, Y chromosomal and
mitochondrial DNA) under a range of mating systems and demographic models. Specifically designed to enable
resource-intensive statistical inference tasks, such as Approximate Bayesian Computation, SMARTPOP has been coded
in C++ and is heavily optimized for speed and reduced memory usage.

Conclusion: SMARTPOP rapidly simulates population genetic data under a wide range of demographic scenarios
and social behaviors, thus allowing quantitative analyses to address complex socio-ecological questions.
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Background
Often studied in isolation, interest is now increasingly
focused on how non-genetic factors, such as social
behaviors, influence population genetic diversity. The
pioneering social anthropologist Claude Lévi-Strauss [1]
exhaustively described global variation in human mar-
riage systems, and population geneticists are now begin-
ning to explore how marriage rules affect patterns of
human genetic diversity [2,3]. Because societies typically
dictate different rules for men and women, genetic loci
on the sex-linked X and Y chromosomes, as well as
mitochondrial DNA (mtDNA), often respond in differ-
ent ways. The impact of some social processes has been
explored analytically [4,5], but the inherent complexity of
genetic and social systems limits mathematical results to
relatively simple questions.
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Limited progress in this field can in part be attributed
to a paucity of appropriate simulation tools. Coalescent
theory, the workhorse of modern population genetics,
makes the strict assumption of random mating (a nec-
essary condition of ‘exchangeability’). Because marriage
rules automatically impose non-random mate choices,
coalescent approaches (and other simulation programs
that make this assumption) cannot be employed. Some
forward-in-time simulators do possess the required flex-
ibility to accommodate complex social rules – simuPOP
being an excellent example [6]. However, this applica-
tion is written in the interpreted language Python, and
the price of its flexibility is markedly reduced speed (see
Table 1). Other software, such as Fregene [7], are fast
but cannot simulate sex-specific genetic loci or mating
alliances. Modern statistical inference procedures, such as
Approximate Bayesian Computation (ABC), are extremely
resource intensive, and demand simulation tools that can
perform at least an order of magnitude faster than most
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Table 1 Runtime benchmarking (in seconds) against comparable forward-in-time population genetic simulators

Population size 500 1,000

Length of the DNA locus 500 1,000 500 1,000

Number of generations 1,000 10,000 1,000 10,000 1,000 10,000 1,000 10,000

SMARTPOP 11 102 14 140 13 130 30 290

simuPOP [6] 75 896 134 1,640 121 1,510 260 2,930

NEMO [8] 960 9,390 1,790 17,800 1,990 18,950 3,870 35,900

quantiNEMO [9] 467 4,870 1,050 10,300 1,630 11,300 3,650 23,700

Fregene [7] 126 2,450 188 3,390 179 7,890 370 9,050

GenomePop [10] 58 562 57 560 114 1,118 112 1,119

SLiM [11] 32 327 33 351 63 681 64 763

current applications. SMARTPOP, written in parallelized
C++ code and heavily optimized for speed and reduced
memory usage, is designed to fit this niche.

Implementation
SMARTPOP – Simulating Mating Alliances as a
Reproductive Tactic for Populations – implements a
forward-in-time simulation framework. Each individual
carries a complete set of DNA, comprising sequences
of unlinked loci on the autosomes, X chromosome, Y
chromosome and mtDNA, which are inherited in the
appropriate biological manner. Populations are defined by
the user and evolve forward-in-time. The number of loci
and their lengths can be chosen by the user.
Each simulation can be considered as containing three

features:

• A demographic model, such as changes in population
size.

• A set of mutation rates for different loci. By default,
SMARTPOP implements Kimura’s two-parameter
mutation model.

• A set of marriage rules – currently monogamy,
polygamy, polygyny, polyandry and close-relative
inbreeding avoidance, although a wider range of
models are under active development.

The challenge of all forward-in-time simulators is how
to define the initial state of the simulation [12,13], as
neither extreme condition – all individuals identical or
all individuals different – is biologically meaningful. One
possibility is to allow the deme to evolve for a suffi-
ciently long time (i.e., well beyond the mean time to the
most recent common ancestor), such that starting condi-
tions no longer affect the progression of the simulation.
However, this approach is computationally wasteful and
assumes that population diversity starts from an equilib-
rium. As an alternative, we allow an optional buffering
phase before each simulation, which employs an elevated

mutation rate to reach levels of within-population diver-
sity chosen by the user. This ‘accelerated’ evolution-
ary process mimics natural patterns of genetic variation
(both polymorphisms and haplotypes) generated under
standard runs, but with a much reduced runtime (see
Additional file 1 for details). From this point, the popu-
lation evolves for a user-defined number of generations
under a set of demographic constraints and marriage
rules. To simulate complex social and demographic sce-
narios, the user can save, stop and restart the simulations
with different parameters (e.g., constant population size
followed by growth to model a settlement event).
SMARTPOP reports a battery of summary statistics

and/or full DNA sequences both at the end of the sim-
ulation, and if requested, at set time intervals during the
run. Summary statistics include the number of segre-
gating sites S, Watterson’s theta θw, the mean pairwise
distance and its related diversity index θπ , the number
of haplotypes h, allelic heterozygosity HA and Nei’s mean
heterozygosity per site HN . Summary statistics (or DNA
sequences) can be returned for the entire deme, or for a
user-defined sample (i.e., to mimic population sampling in
the real world).
A key feature of SMARTPOP, compared with other

forward-in-time simulators, is its speed. Simulating DNA
sequences for every individual within a population
requires substantial computational resources, and run-
time often increases linearly with the length of the locus.
Benchmarking against other forward-in-time software
shows that SMARTPOP can simulate datasets of a few
thousand nucleotides within seconds, whereas alterna-
tive simulators may take minutes to hours (see Table 1).
SMARTPOP gains its speed from i) a code base written in
C++, ii) use of the Boost library for random computation
and optimized array structures, iii) a DNA representa-
tion that packs 32 nucleotides into every 64-bit integer,
iv) manipulation of DNA sequences by optimized bit
operations, and v) code parallelized under the Message
Passing Interface (MPI) framework. For most scenarios
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representative of real human communities, the resulting
runtime is less than one second per simulation – often
more than an order of magnitude faster than comparable
forward-in-time simulators.
Validation formed an integral part of code development.

Detailed discussion of the validation process, includ-
ing comparisons with coalescent expectations, summary
statistic matching and metamorphic testing, is presented
in Additional file 1.
SMARTPOP is a dynamic, open source project that

aspires to provide an extendable statistical tool base
for modeling the effects of social behavior on popula-
tion genetic diversity. It is released with a supporting
website containing exhaustive documentation about the
source code and model implementation (http://smartpop.
sourceforge.net). The code is under active development
to address a range of ongoing anthropological and eco-
logical questions. For instance, population structure and
inter-deme migration are currently being implemented to
explore mating systems that depend on spousal exchange
between communities. Additional features are planned for
subsequent implementation.

Methods
To illustrate the range of models that SMARTPOP can
simulate, we present four relatively simple case studies
(Figure 1).
First, we model genetic diversity on the paternally-

inherited Y chromosome through time in two small com-
munities (Figure 1A) – the first monogamous (black), the
second polygynous (red). Simulations (n = 104) modeled
1 Mb of the Y chromosome with a mutation rate of 3 ×
10−8 mutations/site/generation in constant sized popula-
tions of 200 individuals. Leveraging the buffering phase,
we mimic the founding of these two populations from a
larger source group with much higher genetic diversity
(θπ = 25). Figure 1A shows the mean (thick lines) and
95% confidence interval (dotted lines) of the number of Y
chromosome haplotypes observed through time.
Second, we model a shift in mating systems. Simula-

tions (n = 104) modeled 1 Mb of the Y chromosome
with amutation rate of 3×10−8 mutations/site/generation
in constant sized populations of 100 individuals under a
switch from monogamy (generations 0–300) to polygyny
(generations 301–600). Figure 1B shows the mean value
of Watterson’s theta (θw) for the Y chromosome through
time.
Third, we model genetic diversity in a population expe-

riencing demographic change. Simulations (n = 104)
modeled 1 Mb of the X chromosome with a mutation rate
of 3×10−8 mutations/site/generation. The population size
is initially constant (n = 100) for 500 generations and
reaches an equilibrium state. The population then grows
by two individuals per generation for 50 years, after which

it evolves for 500 generations with a larger constant size of
200 individuals (consequently reaching a second equilib-
rium state). Figure 1C shows the mean pairwise diversity
(θπ ) of the X chromosome through time.
Finally, wemodel the impact of siblingmating avoidance

in small populations. Simulations (n = 104) modeled 10
fully unlinked autosomal loci, each of 3200 nucleotides,
with amutation rate of 3×10−8 mutations/site/generation
in constant sized populations of 100 individuals. Leverag-
ing the buffering phase, we mimic the founding of these
two populations from a larger source group with higher
genetic diversity (θπ = 25). Figure 1D shows the mean
value of Watterson’s theta (θw) through time in two polyg-
amous populations that allow (red) or prohibit (black)
sibling matings.

Results and discussion
Usage
SMARTPOP runs from the command line with user-
defined parameter flags. All parameters, except popula-
tion size, have default values. If desired, parameters can
be read from a command file. Given the complexity of the
models that SMARTPOP is able to model, the interface
is relatively simple and should rapidly become familiar to
users of coalescent simulators such as MS [14]. Full docu-
mentation and support for using SMARTPOP is available
on the project website (http://smartpop.sourceforge.net).
To simulate 500 instances of a 16 kb mtDNA sequence

in a population of 200 monogamous individuals (mating
system 1), for 100 generations, with a mutation rate of 2×
10−6 mutations/site/generation, with θπ (= Neμ) reach-
ing 25 in the buffering phase, the following command line
would be used:

smartpop -p 200 -nsimu 500 -mat 1 -t
100 -mu 0.000002 0 0 0 -sizeMt 16000
-mtdiv -burnin 25

In the following example, an equivalent set of simula-
tions parallelized under MPI would be distributed across
four processors:

mpiexec -n 4 smartpopMPI -p 200 -nsimu
500 -mat 1 -t 100 -mu 0.000002 0 0 0
-sizeMt 16000 -mtdiv -burnin 25

Speed comparison
SMARTPOP has been highly optimized for speed. Sim-
ulation runtimes for the serial version of SMARTPOP
were benchmarked against comparable forward-in-time
simulators. (Note that most of these cannot model social
behavior). Table 1 reports runtimes with regard to three
main parameters: population size, length of the DNA
locus, and number of generations. In all cases, the run-
time is reported for 100 simulations of an autosomal locus

http://smartpop.sourceforge.net
http://smartpop.sourceforge.net
http://smartpop.sourceforge.net
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Figure 1 Four models showing the range of capability of SMARTPOP. A. Monogamy versus polygyny; B. Shift from monogamy to polygyny;
C. Population growth; D. Inbreeding versus sibling avoidance.

with a mutation rate of 10−6 mutations/site/generation in
a constant sized population. The programs were all exe-
cuted on a Linux system running Ubuntu v. 13.04 with
a 3.07 GHz Intel Xeon CPU X5675 processor. Simula-
tions were not memory or I/O constrained. Runtimes
for SMARTPOP varied from 2 to 153-fold (mean 41-
fold) faster than other software applications (Table 1,
time in seconds). The parallel version of SMARTPOP
achieves even higher speedup than presented in this
benchmarking exercise. Because the Message Passing
Interface (MPI) implementation is embarrassingly par-
allel, runtimes decrease approximately linearly with the
number of available cores.

Worked examples
Figure 1 highlights the large range of scenarios that
SMARTPOP is able to model. Figure 1A illustrates the
difference in genetic dynamics of small populations fol-
lowing two mating systems, monogamy and polygyny.
Both mating systems are found widely in human societies.
The population practicing polygyny quickly exhibits lower
genetic diversity on the Y chromosome, compared to the
monogamous population, due to the higher male variance
in number of offspring produced under polygyny [15].
Example 1B explores the effect of a switch inmating sys-

tems from monogamy to polygyny. Genetic diversity first
reaches an equilibrium under monogamy. After switching
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to polygyny at 300 generations, genetic diversity decreases
to a new equilibrium state of lower diversity. Such shifts
between mating systems have also been documented in
human communities. A particularly well-known example
are theMormons who practiced polygyny during the early
history of the western US [16].
Figure 1C presents the dynamics of genetic diversity fol-

lowing a change in population size. The simulation starts
with a constant population size and subsequently reaches
equilibrium. The population then doubles over 50 gen-
erations. Genetic diversity consequently increases to a
new equilibrium point after a significant lag period (here,
200 generations, or approximately 10,000 years). Popula-
tion growth is a common feature of human populations,
particularly during Neolithic expansions [17].
Figure 1D describes an animal mating system with

and without inbreeding avoidance. We compare autoso-
mal diversity in small populations that allow or prohibit
full and half sibling matings. This scenario formalizes
recent observations of chimpanzee inbreeding avoid-
ance, which is assumed to be an evolutionary strategy
to increase genetic fitness [18]. These simulations con-
firm (and quantify) that societies with inbreeding avoid-
ance maintain higher levels of genetic diversity, hence
suggesting one possible evolutionary advantage of this
practice.
Although these examples are relatively simple for didac-

tic purposes, SMARTPOP can be used to explore far more
complex social rules. We emphasize that this software is
not specifically designed for humans, and as shown above,
can be used tomodel amuchwider range of biological sys-
tems in which social behaviors are thought to impact on
patterns of genetic diversity.

Conclusions
Developed to tackle the issue of computational speed
whenmodeling interactions between genetic diversity and
social behavior, SMARTPOP simulates complex social
and demographic scenarios on a large range of genetic
markers (autosomal, X-linked, Y chromosomal and mito-
chondrial DNA).
The examples presented here illustrate the capacity of

SMARTPOP to quantify the impact of social constructs,
like mating systems, on population genetic diversity. They
also highlight the importance of modeling the dynamics
of population genetic diversity through time, emphasizing
non-equilibrium outcomes of rapid shifts between social
and demographic states over short timescales.
SMARTPOP is well suited for studying human social

systems, but is equally applicable to other species that
exhibit complex social rules [12,19,20]. SMARTPOP can
handle most haploid, diploid or haplo-diploid systems,
thus enabling investigation of a wide range of socio-
ecological questions in a wide range of social species.

Availability and requirements
Project name: SMARTPOP
Project home page: http://smartpop.sourceforge.net
Operating system: Linux, Windows, OS X
Programming language: C++
Other requirements: 64 bit machine; C++ compiler;
Boost v. 1.50 or higher
License: GNU GPL v. 3.0
Any restrictions to use by non academics: None

Additional file

Additional file 1: Implementation and validation. An extended
discussion of implementation choices and a complete description of the
software validation process.
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